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Symbol Expression Meaning

D, K D(K, Y) Symmetric decryption of ciphertext Y using secret key K

D, PRa D(PRa, Y)
Asymmetric decryption of ciphertext Y using A’s private 
key PRa

D, PUa D(PUa, Y)
Asymmetric decryption of ciphertext Y using A’s public 
key PUa

E, K E(K, X) Symmetric encryption of plaintext X using secret key K

E, PRa E(PRa, X)
Asymmetric encryption of plaintext X using A’s private 
key PRa

E, PUa E(PUa, X)
Asymmetric encryption of plaintext X using A’s public 
key PUa

K Secret key

PRa Private key of user A

PUa Public key of user A

MAC, K MAC(K, X)
Message authentication code of message X using secret 
key K

GF(p)
The finite field of order p, where p is prime.The field is 
defined as the set Zp together with the arithmetic opera-
tions modulo p.

GF(2n) The finite field of order 2n

Zn Set of nonnegative integers less than n

gcd gcd(i, j)
Greatest common divisor; the largest positive integer 
that divides both i and j with no remainder on division.

mod a mod m Remainder after division of a by m

mod, K a K b (mod m) a mod m = b mod m

mod, [ a [ b (mod m) a mod m ≠ b mod m

dlog dloga,p(b) Discrete logarithm of the number b for the base a (mod p)

w f(n)
The number of positive integers less than n and relatively 
prime to n. This is Euler’s totient function.

a a
n

i = 1
ai

a1 + a2 + g + an

q q
n

i = 1
ai

a1 * a2 * g * an

notation
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Symbol Expression Meaning

� i � j
i divides j, which means that there is no remainder when 
j is divided by i

� , � � a � Absolute value of a

} x } y x concatenated with y

≈ x ≈ y x is approximately equal to y

⊕ x ⊕ y
Exclusive-OR of x and y for single-bit variables;
Bitwise exclusive-OR of x and y for multiple-bit vari-
ables

:, ; :x; The largest integer less than or equal to x

∈ x ∈ S The element x is contained in the set S.

· A · (a1, a2,
c ak)

The integer A corresponds to the sequence of integers 
(a1, a2, c ak)

NOTATION  11
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WHAT’S NEW IN THE EIGHTH EDITION

Since the seventh edition of this book was published, the field has seen continued innova-
tions and improvements. In this new edition, I try to capture these changes while maintaining 
a broad and comprehensive coverage of the entire field. To begin this process of revision, the 
seventh edition of this book was extensively reviewed by a number of professors who teach 
the subject and by professionals working in the field. The result is that, in many places, the 
narrative has been clarified and tightened, and illustrations have been improved.

Beyond these refinements to improve pedagogy and user-friendliness, there have been 
substantive changes throughout the book. Roughly the same chapter organization has been 
retained, but much of the material has been revised and new material has been added. The 
most noteworthy changes are as follows:

■■ Trust and trustworthiness: Chapter 1 includes a new section describing these two con-
cepts, which are key concepts in computer and network security.

■■ Stream ciphers: With the growing importance of stream ciphers, the treatment of 
stream ciphers has been significantly expanded. There is a new section on stream 
ciphers based on linear feedback shift registers (LFSRs), and several examples of con-
temporary stream ciphers are provided.

■■ Lightweight cryptography: The Internet of Things and other small embedded systems 
require new approaches to cryptography to accommodate the low power requirements, 
minimum memory, and limited processing power of IoT devices. Two new sections 
cover this rapidly emerging topic.

■■ Post-quantum cryptography: In anticipation of the potential threat posed by quantum 
computers, there has been considerable research and development of cryptographic 
algorithms that are resistant to the threat. Two new sections cover this rapidly  emerging 
topic.

prefaCe
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■■ Cloud security: The discussion of cloud security has been expanded, and an entire 
chapter is devoted to this topic in the new edition.

■■ IoT network security: Similarly, IoT networks have resulted in new requirements for 
network security protocols, which are covered.

OBJECTIVES

It is the purpose of this book to provide a practical survey of both the principles and practice 
of cryptography and network security. In the first part of the book, the basic issues to be 
addressed by a network security capability are explored by providing a tutorial and survey 
of cryptography and network security technology. The latter part of the book deals with the 
practice of network security: practical applications that have been implemented and are in 
use to provide network security.

The subject, and therefore this book, draws on a variety of disciplines. In particular, it 
is impossible to appreciate the significance of some of the techniques discussed in this book 
without a basic understanding of number theory and some results from probability theory. 
Nevertheless, an attempt has been made to make the book self-contained. The book not 
only presents the basic mathematical results that are needed but provides the reader with an 
intuitive understanding of those results. Such background material is introduced as needed. 
This approach helps to motivate the material that is introduced, and the author considers 
this preferable to simply presenting all of the mathematical material in a lump at the begin-
ning of the book.

SUPPORT OF ACM/IEEE COMPUTER SCIENCE 
CURRICULA 2013

The book is intended for both academic and professional audiences. As a textbook, it is 
intended as a one-semester undergraduate course in cryptography and network security for 
computer science, computer engineering, and electrical engineering majors. This edition sup-
ports the recommendations of the ACM/IEEE Computer Science Curricula 2013 (CS2013). 
CS2013 adds Information Assurance and Security (IAS) to the curriculum recommendation 
as one of the Knowledge Areas in the Computer Science Body of Knowledge. The document 
states that IAS is now part of the curriculum recommendation because of the critical role of 
IAS in computer science education. CS2013 divides all course work into three categories: 
Core-Tier 1 (all topics should be included in the curriculum), Core-Tier-2 (all or almost all 
topics should be included), and elective (desirable to provide breadth and depth). In the IAS 
area, CS2013 recommends topics in Fundamental Concepts and Network Security in Tier 
1 and Tier 2, and Cryptography topics as elective. This text covers virtually all of the topics 
listed by CS2013 in these three categories.

The book also serves as a basic reference volume and is suitable for self-study.

PREFACE 13
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PLAN OF THE TEXT

The book is divided into six parts.

■■ Background

■■ Symmetric Ciphers

■■ Asymmetric Ciphers

■■ Cryptographic Data Integrity Algorithms

■■ Mutual Trust

■■ Network and Internet Security

The book includes a number of pedagogic features, including the use of the computer 
algebra system Sage and numerous figures and tables to clarify the discussions. Most chap-
ters include a list of key words, review questions, suggestions for further reading, and recom-
mended Web sites. Most chapters also include homework problems. The book also includes 
an extensive glossary, a list of frequently used acronyms, and a bibliography. In addition, a test 
bank is available to instructors.

INSTRUCTOR SUPPORT MATERIALS

The major goal of this text is to make it as effective a teaching tool for this exciting and fast-
moving subject as possible. This goal is reflected both in the structure of the book and in the 
supporting material. The text is accompanied by the following supplementary material that 
will aid the instructor:

■■ Solutions manual: Solutions to all end-of-chapter Review Questions and Problems.

■■ Projects manual: Suggested project assignments for all of the project categories listed 
below.

■■ PowerPoint slides: A set of slides covering all chapters, suitable for use in lecturing.

■■ PDF files: Reproductions of all figures and tables from the book.

■■ Test bank: A chapter-by-chapter set of questions with a separate file of answers.

■■ Supplemental homework problems and solutions: To aid the student in understanding 
the material, a separate set of homework problems with solutions are available.

All of these support materials are available at the Instructor Resource Center 
(IRC) for this textbook, which can be reached through the publisher’s Web site  
www.pearsonglobaleditions.com.

14 PREFACE
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PROJECTS AND OTHER STUDENT EXERCISES

For many instructors, an important component of a cryptography or network security course 
is a project or set of projects by which the student gets hands-on experience to reinforce 
concepts from the text. This book provides an unparalleled degree of support, including a 
project’s component in the course. The IRC not only includes guidance on how to assign and 
structure the projects, but also includes a set of project assignments that covers a broad range 
of topics from the text:

■■ Sage projects: Described in the next section.

■■ Hacking project: Exercise designed to illuminate the key issues in intrusion detection 
and prevention.

■■ Block cipher projects: A lab that explores the operation of the AES encryption algo-
rithm by tracing its execution, computing one round by hand, and then exploring the 
various block cipher modes of use. The lab also covers DES. In both cases, an online 
Java applet is used (or can be downloaded) to execute AES or DES.

■■ Lab exercises: A series of projects that involve programming and experimenting with 
concepts from the book.

■■ Research projects: A series of research assignments that instruct the student to research 
a particular topic on the Internet and write a report.

■■ Programming projects: A series of programming projects that cover a broad range of 
topics and that can be implemented in any suitable language on any platform.

■■ Practical security assessments: A set of exercises to examine current infrastructure and 
practices of an existing organization.

■■ Firewall projects: A portable network firewall visualization simulator, together with 
exercises for teaching the fundamentals of firewalls.

■■ Case studies: A set of real-world case studies, including learning objectives, case 
description, and a series of case discussion questions.

■■ Writing assignments: A set of suggested writing assignments, organized by chapter.

■■ Reading/report assignments: A list of papers in the literature—one for each chapter—
that can be assigned for the student to read and then write a short report.

■■ Discussion topics: These topics can be used in a classroom, chat room, or message 
board environment to explore certain areas in greater depth and to foster student 
collaboration.

This diverse set of projects and other student exercises enables the instructor to use the 
book as one component in a rich and varied learning experience and to tailor a course plan 
to meet the specific needs of the instructor and students.

PREFACE 15
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THE SAGE COMPUTER ALGEBRA SYSTEM

One of the most important features of this book is the use of Sage for cryptographic  
examples and homework assignments. Sage is an open-source, multiplatform, freeware  
package that implements a very powerful, flexible, and easily learned mathematics and 
computer algebra system. Unlike competing systems (such as Mathematica, Maple, and  
MATLAB), there are no licensing agreements or fees involved. Thus, Sage can be made 
available on computers and networks at school, and students can individually download the 
software to their own personal computers for use at home. Another advantage of using Sage 
is that students learn a powerful, flexible tool that can be used for virtually any mathematical 
application, not just cryptography.

The use of Sage can make a significant difference to the teaching of the mathematics 
of cryptographic algorithms. Two documents available at the IRC support student use of 
Sage. The first document provides a large number of examples of the use of Sage covering 
many cryptographic concepts. The second document provides exercises in each of these topic 
areas to enable the student to gain hands-on experience with cryptographic algorithms. This 
appendix is available to instructors at the IRC for this book. It also includes a section on how 
to download and get started with Sage, a section on programming with Sage, and exercises 
that can be assigned to students in the following categories:

■■ Chapter 2—Introduction to Number Theory: Euclidean and extended Euclidean 
algorithms, polynomial arithmetic, GF(24), Euler’s Totient function, Miller Rabin, 
factoring, modular exponentiation, discrete logarithm, and Chinese remainder 
theorem.

■■ Chapter 3—Classical Encryption Techniques: Affine ciphers and the Hill cipher.

■■ Chapter 4—Block Ciphers and the Data Encryption Standard: Exercises based on 
SDES.

■■ Chapter 6—Advanced Encryption Standard: Exercises based on SAES.

■■ Chapter 8—Random Bit Generation and Stream Ciphers: Blum Blum Shub, linear 
congruential generator, and ANSI X9.17 PRNG.

■■ Chapter 9—Public-Key Cryptography and RSA: RSA encrypt/decrypt and signing.

■■ Chapter 10—Other Public-Key Cryptosystems: Diffie-Hellman, elliptic curve.

■■ Chapter 11—Cryptographic Hash Functions: Number-theoretic hash function.

■■ Chapter 13—Digital Signatures: DSA.

16 PREFACE
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LEARNING OBJECTIVES

After studying this chapter, you should be able to:

 ◆ Describe the key security requirements of confidentiality, integrity, and  
availability.

 ◆ Discuss the types of security threats and attacks that must be dealt with  
and give examples of the types of threats and attacks that apply to different 
categories of computer and network assets.

 ◆ Provide an overview of keyless, single-key, and two-key cryptographic  
algorithms.

 ◆ Provide an overview of the main areas of network security.

 ◆ Describe a trust model for information security.

 ◆ List and briefly describe key organizations involved in cryptography  
standards.

This book focuses on two broad areas: cryptography and network security. This 
 overview chapter first looks at some of the fundamental principles of security, encom-
passing both information security and network security. These include the concepts of 
security attacks, security services, and security mechanisms. Next, the chapter intro-
duces the two areas of cryptography and network security. Finally, the concepts of trust 
and trustworthiness are examined.

1.8 Trust and Trustworthiness 

A Trust Model 
The Trust Model and Information Security 
Establishing Trust Relationships 

1.9 Standards 

1.10 Key Terms, Review Questions, and Problems 
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1.1  CYBERSECURITY, INFORMATION SECURITY, 
AND NETWORK SECURITY

It would be useful to start this chapter with a definition of the terms cybersecurity, infor-
mation security, and network security. A reasonably comprehensive definition of cyber-
security is:

Cybersecurity is the protection of information that is stored, transmitted, and pro-
cessed in a networked system of computers, other digital devices, and network devices 
and transmission lines, including the Internet. Protection encompasses confidentiality, 
integrity, availability, authenticity, and accountability. Methods of protection include 
organizational policies and procedures, as well as technical means such as encryption 
and secure communications protocols.

As subsets of cybersecurity, we can define the following:

 ■ Information security: This term refers to preservation of confidentiality, 
integrity, and availability of information. In addition, other properties, such 
as authenticity, accountability, nonrepudiation, and reliability can also be 
involved.

 ■ Network security: This term refers to protection of networks and their service 
from unauthorized modification, destruction, or disclosure, and provision of 
assurance that the network performs its critical functions correctly and there 
are no harmful side effects.

Cybersecurity encompasses information security, with respect to electronic 
information, and network security. Information security also is concerned with phys-
ical (e.g., paper-based) information. However, in practice, the terms cybersecurity 
and information security are often used interchangeably.

Security Objectives

The cybersecurity definition introduces three key objectives that are at the heart of 
information and network security:

 ■ Confidentiality: This term covers two related concepts:

 — Data1 confidentiality: Assures that private or confidential information is 
not made available or disclosed to unauthorized individuals.

1We can define information as communication or representation of knowledge such as facts, data, or 
opinions in any medium or form, including textual, numerical, graphic, cartographic, narrative, or au-
diovisual; and data as information with a specific representation that can be produced, processed, or 
stored by a computer. Security literature typically does not make much of a distinction, nor does this 
book.
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 — Privacy: Assures that individuals control or influence what information 
related to them may be collected and stored and by whom and to whom 
that information may be disclosed.

 ■ Integrity: This term covers two related concepts:

 — Data integrity: Assures that data (both stored and in transmitted packets) 
and programs are changed only in a specified and authorized manner. This 
concept also encompasses data authenticity, which means that a digital object 
is indeed what it claims to be or what it is claimed to be, and  nonrepudiation, 
which is assurance that the sender of information is provided with proof of 
delivery and the recipient is provided with proof of the sender’s identity, so 
neither can later deny having processed the information.

 — System integrity: Assures that a system performs its intended function in 
an unimpaired manner, free from deliberate or inadvertent unauthorized 
manipulation of the system.

 ■ Availability: Assures that systems work promptly and service is not denied to 
authorized users.

These three concepts form what is often referred to as the CIA triad. The three 
concepts embody the fundamental security objectives for both data and for informa-
tion and computing services. For example, the NIST standard FIPS 199 (Standards 
for Security Categorization of Federal Information and Information Systems) lists 
confidentiality, integrity, and availability as the three security objectives for infor-
mation and for information systems. FIPS 199 provides a useful characterization 
of these three objectives in terms of requirements and the definition of a loss of  
security in each category:

 ■ Confidentiality: Preserving authorized restrictions on information access 
and disclosure, including means for protecting personal privacy and propri-
etary information. A loss of confidentiality is the unauthorized disclosure of 
information.

 ■ Integrity: Guarding against improper information modification or destruc-
tion, including ensuring information nonrepudiation and authenticity. A loss 
of integrity is the unauthorized modification or destruction of information.

 ■ Availability: Ensuring timely and reliable access to and use of information. 
A loss of availability is the disruption of access to or use of information or an 
information system.

Although the use of the CIA triad to define security objectives is well estab-
lished, some in the security field feel that additional concepts are needed to pres-
ent a complete picture (Figure 1.1). Two of the most commonly mentioned are as 
follows:

 ■ Authenticity: The property of being genuine and being able to be verified and 
trusted; confidence in the validity of a transmission, a message, or message 
originator. This means verifying that users are who they say they are and that 
each input arriving at the system came from a trusted source.
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 ■ Accountability: The security goal that generates the requirement for actions 
of an entity to be traced uniquely to that entity. This supports nonrepudiation, 
deterrence, fault isolation, intrusion detection and prevention, and after-action 
recovery and legal action. Because truly secure systems are not yet an achiev-
able goal, we must be able to trace a security breach to a responsible party. 
Systems must keep records of their activities to permit later forensic analysis 
to trace security breaches or to aid in transaction disputes.

The Challenges of Information Security

Information and network security are both fascinating and complex. Some of the 
reasons follow:

1. Security is not as simple as it might first appear to the novice. The require-
ments seem to be straightforward; indeed, most of the major requirements for 
security services can be given self-explanatory, one-word labels: confidential-
ity, authentication, nonrepudiation, and integrity. But the mechanisms used to 
meet those requirements can be quite complex, and understanding them may 
involve rather subtle reasoning.

2. In developing a particular security mechanism or algorithm, one must always 
consider potential attacks on those security features. In many cases, successful 
attacks are designed by looking at the problem in a completely different way, 
therefore exploiting an unexpected weakness in the mechanism.

3. Because of point 2, the procedures used to provide particular services are 
often counterintuitive. Typically, a security mechanism is complex, and it is not 
obvious from the statement of a particular requirement that such elaborate 
measures are needed. It is only when the various aspects of the threat are con-
sidered that elaborate security mechanisms make sense.

4. Having designed various security mechanisms, it is necessary to decide where 
to use them. This is true both in terms of physical placement (e.g., at what points 
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in a network are certain security mechanisms needed) and in a logical sense 
[e.g., at what layer or layers of an architecture such as TCP/IP (Transmission 
Control Protocol/Internet Protocol) should mechanisms be placed].

5. Security mechanisms typically involve more than a particular algorithm or 
protocol. They also require that participants be in possession of some secret 
information (e.g., an encryption key), which raises questions about the cre-
ation, distribution, and protection of that secret information. There also may 
be a reliance on communications protocols whose behavior may complicate 
the task of developing the security mechanism. For example, if the proper 
functioning of the security mechanism requires setting time limits on the tran-
sit time of a message from sender to receiver, then any protocol or network 
that introduces variable, unpredictable delays may render such time limits 
meaningless.

6. Information and network security are essentially a battle of wits between a 
perpetrator who tries to find holes and the designer or administrator who tries 
to close them. The great advantage that the attacker has is that he or she need 
only find a single weakness, while the designer must find and eliminate all 
weaknesses to achieve perfect security.

7. There is a natural tendency on the part of users and system managers to per-
ceive little benefit from security investment until a security failure occurs.

8. Security requires regular, even constant, monitoring, and this is difficult in 
today’s short-term, overloaded environment.

9. Security is still too often an afterthought to be incorporated into a system after 
the design is complete rather than being an integral part of the design process.

10. Many users and even security administrators view strong security as an imped-
iment to efficient and user-friendly operation of an information system or use 
of information.

The difficulties just enumerated will be encountered in numerous ways as we 
examine the various security threats and mechanisms throughout this book.

1.2 THE OSI SECURITY ARCHITECTURE

To assess effectively the security needs of an organization and to evaluate and 
choose various security products and policies, the manager responsible for security 
needs some systematic way of defining the requirements for security and character-
izing the approaches to satisfying those requirements. This is difficult enough in a 
centralized data processing environment; with the use of local and wide area net-
works, the problems are compounded.

ITU-T Recommendation X.800, Security Architecture for OSI, defines 
such a systematic approach. The open systems interconnection (OSI) security 
architecture is useful to managers as a way of organizing the task of providing 
security. Furthermore, because this architecture was developed as an interna-
tional  standard, computer and communications vendors have developed security 
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features for their products and services that relate to this structured definition of 
services and mechanisms.

For our purposes, the OSI security architecture provides a useful, if abstract, 
overview of many of the concepts that this book deals with. The OSI security archi-
tecture focuses on security attacks, mechanisms, and services. These can be defined 
briefly as:

 ■ Security attack: Any action that compromises the security of information 
owned by an organization.

 ■ Security mechanism: A process (or a device incorporating such a process) that 
is designed to detect, prevent, or recover from a security attack.

 ■ Security service: A processing or communication service that enhances the 
security of the data processing systems and the information transfers of an 
organization. The services are intended to counter security attacks, and they 
make use of one or more security mechanisms to provide the service.

In the literature, the terms threat and attack are commonly used, with the  
following meanings:

 ■ Threat: Any circumstance or event with the potential to adversely impact 
organizational operations (including mission, functions, image, or reputation), 
organizational assets, individuals, other organizations, or the Nation through 
an information system via unauthorized access, destruction, disclosure, modifi-
cation of information, and/or denial of service.

 ■ Attack: Any kind of malicious activity that attempts to collect, disrupt, deny, 
degrade, or destroy information system resources or the information itself.

The following three sections provide an overview of the concepts of attacks, 
services, and mechanisms. The key concepts that are covered are summarized in 
Figure 1.2.

1.3 SECURITY ATTACKS

A useful means of classifying security attacks, used both in X.800, is in terms of  
passive attacks and active attacks (Figure 1.2a). A passive attack attempts to learn or 
make use of information from the system but does not affect system resources. An 
active attack attempts to alter system resources or affect their operation.

Passive Attacks

Passive attacks are in the nature of eavesdropping on, or monitoring of, transmis-
sions. The goal of the attacker is to obtain information that is being transmitted. Two 
types of passive attacks are the release of message contents and traffic analysis.

The release of message contents is easily understood. A telephone conver-
sation, an electronic mail message, and a transferred file may contain sensitive or 
confidential information. We would like to prevent an opponent from learning the 
contents of these transmissions.
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A second type of passive attack, traffic analysis, is subtler. Suppose that we 
had a way of masking the contents of messages or other information traffic so that 
opponents, even if they captured the message, could not extract the information 
from the message. The common technique for masking contents is encryption. If we 
had encryption protection in place, an opponent might still be able to observe the 
pattern of these messages. The opponent could determine the location and identity 
of communicating hosts and could observe the frequency and length of messages 
being exchanged. This information might be useful in guessing the nature of the 
communication that was taking place.

Passive attacks are very difficult to detect because they do not involve any 
alteration of the data. Typically, the message traffic is sent and received in an appar-
ently normal fashion and neither the sender nor receiver is aware that a third party 
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has read the messages or observed the traffic pattern. However, it is feasible to pre-
vent the success of these attacks, usually by means of encryption. Thus, the emphasis 
in dealing with passive attacks is on prevention rather than detection.

Active Attacks

Active attacks involve some modification of the data stream or the creation of a 
false stream and can be subdivided into four categories: replay, masquerade, modifi-
cation of messages, and denial of service.

A masquerade takes place when one entity pretends to be a different entity. 
A masquerade attack usually includes one of the other forms of active attack. For 
example, authentication sequences can be captured and replayed after a valid 
authentication sequence has taken place, thus enabling an authorized entity with 
few privileges to obtain extra privileges by impersonating an entity that has those 
privileges.

Replay involves the passive capture of a data unit and its subsequent retrans-
mission to produce an unauthorized effect.

Data modification simply means that some portion of a legitimate message 
is altered, or that messages are delayed or reordered, to produce an unauthorized 
effect. For example, a message stating, “Allow John Smith to read confidential file 
accounts” is modified to say, “Allow Fred Brown to read confidential file accounts.”

The denial of service prevents or inhibits the normal use or management of 
communication facilities. This attack may have a specific target; for example, an 
entity may suppress all messages directed to a particular destination (e.g., the secu-
rity audit service). Another form of service denial is the disruption of an entire net-
work, either by disabling the network or by overloading it with messages so as to 
degrade performance.

Active attacks present the opposite characteristics of passive attacks. Whereas 
passive attacks are difficult to detect, measures are available to prevent their success. 
On the other hand, it is quite difficult to prevent active attacks absolutely, because 
to do so would require physical protection of all communication facilities and paths 
at all times. Instead, the goal is to detect them and to recover from any disruption 
or delays caused by them. Because the detection has a deterrent effect, it may also 
contribute to prevention.

Figure 1.3 illustrates the types of attacks in the context of a client/server inter-
action. A passive attack (Figure 1.3b) does not disturb the information flow between 
the client and server, but is able to observe that flow.

A masquerade can take the form of a man-in-the-middle attack (Figure 1.3c). 
In this type of attack, the attacker intercepts masquerades as the client to the server 
and as the server to the client. We see specific applications of this attack in defeat-
ing key exchange and distribution protocols (Chapters 10 and 14) and in message 
authentication protocols (Chapter 11). More generally, it can be used to imperson-
ate the two ends of a legitimate communication. Another form of masquerade is 
illustrated in Figure 1.3d. Here, an attacker is able to access server resources by mas-
querading as an authorized user.

Data modification may involve a man-in-the middle attack, in which the 
attacker selectively modifies communicated data between a client and server 
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(Figure 1.3c). Another form of data modification attack is the modification of data 
residing on a serve or other system after an attacker gains unauthorized access 
(Figure 1.3d).

Figure 1.3e illustrates the replay attack. As in a passive attack, the attacker 
does not disturb the information flow between client and server, but does capture 
client message. The attacker can then subsequently replay any client message to the 
server.

Figure 1.3d also illustrates denial of service in the context of a client/server 
environment. The denial of service can take two forms: (1) flooding the server with 
an overwhelming amount of data; and (2) triggering some action on the server that 
consumes substantial computing resources.

1.4 SECURITY SERVICES

A security service is a capability that supports one or more of the security require-
ments (confidentiality, integrity, availability, authenticity, and accountability). Security 
services implement security policies and are implemented by security mechanisms.

Client Server
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traffic analysis)
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(e) Active attack (replay)

Client Server
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Figure 1.3 Security Attacks

M01_STAL7484_08_GE_C01.indd   30 04/04/22   7:48 PM



1.4 / SECuRITy SERvICES 31

The most important security services are shown in Figure 1.2b. We look at each 
category in turn.2

Authentication

The authentication service is concerned with assuring that a communication is 
authentic. In the case of a single message, such as a warning or alarm signal, the 
function of the authentication service is to assure the recipient that the message is 
from the source that it claims to be from. In the case of an ongoing interaction, such 
as the connection of a client to a server, two aspects are involved. First, at the time 
of connection initiation, the service assures that the two entities are authentic, that 
is, that each is the entity that it claims to be. Second, the service must assure that the 
connection is not interfered with in such a way that a third party can masquerade as 
one of the two legitimate parties for the purposes of unauthorized transmission or 
reception.

Two specific authentication services are defined in X.800:

 ■ Peer entity authentication: Provides for the corroboration of the identity of a 
peer entity in an association. Two entities are considered peers if they imple-
ment the same protocol in different systems; for example, two TCP modules in 
two communicating systems. Peer entity authentication is provided for use at 
the establishment of, or at times during the data transfer phase of, a connec-
tion. It attempts to provide confidence that an entity is not performing either a 
masquerade or an unauthorized replay of a previous connection.

 ■ Data origin authentication: Provides for the corroboration of the source of 
a data unit. It does not provide protection against the duplication or modifi-
cation of data units. This type of service supports applications like electronic 
mail, where there are no ongoing interactions between the communicating 
entities.

Access Control

In the context of network security, access control is the ability to limit and control 
the access to host systems and applications via communications links. To achieve 
this, each entity trying to gain access must first be identified, or authenticated, so 
that access rights can be tailored to the individual.

Data Confidentiality

Confidentiality is the protection of transmitted data from passive attacks. With 
respect to the content of a data transmission, several levels of protection can be 
identified. The broadest service protects all user data transmitted between two users 

2There is no universal agreement about many of the terms used in the security literature. For example, 
the term integrity is sometimes used to refer to all aspects of information security. The term authentication  
is sometimes used to refer both to verification of identity and to the various functions listed under 
 integrity in this chapter. Our usage here agrees with X.800.
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over a period of time. For example, when a TCP connection is set up between two 
systems, this broad protection prevents the release of any user data transmitted over 
the TCP connection. Narrower forms of this service can also be defined, including 
the protection of a single message or even specific fields within a message. These 
refinements are less useful than the broad approach and may even be more complex 
and expensive to implement.

The other aspect of confidentiality is the protection of traffic flow from analy-
sis. This requires that an attacker not be able to observe the source and destination, 
frequency, length, or other characteristics of the traffic on a communications facility.

Data Integrity

As with confidentiality, integrity can apply to a stream of messages, a single mes-
sage, or selected fields within a message. Again, the most useful and straightforward 
approach is total stream protection.

A connection-oriented integrity service, one that deals with a stream of mes-
sages, assures that messages are received as sent with no duplication, insertion, 
modification, reordering, or replays. The destruction of data is also covered under 
this service. Thus, the connection-oriented integrity service addresses both  message 
stream modification and denial of service. On the other hand, a connectionless integ-
rity service, one that deals with individual messages without regard to any larger 
context, generally provides protection against message modification only.

We can make a distinction between service with and without recovery. Because 
the integrity service relates to active attacks, we are concerned with detection rather 
than prevention. If a violation of integrity is detected, then the service may simply 
report this violation, and some other portion of software or human intervention is 
required to recover from the violation. Alternatively, there are mechanisms avail-
able to recover from the loss of integrity of data, as we will review subsequently. The 
incorporation of automated recovery mechanisms is, in general, the more attractive 
alternative.

Nonrepudiation

Nonrepudiation prevents either sender or receiver from denying a transmitted mes-
sage. Thus, when a message is sent, the receiver can prove that the alleged sender in 
fact sent the message. Similarly, when a message is received, the sender can prove 
that the alleged receiver in fact received the message.

Availability Service

Availability is the property of a system, or a system resource being accessible and 
usable upon demand by an authorized system entity, according to performance 
specifications for the system (i.e., a system is available if it provides services accord-
ing to the system design whenever users request them). A variety of attacks can 
result in the loss of or reduction in availability. Some of these attacks are amenable 
to automated countermeasures, such as authentication and encryption, whereas oth-
ers require some sort of physical action to prevent or recover from loss of availabil-
ity of elements of a distributed system.
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X.800 treats availability as a property to be associated with various security 
services. However, it makes sense to call out specifically an availability service. An 
availability service is one that protects a system to ensure its availability. This service 
addresses the security concerns raised by denial-of-service attacks. It depends on 
proper management and control of system resources and thus depends on access 
control service and other security services.

1.5 SECURITY MECHANISMS

Figure 1.2c lists the most important security mechanisms discussed in this book. 
These mechanisms will be covered in the appropriate places in the book. So, we do 
not elaborate now, except to provide the following brief definitions.

 ■ Cryptographic algorithms: We can distinguish between reversible crypto-
graphic mechanisms and irreversible cryptographic mechanisms. A reversible 
cryptographic mechanism is simply an encryption algorithm that allows data 
to be encrypted and subsequently decrypted. Irreversible cryptographic mech-
anisms include hash algorithms and message authentication codes, which are 
used in digital signature and message authentication applications.

 ■ Data integrity: This category covers a variety of mechanisms used to assure the 
integrity of a data unit or stream of data units.

 ■ Digital signature: Data appended to, or a cryptographic transformation of, 
a data unit that allows a recipient of the data unit to prove the source and  
integrity of the data unit and protect against forgery.

 ■ Authentication exchange: A mechanism intended to ensure the identity of an 
entity by means of information exchange.

 ■ Traffic padding: The insertion of bits into gaps in a data stream to frustrate 
traffic analysis attempts.

 ■ Routing control: Enables selection of particular physically or logically secure 
routes for certain data and allows routing changes, especially when a breach of 
security is suspected.

 ■ Notarization: The use of a trusted third party to assure certain properties of a 
data exchange.

 ■ Access control: A variety of mechanisms that enforce access rights to 
resources.

1.6 CRYPTOGRAPHY

Cryptography is a branch of mathematics that deals with the transformation of 
data. Cryptographic algorithms are used in many ways in information security and 
network security. Cryptography is an essential component in the secure storage 
and transmission of data, and in the secure interaction between parties. Parts Two 
through Five are devoted to this topic. Here we provide a very brief overview.
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Cryptographic algorithms can be divided into three categories (Figure 1.4):

 ■ Keyless: Do not use any keys during cryptographic transformations.

 ■ Single-key: The result of a transformation is a function of the input data and a 
single key, known as a secret key.

 ■ Two-key: At various stages of the calculation, two different but related keys 
are used, referred to as a private key and a public key.

Keyless Algorithms

Keyless algorithms are deterministic functions that have certain properties useful 
for cryptography.

One important type of keyless algorithm is the cryptographic hash function. A 
hash function turns a variable amount of text into a small, fixed-length value called 
a hash value, hash code, or digest. A cryptographic hash function is one that has 
additional properties that make it useful as part of another cryptographic algorithm, 
such as a message authentication code or a digital signature.

A pseudorandom number generator produces a deterministic sequence 
of numbers or bits that has the appearance of being a truly random sequence. 
Although the sequence appears to lack any definite pattern, it will repeat after a cer-
tain sequence length. Nevertheless, for some cryptographic purposes this apparently 
random sequence is sufficient.

Single-Key Algorithms

Single-key cryptographic algorithms depend on the use of a secret key. This key may 
be known to a single user; for example, this is the case for protecting stored data that 
is only going to be accessed by the data creator. Commonly, two parties share the 
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secret key so that communication between the two parties is protected. For certain 
applications, more than two users may share the same secret key. In this last case, the 
algorithm protects data from those outside the group who share the key.

Encryption algorithms that use a single key are referred to as symmetric 
encryption algorithms. With symmetric encryption, an encryption algorithm takes 
as input some data to be protected and a secret key and produces an unintelligi-
ble transformation on that data. A corresponding decryption algorithm takes the 
transformed data and the same secret key and recovers the original data. Symmetric 
encryption takes the following forms:

 ■ Block cipher: A block cipher operates on data as a sequence of blocks. A typi-
cal block size is 128 bits. In most versions of the block cipher, known as modes 
of operation, the transformation depends not only on the current data block 
and the secret key but also on the content of preceding blocks.

 ■ Stream cipher: A stream cipher operates on data as a sequence of bits. Typically, 
an exclusive-OR operation is used to produce a bit-by-bit transformation. As 
with the block cipher, the transformation depends on a secret key.

Another form of single-key cryptographic algorithm is the message authen-
tication code (MAC). A MAC is a data element associated with a data block or 
message. The MAC is generated by a cryptographic transformation involving a 
secret key and, typically, a cryptographic hash function of the message. The MAC 
is designed so that someone in possession of the secret key can verify the integ-
rity of the message. Thus, the MAC algorithm takes as input a message and secret 
key and produces the MAC. The recipient of the message plus the MAC can per-
form the same calculation on the message; if the calculated MAC matches the 
MAC accompanying the message, this provides assurance that the message has 
not been altered.

Two-Key Algorithms

Two-key algorithms involve the use of two related keys. A private key is known only 
to a single user or entity, whereas the corresponding public key is made available 
to a number of users. Encryption algorithms that use two keys are referred to as  
asymmetric encryption algorithms. Asymmetric encryption can work in two ways:

1. An encryption algorithm takes as input some data to be protected and the 
private key and produces an unintelligible transformation on that data. A 
corresponding decryption algorithm takes the transformed data and the 
 corresponding public key and recovers the original data. In this case, only the 
possessor of the private key can have performed the encryption and any pos-
sessor of the public key can perform the decryption.

2. An encryption algorithm takes as input some data to be protected and a 
 public key and produces an unintelligible transformation on that data. A cor-
responding decryption algorithm takes the transformed data and the corre-
sponding private key and recovers the original data. In this case, any possessor  
of the public key can have performed the encryption and only the possessor of 
the private key can perform the decryption.
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Asymmetric encryption has a variety of applications. One of the most impor-
tant is the digital signature algorithm. A digital signature is a value computed with 
a cryptographic algorithm and associated with a data object in such a way that any 
recipient of the data can use the signature to verify the data’s origin and integrity. 
Typically, the signer of a data object uses the signer’s private key to generate the 
signature, and anyone in possession of the corresponding public key can verify that 
validity of the signature.

Asymmetric algorithms can also be used in two other important applica-
tions. Key exchange is the process of securely distributing a symmetric key to 
two or more parties. User authentication is the process of authenticating that a 
user attempting to access an application or service is genuine and, similarly, that 
the application or service is genuine. These concepts are explained in detail in  
subsequent chapters.

1.7 NETWORK SECURITY

Network security is a broad term that encompasses security of the communications 
pathways of the network and the security of network devices and devices attached 
to the network (Figure 1.5).

Communications Security

In the context of network security, communications security deals with the protec-
tion of communications through the network, including measures to protect against 
both passive and active attacks (Figure 1.3).

Communications security is primarily implemented using network protocols. 
A network protocol consists of the format and procedures that governs the trans-
mitting and receiving of data between points in a network. A protocol defines the 
structure of the individual data units (e.g., packets) and the control commands that 
manage the data transfer.

With respect to network security, a security protocol may be an enhancement 
that is part of an existing protocol or a standalone protocol. Examples of the former 
are IPsec, which is part of the Internet Protocol (IP) and IEEE 802.11i, which is 
part of the IEEE 802.11 Wi-Fi standard. Examples of the latter are Transport Layer 
Security (TLS) and Secure Shell (SSH). Part Six examines these and other secure 
network protocols.

One common characteristic of all of these protocols is that they use a number 
of cryptographic algorithms as part of the mechanism to provide security.

Device Security

The other aspect of network security is the protection of network devices, such as 
routers and switches, and end systems connected to the network, such as client sys-
tems and servers. The primary security concerns are intruders that gain access to 
the system to perform unauthorized actions, insert malicious software (malware), or 
overwhelm system resources to diminish availability. Three types of device security 
are noteworthy:
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 ■ Firewall: A hardware and/or software capability that limits access between a 
network and devices attached to the network, in accordance with a specific 
security policy. The firewall acts as a filter that permits or denies data traffic, 
both incoming and outgoing, using a set of rules based on traffic content and/
or traffic pattern.

 ■ Intrusion detection: Hardware or software products that gather and analyze 
information from various areas within a computer or a network for the pur-
pose of finding, and providing real-time or near-real-time warning of, attempts 
to access system resources in an unauthorized manner.

 ■ Intrusion prevention: Hardware or software products designed to detect intru-
sive activity and attempt to stop the activity, ideally before it reaches its target.

These device security capabilities are more closely related to the field of 
computer security than network security. Accordingly, they are dealt with more 
briefly than communications security in Part Six. For a more detailed treatment, see 
[STAL18].

1.8 TRUST AND TRUSTWORTHINESS

The concepts of trust and trustworthiness are key concepts in computer and network 
security [SCHN91]. It will be useful to look first at a generalized model of trust and 
trustworthiness, and then apply these concepts to the topic of information security.
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Intrusion
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Figure 1.5 Key Elements of Network Security
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A Trust Model

One of the most widely accepted and most cited definitions of trust in the organi-
zational science literature is from [MAYE95], which defines trust as follows: the 
willingness of a party to be vulnerable to the actions of another party based on the 
expectation that the other will perform a particular action important to the truster, 
irrespective of the ability to monitor or control that other party.

Three related concepts are relevant to a trust model:

 ■ Trustworthiness: A characteristic of an entity that reflects the degree to which 
that entity is deserving of trust.

 ■ Propensity to trust: A tendency to be willing to trust others across a broad 
spectrum of situations and trust targets. This suggests that every individual has 
some baseline level of trust that will influence the person’s willingness to rely 
on the words and actions of others.

 ■ Risk: A measure of the extent to which an entity is threatened by a poten-
tial circumstance or event, and typically a function of 1) the adverse impacts 
that would arise if the circumstance or event occurs; and 2) the likelihood of 
occurrence.

Figure 1.6, adapted from [MAYE95], illustrates the relationship among these 
concepts. Trust is a function of the truster’s propensity to trust and the perceived 
trustworthiness of the trustee. Propensity can also be expressed as the level of risk 
that an entity (individual or organization) is prepared to tolerate.

Typically, a truster uses a number of factors to establish the trustworthiness of 
an entity. Three general factors are commonly cited:

 ■ Ability: Also referred to as competence, this relates to the potential ability of 
the evaluated entity to do a given task or be entrusted with given information.

 ■ Benevolence: This implies a disposition of goodwill towards the trusting party. 
That is, a trustworthy party does not intend to cause harm to the trusting party.

 ■ Integrity: This can be defined as the truster’s perception that the trustee 
adheres to a set of principles that the truster finds acceptable. Integrity implies 
that a benevolent party takes such measures are necessary to assure that it in 
fact does not cause harm to the trusting party.

The goal of trust, in the model of Figure 1.6, is to determine what course of 
action, if any, the trusting party is willing to take in relation to the trusted party. 
Based on the level of trust, and the perceived risk, the trusting party may decide to 
take some action that involves some degree of risk taking. The outcome of the risk 
taking could be a reliance on the trusted party to perform some action or the disclo-
sure of information to the trusted party with the expectation that the information 
will be protected as agreed between the parties.

The Trust Model and Information Security

Trust is confidence that an entity will perform in a way the will not prejudice the 
security of the user of the system of which that entity is a part. Trust is always 
restricted to specific functions or ways of behavior and is meaningful only in the 
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context of a security policy. Generally, an entity is said to trust a second entity when 
the first entity assumes that the second entity will behave exactly as the first entity 
expects. This trust may apply only for some specific function. In this context, the 
term entity may refer to a single hardware component or software module, a piece 
of equipment identified by make and model, a site or location, or an organization.

TrusTworThiness of an individual Organizations need to be concerned about both 
internal users (employees, on-site contractors) and external users (customers, suppli-
ers) of their information systems. With respect to internal users, an organization de-
velops a level of trust in individuals by policies in the following two areas [STAL19]:

 ■ Human resource security: Sound security practice dictates that information 
security requirements be embedded into each stage of the employment life 
cycle, specifying security-related actions required during the induction of each 
individual, their ongoing management, and termination of their employment. 
Human resource security also includes assigning ownership of information 
(including responsibility for its protection) to capable individuals and obtain-
ing confirmation of their understanding and acceptance.

 ■ Security awareness and training: This area refers to disseminating security 
information to all employees, including IT staff, IT security staff, and manage-
ment, as well as IT users and other employees. A workforce that has a high 
level of security awareness and appropriate security training for each indi-
vidual’s role is as important, if not more important, than any other security 
countermeasure or control.

For external users, trust will depend on the context. In general terms, the fac-
tors of perceived trustworthiness and the truster’s propensity, as depicted in Figure 1.6, 
determine the level of trust. Further, the issue of trust is mutual. That is, not only must 
an organization determine a level of trust towards external users, but external users 
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need to be concerned about the degree to which they can trust an information resource 
that they use. This mutual trust involves a number a practical consequences, including 
the use of a public-key infrastructure and user authentication protocols. These matters 
are explored in Part Five.

TrusTworThiness of an organizaTion Most organizations rely, to a greater or 
lesser extent, on information system service and information provided by external 
organizations, as well as partnerships to accomplish missions and business functions. 
Examples are cloud service providers and companies that form part of the supply 
chain for the organization. To manage risk to the organization, it must establish 
trust relationships with these external organizations. NIST SP 800-39 (Managing 
Information Security Risk, March 2011) indicates that such trust relationships can be:

 ■ Formally established, for example, by documenting the trust-related informa-
tion in contracts, service-level agreements, statements of work, memoranda of 
agreement/understanding, or interconnection security agreements;

 ■ Scalable and inter-organizational or intra-organizational in nature; and/or

 ■ Represented by simple (bilateral) relationships between two partners or more 
complex many-to-many relationships among many diverse partners.

The requirements for establishing and maintaining trust depend on mis-
sion/business requirements, the participants involved in the trust relationship, the 
 criticality/sensitivity of the information being shared or the types of services being 
rendered, the history between the organizations, and the overall risk to the organiza-
tions participating in the relationship.

As with individuals, trust related to organizations can involve the use of 
 public-key infrastructure and user authentication, as well as the network security 
measures described in Part Six.

TrusTworThiness of informaTion sysTems SP 800-39 defines trustworthiness for 
information systems as the degree to which information systems (including the in-
formation technology products from which the systems are built) can be expected 
to preserve the confidentiality, integrity, and availability of the information being 
processed, stored, or transmitted by the systems across the full range of threats. Two 
factors affecting the trustworthiness of information systems are:

 ■ Security functionality: The security features/functions employed within the 
system. These include cryptographic and network security technologies dis-
cussed throughout this book.

 ■ Security assurance: The grounds for confidence that the security functionality 
is effective in its application. This area is addressed by security management 
techniques, such as auditing and incorporating security considerations into the 
system development life cycle [STAL19].

Establishing Trust Relationships

The methods used by an organization to establish a trust relationship with various enti-
ties will depend on a variety of factors, such as laws and regulations, risk tolerance, and the 
criticality and sensitivity of the relationship. SP 800-39 describes the following methods:
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 ■ Validated trust: Trust is based on evidence obtained by the trusting organization 
about the trusted organization or entity. The information may include informa-
tion security policy, security measures, and level of oversight. An example would 
be for one organization to develop an application or information system and pro-
vide evidence (e.g., security plan, assessment results) to a second organization that  
supports the claims by the first organization that the application/system meets 
certain security requirements and/or addresses the appropriate security controls.

 ■ Direct historical trust: This type of trust is based on the security-related track 
record exhibited by an organization in the past, particularly in interactions 
with the organization seeking to establish trust.

 ■ Mediated trust: Mediated trust involves the use of a third party that is mutu-
ally trusted by two parties, with the third party providing assurance or guar-
antee of a given level of trust between the first two parties. An example of 
this form of trust establishment is the use of public-key certificate authorities, 
described in Chapter 14.

 ■ Mandated trust: An organization establishes a level of trust with another orga-
nization based on a specific mandate issued by a third party in a position of 
authority. For example, an organization may be given the responsibility and 
the authority to issue public key certificates for a group of organizations.

An organization is likely to use a combination of these methods to establish 
relationships with a number of other entities.

1.9 STANDARDS

Many of the security techniques and applications described in this book have 
been specified as standards. Additionally, standards have been developed to cover 
management practices and the overall architecture of security mechanisms and 
services. Throughout this book, we describe the most important standards in use 
or being developed for various aspects of cryptography and network security. 
Various organizations have been involved in the development or promotion of 
these standards. The most important (in the current context) of these organiza-
tions are as follows:

 ■ National Institute of Standards and Technology: NIST is a U.S. federal agency 
that deals with measurement science, standards, and technology related to 
U.S. government use and to the promotion of U.S. private-sector innovation. 
Despite its national scope, NIST Federal Information Processing Standards 
(FIPS) and Special Publications (SP) have a worldwide impact.

 ■ Internet Society: ISOC is a professional membership society with worldwide 
organizational and individual membership. It provides leadership in address-
ing issues that confront the future of the Internet and is the organization home 
for the groups responsible for Internet infrastructure standards, including the 
Internet Engineering Task Force (IETF) and the Internet Architecture Board 
(IAB). These organizations develop Internet standards and related specifica-
tions, all of which are published as Requests for Comments (RFCs).
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 ■ ITU-T: The International Telecommunication Union (ITU) is an international 
organization within the United Nations System in which governments and 
the private sector coordinate global telecom networks and services. The ITU 
Telecommunication Standardization Sector (ITU-T) is one of the three sectors of 
the ITU. ITU-T’s mission is the development of technical standards covering all 
fields of telecommunications. ITU-T standards are referred to as Recommendations.

 ■ ISO: The International Organization for Standardization (ISO) is a worldwide 
federation of national standards bodies from more than 140 countries, one from 
each country. ISO is a nongovernmental organization that promotes the devel-
opment of standardization and related activities with a view to facilitating the 
international exchange of goods and services and to developing cooperation in 
the spheres of intellectual, scientific, technological, and economic activity. ISO’s 
work results in international agreements that are published as International 
Standards.

1.10 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Review Questions
 1.1 What is the OSI security architecture?
 1.2 List and briefly define the three key objectives of computer security.
 1.3 List and briefly define categories of passive and active security attacks.
 1.4 List and briefly define categories of security services.
 1.5 List and briefly define categories of security mechanisms.
 1.6 List and briefly define the fundamental security design principles.

Key Terms

access control
active attack
asymmetric encryption  

algorithms
attack
authentication
authentication exchange
authenticity
availability
block cipher
confidentiality
cryptographic hash function
cryptography
cybersecurity
data authenticity
data confidentiality
data integrity
data origin authentication
denial of service

digital signature algorithms
eavesdropping
encryption
firewall
information security
intrusion detection
intrusion prevention
key exchange
keyless algorithm
man-in-the-middle attack
masquerade
message authentication  

code
network security
notarization
OSI security architecture
passive attack
peer entity authentication
privacy

pseudorandom number  
generator

replay
routing control
security attack
security mechanism
security service
single-key algorithm
stream cipher
symmetric encryption  

algorithms
system integrity
threat
trust
trust relationship
trustworthiness
two-key algorithm
user authentication
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 1.7 Provide an overview of the three types of cryptographic algorithms.
 1.8 Provide an overview of the two major elements of network security.
 1.9 Briefly explain the concepts of trust and trustworthiness.

Problems
 1.1 Consider an automated cash deposit machine in which users provide a card or an 

account number to deposit cash. Give examples of confidentiality, integrity, and avail-
ability requirements associated with the system, and, in each case, indicate the degree 
of importance of the requirement.

 1.2 Repeat Problem 1.1 for a payment gateway system where a user pays for an item using 
their account via the payment gateway.

 1.3 Consider a financial report publishing system used to produce reports for various 
organizations.
a. Give an example of a type of publication for which confidentiality of the stored 

data is the most important requirement.
b. Give an example of a type of publication in which data integrity is the most impor-

tant requirement.
c. Give an example in which system availability is the most important requirement.

 1.4 For each of the following assets, assign a low, moderate, or high impact level for the 
loss of confidentiality, availability, and integrity, respectively. Justify your answers.
a. A student maintaining a blog to post public information.
b. An examination section of a university that is managing sensitive information 

about exam papers.
c. An information system in a pathological laboratory maintaining the patient’s data.
d. A student information system used for maintaining student data in a university 

that contains both personal, academic information and routine administrative 
information (not privacy related). Assess the impact for the two data sets sepa-
rately and the information system as a whole.

e. A university library contains a library management system, which controls the 
distribution of books among the students of various departments. The library 
management system contains both the student data and the book data. Assess 
the impact for the two data sets separately and the information system as a whole.

 1.5 It is useful to read some of the classic tutorial papers on computer security; these pro-
vide a historical perspective from which to appreciate current work and thinking. The 
following are good examples:

— Browne, P. “Computer Security—A Survey.” ACM SIGMIS Database, Fall 1972.
— LAMP04 Lampson, B. “Computer Security in the Real World,” Computer, June 2004.
— Saltzer, J., and Schroeder, M. “The Protection of Information in Computer 

 Systems.” Proceedings of the IEEE, September 1975.
— Shanker, K. “The Total Computer Security Problem: An Overview.” Computer, 

June 1977.
— Summers, R. “An Overview of Computer Security.” IBM Systems Journal, Vol. 23, 

No. 4, 1984.
— Ware, W., ed. Security Controls for Computer Systems. RAND Report 609-1. October 

1979.
Read all of these papers. The papers are available at box.com/Crypto8e. Compose 
a 500–1000 word paper (or 8–12 slide PowerPoint presentation) that summarizes 
the key concepts that emerge from these papers, emphasizing concepts that are 
common to most or all of the papers.
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Number theory is pervasive in cryptographic algorithms. This chapter provides 
 sufficient breadth and depth of coverage of relevant number theory topics for under-
standing the wide range of applications in cryptography. The reader familiar with these 
topics can safely skip this chapter.

The first three sections introduce basic concepts from number theory that are 
needed for understanding finite fields; these include divisibility, the Euclidian algo-
rithm, and modular arithmetic. The reader may study these sections now or wait until 
ready to tackle Chapter 5 on finite fields.

Sections 2.4 through 2.8 discuss aspects of number theory related to prime num-
bers and discrete logarithms. These topics are fundamental to the design of  asymmetric 
(public-key) cryptographic algorithms. The reader may study these sections now or 
wait until ready to read Part Three.

The concepts and techniques of number theory are quite abstract, and it is often 
difficult to grasp them intuitively without examples. Accordingly, this chapter includes a 
number of examples, each of which is highlighted in a shaded box.

 2.1 DIVISIBILITY AND THE DIVISION ALGORITHM

Divisibility

We say that a nonzero b divides a if a = mb for some m, where a, b, and m are in-
tegers. That is, b divides a if there is no remainder on division. The notation b � a is 
commonly used to mean b divides a. Also, if b � a, we say that b is a divisor of a.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

◆◆ Understand the concept of divisibility and the division algorithm.

◆◆ Understand how to use the Euclidean algorithm to find the greatest com-
mon divisor.

◆◆ Present an overview of the concepts of modular arithmetic.

◆◆ Explain the operation of the extended Euclidean algorithm.

◆◆ Discuss key concepts relating to prime numbers.

◆◆ Understand Fermat’s theorem.

◆◆ Understand Euler’s theorem.

◆◆ Define Euler’s totient function.

◆◆ Make a presentation on the topic of testing for primality.

◆◆ Explain the Chinese remainder theorem.

◆◆ Define discrete logarithms.
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Subsequently, we will need some simple properties of divisibility for integers, 
which are as follows:

◆■ If a � 1, then a = {1.

◆■ If a � b and b � a, then a = {b.

◆■ Any b ≠ 0 divides 0.

◆■ If a � b and b � c, then a � c:

 The positive divisors of 24 are 1, 2, 3, 4, 6, 8, 12, and 24.

13 � 182; -5 � 30; 17 � 289; -3 � 33; 17 � 0

11 � 66 and 66 � 198 1  11 � 198

 b = 7; g = 14; h = 63; m = 3; n = 2

7 � 14 and 7 � 63.

To show 7 � (3 * 14 + 2 * 63),

we have (3 * 14 + 2 * 63) = 7(3 * 2 + 2 * 9), 
and it is obvious that 7 � (7(3 * 2 + 2 * 9)).

◆■ If b � g and b � h, then b � (mg + nh) for arbitrary integers m and n.

To see this last point, note that

◆■ If b � g, then g is of the form g = b * g1 for some integer g1.

◆■ If b � h, then h is of the form h = b * h1 for some integer h1.

So

mg + nh = mbg1 + nbh1 = b * (mg1 + nh1)

and therefore b divides mg + nh.

The Division Algorithm

Given any positive integer n and any nonnegative integer a, if we divide a by n, 
we get an integer quotient q and an integer remainder r that obey the following 
relationship:

 a = qn + r  0 … r 6 n; q = :a/n;  (2.1)

where :x;  is the largest integer less than or equal to x. Equation (2.1) is referred to 
as the division algorithm.1

1Equation (2.1) expresses a theorem rather than an algorithm, but by tradition, this is referred to as the 
division algorithm.
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Figure 2.1a demonstrates that, given a and positive n, it is always possible to 
find q and r that satisfy the preceding relationship. Represent the integers on the 
number line; a will fall somewhere on that line (positive a is shown, a similar dem-
onstration can be made for negative a). Starting at 0, proceed to n, 2n, up to qn, such 
that qn … a and (q + 1)n 7 a. The distance from qn to a is r, and we have found 
the unique values of q and r. The remainder r is often referred to as a residue.

a = 11; n = 7; 11 = 1 * 7 + 4; r = 4 q = 1
a = -11; n = 7; -11 = (-2) * 7 + 3; r = 3 q = -2

Figure 2.1b provides another example.

Figure 2.1 The Relationship a = qn + r; 0 … r 6 n

0

n 2n 3n qn (q 1 1)na

n

r(a) General relationship

0 15

15
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30
5 2 3 15

70

(b) Example: 70 5 (4 3 15) 1 10

45
5 3 3 15

60
5 4 3 15

75
5 5 3 15

 2.2 THE EUCLIDEAN ALGORITHM

One of the basic techniques of number theory is the Euclidean algorithm, which is a 
simple procedure for determining the greatest common divisor of two positive inte-
gers. First, we need a simple definition: Two integers are relatively prime if and only 
if their only common positive integer factor is 1.

Greatest Common Divisor

Recall that nonzero b is defined to be a divisor of a if a = mb for some m, where 
a, b, and m are integers. We will use the notation gcd(a, b) to mean the greatest 
 common divisor of a and b. The greatest common divisor of a and b is the largest 
integer that divides both a and b. We also define gcd(0, 0) = 0.
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More formally, the positive integer c is said to be the greatest common divisor 
of a and b if

1. c is a divisor of a and of b.

2. any divisor of a and b is a divisor of c.

An equivalent definition is the following:

gcd(a, b) = max[k, such that k � a and k � b]

Because we require that the greatest common divisor be  positive, gcd(a, b) =  
gcd(a, -b) = gcd(-a, b) = gcd(-a, -b). In general, gcd(a, b) = gcd( � a � , � b � ).

gcd(60, 24) = gcd(60, -24) = 12

8 and 15 are relatively prime because the positive divisors of 8 are 1, 2, 4, and 8, and 
the positive divisors of 15 are 1, 3, 5, and 15. So 1 is the only integer on both lists.

Also, because all nonzero integers divide 0, we have gcd(a, 0) = � a � .
We stated that two integers a and b are relatively prime if and only if their 

only common positive integer factor is 1. This is equivalent to saying that a and b are 
relatively prime if gcd(a, b) = 1.

Finding the Greatest Common Divisor

We now describe an algorithm credited to Euclid for easily finding the greatest com-
mon divisor of two integers (Figure 2.2). This algorithm has broad significance in 
cryptography. The explanation of the algorithm can be broken down into the follow-
ing points:

1. Suppose we wish to determine the greatest common divisor d of the integers 
a and b; that is determine d = gcd(a, b). Because gcd( � a � , � b � ) = gcd(a, b), 
there is no harm in assuming a Ú b 7 0.

2. Dividing a by b and applying the division algorithm, we can state:

  a = q1b + r1    0 … r1 6 b   (2.2)

3. First consider the case in which r1 = 0. Therefore b divides a and clearly no 
larger number divides both b and a, because that number would be larger 
than b. So we have d = gcd(a, b) = b.

4. The other possibility from Equation (2.2) is r1 ≠ 0. For this case, we can state 
that d � r1. This is due to the basic properties of divisibility: the relations d � a 
and d � b together imply that d � (a - q1b), which is the same as d � r1.

5. Before proceeding with the Euclidian algorithm, we need to answer the ques-
tion: What is the gcd(b, r1)? We know that d � b and d � r1. Now take any arbi-
trary integer c that divides both b and r1. Therefore, c � (q1b + r1) = a. Because 
c divides both a and b, we must have c … d, which is the greatest common 
 divisor of a and b. Therefore d = gcd(b, r1).
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Let us now return to Equation (2.2) and assume that r1 ≠ 0. Because b 7 r1, 
we can divide b by r1 and apply the division algorithm to obtain:

b = q2r1 + r2  0 … r2 6 r1

As before, if r2 = 0, then d = r1 and if r2 ≠ 0, then d = gcd(r1, r2). Note that the 
remainders form a descending series of nonnegative values and so must terminate 
when the remainder is zero. This happens, say, at the (n + 1)th stage where rn - 1 is 
divided by rn. The result is the following system of equations:

  

a = q1b + r1 0 6 r1 6 b
b = q2r1 + r2 0 6 r2 6 r1

r1 = q3r2 + r3 0 6 r3 6 r2

~ ~
 ~ ~
~ ~

rn - 2 = qnrn - 1 + rn 0 6 rn 6 rn - 1

rn - 1 = qn + 1rn + 0
d = gcd(a, b) = rn

w    (2.3)

At each iteration, we have d = gcd(ri, ri+ 1) until finally d = gcd(rn, 0) = rn. 
Thus, we can find the greatest common divisor of two integers by repetitive appli-
cation of the division algorithm. This scheme is known as the Euclidean algorithm. 
Figure 2.3 illustrates a simple example.

We have essentially argued from the top down that the final result is the 
gcd(a, b). We can also argue from the bottom up. The first step is to show that rn 
divides a and b. It follows from the last division in Equation (2.3) that rn divides 
rn - 1. The next to last division shows that rn divides rn - 2 because it divides both 

Figure 2.2 Euclidean Algorithm

No

No Yes

Yes

a + b?

r + 0?
Swap

a and b

Replace
b with r

Replace
a with b

Divide a by b,
calling the

remainder r

GCD is
the final

value of b

START

END Figure 2.3 Euclidean 
Algorithm Example: 
gcd(710, 310)

710 5 2 3 310 1 90

 310 5 3 3 90 1 40

90 5 2 3 40 1 10

40 5 4 310

GCDGCD

Same GCD
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terms on the right. Successively, one sees that rn divides all ri>s and finally a and b. 
It remains to show that rn is the largest divisor that divides a and b. If we take any 
arbitrary integer that divides a and b, it must also divide r1, as explained previously. 
We can follow the sequence of equations in Equation (2.3) down and show that c 
must divide all ri>s. Therefore c must divide rn, so that rn = gcd(a, b).

Let us now look at an example with relatively large numbers to see the power 
of this algorithm:

To find d = gcd(a, b) = gcd(1160718174, 316258250)

a = q1b + r1 1160718174 = 3 * 316258250 + 211943424 d = gcd(316258250, 211943424)

b = q2r1 + r2 316258250 = 1 * 211943424 + 104314826 d = gcd(211943424, 104314826)

r1 = q3r2 + r3 211943424 = 2 * 104314826 +     3313772 d = gcd(104314826, 3313772)

r2 = q4r3 + r4 104314826 =   31 * 3313772 +     1587894 d = gcd(3313772, 1587894)

r3 = q5r4 + r5 3313772 =  2 * 1587894 +       137984 d = gcd(1587894, 137984)

r4 = q6r5 + r6 1587894 =  11 * 137984 +         70070 d = gcd(137984, 70070)

r5 = q7r6 + r7 137984 =      1 * 70070 +         67914 d = gcd(70070, 67914)

r6 = q8r7 + r8 70070 =         1 * 67914 +           2156 d = gcd(67914, 2156)

r7 = q9r8 + r9 67914 =         31 * 2156 +           1078 d = gcd(2156, 1078)

r8 = q10r9 + r10 2156 =           2 * 1078 +                 0 d = gcd(1078, 0) = 1078

Therefore, d = gcd(1160718174, 316258250) = 1078

In this example, we begin by dividing 1160718174 by 316258250, which gives 3 
with a remainder of 211943424. Next we take 316258250 and divide it by 211943424. 
The process continues until we get a remainder of 0, yielding a result of 1078.

It will be helpful in what follows to recast the above computation in tabular 
form. For every step of the iteration, we have ri- 2 = qiri- 1 + ri, where ri- 2 is the 
dividend, ri- 1 is the divisor, qi is the quotient, and ri is the remainder. Table 2.1 sum-
marizes the results.

Dividend Divisor Quotient Remainder

a = 1160718174 b = 316258250 q1 =   3 r1 = 211943424

b =   316258250 r1 = 211943434 q2 =   1 r2 = 104314826

r1 =   211943424 r2 = 104314826 q3 =   2 r3 =     3313772

r2 =   104314826 r3 =     3313772 q4 = 31 r4 =     1587894

r3 =       3313772 r4 =     1587894 q5 =   2 r5 =       137984

r4 =       1587894 r5 =       137984 q6 = 11 r6 =         70070

r5 =         137984 r6 =         70070 q7 =   1 r7 =         67914

r6 =           70070 r7 =         67914 q8 =   1 r8 =           2156

r7 =           67914 r8 =           2156 q9 = 31 r9 =           1078

r8 =             2156 r9 =           1078 q10 =   2 r10 =                 0

Table 2.1 Euclidean Algorithm Example
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 2.3 MODULAR ARITHMETIC

The Modulus

If a is an integer and n is a positive integer, we define a mod n to be the remainder 
when a is divided by n. The integer n is called the modulus. Thus, for any integer a, 
we can rewrite Equation (2.1) as follows:

 a = qn + r  0 … r 6 n; q = :a/n;
 a = :a/n; * n + (a mod n)

11 mod 7 = 4;  -11 mod 7 = 3

73 K 4 (mod 23);    21 K -9 (mod 10)

Two integers a and b are said to be congruent modulo n, if (a mod n) =
(b mod n). This is written as a K b (mod n).2

2We have just used the operator mod in two different ways: first as a binary operator that produces a re-
mainder, as in the expression a mod b; second as a congruence relation that shows the equivalence of two 
integers, as in the expression a K b (mod n). See Appendix 2A for a discussion.

Note that if a K 0 (mod n), then n � a.

Properties of Congruences

Congruences have the following properties:

1. a K b (mod n) if n � (a - b).

2. a K b (mod n) implies b K a (mod n).

3. a K b (mod n) and b K c (mod n) imply a K c (mod n).

To demonstrate the first point, if n � (a - b), then (a - b) = kn for some k.  
So we can write a = b + kn. Therefore, (a mod n) = (remainder when b +  
kn is divided by n) = (remainder when b is divided by n) = (b mod n).

23 K 8 (mod 5) because 23 - 8 = 15 = 5 * 3
-11 K 5 (mod 8) because -11 - 5 = -16 = 8 * (-2)
81 K 0 (mod 27) because 81 - 0 = 81 = 27 * 3

The remaining points are as easily proved.
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Modular Arithmetic Operations

Note that, by definition (Figure 2.1), the (mod n) operator maps all integers into 
the set of integers {0, 1, c , (n - 1)}. This suggests the question: Can we perform 
arithmetic operations within the confines of this set? It turns out that we can; this 
technique is known as modular arithmetic.

Modular arithmetic exhibits the following properties:

1. [(a mod n) + (b mod n)] mod n = (a + b) mod n

2. [(a mod n) - (b mod n)] mod n = (a - b) mod n

3. [(a mod n) * (b mod n)] mod n = (a * b) mod n

We demonstrate the first property. Define (a mod n) = ra and (b mod n) = rb. 
Then we can write a = ra + jn for some integer j and b = rb + kn for some integer k.  
Then

 (a + b) mod n = (ra + jn + rb + kn) mod n

 = (ra + rb + (k + j)n) mod n

 = (ra + rb) mod n

 = [(a mod n) + (b mod n)] mod n

The remaining properties are proven as easily. Here are examples of the three 
properties:

11 mod 8 = 3; 15 mod 8 = 7

[(11 mod 8) + (15 mod 8)] mod 8 = 10 mod 8 = 2

(11 + 15) mod 8 = 26 mod 8 = 2

[(11 mod 8) - (15 mod 8)] mod 8 = -4 mod 8 = 4

(11 - 15) mod 8 = -4 mod 8 = 4

[(11 mod 8) * (15 mod 8)] mod 8 = 21 mod 8 = 5

(11 * 15) mod 8 = 165 mod 8 = 5

To find 117 mod 13, we can proceed as follows:

 112 = 121 K 4 (mod 13)

 114 = (112)2 K 42 K 3 (mod 13) 

 117 = 11 * 112 * 114

 117 K 11 * 4 * 3 K 132 K 2 (mod 13)

Exponentiation is performed by repeated multiplication, as in ordinary 
arithmetic.

Thus, the rules for ordinary arithmetic involving addition, subtraction, and 
multiplication carry over into modular arithmetic.
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Table 2.2 provides an illustration of modular addition and multiplication 
modulo 8. Looking at addition, the results are straightforward, and there is a reg-
ular pattern to the matrix. Both matrices are symmetric about the main diagonal 
in conformance to the commutative property of addition and multiplication. As in 
ordinary addition, there is an additive inverse, or negative, to each integer in modu-
lar arithmetic. In this case, the negative of an integer x is the integer y such that 
(x + y) mod 8 = 0. To find the additive inverse of an integer in the left-hand col-
umn, scan across the corresponding row of the matrix to find the value 0; the integer 
at the top of that column is the additive inverse; thus, (2 + 6) mod 8 = 0. Similarly, 
the entries in the multiplication table are straightforward. In modular arithmetic mod 
8, the multiplicative inverse of x is the integer y such that (x * y) mod 8 = 1 mod 8. 
Now, to find the multiplicative inverse of an integer from the multiplication table, 
scan across the matrix in the row for that integer to find the value 1; the integer at 
the top of that column is the multiplicative inverse; thus, (3 * 3) mod 8 = 1. Note 
that not all integers mod 8 have a multiplicative inverse; more about that later.

Properties of Modular Arithmetic

Define the set Zn as the set of nonnegative integers less than n:

Zn = {0, 1, c , (n - 1)}

Table 2.2 Arithmetic Modulo 8
+ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7 0

2 2 3 4 5 6 7 0 1

3 3 4 5 6 7 0 1 2

4 4 5 6 7 0 1 2 3

5 5 6 7 0 1 2 3 4

6 6 7 0 1 2 3 4 5

7 7 0 1 2 3 4 5 6

(a) Addition modulo 8

* 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7

2 0 2 4 6 0 2 4 6

3 0 3 6 1 4 7 2 5

4 0 4 0 4 0 4 0 4

5 0 5 2 7 4 1 6 3

6 0 6 4 2 0 6 4 2

7 0 7 6 5 4 3 2 1

(b) Multiplication modulo 8

w -w w-1

0 0 —

1 7 1

2 6 —

3 5 3

4 4 —

5 3 5

6 2 —

7 1 7

(c) Additive and multiplicative 
inverse modulo 8
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This is referred to as the set of residues, or residue classes (mod n). To be more pre-
cise, each integer in Zn represents a residue class. We can label the residue classes 
(mod n) as [0], [1], [2], c , [n - 1], where

[r] = {a: a is an integer, a K r (mod n)}

The residue classes (mod 4) are

 [0] = { c , -16, -12, -8, -4, 0, 4, 8, 12, 16, c }

 [1] = { c , -15, -11, -7, -3, 1, 5, 9, 13, 17, c }

 [2] = { c , -14, -10, -6, -2, 2, 6, 10, 14, 18, c }

 [3] = { c , -13, -9, -5, -1, 3, 7, 11, 15, 19, c }

Property Expression

Commutative Laws
(w + x) mod n = (x + w) mod n
(w * x) mod n = (x * w) mod n

Associative Laws
[(w + x) + y] mod n = [w + (x + y)] mod n
[(w * x) * y] mod n = [w * (x * y)] mod n

Distributive Law [w * (x + y)] mod n = [(w * x) + (w * y)] mod n

Identities
(0 + w) mod n = w mod n
(1 * w) mod n = w mod n

Additive Inverse (-w) For each w ∈ Zn, there exists a z such that w + z K 0 mod n

Table 2.3 Properties of Modular Arithmetic for Integers in Zn

Of all the integers in a residue class, the smallest nonnegative integer is the 
one used to represent the residue class. Finding the smallest nonnegative integer to 
which k is congruent modulo n is called reducing k modulo n.

If we perform modular arithmetic within Zn, the properties shown in Table 2.3 
hold for integers in Zn. We show in Chapter 5 that this implies that Zn is a commuta-
tive ring with a multiplicative identity element.

There is one peculiarity of modular arithmetic that sets it apart from ordinary 
arithmetic. First, observe that (as in ordinary arithmetic) we can write the following:

 if (a + b) K (a + c) (mod n) then b K c (mod n) (2.4)

(5 + 23) K (5 + 7)(mod 8); 23 K 7(mod 8)

Equation (2.4) is consistent with the existence of an additive inverse. Adding 
the additive inverse of a to both sides of Equation (2.4), we have

 ((-a) + a + b) K ((-a) + a + c)(mod n)

 b K c (mod n)
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However, the following statement is true only with the attached condition:

  if (a * b) K (a * c)(mod n) then b K c(mod n) if a is relatively prime to n   (2.5)

Recall that two integers are relatively prime if their only common positive integer 
factor is 1. Similar to the case of Equation (2.4), we can say that Equation (2.5) is 
consistent with the existence of a multiplicative inverse. Applying the multiplicative 
inverse of a to both sides of Equation (2.5), we have

 ((a-1)ab) K ((a-1)ac)(mod n)

 b K c(mod n)

To see this, consider an example in which the condition of Equation (2.5) does not 
hold. The integers 6 and 8 are not relatively prime, since they have the  common 
factor 2. We have the following:

 6 * 3 = 18 K 2(mod 8)

 6 * 7 = 42 K 2(mod 8)

Yet 3 [ 7 (mod 8).

The reason for this strange result is that for any general modulus n, a multi-
plier a that is applied in turn to the integers 0 through (n - 1) will fail to produce a 
complete set of residues if a and n have any factors in common.

With a = 6 and n = 8,

Z8 0 1 2 3 4 5 6 7
Multiply by 6 0 6 12 18 24 30 36 42
Residues 0 6 4 2 0 6 4 2

Because we do not have a complete set of residues when multiplying by 
6, more than one integer in Z8 maps into the same residue. Specifically, 
6 * 0 mod 8 = 6 * 4 mod 8; 6 * 1 mod 8 = 6 * 5 mod 8; and so on. Because 
this is a many-to-one mapping, there is not a unique inverse to the multiply 
 operation.

However, if we take a = 5 and n = 8, whose only common factor is 1,

Z8 0 1 2 3 4 5 6 7
Multiply by 5 0 5 10 15 20 25 30 35
Residues 0 5 2 7 4 1 6 3

The line of residues contains all the integers in Z8, in a different order.
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In general, an integer has a multiplicative inverse in Zn if and only if that inte-
ger is relatively prime to n. Table 2.2c shows that the integers 1, 3, 5, and 7 have a 
multiplicative inverse in Z8; but 2, 4, and 6 do not.

Euclidean Algorithm Revisited

The Euclidean algorithm can be based on the following theorem: For any integers a, 
b, with a Ú b Ú 0,

  gcd(a, b) = gcd(b, a mod b)   (2.6)

gcd(55, 22) = gcd(22, 55 mod 22) = gcd(22, 11) = 11

 gcd(18, 12) = gcd(12, 6) = gcd(6, 0) = 6

 gcd(11, 10) = gcd(10, 1) = gcd(1, 0) = 1

To see that Equation (2.6) works, let d = gcd(a, b). Then, by the definition of 
gcd, d � a and d � b. For any positive integer b, we can express a as

a = kb + r K r (mod b)
a mod b = r

with k, r integers. Therefore, (a mod b) = a - kb for some integer k. But because 
d � b, it also divides kb. We also have d � a. Therefore, d � (a mod b). This shows that d 
is a common divisor of b and (a mod b). Conversely, if d is a common divisor of b 
and (a mod b), then d � kb and thus d � [kb + (a mod b)], which is equivalent to d � a. 
Thus, the set of common divisors of a and b is equal to the set of common divisors 
of b and (a mod b). Therefore, the gcd of one pair is the same as the gcd of the other 
pair, proving the theorem.

Equation (2.6) can be used repetitively to determine the greatest common divisor.

This is the same scheme shown in Equation (2.3), which can be rewritten in the 
following way.

Euclidean Algorithm

Calculate Which satisfies

r1 = a mod b a = q1b + r1

r2 = b mod r1 b = q2r1 + r2

r3 = r1 mod r2 r1 = q3r2 + r3

~
~
~

~
~
~

rn = rn - 2 mod rn - 1 rn - 2 = qnrn - 1 + rn

rn + 1 = rn - 1 mod rn = 0 rn - 1 = qn + 1rn + 0
d = gcd(a, b) = rn

We can define the Euclidean algorithm concisely as the following recursive 
function.
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Euclid(a,b)
if (b=0) then return a;
else return Euclid(b, a mod b);

The Extended Euclidean Algorithm

We now proceed to look at an extension to the Euclidean algorithm that will be 
important for later computations in the area of finite fields and in encryption algo-
rithms, such as RSA. For given integers a and b, the extended Euclidean algorithm 
not only calculates the greatest common divisor d but also two additional integers x 
and y that satisfy the following equation.

  ax + by = d = gcd(a, b)   (2.7)

It should be clear that x and y will have opposite signs. Before examining the 
algorithm, let us look at some of the values of x and y when a = 42 and b = 30. 
Note that gcd(42, 30) = 6. Here is a partial table of values3 for 42x + 30y.

x − 3 − 2 − 1 0 1 2 3

y

-3 -216 -174 -132 -90 -48 -6 36

-2 -186 -144 -102 -60 -18 24 66

-1 -156 -114 -72 -30 12 54 96

0 -126 -84 -42 0 42 84 126

1 -96 -54 -12 30 72 114 156

2 -66 -24 18 60 102 144 186

3 -36 6 48 90 132 174 216

Observe that all of the entries are divisible by 6. This is not surpris-
ing, because both 42 and 30 are divisible by 6, so every number of the form 
42x + 30y = 6(7x + 5y) is a multiple of 6. Note also that gcd(42, 30) = 6 appears 
in the table. In general, it can be shown that for given integers a and b, the smallest 
positive value of ax + by is equal to gcd(a, b).

Now let us show how to extend the Euclidean algorithm to determine (x, y, d) 
given a and b. We again go through the sequence of divisions indicated in Equation 
(2.3), and we assume that at each step i we can find integers xi and yi that satisfy 
ri = axi + byi. We end up with the following sequence.

a = q1b + r1 r1 = ax1 + by1

b = q2r1 + r2 r2 = ax2 + by2

r1 = q3r2 + r3 r3 = ax3 + by3

f f
rn - 2 = qnrn - 1 + rn rn = axn + byn

rn - 1 = qn + 1rn + 0

3This example is taken from [SILV06].
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Now, observe that we can rearrange terms to write

  ri = ri- 2 - ri- 1qi   (2.8)

Also, in rows i - 1 and i - 2, we find the values

ri- 2 = axi- 2 + byi- 2 and ri- 1 = axi- 1 + byi- 1

Substituting into Equation (2.8), we have

 ri = (axi- 2 + byi- 2) - (axi- 1 + byi- 1)qi

 = a(xi- 2 - qixi- 1) + b(yi- 2 - qiyi- 1)

But we have already assumed that ri = axi + byi. Therefore,

xi = xi- 2 - qixi- 1 and yi = yi- 2 - qiyi- 1

We now summarize the calculations:

Extended Euclidean Algorithm

Calculate Which satisfies Calculate Which satisfies

r-1 = a x-1 = 1; y-1 = 0 a = ax-1 + by-1

r0 = b x0 = 0; y0 = 1 b = ax0 + by0

r1 = a mod b
q1 = :a/b;

a = q1b + r1 x1 = x-1 - q1x0 = 1
y1 = y-1 - q1y0 = -q1

r1 = ax1 + by1

r2 = b mod r1
q2 = :b/r1;

b = q2r1 + r2 x2 = x0 - q2x1
y2 = y0 - q2y1

r2 = ax2 + by2

r3 = r1 mod r2
q3 = :r1/r2;

r1 = q3r2 + r3 x3 = x1 - q3x2
y3 = y1 - q3y2

r3 = ax3 + by3

~
~
~

~
~
~

~
~
~

~
~
~

rn = rn - 2 mod rn - 1
qn = :rn - 2/rn - 1;

rn - 2 = qnrn - 1 + rn xn = xn - 2 - qnxn - 1
yn = yn - 2 - qnyn - 1

rn = axn + byn

rn + 1 = rn - 1 mod rn = 0
qn + 1 = :rn - 1/rn;

rn - 1 = qn + 1rn + 0 d = gcd(a, b) = rn

x = xn; y = yn

We need to make several additional comments here. In each row, we calculate 
a new remainder ri based on the remainders of the previous two rows, namely ri- 1 
and ri- 2. To start the algorithm, we need values for r0 and r-1, which are just a and b.  
It is then straightforward to determine the required values for x-1, y-1, x0, and y0.

We know from the original Euclidean algorithm that the process ends 
with a remainder of zero and that the greatest common divisor of a and b is 
d = gcd(a, b) = rn. But we also have determined that d = rn = axn + byn. 
Therefore, in Equation (2.7), x = xn and y = yn.

As an example, let us use a = 1759 and b = 550 and solve for 
1759x + 550y = gcd(1759, 550). The results are shown in Table 2.4. Thus, we have 
1759 * (-111) + 550 * 355 = -195249 + 195250 = 1.
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 2.4 PRIME NUMBERS4

A central concern of number theory is the study of prime numbers. Indeed, whole 
books have been written on the subject (e.g., [CRAN01], [RIBE96]). In this section, 
we provide an overview relevant to the concerns of this book.

An integer p 7 1 is a prime number if and only if its only divisors5 are {1 and 
{p. All numbers other than {1 and the prime numbers are composite numbers. In 
other words, composite numbers are those which are the product of at least two prime 
numbers. Prime numbers play a critical role in number theory and in the techniques dis-
cussed in this chapter. Table 2.5 shows the primes less than 2000. Note the way the primes 
are distributed. In particular, note the number of primes in each range of 100 numbers.

Any integer a 7 1 can be factored in a unique way as

  a = p1
a1 * p2

a2 * g * pt
at   (2.9)

where p1 6 p2 6 c 6 pt are prime numbers and where each ai is a positive inte-
ger. This is known as the fundamental theorem of arithmetic; a proof can be found 
in any text on number theory.

4In this section, unless otherwise noted, we deal only with the nonnegative integers. The use of negative 
integers would introduce no essential differences. 
5Recall from Section 2.1 that integer a is said to be a divisor of integer b if there is no remainder on 
 division. Equivalently, we say that a divides b.

i ri qi xi yi

-1 1759 1 0

0 550 0 1

1 109 3 1 -3

2 5 5 -5 16

3 4 21 106 -339

4 1 1 -111 355

5 0 4

Result: d = 1; x = -111; y = 355

Table 2.4 Extended Euclidean Algorithm Example

 91 = 7 * 13

 3600 = 24 * 32 * 52

 11011 = 7 * 112 * 13

It is useful for what follows to express Equation (2.9) another way. If P is the 
set of all prime numbers, then any positive integer a can be written uniquely in the 
 following form:

a = q
p∈P

pap where each ap Ú 0
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The right-hand side is the product over all possible prime numbers p; for any par-
ticular value of a, most of the exponents ap will be 0.

The value of any given positive integer can be specified by simply listing all the 
nonzero exponents in the foregoing formulation.

The integer 12 is represented by {a2 = 2, a3 = 1}.

The integer 18 is represented by {a2 = 1, a3 = 2}.

The integer 91 is represented by {a7 = 1, a13 = 1}.

Multiplication of two numbers is equivalent to adding the corresponding 

exponents. Given a = q
p∈P

pap, b = q
p∈P

pbp. Define k = ab. We know that the integer 

k can be expressed as the product of powers of primes: k = q
p∈P

pkp. It follows that 
kp = ap + bp for all p ∈ P.

 k = 12 * 18 = (22 * 3) * (2 * 32) = 216

 k2 = 2 + 1 = 3; k3 = 1 + 2 = 3

 216 = 23 * 33 = 8 * 27

 a = 12; b = 36; 12 � 36

 12 = 22 * 3; 36 = 22 * 32

 a2 = 2 = b2

 a3 = 1 … 2 = b3

 Thus, the inequality ap … bp is satisfied for all prime numbers.

What does it mean, in terms of the prime factors of a and b, to say that a divides b?  
Any integer of the form pn can be divided only by an integer that is of a lesser or 
equal power of the same prime number, pj with j … n. Thus, we can say the following.

Given

a = q
p∈P

pap, b = q
p∈P

pbp

If a � b, then ap … bp for all p.

It is easy to determine the greatest common divisor of two positive integers if 
we express each integer as the product of primes.
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The following relationship always holds:

If k = gcd(a, b), then kp = min(ap, bp) for all p.

Determining the prime factors of a large number is no easy task, so the pre-
ceding relationship does not directly lead to a practical method of calculating the 
greatest common divisor.

 2.5 FERMAT’S AND EULER’S THEOREMS

Two theorems that play important roles in public-key cryptography are Fermat’s 
theorem and Euler’s theorem.

Fermat’s Theorem6

Fermat’s theorem states the following: If p is prime and a is a positive integer not 
divisible by p, then

 ap - 1 K 1 (mod p)   (2.10)

Proof: Consider the set of positive integers less than p: {1, 2, c , p - 1} and mul-
tiply each element by a, modulo p, to get the set X = {a mod p, 2a mod p, c , 
(p - 1)a mod p}. None of the elements of X is equal to zero because p does not 
divide a. Furthermore, no two of the integers in X are equal. To see this, assume that 
ja K ka(mod p)), where 1 … j 6 k … p - 1. Because a is relatively prime7 to p, we 
can eliminate a from both sides of the equation [see Equation (2.5)] resulting in 
j K k(mod p). This last equality is impossible, because j and k are both positive inte-
gers less than p. Therefore, we know that the (p - 1) elements of X are all  
positive integers with no two elements equal. We can conclude the X consists of the 
set of integers {1, 2, c , p - 1} in some order. Multiplying the numbers in both 
sets (p and X) and taking the result mod p yields

 a * 2a * g * (p - 1)a K [(1 * 2 * g * (p - 1)](mod p)

 ap - 1(p - 1)! K (p - 1)! (mod p)

We can cancel the (p - 1)! term because it is relatively prime to p [see Equation 
(2.5)]. This yields Equation (2.10), which completes the proof.

6This is sometimes referred to as Fermat’s little theorem. 
7Recall from Section 2.2 that two numbers are relatively prime if they have no prime factors in common; 
that is, their only common divisor is 1. This is equivalent to saying that two numbers are relatively prime 
if their greatest common divisor is 1.

 300 = 22 * 31 * 52

 18 = 21 * 32

 gcd(18,300) = 21 * 31 * 50 = 6
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An alternative form of Fermat’s theorem is also useful: If p is prime and a is a 
positive integer, then

  ap K a(mod p)   (2.11)

Note that the first form of the theorem [Equation (2.10)] requires that a be rela-
tively prime to p, but this Equation (2.11) does not.

a = 7, p = 19

72 = 49 K 11 (mod 19)

74 K 121 K 7 (mod 19)

78 K 49 K 11 (mod 19)

716 K 121 K 7 (mod 19)

ap - 1 = 718 = 716 * 72 K 7 * 11 K 1 (mod 19)

 p = 5, a = 3    ap = 35 = 243 K 3(mod 5) = a(mod p)

 p = 5, a = 10  ap = 105 = 100000 K 10(mod 5) K 0(mod 5) = a(mod p)

Euler’s Totient Function

Before presenting Euler’s theorem, we need to introduce an important quantity in 
number theory, referred to as Euler’s totient function. This function, written f(n), 
is defined as the number of positive integers less than n and relatively prime to n. 
By convention, f(1) = 1.

Determine f(37) and f(35).

Because 37 is prime, all of the positive integers from 1 through 36 are relatively 
prime to 37. Thus f(37) = 36.

To determine f(35), we list all of the positive integers less than 35 that are 
 relatively prime to it:

1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 16, 17, 18

19, 22, 23, 24, 26, 27, 29, 31, 32, 33, 34

There are 24 numbers on the list, so f(35) = 24.

Table 2.6 lists the first 30 values of f(n). The value f(1) is without meaning but 
is defined to have the value 1.

It should be clear that, for a prime number p,

f(p) = p - 1

Now suppose that we have two prime numbers p and q with p ≠ q. Then we can 
show that, for n = pq,
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f(n) = f(pq) = f(p) * f(q) = (p - 1) * (q - 1)

To see that f(n) = f(p) * f(q), consider that the set of positive integers less than 
n is the set {1, c , (pq - 1)}. The integers in this set that are not relatively prime 
to n are the set {p, 2p, c , (q - 1)p} and the set {q, 2q, c , (p - 1)q}. To see 
this, consider that any integer that divides n must divide either of the prime num-
bers p or q. Therefore, any integer that does not contain either p or q as a factor is 
relatively prime to n. Further note that the two sets just listed are non-overlapping: 
Because p and q are prime, we can state that none of the integers in the first set can 
be written as a multiple of q, and none of the integers in the second set can be writ-
ten as a multiple of p. Thus the total number of unique integers in the two sets is 
(q - 1) + (p - 1). Accordingly,

 f(n) = (pq - 1) - [(q - 1) + (p - 1)]

 = pq - (p + q) + 1 

 = (p - 1) * (q - 1) 

 = f(p) * f(q)

f(21) = f(3) * f(7) = (3 - 1) * (7 - 1) = 2 * 6 = 12
where the 12 integers are {1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20}.

Table 2.6 Some Values of Euler’s Totient Function f(n)

n f(n)

1 1

2 1

3 2

4 2

5 4

6 2

7 6

8 4

9 6

10 4

n f(n)

11 10

12 4

13 12

14 6

15 8

16 8

17 16

18 6

19 18

20 8

n f(n)

21 12

22 10

23 22

24 8

25 20

26 12

27 18

28 12

29 28

30 8

Euler’s Theorem

Euler’s theorem states that for every a and n that are relatively prime:

  af(n) K 1(mod n)   (2.12)

Proof: Equation (2.12) is true if n is prime, because in that case, f(n) = (n - 1) 
and Fermat’s theorem holds. However, it also holds for any integer n. Recall that 
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f(n) is the number of positive integers less than n that are relatively prime to n. 
Consider the set of such integers, labeled as

R = {x1, x2, c , xf(n)}

That is, each element xi of R is a unique positive integer less than n with gcd(xi, n) = 1. 
Now multiply each element by a, modulo n:

S = {(ax1 mod n), (ax2 mod n), c , (axf(n) mod n)}

The set S is a permutation8 of R , by the following line of reasoning:

1. Because a is relatively prime to n and xi is relatively prime to n, axi must also 
be relatively prime to n. Thus, all the members of S are integers that are less 
than n and that are relatively prime to n.

2. There are no duplicates in S. Refer to Equation (2.5). If axi mod n =  axj 
mod n, then xi = xj.

Therefore,

 q
f(n)

i = 1
(axi mod n) = q

f(n)

i = 1
xi

 q
f(n)

i = 1
axi K q

f(n)

i = 1
xi (mod n)

 af(n) * Jqf(n)

i = 1
xiR K q

f(n)

i = 1
xi (mod n)

 af(n) K 1 (mod n)

which completes the proof. This is the same line of reasoning applied to the proof of 
Fermat’s theorem.

8A permutation of a finite set of elements S is an ordered sequence of all the elements of S, with each 
element appearing exactly once.

  a = 3; n = 10; f(10) = 4;       af(n) = 34 = 81 K 1(mod 10) K 1(mod n)

  a = 2; n = 11; f(11) = 10;     af(n) = 210 = 1024 K 1(mod 11) K 1(mod n)

As is the case for Fermat’s theorem, an alternative form of the theorem is also 
useful:

  af(n) + 1 K a(mod n)   (2.13)

Again, similar to the case with Fermat’s theorem, the first form of Euler’s theorem 
[Equation (2.12)] requires that a be relatively prime to n, but this form does not. It 
is sufficient for Equation (2.13) that n is squarefree. An integer is squarefree if its 
prime decomposition contains no repeated factors.
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 2.6 TESTING FOR PRIMALITY

For many cryptographic algorithms, it is necessary to select one or more very large 
prime numbers at random. Thus, we are faced with the task of determining whether 
a given large number is prime. There is no simple yet efficient means of accomplish-
ing this task.

In this section, we present one attractive and popular algorithm. You may be 
surprised to learn that this algorithm yields a number that is not necessarily a prime. 
However, the algorithm can yield a number that is almost certainly a prime. This will 
be explained presently. We also make reference to a deterministic algorithm for find-
ing primes. The section closes with a discussion concerning the distribution of primes.

Miller–Rabin Algorithm9

The algorithm due to Miller and Rabin [MILL75, RABI80] is typically used to test 
a large number for primality. Before explaining the algorithm, we need some back-
ground. First, any positive odd integer n Ú 3 can be expressed as

n - 1 = 2kq  with k 7 0, q odd

To see this, note that n - 1 is an even integer. Then, divide (n - 1) by 2 until the 
result is an odd number q, for a total of k divisions. If n is expressed as a binary 
number, then the result is achieved by shifting the number to the right until the 
rightmost digit is a 1, for a total of k shifts. We now develop two properties of prime 
numbers that we will need.

Two ProPerTies of Prime Numbers The first property is stated as follows: If p is 
prime and a is a positive integer less than p, then a2 mod p = 1 if and only if either 
a mod p = 1 or a mod p = -1 mod p = p - 1. By the rules of modular arithmetic 
(a mod p) (a mod p) = a2 mod p. Thus, if either a mod p = 1 or a mod p = -1, 
then a2 mod p = 1. Conversely, if a2 mod p = 1, then (a mod p)2 = 1, which is true 
only for a mod p = 1 or a mod p = -1.

The second property is stated as follows: Let p be a prime number greater than 
2. We can then write p - 1 = 2kq with k 7 0, q odd. Let a be any integer in the 
range 1 6 a 6 p - 1. Then one of the two following conditions is true.

1. aq is congruent to 1 modulo p. That is, aq mod p = 1, or equivalently, 
aq K 1(mod p).

2. One of the numbers aq, a2q, a4q, c , a2k - 1q is congruent to -1 mod-
ulo p. That is, there is some number j in the range (1 … j … k) such that 
a2j - 1q mod p = -1 mod p = p - 1 or equivalently, a2j - 1q K - 1(mod p).

Proof: Fermat’s theorem [Equation (2.10)] states that an - 1 K 1(mod n) if n is 
prime. We have p - 1 = 2kq. Thus, we know that ap - 1 mod p = a2kq mod p = 1. 
Thus, if we look at the sequence of numbers

  aq mod p, a2q mod p, a4q mod p, c , a2k - 1q mod p, a2kq mod p   (2.14)

9Also referred to in the literature as the Rabin-Miller algorithm, or the Rabin-Miller test, or the Miller–
Rabin test. 
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we know that the last term in Equation (2.14) has value 1. Further, each number in 
the list is the square of the previous number. Therefore, one of the following pos-
sibilities must be true.

1. The first number on the list, and therefore all subsequent numbers on the list, 
equals 1.

2. Some number on the list does not equal 1, but its square mod p does equal 1. 
By virtue of the first property of prime numbers defined above, we know that 
the only number that satisfies this condition is p - 1. So, in this case, the list 
contains an element equal to p - 1.

This completes the proof.

DeTails of The algoriThm These considerations lead to the conclusion that, 
if n is prime, then either the first element in the list of residues, or remainders, 
(aq, a2q, c , a2k - 1q, a2kq) modulo n equals 1; or some element in the list equals 
(n - 1); otherwise n is composite (i.e., not a prime). On the other hand, if the 
condition is met, that does not necessarily mean that n is prime. For example, if 
n = 2047 = 23 * 89, then n - 1 = 2 * 1023. We compute 21023 mod 2047 = 1, so 
that 2047 meets the condition but is not prime.

We can use the preceding property to devise a test for primality. The procedure 
TEST takes a candidate integer n as input and returns the result composite if n is 
definitely not a prime, and the result inconclusive if n may or may not be a prime.

TEST (n)
1.  Find integers k, q, with k > 0, q odd, so that  

(n − 1 = 2k q);
2. Select a random integer a, 1 < a < n - 1;
3. if aq mod n = 1 then return(”inconclusive”);
4. for j = 0 to k - 1 do
5. if a2

j
qmod n = n - 1 then return(”inconclusive”);

6. return(”composite”);

 Let us apply the test to the prime number n = 29. We have (n - 1) = 28 =
22(7) = 2kq. First, let us try a = 10. We compute 107 mod 29 = 17, which is neither 
1 nor 28, so we continue the test. The next calculation finds that (107)2 mod 29 = 28, 
and the test  returns inconclusive (i.e., 29 may be prime). Let’s try again with 
a = 2. We have the following calculations: 27 mod 29 = 12; 214 mod 29 = 28; and 
the test again returns inconclusive. If we perform the test for all integers a in 
the range 1 through 28, we get the same inconclusive result, which is compatible 
with n being a prime number.

Now let us apply the test to the composite number n = 13 * 17 = 221. Then 
(n - 1) = 220 = 22(55) = 2kq. Let us try a = 5. Then we have 555 mod 221 = 112, 
which is neither 1 nor 220(555)2 mod 221 = 168. Because we have used all values of 
j (i.e., j = 0 and j = 1) in line 4 of the TEST algorithm, the test returns  composite,  
indicating that 221 is definitely a composite number. But suppose we had selected 
a = 21. Then we have 2155 mod 221 = 200; (2155)2 mod 221 = 220; and the test re-
turns inconclusive, indicating that 221 may be prime. In fact, of the 218 integers from 
2 through 219, four of these will return an inconclusive result, namely 21, 47, 174, and 200.
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rePeaTeD use of The miller–rabiN algoriThm How can we use the Miller–Rabin 
algorithm to determine with a high degree of confidence whether or not an integer 
is prime? It can be shown [KNUT98] that given an odd number n that is not prime 
and a randomly chosen integer, a with 1 6 a 6 n - 1, the probability that TEST 
will return inconclusive (i.e., fail to detect that n is not prime) is less than 1/4. 
Thus, if t different values of a are chosen, the probability that all of them will pass 
TEST (return inconclusive) for n is less than (1/4)t. For example, for t = 10, the 
probability that a nonprime number will pass all ten tests is less than 10-6. Thus, 
for a sufficiently large value of t , we can be confident that n is prime if Miller’s test 
always returns inconclusive.

This gives us a basis for determining whether an odd integer n is prime 
with a reasonable degree of confidence. The procedure is as follows: Repeatedly 
invoke TEST (n) using randomly chosen values for a. If, at any point, TEST returns 
 composite, then n is determined to be nonprime. If TEST continues to return 
inconclusive for t tests, then for a sufficiently large value of t, assume that n 
is prime.

A Deterministic Primality Algorithm

Prior to 2002, there was no known method of efficiently proving the primality of 
very large numbers. All of the algorithms in use, including the most popular (Miller–
Rabin), produced a probabilistic result. In 2002 (announced in 2002, published in 
2004), Agrawal, Kayal, and Saxena [AGRA04] developed a relatively simple de-
terministic algorithm that efficiently determines whether a given large number 
is a prime. The algorithm, known as the AKS algorithm, does not appear to be as 
efficient as the Miller–Rabin algorithm. Thus far, it has not supplanted this older, 
probabilistic technique.

Distribution of Primes

It is worth noting how many numbers are likely to be rejected before a prime num-
ber is found using the Miller–Rabin test, or any other test for primality. A result from 
number theory, known as the prime number theorem, states that the primes near n 
are spaced on the average one every ln (n) integers. Thus, on average, one would 
have to test on the order of ln(n) integers before a prime is found. Because all even 
integers can be immediately rejected, the correct figure is 0.5 ln(n). For example, if 
a prime on the order of magnitude of 2200 were sought, then about 0.5 ln(2200) =  69  
trials would be needed to find a prime. However, this figure is just an average. In 
some places along the number line, primes are closely packed, and in other places 
there are large gaps.

The two consecutive odd integers 1,000,000,000,061 and 1,000,000,000,063 
are both prime. On the other hand, 1001! + 2, 1001! + 3, c , 1001! + 1000, 
1001! + 1001 is a sequence of 1000 consecutive composite integers.
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 2.7 THE CHINESE REMAINDER THEOREM

One of the most useful results of number theory is the Chinese remainder theorem 
(CRT).10 In essence, the CRT says it is possible to reconstruct integers in a certain 
range from their residues modulo a set of pairwise relatively prime moduli.

10The CRT is so called because it is believed to have been discovered by the Chinese mathematician 
 Sun-Tsu in around 100 A.D.

The 10 integers in Z10, that is the integers 0 through 9, can be reconstructed from 
their two residues modulo 2 and 5 (the relatively prime factors of 10). Say the 
known residues of a decimal digit x are r2 = 0 and r5 = 3; that is, x mod 2 = 0 
and x mod 5 = 3. Therefore, x is an even integer in Z10 whose remainder, on divi-
sion by 5, is 3. The unique solution is x = 8.

The CRT can be stated in several ways. We present here a formulation that is most 
useful from the point of view of this text. An alternative formulation is explored in 
Problem 2.33. Let

M = q
k

i = 1
mi

where the mi are pairwise relatively prime; that is, gcd(mi, mj) = 1 for 1 … i, j … k, 
and i ≠ j. We can represent any integer A in ZM by a k-tuple whose elements are in 
Zmi

 using the following correspondence:

  A 4 (a1, a2, c , ak)   (2.15)

where A ∈ ZM, ai ∈ Zmi
, and ai = A mod mi for 1 … i … k. The CRT makes two 

assertions.

1. The mapping of Equation (2.15) is a one-to-one correspondence (called a 
 bijection) between ZM and the Cartesian product Zm1

* Zm2
* c * Zmk

. 
That is, for every integer A such that 0 … A 6 M, there is a unique k- tuple 
(a1, a2, c , ak) with 0 … ai 6 mi that represents it, and for every such  
k- tuple (a1, a2, c , ak), there is a unique integer A in ZM.

2. Operations performed on the elements of ZM can be equivalently performed 
on the corresponding k-tuples by performing the operation independently in 
each coordinate position in the appropriate system.

Let us demonstrate the first assertion. The transformation from A to 
(a1, a2, c , ak), is obviously unique; that is, each ai is uniquely calculated as 
ai = A mod mi. Computing A from (a1, a2, c , ak) can be done as follows. Let 
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Mi = M/mi for 1 … i … k. Note that Mi = m1 * m2 * c * mi- 1 * mi+ 1 * c  
* mk, so that Mi K 0 (mod mj) for all j ≠ i. Then let

  ci = Mi * (Mi
-1 mod mi)   for 1 … i … k   (2.16)

By the definition of Mi, it is relatively prime to mi and therefore has a unique multi-
plicative inverse mod mi. So Equation (2.16) is well defined and produces a unique 
value ci. We can now compute

  A K ¢ ak
i = 1

aici≤(mod M)   (2.17)

To show that the value of A produced by Equation (2.17) is correct, we must 
show that ai = A mod mi for 1 … i … k. Note that cj K Mj K 0 (mod mi) if j ≠ i, 
and that ci K 1 (mod mi). It follows that ai = A mod mi.

The second assertion of the CRT, concerning arithmetic operations, follows 
from the rules for modular arithmetic. That is, the second assertion can be stated as 
follows: If

A 4 (a1, a2, c , ak)

B 4 (b1, b2, c , bk)

then

(A + B) mod M 4 ((a1 + b1) mod m1, c , (ak + bk) mod mk)
(A - B) mod M 4 ((a1 - b1) mod m1, c , (ak - bk) mod mk)
(A * B) mod M 4 ((a1 * b1) mod m1, c , (ak * bk) mod mk)

One of the useful features of the Chinese remainder theorem is that it provides 
a way to manipulate (potentially very large) numbers mod M in terms of tuples of 
smaller numbers. This can be useful when M is 150 digits or more. However, note 
that it is necessary to know beforehand the factorization of M.

 To represent 973 mod 1813 as a pair of numbers mod 37 and 49, define

 m1 = 37

 m2 = 49

 M = 1813

 A = 973

We also have M1 = 49 and M2 = 37. Using the extended Euclidean algorithm, 
we compute M1

-1 = 34 mod m1 and M2
-1 = 4 mod m2. (Note that we only need 

to compute each Mi and each Mi
-1 once.) Taking residues modulo 37 and 49, our 

representation of 973 is (11, 42), because 973 mod 37 = 11 and 973 mod 49 = 42.
Now suppose we want to add 678 to 973. What do we do to (11, 42)? First 

we compute (678) 4 (678 mod 37, 678 mod 49) = (12, 41). Then we add the  
tuples element-wise and reduce (11 + 12 mod 37, 42 + 41 mod 49) = (23, 34). 
To verify that this has the correct effect, we compute
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 2.8 DISCRETE LOGARITHMS

Discrete logarithms are fundamental to a number of public-key algorithms, includ-
ing Diffie–Hellman key exchange and the digital signature algorithm (DSA). This 
section provides a brief overview of discrete logarithms. For the interested reader, 
more detailed developments of this topic can be found in [ORE67] and [LEVE90].

The Powers of an Integer, Modulo n

Recall from Euler’s theorem [Equation (2.12)] that, for every a and n that are rela-
tively prime,

af(n) K 1 (mod n)

where f(n), Euler’s totient function, is the number of positive integers less than n 
and relatively prime to n. Now consider the more general expression:

  am K 1 (mod n)   (2.18)

If a and n are relatively prime, then there is at least one integer m that satisfies 
Equation (2.18), namely, m = f(n). The least positive exponent m for which 
Equation (2.18) holds is referred to in several ways:

◆■ The order of a (mod n)

◆■ The exponent to which a belongs (mod n)

◆■ The length of the period generated by a

 (23, 34) 4 a1M1M1
-1 + a2M2M2

-1 mod M

 = [(23)(49)(34) + (34)(37)(4)] mod 1813

 = 43350 mod 1813

 = 1651

and check that it is equal to (973 + 678) mod 1813 = 1651. Remember that in 
the above derivation, Mi

-1 is the multiplicative inverse of M1 modulo m1 and M2
-1 

is the multiplicative inverse of M2 modulo m2.
Suppose we want to multiply 1651 (mod 1813) by 73. We multiply (23, 34) 

by 73 and reduce to get (23 * 73 mod 37, 34 * 73 mod 49) = (14, 32). It is eas-
ily verified that

 (14, 32) 4 [(14)(49)(34) + (32)(37)(4)] mod 1813

 = 865

 = 1651 * 73 mod 1813
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Table 2.7 shows all the powers of a, modulo 19 for all positive a 6 19. The 
length of the sequence for each base value is indicated by shading. Note the 
following:

1. All sequences end in 1. This is consistent with the reasoning of the preceding 
few paragraphs.

2. The length of a sequence divides f(19) = 18. That is, an integral number of 
sequences occur in each row of the table.

3. Some of the sequences are of length 18. In this case, it is said that the base inte-
ger a generates (via powers) the set of nonzero integers modulo 19. Each such 
integer is called a primitive root of the modulus 19.

More generally, we can say that the highest possible exponent to which a num-
ber can belong (mod n) is f(n). If a number is of this order, it is referred to as a 
primitive root of n. The importance of this notion is that if a is a primitive root of n, 
then its powers

a, a2, c , af(n)

are distinct (mod n) and are all relatively prime to n. In particular, for a prime num-
ber p, if a is a primitive root of p, then

a, a2, c , ap - 1

are distinct (mod p). For the prime number 19, its primitive roots are 2, 3, 10, 13, 14, 
and 15.

Not all integers have primitive roots. In fact, the only integers with primitive 
roots are those of the form 2, 4, pa, and 2pa, where p is any odd prime and a is a posi-
tive integer. The proof is not simple but can be found in many number theory books, 
including [ORE76].

To see this last point, consider the powers of 7, modulo 19:

71 K 7 (mod 19)
72 = 49 = 2 * 19 + 11 K 11 (mod 19)
73 = 343 = 18 * 19 + 1 K 1 (mod 19)
74 = 2401 = 126 * 19 + 7 K 7 (mod 19)
75 = 16807 = 884 * 19 + 11 K 11 (mod 19)

There is no point in continuing because the sequence is repeating. This can be 
proven by noting that 73 K 1(mod 19), and therefore, 73 + j K 737j K 7j(mod 19), 
and hence, any two powers of 7 whose exponents differ by 3 (or a multiple of 3)  
are congruent to each other (mod 19). In other words, the sequence is  periodic, 
and the length of the period is the smallest positive exponent m such that 
7m K 1(mod 19).
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Logarithms for Modular Arithmetic

With ordinary positive real numbers, the logarithm function is the inverse of expo-
nentiation. An analogous function exists for modular arithmetic.

Let us briefly review the properties of ordinary logarithms. The logarithm of a 
number is defined to be the power to which some positive base (except 1) must be 
raised in order to equal the number. That is, for base x and for a value y,

y = xlogx(y)

The properties of logarithms include

 logx(1) = 0

 logx(x) = 1

  logx(yz) = logx(y) + logx(z) 

  logx(yr) = r * logx(y) 

Consider a primitive root a for some prime number p (the argument can 
be developed for nonprimes as well). Then we know that the powers of a from  

a a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 4 8 16 13 7 14 9 18 17 15 11 3 6 12 5 10 1

3 9 8 5 15 7 2 6 18 16 10 11 14 4 12 17 13 1

4 16 7 9 17 11 6 5 1 4 16 7 9 17 11 6 5 1

5 6 11 17 9 7 16 4 1 5 6 11 17 9 7 16 4 1

6 17 7 4 5 11 9 16 1 6 17 7 4 5 11 9 16 1

7 11 1 7 11 1 7 11 1 7 11 1 7 11 1 7 11 1

8 7 18 11 12 1 8 7 18 11 12 1 8 7 18 11 12 1

9 5 7 6 16 11 4 17 1 9 5 7 6 16 11 4 17 1

10 5 12 6 3 11 15 17 18 9 14 7 13 16 8 4 2 1

11 7 1 11 7 1 11 7 1 11 7 1 11 7 1 11 7 1

12 11 18 7 8 1 12 11 18 7 8 1 12 11 18 7 8 1

13 17 12 4 14 11 10 16 18 6 2 7 15 5 8 9 3 1

14 6 8 17 10 7 3 4 18 5 13 11 2 9 12 16 15 1

15 16 12 9 2 11 13 5 18 4 3 7 10 17 8 6 14 1

16 9 11 5 4 7 17 6 1 16 9 11 5 4 7 17 6 1

17 4 11 16 6 7 5 9 1 17 4 11 16 6 7 5 9 1

18 1 18 1 18 1 18 1 18 1 18 1 18 1 18 1 18 1

Table 2.7 Powers of Integers, Modulo 19
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1 through (p - 1) produce each integer from 1 through (p - 1) exactly once. We 
also know that any integer b satisfies

b K r (mod p) for some r, where 0 … r … (p - 1)

by the definition of modular arithmetic. It follows that for any integer b and a primi-
tive root a of prime number p, we can find a unique exponent i such that

b K ai(mod p) where 0 … i … (p - 1)

This exponent i is referred to as the discrete logarithm of the number b for the base 
a (mod p). We denote this value as dloga,p(b).11

Note the following:

  dloga,p(1) = 0 because a0 mod p = 1 mod p = 1 

  dloga,p(a) = 1 because a1 mod p = a 

11Many texts refer to the discrete logarithm as the index. There is no generally agreed notation for this 
concept, much less an agreed name.

Here is an example using a nonprime modulus, n = 9. Here f(n) = 6 and a = 2 
is a primitive root. We compute the various powers of a and find

20 = 1 24 K 7 (mod 9)
21 = 2 25 K 5 (mod 9)
22 = 4 26 K 1 (mod 9)
23 = 8

This gives us the following table of the numbers with given discrete logarithms 
(mod 9) for the root a = 2:

Logarithm 0 1 2 3 4 5
Number 1 2 4 8 7 5

To make it easy to obtain the discrete logarithms of a given number, we rearrange 
the table:

Number 1 2 4 5 7 8
Logarithm 0 1 2 5 4 3

Now consider

x = adloga, p(x) mod p y = adloga, p(y) mod p
xy = adloga, p(xy) mod p
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Using the rules of modular multiplication,

 xy mod p = [(x mod p)(y mod p)] mod p

 adloga, p(xy) mod p = [(adloga, p(x) mod p)(adloga, p(y) mod p)] mod p

 = (adloga, p(x) +  dloga, p(y)) mod p

But now consider Euler’s theorem, which states that, for every a and n that are rela-
tively prime,

af(n) K 1(mod n)

Any positive integer z can be expressed in the form z = q + kf(n), with 
0 … q 6 f(n). Therefore, by Euler’s theorem,

az K aq(mod n)    if z K q mod f(n)

Applying this to the foregoing equality, we have

dloga, p(xy) K [dloga, p(x) + dloga, p(y)](mod f(p))

and generalizing,

dloga, p(yr) K [r * dloga, p(y)](mod f(p))

This demonstrates the analogy between true logarithms and discrete logarithms.
Keep in mind that unique discrete logarithms mod m to some base a exist only 

if a is a primitive root of m.
Table 2.8, which is directly derived from Table 2.7, shows the sets of discrete 

logarithms that can be defined for modulus 19.

Calculation of Discrete Logarithms

Consider the equation

y = gx mod p

Given g, x, and p, it is a straightforward matter to calculate y. At the worst, we must 
perform x repeated multiplications, and algorithms exist for achieving greater ef-
ficiency (see Chapter 9).

However, given y, g, and p, it is, in general, very difficult to calculate x (take the 
discrete logarithm). The difficulty seems to be on the same order of magnitude as 
that of factoring primes required for RSA. At the time of this writing, the asymptoti-
cally fastest known algorithm for taking discrete logarithms modulo a prime num-
ber is on the order of [BETH91]:

e((ln p)1/3(ln(ln p))2/3)

which is not feasible for large primes.
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 2.9 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

(a) Discrete logarithms to the base 2, modulo 19

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

log2,19(a) 18 1 13 2 16 14 6 3 8 17 12 15 5 7 11 4 10 9

(b) Discrete logarithms to the base 3, modulo 19

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

log3,19(a) 18 7 1 14 4 8 6 3 2 11 12 15 17 13 5 10 16 9

(c) Discrete logarithms to the base 10, modulo 19

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

log10,19(a) 18 17 5 16 2 4 12 15 10 1 6 3 13 11 7 14 8 9

(d) Discrete logarithms to the base 13, modulo 19

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

log13,19(a) 18 11 17 4 14 10 12 15 16 7 6 3 1 5 13 8 2 9

(e) Discrete logarithms to the base 14, modulo 19

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

log14,19(a) 18 13 7 8 10 2 6 3 14 5 12 15 11 1 17 16 4 9

(f) Discrete logarithms to the base 15, modulo 19

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

log15,19(a) 18 5 11 10 8 16 12 15 4 13 6 3 7 17 1 2 14 9

Table 2.8 Tables of Discrete Logarithms, Modulo 19

Key Terms 

bijection
commutative
composite number
discrete logarithm
divisor

greatest common divisor
identity element
index
modular arithmetic
modulus

order
prime number
primitive root
relatively prime
residue
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Review Questions 

 2.1 What does it mean to say that b is a divisor of a?
 2.2 What is the meaning of the expression a divides b?
 2.3 What is the difference between modular arithmetic and ordinary arithmetic?
 2.4 What is a prime number?
 2.5 What is Euler’s totient function?
 2.6 The Miller–Rabin test can determine if a number is not prime but cannot determine 

if a number is prime. How can such an algorithm be used to test for primality?
 2.7 What is a primitive root of a number?
 2.8 What is the difference between an index and a discrete logarithm?

Problems 

 2.1 Reformulate Equation (2.1), removing the restriction that a is a nonnegative integer. 
That is, let a be any integer.

 2.2 Draw a figure similar to Figure 2.1 for a 6 0.
 2.3 For each of the following equations, find an integer x that satisfies the equation.

a. 4x K 2 (mod 3)
b. 7x K 4 (mod 9)
c. 5x K 3 (mod 11)

 2.4 In this text, we assume that the modulus is a positive integer. But the definition of the 
expression a mod n also makes perfect sense if n is negative. Determine the following:
a. 7 mod 4
b. 7 mod -4
c. -7 mod 4
d. -7 mod -4

 2.5 A modulus of 0 does not fit the definition but is defined by convention as follows: 
a mod 0 = a. With this definition in mind, what does the following expression mean: 
a K b (mod 0)?

 2.6 In Section 2.3, we define the congruence relationship as follows: Two integers a and 
b are said to be congruent modulo n if (a mod n) = (b mod n). We then proved that 
a K b (mod n) if n � (a - b). Some texts on number theory use this latter relation-
ship as the definition of congruence: Two integers a and b are said to be congruent 
modulo n if n � (a - b). Using this latter definition as the starting point, prove that, if 
(a mod n) = (b mod n), then n divides (a - b).

 2.7 What is the smallest positive integer that has exactly k divisors? Provide answers for 
values for 1 … k … 8.

 2.8 Prove the following:
a. a K b (mod n) implies b K a (mod n)
b. a K b (mod n) and b K c (mod n) imply a K c (mod n)

 2.9 Prove the following:
a. [(a mod n) - (b mod n)] mod n = (a - b) mod n
b. [(a mod n) * (b mod n)] mod n = (a * b) mod n

 2.10 Find the multiplicative inverse of each nonzero element in Z5.
 2.11 Show that an integer N is congruent modulo 9 to the sum of its decimal digits. For 

example, 723 K 7 + 2 + 3 K 12 K 1 + 2 K 3 (mod 9). This is the basis for the fa-
miliar procedure of “casting out 9’s” when checking computations in arithmetic.
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 2.12 a. Determine gcd(72345, 43215)
b. Determine gcd(3486, 10292)

 2.13 The purpose of this problem is to set an upper bound on the number of iterations of 
the Euclidean algorithm.
a. Suppose that m = qn + r with q 7 0 and 0 … r 6 n. Show that m/2 7 r.
b. Let Ai be the value of A in the Euclidean algorithm after the ith iteration. Show that

Ai+ 2 6
Ai

2

c. Show that if m, n, and N are integers with (1 … m, n, … 2N), then the Euclidean 
algorithm takes at most 2N steps to find gcd(m, n).

 2.14 The Euclidean algorithm has been known for over 2000 years and has always been 
a favorite among number theorists. After these many years, there is now a potential 
competitor, invented by J. Stein in 1961. Stein’s algorithm is as follows: Determine 
gcd(A, B) with A, B Ú 1.
STEP  1 Set A1 = A, B1 = B, C1 = 1
STEP  2 For n 7 1, (1) If An = Bn, stop. gcd(A, B) = AnCn

(2)  If An and Bn are both even, set An + 1 = An/2, Bn + 1 = Bn/2, 
Cn + 1 = 2Cn

(3)  If An is even and Bn is odd, set An + 1 = An/2, Bn + 1 = Bn, 
Cn + 1 = Cn

(4)  If An is odd and Bn is even, set An + 1 = An, Bn + 1 = Bn/2, 
Cn + 1 = Cn

(5)  If An and Bn are both odd, set An + 1 = � An - Bn � , Bn + 1 =
min (Bn, An), Cn + 1 = Cn

  Continue to step n + 1.
a. To get a feel for the two algorithms, compute gcd(6150, 704) using both the 

 Euclidean and Stein’s algorithm.
b. What is the apparent advantage of Stein’s algorithm over the Euclidean algorithm?

 2.15 a. Show that if Stein’s algorithm does not stop before the nth step, then

Cn + 1 * gcd(An + 1, Bn + 1) = Cn * gcd(An, Bn).

b. Show that if the algorithm does not stop before step (n - 1), then

An + 2Bn + 2 …
AnBn

2
.

c. Show that if 1 … A, B … 2N, then Stein’s algorithm takes at most 4N steps to find 
gcd(m, n). Thus, Stein’s algorithm works in roughly the same number of steps as 
the Euclidean algorithm.

d. Demonstrate that Stein’s algorithm does indeed return gcd(A, B).
 2.16 Using the extended Euclidean algorithm, find the multiplicative inverse of

a. 135 mod 61,
b. 7465 mod 2464, and
c. 42828 mod 6407.

 2.17 The purpose of this problem is to determine how many prime numbers there 
are. Suppose there are a total of n prime numbers, and we list these in order: 
p1 = 2 6 p2 = 3 6 p3 = 5 6 c 6 pn.
a. Define X = 1 + p1p2 c pn. That is, X is equal to one plus the product of all the 

primes. Can we find a prime number Pm that divides X?
b. What can you say about m?
c. Deduce that the total number of primes cannot be finite.
d. Show that Pn + 1 … 1 + p1p2 c pn.
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 2.18 The purpose of this problem is to demonstrate that the probability that two random 
numbers are relatively prime is about 0.6.
a. Let P = Pr[gcd(a, b) = 1]. Show that Pr[gcd(a, b) = d] = P/d2. Hint: Consider 

the quantity gcd aa
d

, 
b
d
b .

b. The sum of the result of part (a) over all possible values of d is 1. That is 
Σd Ú1Pr[gcd(a, b) = d] = 1. Use this equality to determine the value of P. Hint: 

Use the identity a
∞

i = 1

1

i2 =
p2

6
.

 2.19 Why is gcd(n, n + 1) = 1 for two consecutive integers n and n + 1?
 2.20 Using Fermat’s theorem, find 4225 mod 13.
 2.21 Use Fermat’s theorem to find a number a between 0 and 92 with a congruent to 71013 

modulo 93.
 2.22 Use Fermat’s theorem to find a number x between 0 and 37 with x73 congruent to  

4 modulo 37. (You should not need to use any brute-force searching.)
 2.23 Use Euler’s theorem to find a number a between 0 and 9 such that a is congruent to 

9101 modulo 10. (Note: This is the same as the last digit of the decimal expansion of 
9100.)

 2.24 Use Euler’s theorem to find a number x between 0 and 14 with x61 congruent to  
7 modulo 15. (You should not need to use any brute-force searching.)

 2.25 Notice in Table 2.6 that f(n) is even for n 7 2. This is true for all n 7 2. Give a con-
cise argument why this is so.

 2.26 Prove the following: If p is prime, then f(pi) = pi - pi- 1. Hint: What numbers have 
a factor in common with pi?

 2.27 It can be shown (see any book on number theory) that if gcd(m, n) = 1, then 
f(mn) = f(m)f(n). Using this property, the property developed in the preceding 
problem, and the property that f(p) = p - 1 for p prime, it is straightforward to 
determine the value of f(n) for any n. Determine the following:
a. f(29)    b.   f(51)    c.   f(455)    d.   f(616)

 2.28 It can also be shown that for arbitrary positive integer a, f(a) is given by

f(a) = q
t

i = 1
[pi

ai - 1(pi - 1)]

  where a is given by Equation (2.9), namely: a = P1
a1P2

a2 c Pt
at. Demonstrate this result.

 2.29 Consider the function: f(n) = number of elements in the set {a: 0 … a 6 n and 
gcd(a, n) = 1}. What is this function?

 2.30 Although ancient Chinese mathematicians did good work coming up with their re-
mainder theorem, they did not always get it right. They had a test for primality. The 
test said that n is prime if and only if n divides (2n - 2).
a. Give an example that satisfies the condition using an odd prime.
b. The condition is obviously true for n = 2. Prove that the condition is true if n is an 

odd prime (proving the if condition).
c. Give an example of an odd n that is not prime and that does not satisfy the condi-

tion. You can do this with nonprime numbers up to a very large value. This misled 
the Chinese mathematicians into thinking that if the condition is true then n is prime.

d. Unfortunately, the ancient Chinese never tried n = 341, which is nonprime 
(341 = 11 * 31), yet 341 divides 2341 - 2 without remainder. Demonstrate that 
2341 K 2 (mod 341) (disproving the only if condition). Hint: It is not necessary to 
calculate 2341; play around with the congruences instead.
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 2.31 Show that, if n is an odd composite integer, then the Miller–Rabin test will return 
inconclusive for a = 1 and a = (n - 1).

 2.32 If n is composite and passes the Miller–Rabin test for the base a, then n is called 
a strong pseudoprime to the base a. Show that 2047 is a strong pseudoprime to the 
base 2.

 2.33 A common formulation of the Chinese remainder theorem (CRT) is as follows: Let 
m1, c , mk be integers that are pairwise relatively prime for 1 … i, j … k, and i ≠ j. 
Define M to be the product of all the mi>s. Let a1, c , ak be integers. Then the set of 
congruences:

 x K a1(mod m1)

 x K a2(mod m2)
~
~
~

 x K ak(mod mk)

  has a unique solution modulo M. Show that the theorem stated in this form is true.
 2.34 The example used by Sun-Tsu to illustrate the CRT was

 x K 2 (mod 3); x K 3 (mod 5); x K 2 (mod 7) 

  Solve for x.
 2.35 Six professors begin courses on Monday, Tuesday, Wednesday, Thursday, Friday, and 

Saturday, respectively, and announce their intentions of lecturing at intervals of 3, 
2, 5, 6, 1, and 4 days, respectively. The regulations of the university forbid Sunday 
 lectures (so that a Sunday lecture must be omitted). When first will all six professors 
find themselves compelled to omit a lecture? Hint: Use the CRT.

 2.36 Find all the primitive roots of 37.
 2.37 Given 5 as a primitive root of 23, construct a table of discrete logarithms, and use it to 

solve the following congruences.
a. 3x5 = 2 (mod 23)
b. 7x10 + 1 = 0 (mod 23)
c. 5x = 6 (mod 23)

Programming Problems 

 2.1 Write a computer program that implements fast exponentiation (successive squaring) 
modulo n.

 2.2 Write a computer program that implements the Miller–Rabin algorithm for a user-
specified n. The program should allow the user two choices: (1) specify a possible 
witness a to test using the Witness procedure or (2) specify a number s of random 
witnesses for the Miller–Rabin test to check.

 APPENDIX 2A  THE MEANING OF MOD

The operator mod is used in this book and in the literature in two different ways: as 
a binary operator and as a congruence relation. This appendix explains the distinc-
tion and precisely defines the notation used in this book regarding parentheses. This 
notation is common but, unfortunately, not universal.

M02_STAL7484_08_GE_C02.indd   80 20/04/22   08:59



The Binary Operator mod 

If a is an integer and n is a positive integer, we define a mod n to be the remainder 
when a is divided by n. The integer n is called the modulus, and the remainder is 
called the residue. Thus, for any integer a, we can always write

 a = :a/n; * n + (a mod n) 

Formally, we define the operator mod as

 a mod n = a - :a/n; * n for n ≠ 0 

As a binary operation, mod takes two integer arguments and returns the re-
mainder. For example, 7 mod 3 = 1. The arguments may be integers, integer vari-
ables, or integer variable expressions. For example, all of the following are valid, 
with the obvious meanings:

7 mod 3

7 mod m

x mod 3

x mod m

(x2 + y + 1) mod (2m + n)

where all of the variables are integers. For each of the above expressions, the value is 
the remainder that results when the left-hand term is divided by the right-hand term 
[see Equation (2.1)]. Note that if either the left- or right-hand argument is an expres-
sion, the expression is parenthesized. The operator mod is not inside parentheses.

In fact, the mod operation also works if the two arguments are arbitrary real num-
bers, not just integers. In this book, we are concerned only with the integer operation.

The Congruence Relation mod 

As a congruence relation, mod expresses that two arguments have the same remain-
der with respect to a given modulus. For example, 7 K 4 (mod 3) expresses the fact 
that both 7 and 4 have a remainder of 1 when divided by 3. The following two ex-
pressions are equivalent:

 a K b (mod m)  3  a mod m = b mod m 

Another way of expressing it is to say that the expression a K b (mod m) is the 
same as saying that a - b is an integral multiple of m. Again, all the arguments may 
be integers, integer variables, or integer variable expressions. For example, all of the 
following are valid, with the obvious meanings:

7 K 4 (mod 3)

x K y (mod m)

(x2 + y + 1) K (a + 1)(mod [m + n])

where all of the variables are integers. Two conventions are used. The congruence 
sign is K . The modulus for the relation is defined by placing the mod operator fol-
lowed by the modulus in parentheses.
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The congruence relation is used to define residue classes. Those numbers that 
have the same remainder r when divided by m form a residue class (mod m). There 
are m residue classes (mod m). For a given remainder r, the residue class to which it 
belongs consists of the numbers

 r, r { m, r { 2m, c  

According to our definition, the congruence

 a K b (mod m) 

signifies that the numbers a and b differ by a multiple of m. Consequently, the con-
gruence can also be expressed in the terms that a and b belong to the same residue 
class (mod m).
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Symmetric encryption, also referred to as conventional encryption or single-key 
encryption, was the only type of encryption in use prior to the development of public-
key encryption in the 1970s. It remains by far the most widely used of the two types 
of encryption. Part Two examines a number of symmetric ciphers. In this chapter, we 
begin with a look at a general model for the symmetric encryption process; this will 
enable us to understand the context within which the algorithms are used. Next, we 
examine a variety of algorithms in use before the computer era. Finally, we look briefly 
at a different approach known as steganography. Chapters 4 and 6 introduce the two 
most widely used symmetric cipher: DES and AES.

Before beginning, we define some terms. An original message is known as the 
plaintext, while the coded message is called the ciphertext. The process of convert-
ing from plaintext to ciphertext is known as enciphering or encryption; restoring the 
plaintext from the ciphertext is deciphering or decryption. The many schemes used 
for  encryption constitute the area of study known as cryptography. Such a scheme 
is known as a cryptographic system or a cipher. Techniques used for decipher-
ing a message without any knowledge of the enciphering details fall into the area of 
 cryptanalysis. Cryptanalysis is what the layperson calls “breaking the code.” The areas 
of cryptography and cryptanalysis together are called cryptology.

 3.1 SYMMETRIC CIPHER MODEL

A symmetric encryption scheme has five ingredients (Figure 3.1):

■■ Plaintext:  This is the original intelligible message or data that is fed into the 
algorithm as input.

■■ Encryption algorithm:  The encryption algorithm performs various substitu-
tions and transformations on the plaintext.

■■ Secret key:  The secret key is also input to the encryption algorithm. The key is a 
value independent of the plaintext and of the algorithm. The algorithm will pro-
duce a different output depending on the specific key being used at the time. The 
exact substitutions and transformations performed by the  algorithm depend on 
the key.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

■◆ Present an overview of the main concepts of symmetric cryptography.

■◆ Explain the difference between cryptanalysis and brute-force attack.

■◆ Understand the operation of a monoalphabetic substitution cipher.

■◆ Understand the operation of a polyalphabetic cipher.

■◆ Present an overview of the Hill cipher.
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■■ Ciphertext:  This is the scrambled message produced as output. It depends on 
the plaintext and the secret key. For a given message, two different keys will 
produce two different ciphertexts. The ciphertext is an apparently random 
stream of data and, as it stands, is unintelligible.

■■ Decryption algorithm:  This is essentially the encryption algorithm run in reverse. 
It takes the ciphertext and the secret key and produces the original plaintext.

There are two requirements for secure use of conventional encryption:

1. We need a strong encryption algorithm. At a minimum, we would like the al-
gorithm to be such that an opponent who knows the algorithm and has ac-
cess to one or more ciphertexts would be unable to decipher the ciphertext or 
figure out the key. This requirement is usually stated in a stronger form: The 
opponent should be unable to decrypt ciphertext or discover the key even if he 
or she is in possession of a number of ciphertexts together with the plaintext 
that produced each ciphertext.

2. Sender and receiver must have obtained copies of the secret key in a secure 
fashion and must keep the key secure. If someone can discover the key and 
knows the algorithm, all communication using this key is readable.

We assume that it is impractical to decrypt a message on the basis of the cipher-
text plus knowledge of the encryption/decryption algorithm. In other words, we do 
not need to keep the algorithm secret; we need to keep only the key secret. This fea-
ture of symmetric encryption is what makes it feasible for widespread use. The fact 
that the algorithm need not be kept secret means that manufacturers can and have 
developed low-cost chip implementations of data encryption algorithms. These chips 
are widely available and incorporated into a number of products. With the use of sym-
metric encryption, the principal security problem is maintaining the secrecy of the key.

Let us take a closer look at the essential elements of a symmetric encryp-
tion scheme, using Figure 3.2. A source produces a message in plaintext, 
X = [X1, X2, c , XM]. The M elements of X are letters in some finite alphabet. 
Traditionally, the alphabet usually consisted of the 26 capital letters. Nowadays, 

Figure 3.1 Simplified Model of Symmetric Encryption
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the binary alphabet {0, 1} is typically used. For encryption, a key of the form 
K = [K1, K2, c , KJ] is generated. If the key is generated at the message source, 
then it must also be provided to the destination by means of some secure channel. 
Alternatively, a third party could generate the key and securely deliver it to both 
source and destination.

With the message X and the encryption key K as input, the encryption algo-
rithm forms the ciphertext Y = [Y1, Y2, c , YN]. We can write this as

 Y = E(K, X) 

This notation indicates that Y is produced by using encryption algorithm E as a 
function of the plaintext X, with the specific function determined by the value of 
the key K.

The intended receiver, in possession of the key, is able to invert the 
transformation:

 X = D(K, Y) 

An opponent, observing Y but not having access to K or X, may attempt to 
recover X or K or both X and K. It is assumed that the opponent knows the encryption 
(E) and decryption (D) algorithms. If the opponent is interested in only this particular 
message, then the focus of the effort is to recover X by generating a plaintext estimate 
Xn . Often, however, the opponent is interested in being able to read future messages as 
well, in which case an attempt is made to recover K by generating an estimate Kn .

Figure 3.2 Model of Symmetric Cryptosystem
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Cryptography

Cryptographic systems are characterized along three independent dimensions:

1. The type of operations used for transforming plaintext to ciphertext. All 
encryption algorithms are based on two general principles: substitution, in 
which each element in the plaintext (bit, letter, group of bits or letters) is 
mapped into another element, and transposition, in which elements in the 
plaintext are rearranged. The fundamental requirement is that no informa-
tion be lost (i.e., that all operations are reversible). Most systems, referred to 
as product systems, involve multiple stages of substitutions and transpositions.

2. The number of keys used. If both sender and receiver use the same key, the 
system is referred to as symmetric, single-key, secret-key, or conventional 
 encryption. If the sender and receiver use different keys, the system is referred 
to as asymmetric, two-key, or public-key encryption.

3. The way in which the plaintext is processed. A block cipher processes the 
input one block of elements at a time, producing an output block for each 
input block. A stream cipher processes the input elements continuously, pro-
ducing output one element at a time, as it goes along.

Cryptanalysis and Brute-Force Attack

Typically, the objective of attacking an encryption system is to recover the key in 
use rather than simply to recover the plaintext of a single ciphertext. There are two 
general approaches to attacking a conventional encryption scheme:

■■ Cryptanalysis:  Cryptanalytic attacks rely on the nature of the algorithm plus 
perhaps some knowledge of the general characteristics of the plaintext or even 
some sample plaintext–ciphertext pairs. This type of attack exploits the charac-
teristics of the algorithm to attempt to deduce a specific plaintext or to deduce 
the key being used.

■■ Brute-force attack:  The attacker tries every possible key on a piece of cipher-
text until an intelligible translation into plaintext is obtained. On average, half 
of all possible keys must be tried to achieve success.

If either type of attack succeeds in deducing the key, the effect is catastrophic: 
All future and past messages encrypted with that key are compromised.

Cryptanalysis Table 3.1 summarizes the various types of cryptanalytic attacks based 
on the amount of information known to the cryptanalyst. The most difficult problem is 
presented when all that is available is the ciphertext only. In some cases, not even the 
encryption algorithm is known, but in general, we can assume that the opponent does 
know the algorithm used for encryption. One possible attack under these circumstances 
is the brute-force approach of trying all possible keys. If the key space is very large, 
this becomes impractical. Thus, the opponent must rely on an analysis of the ciphertext 
itself, generally applying various statistical tests to it. To use this approach, the opponent 
must have some general idea of the type of plaintext that is concealed, such as English 
or French text, an EXE file, a Java source listing, an accounting file, and so on.
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The ciphertext-only attack is the easiest to defend against because the oppo-
nent has the least amount of information to work with. In many cases, however, 
the analyst has more information. The analyst may be able to capture one or more 
plaintext messages as well as their encryptions. Or the analyst may know that certain 
plaintext patterns will appear in a message. For example, a file that is encoded in the 
Postscript format always begins with the same pattern, or there may be a standard-
ized header or banner to an electronic funds transfer message, and so on. All these 
are examples of known plaintext. With this knowledge, the analyst may be able to 
deduce the key on the basis of the way in which the known plaintext is transformed.

Closely related to the known-plaintext attack is what might be referred to as a 
probable-word attack. If the opponent is working with the encryption of some gen-
eral prose message, he or she may have little knowledge of what is in the message. 
However, if the opponent is after some very specific information, then parts of the 
message may be known. For example, if an entire accounting file is being transmit-
ted, the opponent may know the placement of certain key words in the header of the 
file. As another example, the source code for a program developed by Corporation 
X might include a copyright statement in some standardized position.

If the analyst is able somehow to get the source system to insert into the sys-
tem a message chosen by the analyst, then a chosen-plaintext attack is possible. 
In general, if the analyst is able to choose the messages to encrypt, the analyst may 
deliberately pick patterns that can be expected to reveal the structure of the key.

Table 3.1 lists two other types of attack: chosen ciphertext and chosen text. 
These are less commonly employed as cryptanalytic techniques but are nevertheless 
possible avenues of attack.

Only relatively weak algorithms fail to withstand a ciphertext-only attack. 
Generally, an encryption algorithm is designed to withstand a known-plaintext attack.

Type of Attack Known to Cryptanalyst

Ciphertext Only ■■Encryption algorithm
■■Ciphertext

Known Plaintext ■■Encryption algorithm
■■Ciphertext
■■One or more plaintext–ciphertext pairs formed with the secret key

Chosen Plaintext ■■Encryption algorithm
■■Ciphertext
■■■Plaintext message chosen by cryptanalyst, together with its corresponding 

 ciphertext generated with the secret key

Chosen Ciphertext ■■Encryption algorithm
■■Ciphertext
■■■Ciphertext chosen by cryptanalyst, together with its corresponding decrypted 

plaintext generated with the secret key

Chosen Text ■■Encryption algorithm
■■Ciphertext
■■■Plaintext message chosen by cryptanalyst, together with its corresponding 

 ciphertext generated with the secret key
■■■Ciphertext chosen by cryptanalyst, together with its corresponding decrypted 

plaintext generated with the secret key

Table 3.1 Types of Attacks on Encrypted Messages
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Two more definitions are worthy of note. An encryption scheme is 
 unconditionally secure if the ciphertext generated by the scheme does not contain 
enough information to determine uniquely the corresponding plaintext, no matter 
how much ciphertext is available. That is, no matter how much time an opponent 
has, it is impossible for him or her to decrypt the ciphertext simply because the 
required information is not there. With the exception of a scheme known as the one-
time pad (described later in this chapter), there is no encryption algorithm that is 
unconditionally secure. Therefore, all that the users of an encryption algorithm can 
strive for is an algorithm that meets one or both of the following criteria:

■■ The cost of breaking the cipher exceeds the value of the encrypted information.

■■ The time required to break the cipher exceeds the useful lifetime of the 
information.

An encryption scheme is said to be computationally secure if either of the 
foregoing two criteria are met. Unfortunately, it is very difficult to estimate the 
amount of effort required to cryptanalyze ciphertext successfully.

All forms of cryptanalysis for symmetric encryption schemes are designed 
to exploit the fact that traces of structure or pattern in the plaintext may survive 
encryption and be discernible in the ciphertext. This will become clear as we exam-
ine various symmetric encryption schemes in this chapter. We will see in Part Three 
that cryptanalysis for public-key schemes proceeds from a fundamentally different 
premise, namely, that the mathematical properties of the pair of keys may make it 
possible for one of the two keys to be deduced from the other.

Brute-ForCe attaCk A brute-force attack involves trying every possible key until 
an intelligible translation of the ciphertext into plaintext is obtained. On average, 
half of all possible keys must be tried to achieve success. That is, if there are X dif-
ferent keys, on average an attacker would discover the actual key after X/2 tries. It 
is important to note that there is more to a brute-force attack than simply running 
through all possible keys. Unless known plaintext is provided, the analyst must be 
able to recognize plaintext as plaintext. If the message is just plain text in English, 
then the result pops out easily, although the task of recognizing English would have 
to be automated. If the text message has been compressed before encryption, then 
recognition is more difficult. And if the message is some more general type of data, 
such as a numerical file, and this has been compressed, the problem becomes even 
more difficult to automate. Thus, to supplement the brute-force approach, some 
degree of knowledge about the expected plaintext is needed, and some means of 
automatically distinguishing plaintext from garble is also needed.

strong enCryption For users, security managers, and organization executives, there 
is a requirement for strong encryption to protect data. The term strong encryption is 
an imprecise one, but in general terms, it refers to encryption schemes that make it 
impractically difficult for unauthorized persons or systems to gain access to plaintext 
that has been encrypted. [NAS18] lists the following properties that make an encryp-
tion algorithm strong: appropriate choice of cryptographic algorithm, use of  sufficiently 
long key lengths, appropriate choice of protocols, a well-engineered implementation, 
and the absence of deliberately introduced hidden flaws. The first two  factors relate to 
cryptanalysis, discussed in this section, and the third factor relates to the discussion in 
Part Six. The last two factors are beyond the scope of this book.
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 3.2 SUBSTITUTION TECHNIQUES

In this section and the next, we examine a sampling of what might be called classical 
encryption techniques. A study of these techniques enables us to illustrate the basic 
approaches to symmetric encryption used today and the types of cryptanalytic at-
tacks that must be anticipated.

The two basic building blocks of all encryption techniques are substitution and 
transposition. We examine these in the next two sections. Finally, we discuss a system 
that combines both substitution and transposition.

A substitution technique is one in which the letters of plaintext are replaced 
by other letters or by numbers or symbols.1 If the plaintext is viewed as a sequence 
of bits, then substitution involves replacing plaintext bit patterns with ciphertext bit 
patterns.

Caesar Cipher

The earliest known, and the simplest, use of a substitution cipher was by Julius 
Caesar. The Caesar cipher involves replacing each letter of the alphabet with the 
letter standing three places further down the alphabet. For example,

plain:   meet me after the toga party
cipher: PHHW PH DIWHU WKH WRJD SDUWB

Note that the alphabet is wrapped around, so that the letter following Z is A. 
We can define the transformation by listing all possibilities, as follows:

plain:   a b c d e f g h i j k l m n o p q r s t u v w x y z
cipher: D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

Let us assign a numerical equivalent to each letter:

a b c d e f g h i j k l m

0 1 2 3 4 5 6 7 8 9 10 11 12

n o p q r s t u v w x y z

13 14 15 16 17 18 19 20 21 22 23 24 25

Then the algorithm can be expressed as follows. For each plaintext letter p, substi-
tute the ciphertext letter C:2

 C = E(3, p) = (p + 3) mod 26 

A shift may be of any amount, so that the general Caesar algorithm is

 C = E(k, p) = (p + k) mod 26   (3.1)

1When letters are involved, the following conventions are used in this book. Plaintext is always in 
 lowercase; ciphertext is in uppercase; key values are in italicized lowercase.
2We define a mod n to be the remainder when a is divided by n. For example, 11 mod 7 = 4. See Chapter  2 
for a further discussion of modular arithmetic.
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where k takes on a value in the range 1 to 25. The decryption algorithm is simply

 p = D(k, C) = (C - k) mod 26   (3.2)

If it is known that a given ciphertext is a Caesar cipher, then a brute-force 
cryptanalysis is easily performed: simply try all the 25 possible keys. Figure 3.3 
shows the results of applying this strategy to the example ciphertext. In this case, the 
plaintext leaps out as occupying the third line.

Three important characteristics of this problem enabled us to use a brute-force 
cryptanalysis:

1. The encryption and decryption algorithms are known.

2. There are only 25 keys to try.

3. The language of the plaintext is known and easily recognizable.

In most networking situations, we can assume that the algorithms are known. 
What generally makes brute-force cryptanalysis impractical is the use of an algo-
rithm that employs a large number of keys. For example, the triple DES algorithm, 

Figure 3.3 Brute-Force Cryptanalysis of Caesar Cipher

PHHW PH DIWHU WKH WRJD SDUWB
KEY

1

2 nffu nf bgufs uif uphb qbsuz

3 meet me after the toga party

4 ldds ld zesdq sgd snfz ozqsx

5 kccr kc ydrcp rfc rmey nyprw

6 jbbq jb xcqbo qeb qldx mxoqv

iaap ia wbpan pda pkcw lwnpu

hzzo hz vaozm ocz ojbv kvmot

gyyn gy uznyl nby niau julns

fxxm fx tymxk max mhzt itkmr

ewwl ew sxlwj lzw lgys hsjlq

dvvk dv rwkvi kyv kfxr grikp

cuuj cu qvjuh jxu jewq fqhjo

btti bt puitg iwt idvp epgin

assh as othsf hvs hcuo dofhm

zrrg zr nsgre gur gbtn cnegl

7

8

9

10

11

12

13

14

15

16

17 yqqf yq mrfqd ftq fasm bmdfk

18 xppe xp lqepc esp ezrl alcej

19 wood wo kpdob dro dyqk zkbdi

20 vnnc vn jocna cqn cxpj yjach

21 ummb um inbmz bpm bwoi xizbg

22 tlla tl hmaly aol avnh whyaf

23 skkz sk glzkx znk zumg vgxze

24 rjjy rj fkyjw ymj ytlf ufwyd

25 qiix qi ejxiv xli xske tevxc

oggv og chvgt vjg vqic rctva
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examined in Chapter 7, makes use of a 168-bit key, giving a key space of 2168 or 
greater than 3.7 * 1050 possible keys.

The third characteristic is also significant. If the language of the plaintext is 
unknown, then plaintext output may not be recognizable. Furthermore, the input 
may be abbreviated or compressed in some fashion, again making recognition dif-
ficult. For example, Figure 3.4 shows a portion of a text file compressed using an 
algorithm called ZIP. If this file is then encrypted with a simple substitution cipher 
(expanded to include more than just 26 alphabetic characters), then the plaintext 
may not be recognized when it is uncovered in the brute-force cryptanalysis.

Monoalphabetic Ciphers

With only 25 possible keys, the Caesar cipher is far from secure. A dramatic increase 
in the key space can be achieved by allowing an arbitrary substitution. Before pro-
ceeding, we define the term permutation. A permutation of a finite set of elements S 
is an ordered sequence of all the elements of S, with each element appearing exactly 
once. For example, if S = {a, b, c}, there are six permutations of S:

 abc, acb, bac, bca, cab, cba 

In general, there are n! permutations of a set of n elements, because the first 
element can be chosen in one of n ways, the second in n - 1 ways, the third in n - 2 
ways, and so on.

Recall the assignment for the Caesar cipher:

plain:  a b c d e f g h i j k l m n o p q r s t u v w x y z
cipher: D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

If, instead, the “cipher” line can be any permutation of the 26 alphabetic characters, 
then there are 26! or greater than 4 * 1026 possible keys. This is 10 orders of magni-
tude greater than the key space for DES and would seem to eliminate brute-force 
techniques for cryptanalysis. Such an approach is referred to as a monoalphabetic 
substitution cipher, because a single cipher alphabet (mapping from plain alphabet 
to cipher alphabet) is used per message.

There is, however, another line of attack. If the cryptanalyst knows the nature 
of the plaintext (e.g., noncompressed English text), then the analyst can exploit the 
regularities of the language. To see how such a cryptanalysis might proceed, we give 
a partial example here that is adapted from one in [SINK09]. The ciphertext to be 
solved is

Figure 3.4 Sample of Compressed Text
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UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ
VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX
EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ

As a first step, the relative frequency of the letters can be determined and com-
pared to a standard frequency distribution for English, such as is shown in Figure 3.5 
(based on [LEWA00]). If the message were long enough, this technique alone might 
be sufficient, but because this is a relatively short message, we cannot expect an 
exact match. In any case, the relative frequencies of the letters in the ciphertext (in 
percentages) are as follows:

P 13.33 H 5.83 F  3.33 B  1.67 C 0.00

Z 11.67 D 5.00 W  3.33 G 1.67 K 0.00

S   8.33 E 5.00 Q 2.50 Y 1.67 L 0.00

U  8.33 V 4.17 T  2.50 I   0.83 N 0.00

O  7.50 X 4.17 A 1.67 J   0.83 R 0.00

M   6.67

Comparing this breakdown with Figure 3.5, it seems likely that cipher letters 
P and Z are the equivalents of plain letters e and t, but it is not certain which is 
which. The letters S, U, O, M, and H are all of relatively high frequency and probably 

Figure 3.5 Relative Frequency of Letters in English Text
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correspond to plain letters from the set {a, h, i, n, o, r, s}. The letters with the lowest 
frequencies (namely, A, B, G, Y, I, J) are likely included in the set {b, j, k, q, v, x, z}.

There are a number of ways to proceed at this point. We could make some 
tentative assignments and start to fill in the plaintext to see if it looks like a rea-
sonable “skeleton” of a message. A more systematic approach is to look for other 
regularities. For example, certain words may be known to be in the text. Or we 
could look for repeating sequences of cipher letters and try to deduce their plain-
text equivalents.

A powerful tool is to look at the frequency of two-letter combinations, known 
as digrams. A table similar to Figure 3.5 could be drawn up showing the relative fre-
quency of digrams. The most common such digram is th. In our ciphertext, the most 
common digram is ZW, which appears three times. So we make the correspondence 
of Z with t and W with h. Then, by our earlier hypothesis, we can equate P with e. 
Now notice that the sequence ZWP appears in the ciphertext, and we can translate 
that sequence as “the.” This is the most frequent trigram (three-letter combination) 
in English, which seems to indicate that we are on the right track.

Next, notice the sequence ZWSZ in the first line. We do not know that these 
four letters form a complete word, but if they do, it is of the form th_t. If so, S equates 
with a.

So far, then, we have

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ
t a       e  e te  a that e e a     a

VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX
e t   ta t ha e ee  a e  th     t  a

EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ
e  e e tat  e   the   t

Only four letters have been identified, but already we have quite a bit of the 
message. Continued analysis of frequencies plus trial and error should easily yield a 
solution from this point. The complete plaintext, with spaces added between words, 
follows:

it was disclosed yesterday that several informal but
direct contacts have been made with political
representatives of the viet cong in moscow

Monoalphabetic ciphers are easy to break because they reflect the frequency 
data of the original alphabet. A countermeasure is to provide multiple substi-
tutes, known as homophones, for a single letter. For example, the letter e could 
be assigned a number of different cipher symbols, such as 16, 74, 35, and 21, with 
each homophone assigned to a letter in rotation or randomly. If the number of 
symbols assigned to each letter is proportional to the relative frequency of that 
letter, then single-letter frequency information is completely obliterated. The great 
mathematician Carl Friedrich Gauss believed that he had devised an unbreak-
able cipher using homophones. However, even with homophones, each element 
of plaintext affects only one element of ciphertext, and multiple-letter patterns 
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(e.g., digram frequencies) still survive in the ciphertext, making cryptanalysis rela-
tively straightforward.

Two principal methods are used in substitution ciphers to lessen the extent to 
which the structure of the plaintext survives in the ciphertext: One approach is to 
encrypt multiple letters of plaintext, and the other is to use multiple cipher alpha-
bets. We briefly examine each.

Playfair Cipher

The best-known multiple-letter encryption cipher is the Playfair, which treats di-
grams in the plaintext as single units and translates these units into ciphertext 
digrams.3

The Playfair algorithm is based on the use of a 5 * 5 matrix of letters con-
structed using a keyword. Here is an example, solved by Lord Peter Wimsey in 
Dorothy Sayers’s Have His Carcase:4

M O N A R

C H Y B D

E F G I/J K

L P Q S T

U V W X Z

In this case, the keyword is monarchy. The matrix is constructed by filling in 
the letters of the keyword (minus duplicates) from left to right and from top to bot-
tom, and then filling in the remainder of the matrix with the remaining letters in 
alphabetic order. The letters I and J count as one letter. Plaintext is encrypted two 
letters at a time, according to the following rules:

1. Repeating plaintext letters that are in the same pair are separated with a filler 
letter, such as x, so that balloon would be treated as ba lx lo on.

2. Two plaintext letters that fall in the same row of the matrix are each replaced 
by the letter to the right, with the first element of the row circularly following 
the last. For example, ar is encrypted as RM.

3. Two plaintext letters that fall in the same column are each replaced by the let-
ter beneath, with the top element of the column circularly following the last. 
For example, mu is encrypted as CM.

4. Otherwise, each plaintext letter in a pair is replaced by the letter that lies in 
its own row and the column occupied by the other plaintext letter. Thus, hs 
becomes BP and ea becomes IM (or JM, as the encipherer wishes).

The Playfair cipher is a great advance over simple monoalphabetic ciphers. For 
one thing, whereas there are only 26 letters, there are 26 * 26 = 676 digrams, so 

3This cipher was actually invented by British scientist Sir Charles Wheatstone in 1854, but it bears the 
name of his friend Baron Playfair of St. Andrews, who championed the cipher at the British foreign office.
4The book provides an absorbing account of a probable-word attack.
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that identification of individual digrams is more difficult. Furthermore, the relative 
frequencies of individual letters exhibit a much greater range than that of digrams, 
making frequency analysis much more difficult. For these reasons, the Playfair 
cipher was for a long time considered unbreakable. It was used as the standard field 
system by the British Army in World War I and still enjoyed considerable use by the 
U.S. Army and other Allied forces during World War II.

Despite this level of confidence in its security, the Playfair cipher is relatively 
easy to break, because it still leaves much of the structure of the plaintext language 
intact. A few hundred letters of ciphertext are generally sufficient.

One way of revealing the effectiveness of the Playfair and other ciphers is 
shown in Figure 3.6. The line labeled plaintext plots a typical frequency distribution 
of the 26 alphabetic characters (no distinction between upper and lower case) in 
ordinary text. This is also the frequency distribution of any monoalphabetic substi-
tution cipher, because the frequency values for individual letters are the same, just 
with different letters substituted for the original letters. The plot is developed in the 
following way: The number of occurrences of each letter in the text is counted and 
divided by the number of occurrences of the most frequently used letter. Using the 
results of Figure 3.5, we see that e is the most frequently used letter. As a result, e 
has a relative frequency of 1, t of 9.056/12.702 ≈ 0.72, and so on. The points on the 
horizontal axis correspond to the letters in order of decreasing frequency.

Figure 3.6 also shows the frequency distribution that results when the text is 
encrypted using the Playfair cipher. To normalize the plot, the number of occur-
rences of each letter in the ciphertext was again divided by the number of occur-
rences of e in the plaintext. The resulting plot therefore shows the extent to which 
the frequency distribution of letters, which makes it trivial to solve substitution 

Figure 3.6 Relative Frequency of Occurrence of Letters
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ciphers, is masked by encryption. If the frequency distribution information were 
totally concealed in the encryption process, the ciphertext plot of frequencies would 
be flat, and cryptanalysis using ciphertext only would be effectively impossible. As 
the figure shows, the Playfair cipher has a flatter distribution than does plaintext, 
but nevertheless, it reveals plenty of structure for a cryptanalyst to work with. The 
plot also shows the Vigenère cipher, discussed subsequently. The Hill and Vigenère 
curves on the plot are based on results reported in [SIMM93].

Hill Cipher5

Another interesting multiletter cipher is the Hill cipher, developed by the mathema-
tician Lester Hill in 1929.

ConCepts From linear algeBra Before describing the Hill cipher, let us briefly 
review some terminology from linear algebra. In this discussion, we are concerned 
with matrix arithmetic modulo 26. For the reader who needs a refresher on matrix 
multiplication and inversion, see Appendix A.

We define the inverse M-1 of a square matrix M by the equation M(M-1) =
M-1M = I, where I is the identity matrix. I is a square matrix that is all zeros except 
for ones along the main diagonal from upper left to lower right. The inverse of a 
matrix does not always exist, but when it does, it satisfies the preceding equation. 
For example,

 A = ¢ 5 8
17 3

≤  A-1 mod 26 = ¢9 2
1 15

≤
 AA-1 = ¢ (5 * 9) + (8 * 1) (5 * 2) + (8 * 15)

(17 * 9) + (3 * 1) (17 * 2) + (3 * 15)
≤

 = ¢ 53 130
156 79

≤ mod 26 = ¢1 0
0 1

≤
To explain how the inverse of a matrix is computed, we begin with the concept 

of determinant. For any square matrix (m * m), the determinant equals the sum of 
all the products that can be formed by taking exactly one element from each row 
and exactly one element from each column, with certain of the product terms pre-
ceded by a minus sign. For a 2 * 2 matrix,

 ¢k11 k12

k21 k22
≤ 

the determinant is k11k22 - k12k21. For a 3 * 3 matrix, the value of the determinant 
is k11k22k33 + k21k32k13 + k31k12k23 - k31k22k13 - k21k12k33 - k11k32k23. If a square 

5This cipher is somewhat more difficult to understand than the others in this chapter, but it illustrates an 
important point about cryptanalysis that will be useful later on. This subsection can be skipped on a first 
reading.
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matrix A has a nonzero determinant, then the inverse of the matrix is computed as 
[A-1]ij = (det A)-1(-1)i+ j(Dji), where (Dji) is the subdeterminant formed by de-
leting the jth row and the ith column of A, det(A) is the determinant of A, and 
(det A)-1 is the multiplicative inverse of (det A) mod 26.

Continuing our example,

 det ¢ 5 8
17 3

≤ = (5 * 3) - (8 * 17) = -121 mod 26 = 9 

We can show that 9-1 mod 26 = 3, because 9 * 3 = 27 mod 26 = 1 (see 
Chapter 2 or Appendix A). Therefore, we compute the inverse of A as

 A = ¢ 5 8
17 3

≤
  A-1 mod 26 = 3¢ 3 -8

-17 5
≤ = 3¢3 18

9 5
≤ = ¢ 9 54

27 15
≤ = ¢9 2

1 15
≤ 

the hill algorithm This encryption algorithm takes m successive plaintext let-
ters and substitutes for them m ciphertext letters. The substitution is determined 
by m linear equations in which each character is assigned a numerical value 
(a = 0, b = 1, c , z = 25). For m = 3, the system can be described as

 c1 = (k11p1 + k21p2 + k31p3) mod 26

 c2 = (k12p1 + k22p2 + k32p3) mod 26

 c3 = (k13p1 + k23p2 + k33p3) mod 26

This can be expressed in terms of row vectors and matrices:6

 (c1 c2 c3) = (p1 p2 p3)£k11 k12 k13

k21 k22 k23

k31 k32 k33

≥ mod 26 

or

 C = PK mod 26 

where C and P are row vectors of length 3 representing the plaintext and ciphertext, 
and K is a 3 * 3 matrix representing the encryption key. Operations are performed 
mod 26.

6Some cryptography books express the plaintext and ciphertext as column vectors, so that the column 
vector is placed after the matrix rather than the row vector placed before the matrix. Sage uses row vec-
tors, so we adopt that convention.
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For example, consider the plaintext “paymoremoney” and use the encryption key

 K = £17 17 5
21 18 21
2 2 19

≥ 

The first three letters of the plaintext are represented by the vector (15 0 24). 
Then (15 0 24)K = (303 303 531) mod 26 = (17 17 11) = RRL. Continuing in this 
fashion, the ciphertext for the entire plaintext is RRLMWBKASPDH.

Decryption requires using the inverse of the matrix K. We can compute det 
K = 23, and therefore, (det K)-1 mod 26 = 17. We can then compute the inverse as7

 K-1 = £ 4 9 15
15 17 6
24 0 17

≥ 

This is demonstrated as

 £17 17 5
21 18 21
2 2 19

≥£ 4 9 15
15 17 6
24 0 17

≥ = £443 442 442
858 495 780
494 52 365

≥ mod 26 = £1 0 0
0 1 0
0 0 1

≥ 

It is easily seen that if the matrix K-1 is applied to the ciphertext, then the 
plaintext is recovered.

In general terms, the Hill system can be expressed as

 C = E(K, P) = PK mod 26

 P = D(K, C) = CK-1 mod 26 = PKK-1 = P

As with Playfair, the strength of the Hill cipher is that it completely hides 
single-letter frequencies. Indeed, with Hill, the use of a larger matrix hides more 
frequency information. Thus, a 3 * 3 Hill cipher hides not only single-letter but also 
two-letter frequency information.

Although the Hill cipher is strong against a ciphertext-only attack, it is easily 
broken with a known plaintext attack. For an m * m Hill cipher, suppose we have m 
plaintext–ciphertext pairs, each of length m. We label the pairs Pj = (p1jp1j c pmj) 
and Cj = (c1jc1j c cmj) such that Cj = PjK for 1 … j … m and for some unknown 
key matrix K. Now define two m * m matrices X = (pij) and Y = (cij). Then we 
can form the matrix equation Y = XK. If X has an inverse, then we can determine 
K = X-1Y. If X is not invertible, then a new version of X can be formed with addi-
tional plaintext–ciphertext pairs until an invertible X is obtained.

Consider this example. Suppose that the plaintext “hillcipher” is encrypted 
using a 2 * 2 Hill cipher to yield the ciphertext HCRZSSXNSP. Thus, we know that 
(7 8)K mod 26 = (7 2); (11 11)K mod 26 = (17 25); and so on. Using the 
first two plaintext-ciphertext pairs, we have

7The calculations for this example are provided in detail in Appendix A.
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 ¢ 7 2
17 25

≤ = ¢ 7 8
11 11

≤K mod 26 

The inverse of X can be computed:

 ¢ 7 8
11 11

≤-1

= ¢25 22
1 23

≤ 

so

 K = ¢25 22
1 23

≤ ¢ 7 2
17 25

≤ = ¢549 600
398 577

≤ mod 26 = ¢3 2
8 5

≤ 

This result is verified by testing the remaining plaintext–ciphertext pairs.

Polyalphabetic Ciphers

Another way to improve on the simple monoalphabetic technique is to use differ-
ent monoalphabetic substitutions as one proceeds through the plaintext message. 
The general name for this approach is polyalphabetic substitution cipher. All these 
techniques have the following features in common:

1. A set of related monoalphabetic substitution rules is used.

2. A key determines which particular rule is chosen for a given transformation.

Vigenère Cipher The best known, and one of the simplest, polyalphabetic ciphers 
is the Vigenère cipher. In this scheme, the set of related monoalphabetic substitution 
rules consists of the 26 Caesar ciphers with shifts of 0 through 25. Each cipher is 
denoted by a key letter, which is the ciphertext letter that substitutes for the plain-
text letter a. Thus, a Caesar cipher with a shift of 3 is denoted by the key value 3.8

We can express the Vigenère cipher in the following manner. Assume a 
sequence of plaintext letters P = p0, p1, p2, c , pn - 1 and a key consisting of the 
sequence of letters K = k0, k1, k2, c , km - 1, where typically m 6 n. The sequence 
of ciphertext letters C = C0, C1, C2, c , Cn - 1 is calculated as follows:

 C = C0, C1,  C2, c, Cn - 1 = E(K, P) = E[(k0, k1, k2, c, km - 1), (p0, p1, p2, c , pn - 1)]

 = (p0 + k0) mod 26, (p1 + k1) mod 26, c, (pm - 1 + km - 1) mod 26,

(pm + k0) mod 26, (pm + 1 + k1) mod 26, c , (p2m - 1 + km - 1) mod 26, c

Thus, the first letter of the key is added to the first letter of the plaintext, mod 26, 
the second letters are added, and so on through the first m letters of the plaintext. 
For the next m letters of the plaintext, the key letters are repeated. This process 

8To aid in understanding this scheme and also to aid in it use, a matrix known as the Vigenère tableau is 
often used. This tableau is discussed in a document at box.com/Crypto8e.
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continues until all of the plaintext sequence is encrypted. A general equation of the 
encryption process is

 Ci = (pi + ki mod m) mod 26   (3.3)

Compare this with Equation (3.1) for the Caesar cipher. In essence, each plain-
text character is encrypted with a different Caesar cipher, depending on the corre-
sponding key character. Similarly, decryption is a generalization of Equation (3.2):

 pi = (Ci - ki mod m) mod 26   (3.4)

To encrypt a message, a key is needed that is as long as the message. Usually, 
the key is a repeating keyword. For example, if the keyword is deceptive, the message 
“we are discovered save yourself” is encrypted as

key:  deceptivedeceptivedeceptive
plaintext: wearediscoveredsaveyourself
ciphertext: ZICVTWQNGRZGVTWAVZHCQYGLMGJ

Expressed numerically, we have the following result.

key 3 4 2 4 15 19 8 21 4 3 4 2 4 15

plaintext 22 4 0 17 4 3 8 18 2 14 21 4 17 4

ciphertext 25 8 2 21 19 22 16 13 6 17 25 6 21 19

key 19 8 21 4 3 4 2 4 15 19 8 21 4

plaintext 3 18 0 21 4 24 14 20 17 18 4 11 5

ciphertext 22 0 21 25 7 2 16 24 6 11 12 6 9

The strength of this cipher is that there are multiple ciphertext letters for each 
plaintext letter, one for each unique letter of the keyword. Thus, the letter frequency 
information is obscured. However, not all knowledge of the plaintext structure is 
lost. For example, Figure 3.6 shows the frequency distribution for a Vigenère cipher 
with a keyword of length 9. An improvement is achieved over the Playfair cipher, 
but considerable frequency information remains.

It is instructive to sketch a method of breaking this cipher, because the method 
reveals some of the mathematical principles that apply in cryptanalysis.

First, suppose that the opponent believes that the ciphertext was encrypted 
using either monoalphabetic substitution or a Vigenère cipher. A simple test can be 
made to make a determination. If a monoalphabetic substitution is used, then the 
statistical properties of the ciphertext should be the same as that of the language of 
the plaintext. Thus, referring to Figure 3.5, there should be one cipher letter with a 
relative frequency of occurrence of about 12.7%, one with about 9.06%, and so on. If 
only a single message is available for analysis, we would not expect an exact match of 
this small sample with the statistical profile of the plaintext language. Nevertheless, 
if the correspondence is close, we can assume a monoalphabetic substitution.
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If, on the other hand, a Vigenère cipher is suspected, then progress depends on 
determining the length of the keyword, as will be seen in a moment. For now, let us 
concentrate on how the keyword length can be determined. The important insight 
that leads to a solution is the following: If two identical sequences of plaintext let-
ters occur at a distance that is an integer multiple of the keyword length, they will 
generate identical ciphertext sequences. In the foregoing example, two instances 
of the sequence “red” are separated by nine character positions. Consequently, in 
both cases, r is encrypted using key letter e, e is encrypted using key letter p, and d 
is encrypted using key letter t. Thus, in both cases, the ciphertext sequence is VTW. 
We indicate this above by underlining the relevant ciphertext letters and shading the 
relevant ciphertext numbers.

An analyst looking at only the ciphertext would detect the repeated sequences 
VTW at a displacement of 9 and make the assumption that the keyword is either three 
or nine letters in length. The appearance of VTW twice could be by chance and may not 
reflect identical plaintext letters encrypted with identical key letters. However, if the 
message is long enough, there will be a number of such repeated ciphertext sequences. 
By looking for common factors in the displacements of the various sequences, the 
analyst should be able to make a good guess of the keyword length.

Solution of the cipher now depends on an important insight. If the keyword 
length is m, then the cipher, in effect, consists of m monoalphabetic substitution 
ciphers. For example, with the keyword DECEPTIVE, the letters in positions 1, 10, 
19, and so on are all encrypted with the same monoalphabetic cipher. Thus, we can 
use the known frequency characteristics of the plaintext language to attack each of 
the monoalphabetic ciphers separately.

The periodic nature of the keyword can be eliminated by using a nonrepeating 
keyword that is as long as the message itself. Vigenère proposed what is referred to 
as an autokey system, in which a keyword is concatenated with the plaintext itself to 
provide a running key. For our example,

key:  deceptivewearediscoveredsav
plaintext: wearediscoveredsaveyourself
ciphertext: ZICVTWQNGKZEIIGASXSTSLVVWLA

Even this scheme is vulnerable to cryptanalysis. Because the key and the plain-
text share the same frequency distribution of letters, a statistical technique can be 
applied. For example, e enciphered by e, by Figure 3.5, can be expected to occur with 
a frequency of (0.127)2 ≈ 0.016, whereas t enciphered by t would occur only about 
half as often. These regularities can be exploited to achieve successful 
cryptanalysis.9

Vernam Cipher The ultimate defense against such a cryptanalysis is to choose a 
keyword that is as long as the plaintext and has no statistical relationship to it. Such 
a system was introduced by an AT&T engineer named Gilbert Vernam in 1918.

9Although the techniques for breaking a Vigenère cipher are by no means complex, a 1917 issue of 
Scientific American characterized this system as “impossible of translation.” This is a point worth remem-
bering when similar claims are made for modern algorithms.
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His system works on binary data (bits) rather than letters. The system can be ex-
pressed succinctly as follows (Figure 3.7):

 ci = pi ⊕ ki 

where

pi = ith binary digit of plaintext

ki = ith binary digit of key

ci = ith binary digit of ciphertext
⊕ = exclusive@or (XOR) operation

Compare this with Equation (3.3) for the Vigenère cipher.
Thus, the ciphertext is generated by performing the bitwise XOR of the plain-

text and the key. Because of the properties of the XOR, decryption simply involves 
the same bitwise operation:

 pi = ci ⊕ ki 

which compares with Equation (3.4).
The essence of this technique is the means of construction of the key. Vernam 

proposed the use of a running loop of tape that eventually repeated the key, so that 
in fact the system worked with a very long but repeating keyword. Although such 
a scheme, with a long key, presents formidable cryptanalytic difficulties, it can be 
broken with sufficient ciphertext, the use of known or probable plaintext sequences, 
or both.

One-Time Pad

An Army Signal Corp officer, Joseph Mauborgne, proposed an improvement to the 
Vernam cipher that yields the ultimate in security. Mauborgne suggested using a 
random key that is as long as the message, so that the key need not be repeated. In 
addition, the key is to be used to encrypt and decrypt a single message, and then is 
discarded. Each new message requires a new key of the same length as the new mes-
sage. Such a scheme, known as a one-time pad, is unbreakable. It produces random 
output that bears no statistical relationship to the plaintext. Because the ciphertext 

Figure 3.7 Vernam Cipher
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contains no information whatsoever about the plaintext, there is simply no way to 
break the code.

An example should illustrate our point. Suppose that we are using a Vigenère 
scheme with 27 characters in which the twenty-seventh character is the space 
character, but with a one-time key that is as long as the message. Consider the 
ciphertext

ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS

We now show two different decryptions using two different keys:

ciphertext: ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS
key:  pxlmvmsydofuyrvzwc tnlebnecvgdupahfzzlmnyih
plaintext: mr mustard with the candlestick in the hall

ciphertext: ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS
key:  pftgpmiydgaxgoufhklllmhsqdqogtewbqfgyovuhwt
plaintext: miss scarlet with the knife in the library

Suppose that a cryptanalyst had managed to find these two keys. Two plau-
sible plaintexts are produced. How is the cryptanalyst to decide which is the correct 
decryption (i.e., which is the correct key)? If the actual key were produced in a truly 
random fashion, then the cryptanalyst cannot say that one of these two keys is more 
likely than the other. Thus, there is no way to decide which key is correct and there-
fore which plaintext is correct.

In fact, given any plaintext of equal length to the ciphertext, there is a key that 
produces that plaintext. Therefore, if you did an exhaustive search of all possible 
keys, you would end up with many legible plaintexts, with no way of knowing which 
was the intended plaintext. Therefore, the code is unbreakable.

The security of the one-time pad is entirely due to the randomness of the key. 
If the stream of characters that constitute the key is truly random, then the stream 
of characters that constitute the ciphertext will be truly random. Thus, there are no 
patterns or regularities that a cryptanalyst can use to attack the ciphertext.

In theory, we need look no further for a cipher. The one-time pad offers com-
plete security but, in practice, has two fundamental difficulties:

1. There is the practical problem of making large quantities of random keys. Any 
heavily used system might require millions of random characters on a regular 
basis. Supplying truly random characters in this volume is a significant task.

2. Even more daunting is the problem of key distribution and protection. For 
every message to be sent, a key of equal length is needed by both sender and 
receiver. Thus, a mammoth key distribution problem exists.

Because of these difficulties, the one-time pad is of limited utility and is useful 
primarily for low-bandwidth channels requiring very high security.

The one-time pad is the only cryptosystem that exhibits what is referred to as 
perfect secrecy. This concept is explored in Appendix B.
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 3.3 TRANSPOSITION TECHNIQUES

All the techniques examined so far involve the substitution of a ciphertext symbol 
for a plaintext symbol. A very different kind of mapping is achieved by performing 
some sort of permutation on the plaintext letters. This technique is referred to as a 
transposition cipher.

The simplest such cipher is the rail fence technique, in which the plaintext is 
written down as a sequence of diagonals and then read off as a sequence of rows. For 
example, to encipher the message “meet me after the toga party” with a rail fence of 
depth 2, we write the following:

m e m a t r h t g p r y
e t e f e t e o a a t

The encrypted message is

MEMATRHTGPRYETEFETEOAAT

This sort of thing would be trivial to cryptanalyze. A more complex scheme is 
to write the message in a rectangle, row by row, and read the message off, column 
by column, but permute the order of the columns. The order of the columns then 
becomes the key to the algorithm. For example,

Key:  4 3 1 2 5 6 7
Plaintext: a t t a c k p
   o s t p o n e
   d u n t i l t
   w o a m x y z
Ciphertext: TTNAAPTMTSUOAODWCOIXKNLYPETZ

Thus, in this example, the key is 4312567. To encrypt, start with the  column 
that is labeled 1, in this case column 3. Write down all the letters in that column. 
Proceed to column 4, which is labeled 2, then column 2, then column 1, then 
 columns 5, 6, and 7.

A pure transposition cipher is easily recognized because it has the same let-
ter frequencies as the original plaintext. For the type of columnar transposition just 
shown, cryptanalysis is fairly straightforward and involves laying out the ciphertext 
in a matrix and playing around with column positions. Digram and trigram fre-
quency tables can be useful.

The transposition cipher can be made significantly more secure by performing 
more than one stage of transposition. The result is a more complex permutation that 
is not easily reconstructed. Thus, if the foregoing message is reencrypted using the 
same algorithm,
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Key:  4 3 1 2 5 6 7
Input: t t n a a p t
  m t s u o a o
  d w c o i x k
  n l y p e t z
Output: NSCYAUOPTTWLTMDNAOIEPAXTTOKZ

To visualize the result of this double transposition, designate the letters in the 
original plaintext message by the numbers designating their position. Thus, with 28 
letters in the message, the original sequence of letters is

01 02 03 04 05 06 07 08 09 10 11 12 13 14
15 16 17 18 19 20 21 22 23 24 25 26 27 28

After the first transposition, we have

03 10 17 24 04 11 18 25 02 09 16 23 01 08
15 22 05 12 19 26 06 13 20 27 07 14 21 28

which has a somewhat regular structure. But after the second transposition, we have

17 09 05 27 24 16 12 07 10 02 22 20 03 25
15 13 04 23 19 14 11 01 26 21 18 08 06 28

This is a much less structured permutation and is much more difficult to cryptanalyze.

Review Questions 

 3.1 Describe the main requirements for the secure use of symmetric encryption.
 3.2 What are the two basic functions used in encryption algorithms?

 3.4 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms 

block cipher
brute-force attack
cipher
ciphertext
computationally secure
conventional encryption
cryptanalysis
cryptographic system
cryptography

cryptology
deciphering
decryption
digram
enciphering
encryption
monoalphabetic substitution 

cipher
one-time pad

permutation
plaintext
polyalphabetic substitution 

cipher
single-key encryption
stream cipher
symmetric encryption
unconditionally secure
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 3.3 Differentiate between secret-key encryption and public-key encryption.
 3.4 What is the difference between a block cipher and a stream cipher?
 3.5 What are the two general approaches to attacking a cipher?
 3.6 List and briefly define types of cryptanalytic attacks based on what is known to the 

attacker.
 3.7 Briefly describe the criteria that define a computationally secure cipher.
 3.8 Why is the Caesar cipher substitution technique vulnerable to a brute-force cryptanalysis?
 3.9 How much key space is available when a monoalphabetic substitution cipher is used 

to replace plaintext with ciphertext?
 3.10 What is the drawback of a Playfair cipher?
 3.11 What is the difference between a monoalphabetic cipher and a polyalphabetic cipher?
 3.12 How can an attacker determine the length of the keyword used in the Vigenère cipher?
 3.13 What is a transposition cipher?
 3.14 What are the drawbacks of Steganography?

Problems 

 3.1 A generalization of the Caesar cipher, known as the affine Caesar cipher, has the fol-
lowing form: For each plaintext letter p, substitute the ciphertext letter C:

 C = E([a, b], p) = (ap + b) mod 26 

  A basic requirement of any encryption algorithm is that it be one-to-one. That is, if 
p ≠ q, then E(k, p) ≠ E(k, q). Otherwise, decryption is impossible, because more 
than one plaintext character maps into the same ciphertext character. The affine 
Caesar cipher is not one-to-one for all values of a. For example, for a = 2 and b = 3, 
then E([a, b], 0) = E([a, b], 13) = 3.

a. Are there any limitations on the value of b? Explain why or why not.
b. Determine which values of a are not allowed.
c. Provide a general statement of which values of a are and are not allowed. Justify 

your statement.
 3.2 What is the number of monoalphabetic permutation ciphers over n elements?
 3.3 A ciphertext has been generated with an affine cipher. The most frequent letter of the 

ciphertext is “C,” and the second most frequent letter of the ciphertext is “Z.” Break 
this code.

 3.4 The following ciphertext was generated using a simple substitution algorithm.

hzsrnqc klyy wqc flo mflwf ol zqdn nsoznj wskn lj xzsrbjnf, 
wzsxz gqv zqhhnf ol ozn glco zlfnco hnlhrn; nsoznj 
jnrqosdnc lj fnqj kjsnfbc, wzsxz sc xnjoqsfrv gljn efeceqr. 
zn rsdnb qrlfn sf zsc zlecn sf cqdsrrn jlw, wzsoznj flfn 
hnfnojqonb. q csfyrn blgncosx cekksxnb ol cnjdn zsg. zn 
pjnqmkqconb qfb bsfnb qo ozn xrep, qo zlejc gqozngqosxqrrv 
ksanb, sf ozn cqgn jllg, qo ozn cqgn oqprn, fndnj oqmsfy 
zsc gnqrc wsoz loznj gngpnjc, gexz rncc pjsfysfy q yenco 
wsoz zsg; qfb wnfo zlgn qo naqxorv gsbfsyzo, lfrv ol jnosjn 
qo lfxn ol pnb. zn fndnj ecnb ozn xlcv xzqgpnjc wzsxz ozn 
jnkljg hjldsbnc klj soc kqdlejnb gngpnjc. zn hqccnb onf 
zlejc leo lk ozn ownfov-klej sf cqdsrrn jlw, nsoznj sf 
crnnhsfy lj gqmsfy zsc olsrno.

  Decrypt this message.
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  Hints:
1. As you know, the most frequently occurring letter in English is e. Therefore, the 

first or second (or perhaps third?) most common character in the message is likely 
to stand for e. Also, e is often seen in pairs (e.g., meet, fleet, speed, seen, been, 
agree, etc.). Try to find a character in the ciphertext that decodes to e.

2. The most common word in English is “the.” Use this fact to guess the characters 
that stand for t and h.

3. Decipher the rest of the message by deducing additional words.
  Warning: The resulting message is in English but may not make much sense on a first 

reading.
 3.5 One way to solve the key distribution problem is to use a book that both the sender 

and the receiver possess. The sender and the receiver use the location of a word in the 
book as the code. In order to avoid problems when a particular plaintext word is not 
present in the book, the method can be modified to encode individual letters by the lo-
cation of a word beginning with that letter. Further, to ease the encoding and decoding 
process, the encoding of a letter is the pair of line number and the location of the word 
in that line.

  For example, the first sentence of the 1931 book The American Black Chamber 
(by Herbert Yardley) is:

The secret activities of the American Black Chamber, which I directed,  
ceased in 1929, sixteen years after I arrived at the Department of State  as 
a young telegraph operator.

  Using this book, the message “tact” can be encoded as (3,4),(1,3),(1,8),(3,4).

  The particular scheme discussed in this problem is based on this sentence. Answer the 
questions given the following enciphered message:

(1,6), (1,8) (2,1) (3,5), (1,2), (3,4)

a. What is the plaintext?
b. How secure is the method?
c. What kind of practical problems may arise while using this method? 

 3.6 In one of his cases, Sherlock Holmes was confronted with the following message.

534 C2 13 127 36 31 4 17 21 41
DOUGLAS 109 293 5 37 BIRLSTONE

26 BIRLSTONE 9 127 171

  Although Watson was puzzled, Holmes was able immediately to deduce the type of 
cipher. Can you?

 3.7 a.  Given the encryption of a long plaintext, how can one possibly determine if the 
encryption is by the Playfair cipher?

b.  The Playfair cipher has the property that if the decryption of a ciphertext digraph 
AB is PQ, then the decryption of the reverse digraph BA will be QP. How can one 
use this property to cryptanalyze a ciphertext encrypted using the Playfair cipher?

c. Unlike the Playfair cipher which uses a single 5 * 5 matrix, the two-square cipher 
uses two 5 * 5 matrices placed one below the other. The two matrices are con-
structed similar to the Playfair cipher with two different keywords. The encryption 
proceeds digraph-wise, in which a rectangle is formed by the first character’s posi-
tion in the first matrix and the second character’s position in the second matrix. 
Then the two characters at the remaining two vertices of the rectangle become 
the ciphertext. In case the characters of the digraph fall in the same column, the 
digraph encrypts to itself.

  Given the two keywords TARGET and HELP, encrypt the plaintext “we will rock” 
using the two-square cipher.
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 3.8 A disadvantage of the general monoalphabetic cipher is that both sender and receiver 
must commit the permuted cipher sequence to memory. A common technique for 
avoiding this is to use a keyword from which the cipher sequence can be generated. 
For example, using the keyword CRYPTO, write out the keyword followed by unused 
letters in normal order, and match this against the plaintext letters:

plain:  a b c d e f g h i j k l m n o p q r s t u v w x y z

cipher: C R Y P T O A B D E F G H I J K L M N Q S U V W X Z

  If it is felt that this process does not produce sufficient mixing, write the remaining let-
ters on successive lines and then generate the sequence by reading down the columns:

C R Y P T O

A B D E F G

H I J K L M

N Q S U V W

X Z

  This yields the sequence:

C A H N X R B I Q Z Y D J S P E K U T F L V O G M W

  Such a system is used in the example in Section 3.2 (the one that begins “it was dis-
closed yesterday”). Determine the keyword.

 3.9 When the PT-109 American patrol boat, under the command of Lieutenant John F. 
Kennedy, was sunk by a Japanese destroyer, a message was received at an Australian 
wireless station in Playfair code:

KXJEY UREBE ZWEHE WRYTU HEYFS

KREHE GOYFI WTTTU OLKSY CAJPO

BOTEI ZONTX BYBNT GONEY CUZWR

GDSON SXBOU YWRHE BAAHY USEDQ

  The key used was royal new zealand navy. Decrypt the message. Translate TT into tt.
 3.10 a. Construct a Playfair matrix with the key algorithm.

b. Construct a Playfair matrix with the key cryptography. Make a reasonable assump-
tion about how to treat redundant letters in the key.

 3.11 a. Using this Playfair matrix:

J/K C D E F

U N P Q S

Z V W X Y

R A L G O

B I T H M

Encrypt this message:

I only regret that I have but one life to give for my country.

Note: This message is by Nathan Hale, a soldier in the American Revolutionary War.
b. Repeat part (a) using the Playfair matrix from Problem 3.10a.
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c. How do you account for the results of this problem? Can you generalize your 
conclusion?

 3.12 a.  Given the keyword SECURITY, encrypt the following plaintext using the au-
tokey system.

   We are discovered. Save yourself.
b. Given a long ciphertext which has been encrypted with the autokey system, how 

can one find the secret key used?
 3.13 What substitution system results when we use a 1 * 25 Playfair matrix?
 3.14 a.  Encrypt the message “meet me at the usual place at ten rather than eight o clock’’ 

using the Hill cipher with the key ¢7 3
2 5

≤. Show your calculations and the result.

b. Show the calculations for the corresponding decryption of the ciphertext to 
 recover the original plaintext.

 3.15 We have shown that the Hill cipher succumbs to a known plaintext attack if sufficient 
plaintext–ciphertext pairs are provided. It is even easier to solve the Hill cipher if a 
chosen plaintext attack can be mounted. Describe such an attack.

 3.16 In a language having p letters, where p is a prime number, we can encode the let-
ters by the set of integers Zp = {0,1,2, …, p - 1}. Suppose we use the Hill cipher 

with the matrix ¢a b
c d

≤  modulo p to encrypt messages in this language. It can be 

shown that this requires the matrix to be invertible modulo p. A matrix is invert-
ible modulo p if none of its rows can be represented as a linear combination of the 
other rows modulo p. If the ith row is denoted by Ri, then this condition translates to 
Ri ≠ (c1R1 + c2R2 + c + ci- 1Ri- 1) modulo p, where ci ∈ Zp for all i. Determine 
the number of different (good) keys there are for a 2 * 2 Hill cipher without count-
ing them one by one, using the following steps:
a. Assume that no row can be all zeros, because then this row can be represented as 

a linear combination of other rows with the coefficient ci being 0. Find the number 
of possibilities for the first row.

b. The second row should not be a multiple of the first row modulo p. Find the num-
ber of possibilities for the second row.

c. Find the total number of 2 * 2 matrices, which can be used in the Hill cipher.
d. If we encrypt 3 letters at a time using the Hill cipher, the matrix will have to be of 

the order 3 * 3. Using arguments similar to the above, find the number of good 
matrices for this size.

e. If the matrix is of size n * n, where n is a product of two prime numbers p and q, 
then the fraction of all matrices that are invertible modulo n is equal to the frac-
tion of all matrices that are invertible modulo p times the fraction of all matrices 
that are invertible modulo q. Using this knowledge, find the number of 2 * 2 in-
vertible matrices modulo 26.

 3.17 Calculate the determinant mod 26 of

a. ¢23 5
13 7

≤ b. £21 13 25
5 7 18
3 14 12

≥
 3.18 Determine the inverse mod 26 of

a. ¢ 3 4
15 9

≤ b. £ 5 3 15
21 2 6
1 12 25

≥
 3.19 Using the Vigenère cipher, encrypt the word “cryptographic” using the word “eng”.
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 3.20 This problem explores the use of a one-time pad version of the Vigenère cipher. In 
this scheme, the key is a stream of random numbers between 0 and 26. For example, 
if the key is 3 19 5 . . . , then the first letter of plaintext is encrypted with a shift of 3 
letters, the second with a shift of 19 letters, the third with a shift of 5 letters, and so on.
a. Encrypt the plaintext sendmoremoney with the key stream

3 11 5 7 17 21 0 11 14 8 7 13 9

b. Using the ciphertext produced in part (a), find a key so that the ciphertext de-
crypts to the plaintext cashnotneeded.

 3.21 In one of Dorothy Sayers’s mysteries, Lord Peter is confronted with the message 
shown in Figure 3.8. He also discovers the key to the message, which is a sequence of 
integers:

Figure 3.8 A Puzzle for Lord Peter

I thought to see the fairies in the fields, but I saw only the evil elephants with their black 
backs. Woe! how that sight awed me! The elves danced all around and about while I heard 
voices calling clearly. Ah! how I tried to see—throw off the ugly cloud—but no blind eye 
of a mortal was permitted to spy them. So then came minstrels, having gold trumpets, harps 
and drums. These played very loudly beside me, breaking that spell. So the dream vanished, 
whereat I thanked Heaven. I shed many tears before the thin moon rose up, frail and faint as 
a sickle of straw. Now though the Enchanter gnash his teeth vainly, yet shall he return as the 
Spring returns. Oh, wretched man! Hell gapes, Erebus now lies open. The mouths of Death 
wait on thy end.

787656543432112343456567878878765654

3432112343456567878878765654433211234

a. Decrypt the message. Hint: What is the largest integer value?
b. If the algorithm is known but not the key, how secure is the scheme?
c. If the key is known but not the algorithm, how secure is the scheme?

Programming Problems 

 3.1 Write a program that can encrypt and decrypt using the general Caesar cipher, also 
known as an additive cipher.

 3.2 Write a program that can encrypt and decrypt using the affine cipher described in 
Problem 3.1.

 3.3 Write a program that can perform a letter frequency attack on an additive cipher with-
out human intervention. Your software should produce possible plaintexts in rough 
order of likelihood. It would be good if your user interface allowed the user to specify 
“give me the top 10 possible plaintexts.”

 3.4 Write a program that can perform a letter frequency attack on any monoalphabetic 
substitution cipher without human intervention. Your software should produce pos-
sible plaintexts in rough order of likelihood. It would be good if your user interface 
allowed the user to specify “give me the top 10 possible plaintexts.”

 3.5 Create software that can encrypt and decrypt using a 2 * 2 Hill cipher.
 3.6 Create software that can perform a fast known plaintext attack on a Hill  cipher, given the 

dimension m. How fast are your algorithms, as a function of m?
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The objective of this chapter is to illustrate the principles of modern symmetric 
ciphers. For this purpose, we focus on the most widely used symmetric cipher: the Data 
Encryption Standard (DES). Although numerous symmetric ciphers have been devel-
oped since the introduction of DES, and although it is destined to be replaced by the 
Advanced Encryption Standard (AES), DES remains the most important such algo-
rithm. Furthermore, a detailed study of DES provides an understanding of the prin-
ciples used in other symmetric ciphers.

This chapter begins with a discussion of the general principles of symmetric block 
ciphers, which are the principal type of symmetric ciphers studied in this book. The 
other form of symmetric ciphers, stream ciphers, are discussed in Chapter 8. Next, we 
cover full DES. Following this look at a specific algorithm, we return to a more general 
discussion of block cipher design.

 4.1 TRADITIONAL BLOCK CIPHER STRUCTURE

Several important symmetric block encryption algorithms in current use are 
based on a structure referred to as a Feistel block cipher [FEIS73]. For that rea-
son, it is important to examine the design principles of the Feistel cipher. We 
begin with a comparison of stream ciphers and block ciphers. Then we discuss the 
motivation for the Feistel block cipher structure. Finally, we discuss some of its 
implications.

Stream Ciphers and Block Ciphers

A stream cipher is one that encrypts a digital data stream one bit or one byte at 
a time. Examples of classical stream ciphers are the autokeyed Vigenère cipher 
and the Vernam cipher. In the ideal case, a one-time pad version of the Vernam 
cipher would be used (Figure 3.7), in which the keystream (ki) is as long as the 

LEARNING OBJECTIVES

After studying this chapter, you should be able to

◆◆ Understand the distinction between stream ciphers and block ciphers.

◆◆ Present an overview of the Feistel cipher and explain how decryption is 
the inverse of encryption.

◆◆ Present an overview of Data Encryption Standard (DES).

◆◆ Explain the concept of the avalanche effect.

◆◆ Discuss the cryptographic strength of DES.

◆◆ Summarize the principal block cipher design principles.
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plaintext bit stream (pi). If the cryptographic keystream is random, then this cipher 
is  unbreakable by any means other than acquiring the keystream. However, the key-
stream must be provided to both users in advance via some independent and secure 
channel. This introduces insurmountable logistical problems if the intended data 
traffic is very large.

Accordingly, for practical reasons, the bit-stream generator must be 
 implemented as an algorithmic procedure, so that the cryptographic bit stream 
can be produced by both users. In this approach (Figure 4.1a), the bit-stream 
generator is a key-controlled algorithm and must produce a bit stream that 
is cryptographically strong. That is, it must be computationally impractical to 
predict future portions of the bit stream based on previous portions of the bit 
stream. The two users need only share the generating key, and each can produce 
the keystream.

A block cipher is one in which a block of plaintext is treated as a whole 
and used to produce a ciphertext block of equal length. Typically, a block size of 
64 or 128 bits is used. As with a stream cipher, the two users share a symmetric 
encryption key (Figure 4.1b). Using some of the modes of operation explained in 
Chapter 7, a block cipher can be used to achieve the same effect as a stream cipher.

Figure 4.1 Stream Cipher and Block Cipher

(a) Stream cipher using algorithmic bit-stream generator
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(b) Block cipher
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Far more effort has gone into analyzing block ciphers. In general, they seem 
applicable to a broader range of applications than stream ciphers. The vast majority 
of network-based symmetric cryptographic applications make use of block ciphers. 
Accordingly, the concern in this chapter, and in our discussions throughout the book 
of symmetric encryption, will primarily focus on block ciphers.

Motivation for the Feistel Cipher Structure

A block cipher operates on a plaintext block of n bits to produce a cipher-
text block  of n bits. There are 2n possible different plaintext blocks and, for 
the  encryption to be reversible (i.e., for decryption to be possible), each must 
 produce a unique ciphertext block. Such a transformation is called reversible, 
or nonsingular. The following examples illustrate nonsingular and singular 
 transformations for n = 2.

Reversible Mapping Irreversible Mapping

Plaintext Ciphertext Plaintext Ciphertext

00 11 00 11

01 10 01 10

10 00 10 01

11 01 11 01

In the latter case, a ciphertext of 01 could have been produced by one of two plain-
text blocks. So if we limit ourselves to reversible mappings, the number of different 
transformations is 2n!.1

Figure 4.2 illustrates the logic of a general substitution cipher for n = 4.  
A 4-bit input produces one of 16 possible input states, which is mapped by the 
substitution cipher into a unique one of 16 possible output states, each of which 
is represented by 4 ciphertext bits. The encryption and decryption mappings can 
be defined by a tabulation, as shown in Table 4.1. This is the most general form of 
block cipher and can be used to define any reversible mapping between plaintext 
and ciphertext. Feistel refers to this as the ideal block cipher, because it allows for 
the maximum number of possible encryption mappings from the plaintext block 
[FEIS75].

But there is a practical problem with the ideal block cipher. If a small block 
size, such as n = 4, is used, then the system is equivalent to a classical substitution 
cipher. Such systems, as we have seen, are vulnerable to a statistical analysis of the 
plaintext. This weakness is not inherent in the use of a substitution cipher but rather 
results from the use of a small block size. If n is sufficiently large and an arbitrary 
reversible substitution between plaintext and ciphertext is allowed, then the statisti-
cal characteristics of the source plaintext are masked to such an extent that this type 
of cryptanalysis is infeasible.

1The reasoning is as follows: For the first plaintext, we can choose any of 2n ciphertext blocks. For the 
second plaintext, we choose from among 2n - 1 remaining ciphertext blocks, and so on.
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An arbitrary reversible substitution cipher (the ideal block cipher) for a large 
block size is not practical, however, from an implementation and performance 
point of view. For such a transformation, the mapping itself constitutes the key. 
Consider again Table 4.1, which defines one particular reversible mapping from 

Figure 4.2 General n-bit-n-bit Block Substitution (shown with n = 4)

4-bit input

4 to 16 decoder

16 to 4 encoder

4-bit output

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Table 4.1 Encryption and Decryption Tables for Substitution Cipher of Figure 4.2

Plaintext Ciphertext

0000 1110

0001 0100

0010 1101

0011 0001

0100 0010

0101 1111

0110 1011

0111 1000

1000 0011

1001 1010

1010 0110

1011 1100

1100 0101

1101 1001

1110 0000

1111 0111

Ciphertext Plaintext

0000 1110

0001 0011

0010 0100

0011 1000

0100 0001

0101 1100

0110 1010

0111 1111

1000 0111

1001 1101

1010 1001

1011 0110

1100 1011

1101 0010

1110 0000

1111 0101
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plaintext to ciphertext for n = 4. The mapping can be defined by the entries in the 
second column, which show the value of the ciphertext for each plaintext block. 
This, in essence, is the key that determines the specific mapping from among all 
possible mappings. In this case, using this straightforward method of defining the 
key, the required key length is (4 bits) * (16 rows) = 64 bits. In general, for an  
n-bit ideal block cipher, the length of the key defined in this fashion is n * 2n bits. 
For a 64-bit block, which is a desirable length to thwart statistical attacks, the 
required key length is 64 * 264 = 270 ≈ 1021 bits.

In considering these difficulties, Feistel points out that what is needed is an 
approximation to the ideal block cipher system for large n, built up out of compo-
nents that are easily realizable [FEIS75]. But before turning to Feistel’s approach, 
let us make one other observation. We could use the general block substitution 
cipher but, to make its implementation tractable, confine ourselves to a subset of 
the 2n! possible reversible mappings. For example, suppose we define the mapping in 
terms of a set of linear equations. In the case of n = 4, we have

 y1 = k11x1 + k12x2 + k13x3 + k14x4

 y2 = k21x1 + k22x2 + k23x3 + k24x4

 y3 = k31x1 + k32x2 + k33x3 + k34x4

 y4 = k41x1 + k42x2 + k43x3 + k44x4

where the xi are the four binary digits of the plaintext block, the yi are the four bi-
nary digits of the ciphertext block, the kij are the binary coefficients, and arithmetic 
is mod 2. The key size is just n2, in this case 16 bits. The danger with this kind of for-
mulation is that it may be vulnerable to cryptanalysis by an attacker that is aware of 
the structure of the algorithm. In this example, what we have is essentially the Hill 
cipher discussed in Chapter 3, applied to binary data rather than characters. As we 
saw in Chapter 3, a simple linear system such as this is quite vulnerable.

The Feistel Cipher

Feistel proposed [FEIS73] that we can approximate the ideal block cipher by utiliz-
ing the concept of a product cipher, which is the execution of two or more simple 
ciphers in sequence in such a way that the final result or product is cryptographically 
stronger than any of the component ciphers. The essence of the approach is to de-
velop a block cipher with a key length of k bits and a block length of n bits, allowing 
a total of 2k possible transformations, rather than the 2n! transformations available 
with the ideal block cipher.

In particular, Feistel proposed the use of a cipher that alternates substitutions 
and permutations, where these terms are defined as follows:

◆■ Substitution: Each plaintext element or group of elements is uniquely  replaced 
by a corresponding ciphertext element or group of elements.

◆■ Permutation: A sequence of plaintext elements is replaced by a permutation 
of that sequence. That is, no elements are added or deleted or replaced in the 
sequence, rather the order in which the elements appear in the sequence is 
changed.
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In fact, Feistel’s is a practical application of a proposal by Claude Shannon 
to develop a product cipher that alternates confusion and diffusion functions 
[SHAN49].2 We look next at these concepts of diffusion and confusion and then 
present the Feistel cipher. But first, it is worth commenting on this remarkable fact: 
The Feistel cipher structure, which dates back over a quarter century and which, in 
turn, is based on Shannon’s proposal of 1945, is the structure used by a number of 
significant symmetric block ciphers currently in use. In particular, the Feistel struc-
ture is used for Triple Data Encryption Algorithm (TDEA), which is one of the two 
encryption algorithms (along with AES), approved for general use by the National 
Institute of Standards and Technology (NIST). The Feistel structure is also used for 
several schemes for format-preserving encryption, which have recently come into 
prominence. In addition, the Camellia block cipher is a Feistel structure; it is one 
of the possible symmetric ciphers in TLS and a number of other Internet security 
protocols. Both TDEA and format-preserving encryption are covered in Chapter 7. 

Diffusion anD Confusion The terms diffusion and confusion were introduced by 
Claude Shannon to capture the two basic building blocks for any cryptographic sys-
tem [SHAN49]. Shannon’s concern was to thwart cryptanalysis based on statisti-
cal analysis. The reasoning is as follows. Assume the attacker has some knowledge 
of the statistical characteristics of the plaintext. For example, in a human-readable 
message in some language, the frequency distribution of the various letters may be 
known. Or there may be words or phrases likely to appear in the message (probable 
words). If these statistics are in any way reflected in the ciphertext, the cryptanalyst 
may be able to deduce the encryption key, part of the key, or at least a set of keys 
likely to contain the exact key. In what Shannon refers to as a strongly ideal cipher, 
all statistics of the ciphertext are independent of the particular key used. The arbi-
trary substitution cipher that we discussed previously (Figure 4.2) is such a cipher, 
but as we have seen, it is impractical.3

Other than recourse to ideal systems, Shannon suggests two methods for frus-
trating statistical cryptanalysis: diffusion and confusion. In diffusion, the statistical 
structure of the plaintext is dissipated into long-range statistics of the ciphertext. This 
is achieved by having each plaintext digit affect the value of many ciphertext digits; 
generally, this is equivalent to having each ciphertext digit be affected by many plain-
text digits. An example of diffusion is to encrypt a message M = m1, m2, m3, c  of 
characters with an averaging operation:

 yn = ¢ ak
i = 1

mn + i≤ mod 26 

2The paper is available at box.com/Crypto8e. Shannon’s 1949 paper appeared originally as a classified 
report in 1945. Shannon enjoys an amazing and unique position in the history of computer and informa-
tion science. He not only developed the seminal ideas of modern cryptography but is also responsible for 
inventing the discipline of information theory. Based on his work in information theory, he developed 
a formula for the capacity of a data communications channel, which is still used today. In addition, he 
founded another discipline, the application of Boolean algebra to the study of digital circuits; this last he 
managed to toss off as a master’s thesis.
3Appendix B expands on Shannon’s concepts concerning measures of secrecy and the security of crypto-
graphic algorithms.
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adding k successive letters to get a ciphertext letter yn. One can show that the statis-
tical structure of the plaintext has been dissipated. Thus, the letter frequencies in the 
ciphertext will be more nearly equal than in the plaintext; the digram frequencies 
will also be more nearly equal, and so on. In a binary block cipher, diffusion can be 
achieved by repeatedly performing some permutation on the data followed by ap-
plying a function to that permutation; the effect is that bits from different positions 
in the original plaintext contribute to a single bit of ciphertext.4

Every block cipher involves a transformation of a block of plaintext into a 
block of ciphertext, where the transformation depends on the key. The mechanism 
of diffusion seeks to make the statistical relationship between the plaintext and 
ciphertext as complex as possible in order to thwart attempts to deduce the key. On 
the other hand, confusion seeks to make the relationship between the statistics of 
the ciphertext and the value of the encryption key as complex as possible, again to 
thwart attempts to discover the key. Thus, even if the attacker can get some handle 
on the statistics of the ciphertext, the way in which the key was used to produce that 
ciphertext is so complex as to make it difficult to deduce the key. This is achieved by 
the use of a complex substitution algorithm. In contrast, a simple linear substitution 
function would add little confusion.

As [ROBS95b] points out, so successful are diffusion and confusion in captur-
ing the essence of the desired attributes of a block cipher that they have become the 
cornerstone of modern block cipher design.

feistel Cipher struCture The left-hand side of Figure 4.3 depicts the encryption 
structure proposed by Feistel. The inputs to the encryption algorithm are a plaintext 
block of length 2w bits and a key K. The plaintext block is divided into two halves, 
LE0 and RE0. The two halves of the data pass through n rounds of processing and 
then combine to produce the ciphertext block. Each round i has as inputs LEi- 1 and 
REi- 1 derived from the previous round, as well as a subkey Ki derived from the over-
all K. In general, the subkeys Ki are different from K and from each other. In Figure 
4.3, 16 rounds are used, although any number of rounds could be implemented.

All rounds have the same structure. A substitution is performed on the left 
half of the data. This is done by applying a round function F to the right half of the 
data and then taking the exclusive-OR of the output of that function and the left 
half of the data. The round function has the same general structure for each round 
but is parameterized by the round subkey Ki. Another way to express this is to say 
that F is a function of right-half block of w bits and a subkey of y bits, which pro-
duces an output value of length w bits: F(REi, Ki+ 1). Following this substitution, a 
permutation is performed that consists of the interchange of the two halves of the 
data.5 This structure is a particular form of the substitution-permutation network 
(SPN) proposed by Shannon.

4Some books on cryptography equate permutation with diffusion. This is incorrect. Permutation, by itself, 
does not change the statistics of the plaintext at the level of individual letters or permuted blocks. For exam-
ple, in DES, the permutation swaps two 32-bit blocks, so statistics of strings of 32 bits or less are preserved.
5.The final round is followed by an interchange that undoes the interchange that is part of the final round. 
One could simply leave both interchanges out of the diagram, at the sacrifice of some consistency of pre-
sentation. In any case, the effective lack of a swap in the final round is done to simplify the implementa-
tion of the decryption process, as we shall see.
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The exact realization of a Feistel network depends on the choice of the follow-
ing parameters and design features:

◆■ Block size: Larger block sizes mean greater security (all other things being 
equal) but reduced encryption/decryption speed for a given algorithm. The 
greater security is achieved by greater diffusion. Traditionally, a block size of 
64 bits has been considered a reasonable tradeoff and was nearly universal in 
block cipher design. However, the new AES uses a 128-bit block size.

Figure 4.3 Feistel Encryption and Decryption (16 rounds)
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◆■ Key size: Larger key size means greater security but may decrease encryption/
decryption speed. The greater security is achieved by greater resistance to 
brute-force attacks and greater confusion. Key sizes of 64 bits or less are now 
widely considered to be inadequate, and 128 bits has become a common size.

◆■ Number of rounds: The essence of the Feistel cipher is that a single round 
offers inadequate security but that multiple rounds offer increasing security. 
A typical size is 16 rounds.

◆■ Subkey generation algorithm: Greater complexity in this algorithm should 
lead to greater difficulty of cryptanalysis.

◆■ Round function F: Again, greater complexity generally means greater resis-
tance to cryptanalysis.

There are two other considerations in the design of a Feistel cipher:

◆■ Fast software encryption/decryption: In many cases, encryption is embedded 
in applications or utility functions in such a way as to preclude a hardware 
implementation. Accordingly, the speed of execution of the algorithm becomes 
a concern.

◆■ Ease of analysis: Although we would like to make our algorithm as difficult as 
possible to cryptanalyze, there is great benefit in making the algorithm easy 
to analyze. That is, if the algorithm can be concisely and clearly explained, it is 
easier to analyze that algorithm for cryptanalytic vulnerabilities and therefore 
develop a higher level of assurance as to its strength. DES, for example, does 
not have an easily analyzed functionality.

feistel DeCryption algorithm The process of decryption with a Feistel cipher is 
essentially the same as the encryption process. The rule is as follows: Use the cipher-
text as input to the algorithm, but use the subkeys Ki in reverse order. That is, use 
Kn in the first round, Kn - 1 in the second round, and so on, until K1 is used in the last 
round. This is a nice feature, because it means we need not implement two different 
algorithms; one for encryption and one for decryption.

To see that the same algorithm with a reversed key order produces the correct 
result, Figure 4.3 shows the encryption process going down the left-hand side and 
the decryption process going up the right-hand side for a 16-round algorithm. For 
clarity, we use the notation LEi and REi for data traveling through the encryption 
algorithm and LDi and RDi for data traveling through the decryption algorithm. 
The diagram indicates that, at every round, the intermediate value of the decryption 
process is equal to the corresponding value of the encryption process with the two 
halves of the value swapped. To put this another way, let the output of the ith encryp-
tion round be LEi ‘REi (LEi concatenated with REi). Then the corresponding out-
put of the (16 - i)th decryption round is REi ‘LEi or, equivalently, LD16 - i ‘RD16 - i.

Let us walk through Figure 4.3 to demonstrate the validity of the preceding 
assertions. After the last iteration of the encryption process, the two halves of the 
output are swapped, so that the ciphertext is RE16 ‘LE16. The output of that round 
is the ciphertext. Now take that ciphertext and use it as input to the same algorithm. 
The input to the first round is RE16 ‘LE16, which is equal to the 32-bit swap of the 
output of the sixteenth round of the encryption process.
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Now we would like to show that the output of the first round of the decryption 
process is equal to a 32-bit swap of the input to the sixteenth round of the encryp-
tion process. First, consider the encryption process. We see that

 LE16 = RE15

 RE16 = LE15 ⊕ F(RE15, K16)

On the decryption side,

 LD1 = RD0 = LE16 = RE15

 RD1 = LD0 ⊕ F(RD0, K16)

 = RE16 ⊕ F(RE15, K16)

 = [LE15 ⊕ F(RE15, K16)] ⊕ F(RE15, K16)

The XOR has the following properties:

 [A ⊕ B] ⊕ C = A ⊕ [B ⊕ C]

 D ⊕ D = 0

 E ⊕ 0 = E

Thus, we have LD1 = RE15 and RD1 = LE15. Therefore, the output of the first 
round of the decryption process is RE15 ‘LE15, which is the 32-bit swap of the 
input to the sixteenth round of the encryption. This correspondence holds all the 
way through the 16 iterations, as is easily shown. We can cast this process in general 
terms. For the ith iteration of the encryption algorithm,

 LEi = REi- 1

 REi = LEi- 1 ⊕ F(REi- 1, Ki)

Rearranging terms:

 REi- 1 = LEi

 LEi- 1 = REi ⊕ F(REi- 1, Ki) = REi ⊕ F(LEi, Ki)

Thus, we have described the inputs to the ith iteration as a function of the outputs, and 
these equations confirm the assignments shown in the right-hand side of Figure 4.3.

Finally, we see that the output of the last round of the decryption process is 
RE0 ‘LE0. A 32-bit swap recovers the original plaintext, demonstrating the validity 
of the Feistel decryption process.

Note that the derivation does not require that F be a reversible function. To 
see this, take a limiting case in which F produces a constant output (e.g., all ones) 
regardless of the values of its two arguments. The equations still hold.

To help clarify the preceding concepts, let us look at a specific example 
(Figure 4.4) and focus on the fifteenth round of encryption, corresponding to the 
second round of decryption. Suppose that the blocks at each stage are 32 bits (two 
16-bit halves) and that the key size is 24 bits. Suppose that at the end of encryption 
round fourteen, the value of the intermediate block (in hexadecimal) is DE7F03A6. 
Then LE14 = DE7F and RE14 = 03A6. Also assume that the value of K15 is 12DE52. 
After round 15, we have LE15 = 03A6 and RE15 = F(03A6, 12DE52) ⊕ DE7F.
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Now let’s look at the decryption. We assume that LD1 = RE15 and 
RD1 = LE15, as shown in Figure 4.3, and we want to demonstrate that LD2 = RE14 
and RD2 = LE14. So, we start with LD1 = F(03A6, 12DE52) ⊕ DE7F and 
RD1 = 03A6. Then, from Figure 4.3, LD2 = 03A6 = RE14 and RD2 =
F(03A6, 12DE52) ⊕ [F(03A6, 12DE52) ⊕ DE7F] = DE7F = LE14.

 4.2 THE DATA ENCRYPTION STANDARD

Until the introduction of the Advanced Encryption Standard (AES) in 2001, the 
Data Encryption Standard (DES) was the most widely used encryption scheme. 
DES was issued in 1977 by the National Bureau of Standards, now the National 
Institute of Standards and Technology (NIST), as Federal Information Processing 
Standard 46 (FIPS PUB 46). The algorithm itself is referred to as the Data Encryption 
Algorithm (DEA).6 For DEA, data are encrypted in 64-bit blocks using a 56-bit key. 
The algorithm transforms 64-bit input in a series of steps into a 64-bit output. The 
same steps, with the same key, are used to reverse the encryption.

Over the years, DES became the dominant symmetric encryption algorithm, 
especially in financial applications. In 1994, NIST reaffirmed DES for federal use 
for another five years; NIST recommended the use of DES for applications other 
than the protection of classified information. In 1999, NIST issued a new version 
of its standard (FIPS PUB 46-3) that indicated that DES should be used only for 
legacy systems and that triple DES (which in essence involves repeating the DES 
algorithm three times on the plaintext using two or three different keys to produce 
the ciphertext) be used. We study triple DES in Chapter 7. Because the underly-
ing encryption and decryption algorithms are the same for DES and triple DES, it 
remains important to understand the DES cipher. This section provides an overview. 
For the interested reader, Appendix C provides further detail.

6The terminology is a bit confusing. Until recently, the terms DES and DEA could be used interchange-
ably. However, the most recent edition of the DES document includes a specification of the DEA de-
scribed here plus the triple DEA (TDEA) described in Chapter 7. Both DEA and TDEA are part of the 
Data Encryption Standard. Further, until the recent adoption of the official term TDEA, the triple DEA 
algorithm was typically referred to as triple DES and written as 3DES. For the sake of convenience, we 
will use the term 3DES.

Figure 4.4 Feistel Example
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DES Encryption

The overall scheme for DES encryption is illustrated in Figure 4.5. As with any en-
cryption scheme, there are two inputs to the encryption function: the plaintext to be 
encrypted and the key. In this case, the plaintext must be 64 bits in length and the 
key is 56 bits in length.7

Looking at the left-hand side of the figure, we can see that the processing of 
the plaintext proceeds in three phases. First, the 64-bit plaintext passes through an 
initial permutation (IP) that rearranges the bits to produce the permuted input. 

7Actually, the function expects a 64-bit key as input. However, only 56 of these bits are ever used; the 
other 8 bits can be used as parity bits or simply set arbitrarily.

Figure 4.5 General Depiction of DES Encryption Algorithm
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This is followed by a phase consisting of sixteen rounds of the same function, which 
involves both permutation and substitution functions. The output of the last (six-
teenth) round consists of 64 bits that are a function of the input plaintext and the 
key. The left and right halves of the output are swapped to produce the preoutput. 
Finally, the preoutput is passed through a permutation [IP-1] that is the inverse of 
the initial permutation function, to produce the 64-bit ciphertext. With the excep-
tion of the initial and final permutations, DES has the exact structure of a Feistel 
cipher, as shown in Figure 4.3.

The right-hand portion of Figure 4.5 shows the way in which the 56-bit key is 
used. Initially, the key is passed through a permutation function. Then, for each of 
the sixteen rounds, a subkey (Ki) is produced by the combination of a left circular 
shift and a permutation. The permutation function is the same for each round, but a 
different subkey is produced because of the repeated shifts of the key bits.

DES Decryption

As with any Feistel cipher, decryption uses the same algorithm as encryption, except 
that the application of the subkeys is reversed. Additionally, the initial and final per-
mutations are reversed.

 4.3 A DES EXAMPLE

We now work through an example and consider some of its implications. Although 
you are not expected to duplicate the example by hand, you will find it informative 
to study the hex patterns that occur from one step to the next.

For this example, the plaintext is a hexadecimal palindrome. The plaintext, key, 
and resulting ciphertext are as follows:

Plaintext: 02468aceeca86420

Key: 0f1571c947d9e859

Ciphertext: da02ce3a89ecac3b

Results

Table 4.2 shows the progression of the algorithm. The first row shows the 32-bit 
values of the left and right halves of data after the initial permutation. The next 16 
rows show the results after each round. Also shown is the value of the 48-bit subkey 
generated for each round. Note that Li = Ri- 1. The final row shows the left- and 
right-hand values after the inverse initial permutation. These two values combined 
form the ciphertext.

The Avalanche Effect

A desirable property of any encryption algorithm is that a small change in either 
the plaintext or the key should produce a significant change in the ciphertext. In 
particular, a change in one bit of the plaintext or one bit of the key should produce 
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a change in many bits of the ciphertext. This is referred to as the avalanche effect. 
If the change were small, this might provide a way to reduce the size of the plaintext 
or key space to be searched.

Using the example from Table 4.2, Table 4.3 shows the result when the fourth 
bit of the plaintext is changed, so that the plaintext is 12468aceeca86420. The 
second column of the table shows the intermediate 64-bit values at the end of each 
round for the two plaintexts. The third column shows the number of bits that differ 
between the two intermediate values. The table shows that, after just three rounds, 
18 bits differ between the two blocks. On completion, the two ciphertexts differ in 
32 bit positions.

Table 4.4 shows a similar test using the original plaintext of with two keys that 
differ in only the fourth bit position: the original key, 0f1571c947d9e859, and the 
altered key, 1f1571c947d9e859. Again, the results show that about half of the 
bits in the ciphertext differ and that the avalanche effect is pronounced after just a 
few rounds.

Table 4.2 DES Example

Round Ki Li Ri

IP 5a005a00 3cf03c0f

1 1e030f03080d2930 3cf03c0f bad22845

2 0a31293432242318 bad22845 99e9b723

3 23072318201d0c1d 99e9b723 0bae3b9e

4 05261d3824311a20 0bae3b9e 42415649

5 3325340136002c25 42415649 18b3fa41

6 123a2d0d04262a1c 18b3fa41 9616fe23

7 021f120b1c130611 9616fe23 67117cf2

8 1c10372a2832002b 67117cf2 c11bfc09

9 04292a380c341f03 c11bfc09 887fbc6c

10 2703212607280403 887fbc6c 600f7e8b

11 2826390c31261504 600f7e8b f596506e

12 12071c241a0a0f08 f596506e 738538b8

13 300935393c0d100b 738538b8 c6a62c4e

14 311e09231321182a c6a62c4e 56b0bd75

15 283d3e0227072528 56b0bd75 75e8fd8f

16 2921080b13143025 75e8fd8f 25896490

IP − 1 da02ce3a 89ecac3b

Note: DES subkeys are shown as eight 6-bit values in hex format

M04_STAL7484_08_GE_C04.indd   126 30/04/22   8:22 AM



4.3 / a DES ExamplE 127

Table 4.3 Avalanche Effect in DES: Change in Plaintext

Round D

9 c11bfc09887fbc6c
99f911532eed7d94

32

10 887fbc6c600f7e8b
2eed7d94d0f23094

34

11 600f7e8bf596506e
d0f23094455da9c4

37

12 f596506e738538b8
455da9c47f6e3cf3

31

13 738538b8c6a62c4e
7f6e3cf34bc1a8d9

29

14 c6a62c4e56b0bd75
4bc1a8d91e07d409

33

15 56b0bd7575e8fd8f
1e07d4091ce2e6dc

31

16 75e8fd8f25896490
1ce2e6dc365e5f59

32

IP − 1 da02ce3a89ecac3b
057cde97d7683f2a

32

Round D

02468aceeca86420
12468aceeca86420

1

1 3cf03c0fbad22845
3cf03c0fbad32845

1

2 bad2284599e9b723
bad3284539a9b7a3

5

3 99e9b7230bae3b9e
39a9b7a3171cb8b3

18

4 0bae3b9e42415649
171cb8b3ccaca55e

34

5 4241564918b3fa41
ccaca55ed16c3653

37

6 18b3fa419616fe23
d16c3653cf402c68

33

7 9616fe2367117cf2
cf402c682b2cefbc

32

8 67117cf2c11bfc09
2b2cefbc99f91153

33

Table 4.4 Avalanche Effect in DES: Change in Key

Round D

02468aceeca86420
02468aceeca86420

0

1 3cf03c0fbad22845
3cf03c0f9ad628c5

3

2 bad2284599e9b723
9ad628c59939136b

11

3 99e9b7230bae3b9e
9939136b768067b7

25

4 0bae3b9e42415649
768067b75a8807c5

29

5 4241564918b3fa41
5a8807c5488dbe94

26

6 18b3fa419616fe23
488dbe94aba7fe53

26

7 9616fe2367117cf2
aba7fe53177d21e4

27

8 67117cf2c11bfc09
177d21e4548f1de4

32

Round D

9 c11bfc09887fbc6c
548f1de471f64dfd

34

10 887fbc6c600f7e8b
71f64dfd4279876c

36

11 600f7e8bf596506e
4279876c399fdc0d

32

12 f596506e738538b8
399fdc0d6d208dbb

28

13 738538b8c6a62c4e
6d208dbbb9bdeeaa

33

14 c6a62c4e56b0bd75
b9bdeeaad2c3a56f

30

15 56b0bd7575e8fd8f
d2c3a56f2765c1fb

27

16 75e8fd8f25896490
2765c1fb01263dc4

30

IP − 1 da02ce3a89ecac3b
ee92b50606b62b0b

30
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 4.4 THE STRENGTH OF DES

Since its adoption as a federal standard, there have been lingering concerns about 
the level of security provided by DES. These concerns, by and large, fall into two 
areas: key size and the nature of the algorithm.

The Use of 56-Bit Keys

With a key length of 56 bits, there are 256 possible keys, which is approximately 
7.2 * 1016 keys. Thus, on the face of it, a brute-force attack appears impractical. 
Assuming that, on average, half the key space has to be searched, a single machine 
performing one DES encryption per microsecond would take more than a thousand 
years to break the cipher.

However, the assumption of one encryption per microsecond is overly con-
servative. As far back as 1977, Diffie and Hellman postulated that the technology 
existed to build a parallel machine with 1 million encryption devices, each of which 
could perform one encryption per microsecond [DIFF77]. This would bring the 
average search time down to about 10 hours. The authors estimated that the cost 
would be about $20 million in 1977 dollars.

With current technology, it is not even necessary to use special, purpose-built 
hardware. Rather, the speed of commercial, off-the-shelf processors threaten the 
security of DES. A 2008 paper from Seagate Technology [SEAG08] suggests that 
a rate of 1 billion (109) key combinations per second is reasonable for today’s mul-
ticore computers. Recent offerings confirm this. Both Intel and AMD now offer 
hardware-based instructions to accelerate the use of AES. Tests run on a contem-
porary multicore Intel machine resulted in an encryption rate of about half a bil-
lion encryptions per second [BASU12]. Another recent analysis suggests that with 
contemporary supercomputer technology, a rate of 1013 encryptions per second is 
reasonable [AROR12].

With these results in mind, Table 4.5 shows how much time is required for a 
brute-force attack for various key sizes. As can be seen, a single PC can break DES in 
about a year; if multiple PCs work in parallel, the time is drastically shortened. And 
today’s supercomputers should be able to find a key in about an hour. Key sizes of 
128 bits or greater are effectively unbreakable using simply a brute-force approach. 
Even if we managed to speed up the attacking system by a factor of 1  trillion (1012), 
it would still take over 100,000 years to break a code using a 128-bit key.

Fortunately, there are a number of alternatives to DES, the most important of 
which are AES and triple DES, discussed in Chapters 6 and 7, respectively.

The Nature of the DES Algorithm

Another concern is the possibility that cryptanalysis is possible by exploiting the 
characteristics of the DES algorithm. The focus of concern has been on the eight sub-
stitution tables, or S-boxes, that are used in each iteration (described in Appendix C). 
Because the design criteria for these boxes, and indeed for the entire algorithm, 
were not made public, there is a suspicion that the boxes were constructed in such 
a way that cryptanalysis is possible for an opponent who knows the weaknesses in 
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Key Size (bits) Cipher

Number of 
Alternative 

Keys
Time Required at 109 

Decryptions/s

Time Required 
at 1013 

Decryptions/s

56 DES 256 ≈ 7.2 * 1016 255 ns = 1.125 years 1 hour

128 AES 2128 ≈ 3.4 * 1038 2127 ns = 5.3 * 1021 years 5.3 * 1017 years

168 Triple DES 2168 ≈ 3.7 * 1050 2167 ns = 5.8 * 1033 years 5.8 * 1029 years

192 AES 2192 ≈ 6.3 * 1057 2191 ns = 9.8 * 1040 years 9.8 * 1036 years

256 AES 2256 ≈ 1.2 * 1077 2255 ns = 1.8 * 1060 years 1.8 * 1056 years

26 characters 
(permutation)

Monoalphabetic 2! = 4 * 1026 2 * 1026 ns = 6.3 * 109 years 6.3 * 106 years

Table 4.5 Average Time Required for Exhaustive Key Search

the S-boxes. This assertion is tantalizing, and over the years a number of regularities 
and unexpected behaviors of the S-boxes have been discovered. Despite this, no one 
has so far succeeded in discovering the supposed fatal  weaknesses in the S-boxes.8

Timing Attacks

We discuss timing attacks in more detail in Part Three, as they relate to public-key 
algorithms. However, the issue may also be relevant for symmetric ciphers. In es-
sence, a timing attack is one in which information about the key or the plaintext is 
obtained by observing how long it takes a given implementation to perform decryp-
tions on various ciphertexts. A timing attack exploits the fact that an encryption 
or decryption algorithm often takes slightly different amounts of time on different 
inputs. [HEVI99] reports on an approach that yields the Hamming weight (number 
of bits equal to one) of the secret key. This is a long way from knowing the actual 
key, but it is an intriguing first step. The authors conclude that DES appears to be 
fairly resistant to a successful timing attack but suggest some avenues to explore. 
Although this is an interesting line of attack, it so far appears unlikely that this tech-
nique will ever be successful against DES or more powerful symmetric ciphers such 
as triple DES and AES.

 4.5 BLOCK CIPHER DESIGN PRINCIPLES

Although much progress has been made in designing block ciphers that are cryp-
tographically strong, the basic principles have not changed all that much since the 
work of Feistel and the DES design team in the early 1970s. In this section we look 
at three critical aspects of block cipher design: the number of rounds, design of the 
function F, and key scheduling.

8At least, no one has publicly acknowledged such a discovery.
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Number of Rounds

The cryptographic strength of a Feistel cipher derives from three aspects of the de-
sign: the number of rounds, the function F, and the key schedule algorithm. Let us 
look first at the choice of the number of rounds.

The greater the number of rounds, the more difficult it is to perform crypt-
analysis, even for a relatively weak F. In general, the criterion should be that the 
number of rounds is chosen so that known cryptanalytic efforts require greater 
effort than a simple brute-force key search attack. This criterion was certainly used 
in the design of DES. Schneier [SCHN96] observes that for 16-round DES, a differ-
ential cryptanalysis attack is slightly less efficient than brute force: The differential 
cryptanalysis attack requires 255.1 operations,9 whereas brute force requires 255. If 
DES had 15 or fewer rounds, differential cryptanalysis would require less effort than 
a brute-force key search.

This criterion is attractive, because it makes it easy to judge the strength of 
an algorithm and to compare different algorithms. In the absence of a cryptanalytic 
breakthrough, the strength of any algorithm that satisfies the criterion can be judged 
solely on key length.

Design of Function F

The heart of a Feistel block cipher is the function F, which provides the element of 
confusion in a Feistel cipher. Thus, it must be difficult to “unscramble” the substitu-
tion performed by F. One obvious criterion is that F be nonlinear, as we discussed 
previously. The more nonlinear F, the more difficult any type of cryptanalysis will be.  
There are several measures of nonlinearity, which are beyond the scope of this book. 
In rough terms, the more difficult it is to approximate F by a set of linear equations, 
the more nonlinear F is.

Several other criteria should be considered in designing F. We would like the 
algorithm to have good avalanche properties. Recall that, in general, this means that 
a change in one bit of the input should produce a change in many bits of the output. 
A more stringent version of this is the strict avalanche criterion (SAC) [WEBS86], 
which states that any output bit j of an S-box (see Appendix C for a discussion of 
S-boxes) should change with probability 1/2 when any single input bit i is inverted 
for all i, j. Although SAC is expressed in terms of S-boxes, a similar criterion could 
be applied to F as a whole. This is important when considering designs that do not 
include S-boxes.

Another criterion proposed in [WEBS86] is the bit independence criterion 
(BIC), which states that output bits j and k should change independently when any 
single input bit i is inverted for all i, j, and k. The SAC and BIC criteria appear to 
strengthen the effectiveness of the confusion function.

9Differential cryptanalysis of DES requires 247 chosen plaintext. If all you have to work with is known 
plaintext, then you must sort through a large quantity of known plaintext–ciphertext pairs looking for the 
useful ones. This brings the level of effort up to 255.1.
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Key Schedule Algorithm

With any Feistel block cipher, the key is used to generate one subkey for each round. 
In general, we would like to select subkeys to maximize the difficulty of deducing 
individual subkeys and the difficulty of working back to the main key. No general 
principles for this have yet been promulgated.

Adams suggests [ADAM94] that, at minimum, the key schedule should guar-
antee key/ciphertext Strict Avalanche Criterion and Bit Independence Criterion.

 4.6 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms 

avalanche effect
block cipher
confusion
diffusion
Feistel cipher

irreversible mapping
permutation
product cipher
reversible mapping
round

round function
stream cipher
subkey
substitution

Review Questions 
 4.1 Briefly define a nonsingular transformation.
 4.2 What is the difference between a block cipher and a stream cipher?
 4.3 Why is it not practical to use an arbitrary reversible substitution cipher of the kind 

shown in Table 4.1?
 4.4 Briefly define the terms substitution and permutation.
 4.5 What is the strict avalanche criterion for the Feistel F function?
 4.6 Which parameters and design choices determine the actual algorithm of a Feistel 

cipher?
 4.7 What are the critical aspects of Feistel cipher design?

Problems 

 4.1 a.  In Section 4.1, under the subsection on Feistel decryption algorithm, it is men-
tioned that the decryption algorithm is essentially the same as the encryption 
 algorithm except that the subkeys are used in reverse order. Justify this statement.

b. In the same discussion, it was stated that the F function is not required to be 
 reversible for the correctness of the algorithm. The statement holds for an 
F   function that always produces a constant output. Will the claim still hold if 
F does not always produce a constant output? Justify your answer.
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 4.2 Consider a Feistel cipher composed of sixteen rounds with a block length of 128 bits 
and a key length of 128 bits. Suppose that, for a given k, the key scheduling algorithm 
determines values for the first eight round keys, k1, k2, c  k8, and then sets

 k9 = k8, k10 = k7, k11 = k6, c , k16 = k1 

  Suppose you have a ciphertext c. Explain how, with access to an encryption oracle, 
you can decrypt c and determine m using just a single oracle query. This shows that 
such a cipher is vulnerable to a chosen plaintext attack. (An encryption oracle can be 
thought of as a device that, when given a plaintext, returns the corresponding cipher-
text. The internal details of the device are not known to you and you cannot break 
open the device. You can only gain information from the oracle by making queries to 
it and observing its responses.)

 4.3 Let p be a permutation of the integers 0, 1, 2, c , (2n - 1), such that p(m) gives the 
permuted value of m, 0 … m 6 2n. Put another way, p maps the set of n-bit integers 
onto itself, and no two integers map into the same integer. DES is such a permutation 
for 64-bit integers. We say that p has a fixed point at m if p(m) = m. That is, if p is 
an encryption mapping, then a fixed point corresponds to a message that encrypts to 
itself. We are interested in the number of fixed points in a randomly chosen permuta-
tion p. Show the somewhat unexpected result that the number of fixed points for p is 
1 on an average, and this number is independent of the size of the permutation.

 4.4 Consider a block encryption algorithm that encrypts blocks of length n, and let 
N = 2n. Say we have t plaintext–ciphertext pairs Pi, Ci = E(K, Pi), where we as-
sume that the key K is a randomly chosen m-bit string. Imagine that we wish to find 
K by exhaustive search. We could generate key K′ and test whether Ci = E(K′, Pi) 
for 1 c i c t. If K′ encrypts each Pi to its proper Ci, then we have evidence that 
K = K′. However, it may be the case that the mappings E(K, # ) and E(K′, # )  exactly 
agree on the t plaintext–ciphertext pairs Pi, Ci and agree on no other pairs. Such keys 
are called spurious keys.
a. What is the probability that E(K, # ) and E(K′, # ) agree on exactly t plaintext- 

ciphertext pairs?
b. Find the expected number of spurious keys when E(K, # ) and E(K′, # ) agree on 

exactly t plaintext-ciphertext pairs.
 4.5 For any block cipher, the fact that it is a nonlinear function is crucial to its security. To 

see this, suppose that we have a linear block cipher EL that encrypts 256-bit blocks of 
plaintext into 256-bit blocks of ciphertext. Let EL(k, m) denote the encryption of a 
256-bit message m under a key k (the actual bit length of k is irrelevant). Thus,

 EL(k, [m1 ⊕ m2]) = EL(k, m1) ⊕ EL(k, m2) for all 128@bit patterns m1, m2.

  Describe how, with 256 chosen ciphertexts, an adversary can decrypt any ciphertext 
without knowledge of the secret key k. (A “chosen ciphertext” means that an adver-
sary has the ability to choose a ciphertext and then obtain its decryption. Here, you 
have 256 plaintext/ciphertext pairs to work with, and you have the ability to choose 
the value of the ciphertexts.)

 4.6 Suppose the DES F function mapped every 32-bit input R, regardless of the value of 
the input K, to
a. a 32-bit string of zero, and
b. R.

  Then:
1. What function would DES compute?
2. What would the decryption look like?

  Hint: Use the following properties of the XOR operation:

 (A ⊕ B) ⊕ C = A ⊕ (B ⊕ C)
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1A ⊕ A2 = 0

1A ⊕ 02 = A

A ⊕ 1 = bitwise complement of A

 4.7 Show that DES decryption is, in fact, the inverse of DES encryption.
 4.8 The 32-bit swap after the sixteenth iteration of the DES algorithm is needed to make 

the encryption process invertible by simply running the ciphertext back through the 
algorithm with the key order reversed. This was demonstrated in the preceding prob-
lem. However, it still may not be entirely clear why the 32-bit swap is needed. To 
demonstrate why, solve the following exercises. First, some notation:

 A ‘B = the concatenation of the bit strings A and B

 Ti(R ‘L) = the transformation defined by the ith iteration of the encryption 

algorithm for 1 … I … 16

 TDi(R ‘L) = the transformation defined by the ith iteration of the decryption 

algorithm for 1 … I … 16

 T17(R ‘L) = L ‘R, where this transformation occurs after the sixteenth iteration 

of the encryption algorithm

a. Show that the composition TD1(IP(IP-1(T17(T16(L15 ‘R15))))) is equivalent to the 
transformation that interchanges the 32-bit halves, L15 and R15. That is, show that

 TD1(IP(IP-1(T17(T16(L15 ‘R15))))) = R15 ‘L15 

b. Now suppose that we did away with the final 32-bit swap in the encryption algo-
rithm. Then we would want the following equality to hold:

 TD1(IP(IP-1(T16(L15 ‘R15)))) = L15 ‘R15 

Does it?

Note: The following problems refer to details of DES that are described in Appendix C.

 4.9 Consider the substitution defined by row 1 of S-box S1 in Table C.2. Show a block 
diagram similar to Figure 4.2 that corresponds to this substitution.

 4.10 Compute the bits number 4, 17, 41, and 45 at the output of the first round of the 
DES decryption, assuming that the ciphertext block is composed of all ones, and the 
 external key is composed of all ones.

 4.11 This problem provides a numerical example of encryption using a one-round version 
of DES. We start with the same bit pattern for the key K and the plaintext, namely:

Hexadecimal notation: 0 1 2 3 4 5 6 7 8 9 A B C D E F

Binary notation: 0000 0001 0010 0011 0100 0101 0110 0111

1000 1001 1010 1011 1100 1101 1110 1111

a. Derive K1, the first-round subkey.
b. Derive L0, R0.
c. Expand R0 to get E[R0], where E[ # ] is the expansion function of Table C.1.
d. Calculate A = E[R0] ⊕ K1.
e. Group the 48-bit result of (d) into sets of 6 bits and evaluate the corresponding 

S-box substitutions.
f. Concatenate the results of (e) to get a 32-bit result, B.
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g. Apply the permutation to get P(B).
h. Calculate R1 = P(B) ⊕ L0.
i. Write down the ciphertext.

 4.12 Analyze the amount of left shifts in the DES key schedule by studying Table C.3 (d). 
Is there a pattern? What could be the reason for the choice of these constants?

 4.13 Suppose that a modern multi-core computer can process 109 key combinations per 
second. How much time will it take to search the key space of an encryption algo-
rithm that has a 56-bit key? If the key size is increased to 60 bits but the CPU speed is 
also doubled, then how much time will the key search take on the new computer?

 4.14 a.  Let X′ be the bitwise complement of X. Prove that if the complement of the plain-
text block is taken and the complement of an encryption key is taken, then the 
result of DES encryption with these values is the complement of the original ci-
phertext. That is,

 
If Y = E(K, X)

Then Y′ = E(K′, X′)
 

Hint: Begin by showing that for any two bit strings of equal length, A and B, 
(A ⊕ B)′ = A′ ⊕ B.

b. It has been said that a brute-force attack on DES requires searching a key space of 
256 keys. Does the result of part (a) change that?

 4.15 a.  We say that a DES key K is weak if DESK is an involution. Exhibit four weak keys 
for DES.

b. We say that a DES key K is semi-weak if it is not weak and if there exists a key K′ 
such that DESK

- 1 = DESK′. Exhibit four semi-weak keys for DES.

Programming Problems 

 4.1 Create software that can encrypt and decrypt using a general substitution block 
 cipher.

 4.2 Create software that can encrypt and decrypt using S-DES.
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Finite fields have become increasingly important in cryptography. A number of 
 cryptographic algorithms rely heavily on properties of finite fields, notably the 
Advanced Encryption Standard (AES) and elliptic curve cryptography. Other exam-
ples include the message authentication code CMAC and the authenticated encryption 
scheme GCM.

This chapter provides the reader with sufficient background on the concepts of 
finite fields to be able to understand the design of AES and other cryptographic algo-
rithms that use finite fields. Because students unfamiliar with abstract algebra may find 
the concepts behind finite fields somewhat difficult to grasp, we approach the topic in a 
way designed to enhance understanding. Our plan of attack is as follows:

1. Fields are a subset of a larger class of algebraic structures called rings, which 
are in turn a subset of the larger class of groups. In fact, as shown in Figure 5.1, 
both groups and rings can be further differentiated. Groups are defined by 
a simple set of properties and are easily understood. Each successive subset 
(abelian group, ring, commutative ring, and so on) adds additional properties 
and is thus more complex. Sections 5.1 through 5.3 will examine groups, rings, 
and fields, successively.

2. Finite fields are a subset of fields, consisting of those fields with a finite num-
ber of elements. These are the class of fields that are found in cryptographic 
algorithms. With the concepts of fields in hand, we turn in Section 5.4 to a 
specific class of finite fields, namely those with p elements, where p is prime. 
Certain asymmetric cryptographic algorithms make use of such fields.

3. A more important class of finite fields, for cryptography, comprises those with 
2n elements depicted as fields of the form GF(2n). These are used in a wide 
variety of cryptographic algorithms. However, before discussing these fields, we 
need to analyze the topic of polynomial arithmetic, which is done in Section 5.5.

4. With all of this preliminary work done, we are able at last, in Section 5.6, to 
discuss finite fields of the form GF(2n).

Before proceeding, the reader may wish to review Sections 2.1 through 2.3, which 
cover relevant topics in number theory.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

◆◆ Distinguish among groups, rings, and fields.

◆◆ Define finite fields of the form GF(p).

◆◆ Explain the differences among ordinary polynomial arithmetic,  polynomial 
arithmetic with coefficients in Zp, and modular polynomial arithmetic in 
GF(2n).

◆◆ Define finite fields of the form GF(2n).

◆◆ Explain the two different uses of the mod operator.
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 5.1 GROUPS

Groups, rings, and fields are the fundamental elements of a branch of mathematics 
known as abstract algebra, or modern algebra. In abstract algebra, we are concerned 
with sets on whose elements we can operate algebraically; that is, we can combine 
two elements of the set, perhaps in several ways, to obtain a third element of the set. 
These operations are subject to specific rules, which define the nature of the set. By 
convention, the notation for the two principal classes of operations on set elements is 
usually the same as the notation for addition and multiplication on ordinary numbers. 
However, it is important to note that, in abstract algebra, we are not limited to basic 
arithmetical operations. All this should become clear as we proceed.

Groups

A group G, sometimes denoted by {G, # }, is a set of elements with a binary opera-
tion denoted by #  that associates to each ordered pair (a, b) of elements in G an 
element (a # b) in G * G, such that the following axioms are obeyed:1

(A1) Closure: If a and b belong to G, then a # b is also in G.

(A2) Associative: a # (b # c) = (a # b) # c for all a, b, c in G.

1 The operator # is generic and can refer to addition, multiplication, or some other mathematical operation.

Figure 5.1 Groups, Rings, and Fields

Groups

Abelian groups

Rings
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(A3) Identity element: There is an element e in G such that 
a # e = e # a = a for all a in G.

(A4) Inverse element: For each a in G, there is an element a′ in G 
such that a # a′ = a′ # a = e.

Let Nn denote a set of n distinct symbols that, for convenience, we represent as 
{1, 2, c , n}. A permutation of n distinct symbols is a one-to-one mapping from 
Nn on to Nn.2 Define Sn to be the set of all permutations of n distinct symbols. Each 
element of Sn is represented by a permutation p of the integers in 1, 2,  .  .  .  , n.  
It is easy to demonstrate that Sn is a group:

A1:   If (p, r ∈ Sn), then the composite mapping p # r is formed by 
permuting the elements of r according to the permutation p. For 
 example, {3, 2, 1} # {1, 3, 2} = {2, 3, 1}. The notation for this map-
ping is explained as follows: The value of the first element of p in-
dicates which element of r is to be in the first position in p # r; the 
value of the second element of p indicates which element of r is to 
be in the second position in p # r; and so on. Clearly, p # r ∈ Sn.

A2:   The composition of mappings is also easily seen to be associative.

A3:   The identity mapping is the permutation that does not alter the 
order of the n elements. For Sn, the identity element is {1, 2, c , n}.

A4:   For any p ∈ Sn, the mapping that undoes the permutation defined 
by p is the inverse element for p. There will always be such an in-
verse. For example {2, 3, 1} # {3, 1, 2} = {1, 2, 3}.

2This is equivalent to the definition of permutation in Chapter 2, which stated that a permutation of a 
finite set of elements S is an ordered sequence of all the elements of S, with each element appearing 
exactly once.

The set of integers (positive, negative, and 0) under addition is an abelian group. 
The set of nonzero real numbers under multiplication is an abelian group. The 
set Sn from the preceding example is a group but not an abelian group for n 7 2.

If a group has a finite number of elements, it is referred to as a finite group, and 
the order of the group is equal to the number of elements in the group. Otherwise, 
the group is an infinite group.

Abelian Group

A group is said to be abelian if it satisfies the following additional condition:

(A5) Commutative: a # b = b # a for all a, b in G.
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When the group operation is addition, the identity element is 0; the inverse ele-
ment of a is -a; and subtraction is defined with the following rule: a - b = a + (-b).

Cyclic Group

We define exponentiation within a group as a repeated application of the group op-
erator, so that a3 = a # a # a. Furthermore, we define a0 = e as the identity element, 
and a-n = (a′)n, where a′ is the inverse element of a within the group. A group G is 
cyclic if every element of G is a power ak (k is an integer) of a fixed element a ∈ G. 
The element a is said to generate the group G or to be a generator of G. A cyclic 
group is always abelian and may be finite or infinite.

The additive group of integers is an infinite cyclic group generated by the element 
1. In this case, powers are interpreted additively, so that n is the nth power of 1.

 5.2 RINGS

A ring R, sometimes denoted by {R, + , * }, is a set of elements with two binary 
operations, called addition and multiplication,3 such that for all a, b, c in R the fol-
lowing axioms are obeyed.

(A1–A5) R is an abelian group with respect to addition; that is, R satisfies axioms 
A1 through A5. For the case of an additive group, we denote the identity element 
as 0 and the inverse of a as -a.

(M1) Closure under multiplication: If a and b belong to R, then ab is also in R.

(M2) Associativity of multiplication: a(bc) = (ab)c for all a, b, c in R.

(M3) Distributive laws: a(b + c) = ab + ac for all a, b, c in R.
(a + b)c = ac + bc for all a, b, c in R.

In essence, a ring is a set of elements in which we can do addition, subtraction 
[a - b = a + (-b)], and multiplication without leaving the set.

3Generally, we do not use the multiplication symbol, * , but denote multiplication by the concatenation of 
two elements. Thus, a * b is written as ab.

With respect to addition and multiplication, the set of all n-square matrices over 
the real numbers is a ring.

A ring is said to be commutative if it satisfies the following additional condition:

(M4) Commutativity of multiplication: ab = ba for all a, b in R.
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Next, we define an integral domain, which is a commutative ring that obeys the 
following axioms.

(M5) Multiplicative identity: There is an element 1 in R such that 
a1 = 1a = a for all a in R.

(M6) No zero divisors: If a, b in R and ab = 0, then either a = 0 
or b = 0.

Let S be the set of even integers (positive, negative, and 0) under the usual 
operations of addition and multiplication. S is a commutative ring. The set of all 
n-square matrices defined in the preceding example is not a commutative ring.

The set Zn of integers {0, 1, c , n - 1}, together with the arithmetic op-
erations modulo n, is a commutative ring (Table 4.3).

Let S be the set of integers (positive, negative, and 0) under the usual operations 
of addition and multiplication. S is an integral domain.

Familiar examples of fields are the rational numbers, the real numbers, and the 
complex numbers. Note that the set of all integers is not a field, because not every 
element of the set has a multiplicative inverse; in fact, only the elements 1 and -1 
have multiplicative inverses in the integers.

 5.3 FIELDS

A field F, sometimes denoted by {F, + , * }, is a set of elements with two binary op-
erations, called addition and multiplication, such that for all a, b, c in F the following 
axioms are obeyed.

(A1–M6)  F is an integral domain; that is, F satisfies axioms A1 through A5 and 
M1 through M6.

(M7) Multiplicative inverse: For each a in F, except 0, there is an element 
a-1 in F such that aa-1 = (a-1)a = 1.

In essence, a field is a set of elements in which we can do addition, subtraction, 
multiplication, and division without leaving the set. Division is defined with the fol-
lowing rule: a/b = a(b-1).

In gaining insight into fields, the following alternate characterization may be 
useful. A field F, denoted by {F, + , * }, is a set of elements with two binary opera-
tions, called addition and multiplication, such that the following conditions hold:

1. F forms an abelian group with respect to addition.

2. The nonzero elements of F form an abelian group with respect to multiplication.

M05_STAL7484_08_GE_C05.indd   140 20/04/22   11:33



5.4 / FiniTE FiElds oF THE FoRM GF(p) 141

3. The distributive law holds. That is, for all a, b, c in F,

 a(b + c) = ab + ac.

  (a + b)c = ac + bc.

4. Figure 5.2 summarizes the axioms that define groups, rings, and fields.

 5.4 FINITE FIELDS OF THE FORM GF(p)

In Section 5.3, we defined a field as a set that obeys all of the axioms of Figure 5.2 
and gave some examples of infinite fields. Infinite fields are not of particular inter-
est in the context of cryptography. However, in addition to infinite fields, there are 
two types of finite fields, as illustrated in Figure 5.3. Finite fields play a crucial role in 
many cryptographic algorithms.

It can be shown that the order of a finite field (number of elements in the 
field) must be a power of a prime pn, where n is a positive integer. The finite field 
of order pn is generally written GF(pn); GF stands for Galois field, in honor of the 
mathematician Galois who first studied finite fields. Two special cases are of inter-
est for our purposes. For n = 1, we have the finite field GF(p); this finite field has a 
different structure than that for finite fields with n 7 1 and is studied in this section. 
For finite fields of the form GF(pn), GF(2n) fields are of particular cryptographic 
interest, and these are covered in Section 5.6.

Finite Fields of Order p

For a given prime, p, we define the finite field of order p, GF(p), as the set Zp of integers 
{0, 1, c , p - 1} together with the arithmetic operations modulo p. Note therefore 
that we are using ordinary modular arithmetic to define the operations over these fields.

Figure 5.2 Properties of Groups, Rings, and Fields

(A1) Closure under addition: If a and b belong to S, then a 1 b is also in S
(A2) Associativity of addition: a  1 (b 1 c) 5 (a 1 b) 1 c for all a, b, c in S
(A3) Additive identity: There is an element 0 in R such that

a  1 0 5 0 1 a 5 a for all a in S
(A4) Additive inverse: For each a in S there is an element 2a in S

such that a 1 (2a) 5 (2a) 1 a 5 0

(A5) Commutativity of addition: a  1 b 5 b 1 a for all a, b in S

(M1) Closure under multiplication: If a and b belong to S, then ab is also in S
(M2) Associativity of multiplication: a(bc) 5 (ab)c for all a, b, c in S
(M3) Distributive laws: a(b 1 c) 5 ab 1 ac for all a, b, c in S

(a 1 b)c 5 ac 1 bc for all a, b, c in S

(M4) Commutativity of multiplication: ab  5 ba for all a, b in S

(M5) Multiplicative identity: There is an element 1 in S such that
a1 5 1a 5 a for all a in S

(M6) No zero divisors: If a, b in S and ab 5 0, then either
a 5 0 or b 5 0

(M7) Multiplicative inverse: If a belongs to S and a Þ 0, there is an
element a     in S such that aa     5 a     a 5 112 12
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Recall that we showed in Section 5.2 that the set Zn of integers {0, 1, c , n - 1}, 
together with the arithmetic operations modulo n, is a commutative ring (Figure 5.2). 
We further observed that any integer in Zn has a multiplicative inverse if and only if 
that integer is relatively prime to n [see discussion of Equation (2.5)].4 If n is prime, 
then all of the nonzero integers in Zn are relatively prime to n, and therefore there 
exists a multiplicative inverse for all of the nonzero integers in Zn. Thus, for Zp we 
can add the following properties to those listed in Table 5.2:

Multiplicative 
inverse (w-1)

For each w ∈ Zp, w ≠ 0, there exists a z ∈ Zp 
such that w * z K 1 (mod p)

Because w is relatively prime to p, if we multiply all the elements of Zp by 
w, the resulting residues are all of the elements of Zp permuted. Thus, exactly one 
of the residues has the value 1. Therefore, there is some integer in Zp that, when 
multiplied by w, yields the residue 1. That integer is the multiplicative inverse of w, 
designated w-1. Therefore, Zp is in fact a finite field. Furthermore, Equation (2.5) is 
consistent with the existence of a multiplicative inverse and can be rewritten with-
out the condition that a is relatively prime to n. So, for a and b in Zp, with a Z 0:

 if (a * b) K (a * c)(mod p) then b K c(mod p)   (5.1)

Multiplying both sides of Equation (5.1) by the multiplicative inverse of a, we have

 ((a-1) * a * b) K ((a-1) * a * c)(mod p)

 b K c (mod p)

4As stated in the discussion of Equation (2.5), two integers are relatively prime if their only common 
positive integer factor is 1.

Figure 5.3 Types of Fields

Fields

Fields with an
infinite number

of elements

Finite fields

GF(p)
Finite fields

with p elements

GF(pn)
Finite fields

with pn elements

The simplest finite field is GF(2). Its arithmetic operations are easily summarized:

+ 0 1

0 0 1

1 1 0

Addition

* 0 1

0 0 0

1 0 1

Multiplication

w -w w-1

0 0 -
1 1 1

Inverses

In this case, addition is equivalent to the exclusive-OR (XOR) operation, and 
multiplication is equivalent to the logical AND operation.
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The right-hand side of Table 5.1 shows arithmetic operations in GF(7). This is a 
field of order 7 using modular arithmetic modulo 7. As can be seen, it satisfies all 
of the properties required of a field (Figure 5.2). Compare with the left-hand side 
of Table 5.1, which reproduces Table 2.2. In the latter case, we see that the set Z8, 
using modular arithmetic modulo 8, is not a field. Later in this chapter, we show 
how to define addition and multiplication operations on Z8 in such a way as to 
form a finite field.

Finding the Multiplicative Inverse in GF(p)

It is easy to find the multiplicative inverse of an element in GF(p) for small values 
of p. You simply construct a multiplication table, such as shown in Table 5.1e, and 
the desired result can be read directly. However, for large values of p, this approach 
is not practical.

If a and b are relatively prime, then b has a multiplicative inverse modulo a. 
That is, if gcd(a, b) = 1, then b has a multiplicative inverse modulo a. Thus, for posi-
tive integer b 6 a, there exists a b-1 6 a such that bb-1 K 1 mod a. If a is a prime 
number and 0 6 b 6 a, then clearly a and b are relatively prime and have a great-
est common divisor of 1. We now show that we can easily compute b-1 using the 
extended Euclidean algorithm.

We repeat here Equation (2.7), which we showed can be solved with the 
extended Euclidean algorithm:

 ax + by = d = gcd(a, b) 

Now, if gcd(a, b) = 1, then we have ax + by = 1. Using the basic equalities of 
modular arithmetic, defined in Section 2.3, we can say

[(ax mod a) + (by mod a)] mod a = 1 mod a

0 + (by mod a) = 1

But if by mod a = 1, then y = b-1. Thus, applying the extended Euclidean 
algorithm to Equation (2.7) yields the value of the multiplicative inverse of b if 
gcd(a, b) = 1. 

Consider the example that was shown in Table 2.4. Here we have a = 1759, 
which is a prime number, and b = 550. The solution of the equation 
1759x + 550y = d yields a value of y = 355. Thus, b-1 = 355. To verify, we cal-
culate 550 * 355 mod 1759 = 195250 mod 1759 = 1.

More generally, the extended Euclidean algorithm can be used to find a 
 multiplicative inverse in Zn for any n. If we apply the extended Euclidean algorithm 
to the equation nx + by = d, and the algorithm yields d = 1, then y = b-1 in Zn.
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+ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7 0

2 2 3 4 5 6 7 0 1

3 3 4 5 6 7 0 1 2

4 4 5 6 7 0 1 2 3

5 5 6 7 0 1 2 3 4

6 6 7 0 1 2 3 4 5

7 7 0 1 2 3 4 5 6

(a) Addition modulo 8

* 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7

2 0 2 4 6 0 2 4 6

3 0 3 6 1 4 7 2 5

4 0 4 0 4 0 4 0 4

5 0 5 2 7 4 1 6 3

6 0 6 4 2 0 6 4 2

7 0 7 6 5 4 3 2 1

(b) Multiplication modulo 8

w 0 1 2 3 4 5 6 7

-w 0 7 6 5 4 3 2 1

w-1 — 1 — 3 — 5 — 7

(c) Additive and multiplicative  
inverses modulo 8

+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5

(d) Addition modulo 7

* 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

(e) Multiplication modulo 7

w 0 1 2 3 4 5 6

-w 0 6 5 4 3 2 1

w-1 — 1 4 5 2 3 6

(f) Additive and multiplicative  
inverses modulo 7

Table 5.1 Arithmetic Modulo 8 and Modulo 7

Summary

In this section, we have shown how to construct a finite field of order p, where p is 
prime. Specifically, we defined GF(p) with the following properties.

1. GF(p) consists of p elements.

2. The binary operations + and * are defined over the set. The operations of 
addition, subtraction, multiplication, and division can be performed without 
leaving the set. Each element of the set other than 0 has a multiplicative inverse, 
and division is performed by multiplication by the multiplicative inverse.

We have shown that the elements of GF(p) are the integers {0, 1, c , p - 1} 
and that the arithmetic operations are addition and multiplication mod p.
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 5.5 POLYNOMIAL ARITHMETIC

Before continuing our discussion of finite fields, we need to introduce the interest-
ing subject of polynomial arithmetic. We are concerned with polynomials in a single 
variable x, and we can distinguish three classes of polynomial arithmetic (Figure 5.4).

◆■ Ordinary polynomial arithmetic, using the basic rules of algebra.

◆■ Polynomial arithmetic in which the arithmetic on the coefficients is performed 
modulo p; that is, the coefficients are in GF(p).

◆■ Polynomial arithmetic in which the coefficients are in GF(p), and the poly-
nomials are defined modulo a polynomial m(x) whose highest power is some 
integer n.

This section examines the first two classes, and the next section covers the 
last class.

Ordinary Polynomial Arithmetic

A polynomial of degree n (integer n Ú 0) is an expression of the form

 f(x) = anxn + an - 1x
n - 1 + g + a1x + a0 = a

n

i = 0
aix

i 

where the ai are elements of some designated set of numbers S, called the coefficient 
set, and an ≠ 0. We say that such polynomials are defined over the coefficient set S.

A zero-degree polynomial is called a constant polynomial and is simply an 
element of the set of coefficients. An nth-degree polynomial is said to be a monic 
polynomial if an = 1.

In the context of abstract algebra, we are usually not interested in evaluating 
a polynomial for a particular value of x [e.g., f(7)]. To emphasize this point, the vari-
able x is sometimes referred to as the indeterminate.

Polynomial arithmetic includes the operations of addition, subtraction, 
 multiplication, and division. These operations are defined in a natural way as though the 

Figure 5.4 Treatment of Polynomials

Polynomial f(x)

x treated as a variable,
and evaluated for

a particular value of x

x treated as an
indeterminate

Ordinary
polynomial
arithmetic

Arithmetic on
coefficients is

performed
modulo p

Arithmetic on coefficients is
performed modulo p

and polynomials are defined
modulo a polynomial m(x)
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variable x was an element of S. Division is similarly defined, but requires that S be a field. 
Examples of fields include the real numbers, rational numbers, and Zp for p prime. Note 
that the set of all integers is not a field and does not support polynomial division.

Addition and subtraction are performed by adding or subtracting correspond-
ing coefficients. Thus, if

 f(x) = a
n

i = 0
aix

i; g(x) = a
m

i = 0
bix

i; n Ú m 

then addition is defined as

 f(x) + g(x) = a
m

i = 0
(ai + bi)xi + a

n

i = m + 1
aix

i 

and multiplication is defined as

 f(x) * g(x) = a
n + m

i = 0
cix

i 

where

 ck = a0bk + a1bk - 1 + g + ak - 1b1 + akb0 

In the last formula, we treat ai as zero for i 7 n and bi as zero for i 7 m. Note that 
the degree of the product is equal to the sum of the degrees of the two polynomials.

As an example, let f(x) = x3 + x2 + 2 and g(x) = x2 - x + 1, where S is the set 
of integers. Then

 f(x) + g(x) = x3 + 2x2 - x + 3

 f(x) - g(x) = x3 + x + 1

 f(x) * g(x) = x5 + 3x2 - 2x + 2

Figures 5.5a through 5.5c show the manual calculations. We comment on division 
subsequently.

Polynomial Arithmetic with Coefficients in Zp

Let us now consider polynomials in which the coefficients are elements of some 
field F; we refer to this as a polynomial over the field F. In this case, it is easy to show 
that the set of such polynomials is a ring, referred to as a polynomial ring. That is, if 
we consider each distinct polynomial to be an element of the set, then that set is a 
ring.5

When polynomial arithmetic is performed on polynomials over a field, then 
division is possible. Note that this does not mean that exact division is possible. Let 

5In fact, the set of polynomials whose coefficients are elements of a commutative ring forms a polynomial 
ring, but that is of no interest in the present context.
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us clarify this distinction. Within a field, given two elements a and b, the quotient a/b 
is also an element of the field. However, given a ring R that is not a field, in general, 
division will result in both a quotient and a remainder; this is not exact division.

Figure 5.5 Examples of Polynomial Arithmetic
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(b) Subtraction

Consider the division 5/3 within a set S. If S is the set of rational numbers, which 
is a field, then the result is simply expressed as 5/3 and is an element of S. Now 
suppose that S is the field Z7. In this case, we calculate (using Table 5.1f)

5/3 = (5 * 3-1) mod 7 = (5 * 5) mod 7 = 4

which is an exact solution. Finally, suppose that S is the set of integers, which is a 
ring but not a field. Then 5/3 produces a quotient of 1 and a remainder of 2:

 5/3 = 1 + 2/3
 5 = 1 * 3 + 2

Thus, division is not exact over the set of integers.

Now, if we attempt to perform polynomial division over a coefficient set that is 
not a field, we find that division is not always defined.

If the coefficient set is the integers, then (5x2)/(3x) does not have a solution, 
because it would require a coefficient with a value of 5/3, which is not in the coef-
ficient set. Suppose that we perform the same polynomial division over Z7. Then 
we have (5x2)/(3x) = 4x, which is a valid polynomial over Z7.

However, as we demonstrate presently, even if the coefficient set is a field, 
polynomial division is not necessarily exact. In general, division will produce a quo-
tient and a remainder. We can restate the division algorithm of Equation (2.1) for 
polynomials over a field as follows. Given polynomials f(x) of degree n and g(x) 
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of degree (m), (n Ú m), if we divide f(x) by g(x), we get a quotient q(x) and a 
 remainder r(x) that obey the relationship

 f(x) = q(x)g(x) + r(x)   (5.2)

with polynomial degrees:

 Degree f(x) = n
 Degree g(x) = m
 Degree q(x) = n - m
 0 … Degree r(x) … m - 1

With the understanding that remainders are allowed, we can say that polyno-
mial division is possible if the coefficient set is a field. One common technique used 
for polynomial division is polynomial long division, similar to long division for inte-
gers. Examples of this are shown subsequently.

In an analogy to integer arithmetic, we can write f(x) mod g(x) for the remain-
der r(x) in Equation (5.2). That is, r(x) = f(x) mod g(x). If there is no remainder [i.e., 
r(x) = 0], then we can say g(x) divides f(x), written as g(x) � f(x). Equivalently, we 
can say that g(x) is a factor of f(x) or g(x) is a divisor of f(x).

For the preceding example [f(x) = x3 + x2 + 2 and g(x) = x2 - x + 1], f(x)/g(x) 
produces a quotient of q(x) = x + 2 and a remainder r(x) = x, as shown in 
 Figure 5.5d. This is easily verified by noting that

 q(x)g(x) + r(x) = (x + 2)(x2 - x + 1) + x = (x3 + x2 - x + 2) + x

 = x3 + x2 + 2 = f(x)

For our purposes, polynomials over GF(2) are of most interest. Recall from 
Section 5.4 that in GF(2), addition is equivalent to the XOR operation, and multipli-
cation is equivalent to the logical AND operation. Further, addition and subtraction 
are equivalent mod 2:

 1 + 1 = 1 - 1 = 0
 1 + 0 = 1 - 0 = 1
 0 + 1 = 0 - 1 = 1

Figure 5.6 shows an example of polynomial arithmetic over GF(2). For 
f(x) = (x7 + x5 + x4 + x3 + x + 1) and g(x) = (x3 + x + 1), the figure shows 
f(x) + g(x); f(x) - g(x); f(x) * g(x); and f(x)/g(x). Note that g(x) � f(x).

A polynomial f(x) over a field F is called irreducible if and only if f(x) can-
not be expressed as a product of two polynomials, both over F, and both of degree 
greater than 0 and lower than that of f(x). By analogy to integers, an irreducible 
polynomial is also called a prime polynomial.:

The polynomial6 f(x) = x4 + 1 over GF(2) is reducible, because

x4 + 1 = (x + 1)(x3 + x2 + x + 1).

6In the reminder of this chapter, unless otherwise noted, all examples are of polynomials over GF(2).
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Consider the polynomial f(x) = x3 + x + 1. It is clear by inspection that x is not 
a factor of f(x). We easily show that x + 1 is not a factor of f(x):

x2 + x
x + 1�x3 + x + 1

x3 + x2

x2 + x
x2 + x

1
Thus, f(x) has no factors of degree 1. But it is clear by inspection that if f(x) 
is  reducible, it must have one factor of degree 2 and one factor of degree 1. 
 Therefore, f(x) is irreducible.

Figure 5.6 Examples of Polynomial Arithmetic over GF(2)

(a) Addition

(c) Multiplication

(d) Division

x4x5 11x7

xx3

x3x4 11x5 +1x7 1x 1

111 ( )1

x3x4 11x5 11x7 1x 1

x4x5 1+x7

x3 x

x3 1 11 x 1

11

x5x6 11x8 x4 11 1x2

1x2

x

x7x8 11x10 x6 11 1x4

x10 1x4

x3

113( )1

x3x4 11x5 1

2

1x7

x4x5 11x7

1x

x3 x

1

11( )1

(b) Subtraction

x3x4 11x5 11

11

x7

x4x5x7

1x 1

x3 1 1x 1

x3 1 1x 1

x4 1

1

1

x3 x 11
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Finding the Greatest Common Divisor

We can extend the analogy between polynomial arithmetic over a field and integer 
arithmetic by defining the greatest common divisor as follows. The polynomial c(x) 
is said to be the greatest common divisor of a(x) and b(x) if the following are true.

1. c(x) divides both a(x) and b(x).

2. Any divisor of a(x) and b(x) is a divisor of c(x).

An equivalent definition is the following: gcd[a(x), b(x)] is the polynomial of 
maximum degree that divides both a(x) and b(x).

We can adapt the Euclidean algorithm to compute the greatest common divi-
sor of two polynomials. Recall Equation (2.6), from Chapter 2, which is the basis of the 
Euclidean algorithm: gcd(a, b) = gcd(b, a mod b) assuming a 7 b. This equality can be 
rewritten as the following equation:

 gcd[a(x), b(x)] = gcd[b(x), a(x) mod b(x)]   (5.3)

The equation assumes that the degree of a(x) is greater than the degree of b(x). 
Equation (5.3) can be used repetitively to determine the greatest common divisor. 
Compare the following scheme to the definition of the Euclidean algorithm for integers.

Euclidean Algorithm for Polynomials

Calculate Which satisfies

r1(x) = a(x) mod b(x) a(x) = q1(x)b(x) + r1(x)

r2(x) = b(x) mod r1(x) b(x) = q2(x)r1(x) + r2(x)

r3(x) = r1(x) mod r2(x) r1(x) = q3(x)r2(x) + r3(x)

• •
• •
• •

rn(x) = rn - 2(x) mod rn - 1(x) rn - 2(x) = qn(x)rn - 1(x) + rn(x)

rn + 1(x) = rn - 1(x) mod rn(x) = 0
rn - 1(x) = qn + 1(x)rn(x) + 0

d(x) = gcd(a(x), b(x)) = rn(x)

At each iteration, we have d(x) = gcd(ri + 1(x), ri(x)) until finally 
d(x) = gcd(rn(x), 0) = rn(x). Thus, we can find the greatest common divisor of two  
polynomials by repetitive application of the division algorithm. This is the Euclidean 
algorithm for polynomials.

Find gcd[a(x), b(x)] for a(x) = x6 + x5 + x4 + x3 + x2 + x + 1 and b(x) =
x4 + x2 + x + 1. First, we divide a(x) by b(x):

x2 + x
x4 + x2 + x + 1�x6 + x5 + x4 + x3 + x2 + x + 1

x6 + x4 + x3 + x2

x5 + x + 1
x5 + x3 + x2 + x

x3 + x2 + 1
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Summary

We began this section with a discussion of arithmetic with ordinary polynomials. In 
ordinary polynomial arithmetic, the variable is not evaluated; that is, we do not plug 
a value in for the variable of the polynomials. Instead, arithmetic operations are 
performed on polynomials (addition, subtraction, multiplication, division) using the 
ordinary rules of algebra. Polynomial division is not allowed unless the coefficients 
are elements of a field.

Next, we discussed polynomial arithmetic in which the coefficients are ele-
ments of GF(p). In this case, polynomial addition, subtraction, multiplication, and 
division are allowed. However, division is not exact; that is, in general division results 
in a quotient and a remainder.

Finally, we showed that the Euclidean algorithm can be extended to find the 
greatest common divisor of two polynomials whose coefficients are elements of a 
field.

All of the material in this section provides a foundation for the following sec-
tion, in which polynomials are used to define finite fields of order pn.

 5.6 FINITE FIELDS OF THE FORM GF(2n)

Earlier in this chapter, we mentioned that the order of a finite field must be of the 
form pn, where p is a prime and n is a positive integer. In Section 5.4, we looked at 
the special case of finite fields with order p. We found that, using modular arithmetic 
in Zp, all of the axioms for a field (Figure 5.2) are satisfied. For polynomials over pn, 
with n 7 1, operations modulo pn do not produce a field. In this section, we show 
what structure satisfies the axioms for a field in a set with pn elements and concen-
trate on GF(2n).

Motivation

Virtually all encryption algorithms, both symmetric and asymmetric, involve arith-
metic operations on integers. If one of the operations that is used in the algorithm is 
division, then we need to work in arithmetic defined over a field. For convenience 

This yields r1(x) = x3 + x2 + 1 and q1 (x) = x2 + x.

Then, we divide b(x) by r1(x).

x + 1
x3 + x2 + 1�x4 + x2 + x + 1

x4 + x3 + x
x3 + x2 + 1
x3 + x2 + 1

This yields r2(x) = 0 and q2(x) = x + 1.

Therefore, gcd[a(x), b(x)] = r1(x) = x3 + x2 + 1.
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and for implementation efficiency, we would also like to work with integers that fit 
exactly into a given number of bits with no wasted bit patterns. That is, we wish to 
work with integers in the range 0 through 2n - 1, which fit into an n-bit word.

Suppose we wish to define a conventional encryption algorithm that operates on 
data 8 bits at a time, and we wish to perform division. With 8 bits, we can repre-
sent integers in the range 0 through 255. However, 256 is not a prime number, so 
that if arithmetic is performed in Z256 (arithmetic modulo 256), this set of inte-
gers will not be a field. The closest prime number less than 256 is 251. Thus, the 
set Z251, using arithmetic modulo 251, is a field. However, in this case the 8-bit 
patterns representing the integers 251 through 255 would not be used, resulting 
in inefficient use of storage.

As the preceding example points out, if all arithmetic operations are to be used 
and we wish to represent a full range of integers in n bits, then arithmetic modulo 
2n will not work. Equivalently, the set of integers modulo 2n for n 7 1, is not a field. 
Furthermore, even if the encryption algorithm uses only addition and multiplica-
tion, but not division, the use of the set Z2n is questionable, as the following example 
illustrates.

Suppose we wish to use 3-bit blocks in our encryption algorithm and use only 
the operations of addition and multiplication. Then arithmetic modulo 8 is well 
defined, as shown in Table 5.1. However, note that in the multiplication table, the 
nonzero integers do not appear an equal number of times. For example, there are 
only four occurrences of 3, but twelve occurrences of 4. On the other hand, as was 
mentioned, there are finite fields of the form GF(2n), so there is in particular a 
finite field of order 23 = 8. Arithmetic for this field is shown in Table 5.2. In this 
case, the number of occurrences of the nonzero integers is uniform for multiplica-
tion. To summarize,

Integer 1 2 3   4 5 6 7
Occurrences in Z8 4 8 4 12 4 8 4
Occurrences in GF(23) 7 7 7   7 7 7 7

For the moment, let us set aside the question of how the matrices of Table 5.2 
were constructed and instead make some observations.

1. The addition and multiplication tables are symmetric about the main diago-
nal, in conformance to the commutative property of addition and multiplica-
tion. This property is also exhibited in Table 5.1, which uses mod 8 arithmetic.

2. All the nonzero elements defined by Table 5.2 have a multiplicative inverse, 
unlike the case with Table 5.1.

3. The scheme defined by Table 5.2 satisfies all the requirements for a finite 
field. Thus, we can refer to this scheme as GF(23).

4. For convenience, we show the 3-bit assignment used for each of the elements 
of GF(23).
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Intuitively, it would seem that an algorithm that maps the integers unevenly 
onto themselves might be cryptographically weaker than one that provides a uni-
form mapping. That is, a cryptanalytic technique might be able to exploit the fact 
that some integers occur more frequently and some less frequently in the ciphertext. 
Thus, the finite fields of the form GF(2n) are attractive for cryptographic algorithms.

To summarize, we are looking for a set consisting of 2n elements, together with 
a definition of addition and multiplication over the set that define a field. We can 
assign a unique integer in the range 0 through 2n - 1 to each element of the set. 
Keep in mind that we will not use modular arithmetic, as we have seen that this does 
not result in a field. Instead, we will show how polynomial arithmetic provides a 
means for constructing the desired field.

Modular Polynomial Arithmetic

Consider the set S of all polynomials of degree n - 1 or less over the field Zp. Thus, 
each polynomial has the form

 f(x) = an - 1x
n - 1 + an - 2x

n - 2 + g + a1x + a0 = a
n - 1

i = 0
aix

i 

000 001 010 011 100 101 110 111

+ 0 1 2 3 4 5 6 7

000 0 0 1 2 3 4 5 6 7

001 1 1 0 3 2 5 4 7 6

010 2 2 3 0 1 6 7 4 5

011 3 3 2 1 0 7 6 5 4

100 4 4 5 6 7 0 1 2 3

101 5 5 4 7 6 1 0 3 2

110 6 6 7 4 5 2 3 0 1

111 7 7 6 5 4 3 2 1 0

(a) Addition

000 001 010 011 100 101 110 111

* 0 1 2 3 4 5 6 7

000 0 0 0 0 0 0 0 0 0

001 1 0 1 2 3 4 5 6 7

010 2 0 2 4 6 3 1 7 5

011 3 0 3 6 5 7 4 1 2

100 4 0 4 3 7 6 2 5 1

101 5 0 5 1 4 2 7 3 6

110 6 0 6 7 1 5 3 2 4

111 7 0 7 5 2 1 6 4 3

(b) Multiplication

w -w w-1

0 0 -

1 1 1

2 2 5

3 3 6

4 4 7

5 5 2

6 6 3

7 7 4

(c) Additive and multiplicative 
inverses

Table 5.2 Arithmetic in GF(23)
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where each ai takes on a value in the set {0, 1, c , p - 1}. There are a total of pn 
different polynomials in S.

For p = 3 and n = 2, the 32 = 9 polynomials in the set are

0, 1, 2, x, x + 1, x + 2, 2x, 2x + 1, 2x + 2

For p = 2 and n = 3, the 23 = 8 polynomials in the set are

0, 1, x, x + 1, x2, x2 + 1, x2 + x, x2 + x + 1

With the appropriate definition of arithmetic operations, each such set S is a 
finite field. The definition consists of the following elements.

1. Arithmetic follows the ordinary rules of polynomial arithmetic using the basic 
rules of algebra, with the following two refinements.

2. Arithmetic on the coefficients is performed modulo p. That is, we use the rules 
of arithmetic for the finite field Zp.

3. If multiplication results in a polynomial of degree greater than n - 1, then the 
polynomial is reduced modulo some irreducible polynomial m(x) of degree n. 
That is, we divide by m(x) and keep the remainder. For a polynomial f(x), the 
remainder is expressed as r(x) = f(x) mod m(x).

The Advanced Encryption Standard (AES) uses arithmetic in the finite field 
GF(28), with the irreducible polynomial m(x) = x8 + x4 + x3 + x + 1. Consider 
the two polynomials f(x) = x6 + x4 + x2 + x + 1 and g(x) = x7 + x + 1. Then

 f(x) + g(x) = x6 + x4 + x2 + x + 1 + x7 + x + 1

 = x7 + x6 + x4 + x2

 f(x) * g(x) = x13 + x11 + x9 + x8 + x7

+ x7 + x5 + x3 + x2 + x

+ x6 + x4 + x2 + x + 1

 = x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1

x5 + x3

x8 + x4 + x3 + x + 1 >x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1
x13 + x9 + x8 + x6 + x5

x11 + x4 + x3

x11 + x7 + x6 + x4 + x3

x7 + x6 + 1

Therefore, f(x) * g(x) mod m(x) = x7 + x6 + 1.
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As with ordinary modular arithmetic, we have the notion of a set of residues 
in modular polynomial arithmetic. The set of residues modulo m(x), an nth-degree 
polynomial, consists of pn elements. Each of these elements is represented by one of 
the pn polynomials of degree m 6 n.

The residue class [x + 1], (mod m(x)), consists of all polynomials a(x) such that 
a(x) K (x + 1)(mod m(x)). Equivalently, the residue class [x + 1] consists of all 
polynomials a(x) that satisfy the equality a(x) mod m(x) = x + 1.

It can be shown that the set of all polynomials modulo an irreducible nth-
degree polynomial m(x) satisfies the axioms in Figure 5.2, and thus forms a finite 
field. Furthermore, all finite fields of a given order are isomorphic; that is, any two 
finite-field structures of a given order have the same structure, but the representa-
tion or labels of the elements may be different.

To construct the finite field GF(23), we need to choose an irreducible poly-
nomial of degree 3. There are only two such polynomials: (x3 + x2 + 1) and 
(x3 + x + 1). Using the latter, Table 5.3 shows the addition and multiplication 
tables for GF(23). Note that this set of tables has the identical structure to those 
of Table 5.2. Thus, we have succeeded in finding a way to define a field of order 23.

We can now read additions and multiplications from the table easily. For exam-
ple, consider binary 100 + 010 = 110. This is equivalent to x2 + x. Also consider 
100 * 010 = 011, which is equivalent to x2 * x = x3 and reduces to x + 1. That 
is, x3 mod (x3 + x + 1) = x + 1, which is equivalent to 011.

Finding the Multiplicative Inverse

Just as the Euclidean algorithm can be adapted to find the greatest common divi-
sor of two polynomials, the extended Euclidean algorithm can be adapted to find 
the multiplicative inverse of a polynomial. Specifically, the algorithm will find the 
multiplicative inverse of b(x) modulo a(x) if the degree of b(x) is less than the de-
gree of a(x) and gcd[a(x), b(x)] = 1. If a(x) is an irreducible polynomial, then it has 
no factor other than itself or 1, so that gcd[a(x), b(x)] = 1. The algorithm can be 
characterized in the same way as we did for the extended Euclidean algorithm for 
integers. Given polynomials a(x) and b(x) with the degree of a(x) greater than the 
degree of b(x), we wish to solve the following equation for the values v(x), w(x), and 
d(x), where d(x) = gcd[a(x), b(x)]:

 a(x)v(x) + b(x)w(x) = d(x) 

If d(x) = 1, then w(x) is the multiplicative inverse of b(x) modulo a(x). The calcula-
tions are as follows.
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Extended Euclidean Algorithm for Polynomials

Calculate Which satisfies Calculate Which satisfies

r-1(x) = a(x) v-1(x) = 1; w-1(x) = 0 a(x) = a(x)v-1(x) +
bw-1(x)

r0(x) = b(x) v0(x) = 0; w0(x) = 1 b(x) = a(x)v0(x) +
b(x)w0(x)

r1(x) = a(x) mod b(x)
q1(x) = quotient of
a(x)/b(x)

a(x) = q1(x)b(x) +
r1(x)

v1(x) = v-1(x) -
q1(x)v0(x) = 1
w1(x) = w-1(x) -
q1(x)w0(x) = -q1(x)

r1(x) = a(x)v1(x) +
b(x)w1(x)

r2(x) = b(x) mod r1(x)
q2(x) = quotient of
b(x)/r1(x)

b(x) = q2(x)r1(x) +
r2(x)

v2(x) = v0(x) -
q2(x)v1(x)
w2(x) = w0(x) -
q2(x)w1(x)

r2(x) = a(x)v2(x) +
b(x)w2(x)

r3(x) = r1(x) mod r2(x)
q3(x) = quotient of
r1(x)/r2(x)

r1(x) = q3(x)r2(x) +
r3(x)

v3(x) = v1(x) -
q3(x)v2(x)
w3(x) = w1(x) -
q3(x)w2(x)

r3(x) = a(x)v3(x) +
b(x)w3(x)

• • • •

• • • •
• • f •

rn(x) = rn - 2(x)
mod rn - 1(x)
qn(x) = quotient of
rn - 2(x)/rn - 2(x)

rn - 2(x) = qn(x)rn - 1(x)
+  rn(x)

vn(x) = vn - 2(x) -
qn(x)vn - 1(x)
wn(x) = wn - 2(x) -
qn(x)wn - 1(x)

rn(x) = a(x)vn(x) +
b(x)wn(x)

rn + 1(x) = rn - 1(x)
mod rn(x) = 0
qn + 1(x) = quotient of
rn - 1(x)/rn(x)

rn - 1(x) = qn + 1(x)rn(x)
+  0

d(x) = gcd(a(x),
b(x)) = rn(x)
v(x) = vn(x); w(x) =
wn(x)

Table 5.4 shows the calculation of the multiplicative inverse of (x7 + x + 1)
mod (x8 + x4 + x3 + x + 1). The result is that (x7 + x + 1)-1 = (x7). That is, 
(x7 + x + 1)(x7) K 1(mod (x8 + x4 + x3 + x + 1)).

Computational Considerations

A polynomial f(x) in GF(2n)

 f(x) = an - 1x
n - 1 + an - 2x

n - 2 + g + a1x + a0 = a
n - 1

i = 0
aix

i 

can be uniquely represented by the sequence of its n binary coefficients 
(an - 1, an - 2, c , a0). Thus, every polynomial in GF(2n) can be represented by an 
n-bit number.
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Addition We have seen that addition of polynomials is performed by adding cor-
responding coefficients, and, in the case of polynomials over Z2, addition is just the 
XOR operation. So, addition of two polynomials in GF(2n) corresponds to a bitwise 
XOR operation.

Initialization a(x) = x8 + x4 + x3 + x + 1; v-1(x) = 1; w-1(x) = 0
b(x) = x7 + x + 1; v0(x) = 0; w0(x) = 1

Iteration 1 q1(x) = x; r1(x) = x4 + x3 + x2 + 1
v1(x) = 1; w1(x) = x

Iteration 2 q2(x) = x3 + x2 + 1; r2(x) = x
v2(x) = x3 + x2 + 1; w2(x) = x4 + x3 + x + 1

Iteration 3 q3(x) = x3 + x2 + x; r3(x) = 1
v3(x) = x6 + x2 + x + 1; w3(x) = x7

Iteration 4 q4(x) = x; r4(x) = 0
v4(x) = x7 + x + 1; w4(x) = x8 + x4 + x3 + x + 1

Result d(x) = r3(x) = gcd(a(x), b(x)) = 1
w(x) = w3(x) = (x7 + x + 1)-1 mod (x8 + x4 + x3 + x + 1) = x7

Table 5.4 Extended Euclid [(x8 + x4 + x3 + x + 1), (x7 + x + 1)]

Tables 5.2 and 5.3 show the addition and multiplication tables for GF(23) mod-
ulo m(x) = (x3 + x + 1). Table 5.2 uses the binary representation, and Table 5.3 
uses the polynomial representation.

Consider the two polynomials in GF(28) from our earlier example:

f(x) = x6 + x4 + x2 + x + 1 and g(x) = x7 + x + 1.

(x6 + x4 + x2 + x + 1) + (x7 + x + 1) = x7 + x6 + x4 + x2 (polynomial notation)
(01010111) ⊕ (10000011) = (11010100)  (binary notation)
{57} ⊕ {83} = {D4}  (hexadecimal notation)7

7A basic refresher on number systems (decimal, binary, hexadecimal) can be found at the Computer 
Science Student Resource Site at WilliamStallings.com/StudentSupport.html. Here each of two groups 
of 4 bits in a byte is denoted by a single hexadecimal character, and the two characters are enclosed in 
brackets.

MultiplicAtion There is no simple XOR operation that will accomplish multiplica-
tion in GF(2n). However, a reasonably straightforward, easily implemented tech-
nique is available. We will discuss the technique with reference to GF(28) using 
m(x) = x8 + x4 + x3 + x + 1, which is the finite field used in AES. The technique 
readily generalizes to GF(2n).

The technique is based on the observation that

 x8 mod m(x) = [m(x) - x8] = (x4 + x3 + x + 1)   (5.4)
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A moment’s thought should convince you that Equation (5.4) is true; if you 
are not sure, divide it out. In general, in GF(2n) with an nth-degree polynomial p(x), 
we have xn mod p(x) = [p(x) - xn].

Now, consider a polynomial in GF(28), which has the form 
f(x) = b7x

7 + b6x
6 + b5x

5 + b4x
4 + b3x

3 + b2x
2 + b1x + b0. If we multiply by x, 

we have

 x * f(x) = (b7x
8 + b6x

7 + b5x
6 + b4x

5 + b3x
4

 + b2x
3 + b1x

2 + b0x) mod m(x)  (5.5)

If b7 = 0 in Equation (5.5), then the result is a polynomial of degree less than 
8, which is already in reduced form, and no further computation is necessary. If 
b7 = 1, then reduction modulo m(x) is achieved using Equation (5.4):

  x * f(x) = (b6x
7 + b5x

6 + b4x
5 + b3x

4 + b2x
3 + b1x

2 + b0x)

  + (x4 + x3 + x + 1) 

It follows that multiplication by x (i.e., 00000010) can be implemented as a 1-bit 
left shift followed by a conditional bitwise XOR with (00011011), which represents 
(x4 + x3 + x + 1). To summarize,

 x * f(x) = b (b6b5b4b3b2b1b00) if b7 = 0
(b6b5b4b3b2b1b00) ⊕ (00011011) if b7 = 1

   (5.6)

Multiplication by a higher power of x can be achieved by repeated application 
of Equation (5.6). By adding intermediate results, multiplication by any constant in 
GF(28) can be achieved.

In an earlier example, we showed that for f(x) = x6 + x4 + x2 + x + 1, g(x) = x7 +
x + 1, and m(x) = x8 + x4 + x3 + x + 1, we have f(x) * g(x) mod m(x) = x7 + x6 + 1. 
Redoing this in binary arithmetic, we need to compute (01010111) * (10000011). First, 
we determine the results of multiplication by powers of x:

 (01010111) * (00000010) = (10101110)
 (01010111) * (00000100) = (01011100) ⊕ (00011011) = (01000111)
 (01010111) * (00001000) = (10001110)
 (01010111) * (00010000) = (00011100) ⊕ (00011011) = (00000111)
 (01010111) * (00100000) = (00001110)
 (01010111) * (01000000) = (00011100)
 (01010111) * (10000000) = (00111000)

So,

 (01010111) * (10000011) = (01010111) * [(00000001) ⊕ (00000010) ⊕ (10000000)]

 = (01010111) ⊕ (10101110) ⊕ (00111000) = (11000001)

which is equivalent to x7 + x6 + 1.
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Using a Generator

An equivalent technique for defining a finite field of the form GF(2n), using a  
primitive polynomial, is sometimes more convenient. To begin, we need several new 
definitions. A generator g of a finite field F of order q (contains q elements) is an 
element whose first q - 1 powers generate all the nonzero elements of F. That is, the 
elements of F consist of 0, g0, g1, c , gq - 2.

Recall from the discussion in Chapter 2 that if a is a primitive root of n, then 
its powers a, a2, c , af(n) are distinct (mod n) and are all relatively prime to n. In 
particular, for a prime number p, if a is a primitive root of p, then a, a2, c , ap-1 
are distinct (mod p). Consider a field F defined by a polynomial f(x). An element b 
contained in F is called a root of the polynomial if f(b) = 0.

A monic polynomial f(x) is a primitive polynomial of degree n over a finite field 
GF(p) if and only if all of its roots are generators of the nonzero elements of the finite 
field GF(pn). In particular, it can be shown that f(x) satisfies the following equation:

xpn-1 K 1(mod(f(x))

Moreover, (pn - 1) is the least positive integer for which the preceding equation 
is true. That is, there is no integer m 6 (pn - 1) for which f(x) divides (xm - 1).
For example, for GF(23), f(x) = x3 +  x +  1 is a primitive polynomial. Thus,

x23-1 = x7 K 1(mod x3 +  x +  1)

which is easily shown.

All primitive polynomials are also irreducible, but the reverse is not true. For 
an irreducible polynomial that is not a primitive polynomial, we can find a  positive 
integer m 6 (pn - 1). For example, the irreducible polynomial used to define the 
GF(28) finite field for AES is f(x) = x8 +  x4 +  x3 +  x +  1. In this case, it can be eas-
ily calculated that f(x) divides (x51 -  1). But, because 51 … (28 - 1), f(x) is not a 
primitive polynomial. A root of this polynomial can generate only 51 nonzero ele-
ments of GF(28).

Let us consider the finite field GF(23), defined over the primitive polynomial  
x3 + x + 1, discussed previously. Thus, the generator g must satisfy 
f(g) = g3 + g + 1 = 0. Keep in mind, as discussed previously, that we need not 
find a numerical solution to this equality. Rather, we deal with polynomial arith-
metic in which arithmetic on the coefficients is performed modulo 2. Therefore, the 
solution to the preceding equality is g3 = -g - 1 = g + 1. We now show that g 
in fact generates all of the polynomials of degree less than 3. We have the following.

 g4 = g(g3) = g(g + 1) = g2 + g
 g5 = g(g4) = g(g2 + g) = g3 + g2 = g2 + g + 1
 g6 = g(g5) = g(g2 + g + 1) = g3 + g2 + g = g2 + g + g + 1 = g2 + 1
 g7 = g(g6) = g(g2 + 1) = g3 + g = g + g + 1 = 1 = g0
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Power 
Representation

Polynomial 
Representation

Binary 
Representation

Decimal (Hex) 
Representation

0 0 000 0

g0(=  g7) 1 001 1

g1 g 010 2

g2 g2 100 4

g3 g + 1 011 3

g4 g2 + g 110 6

g5 g2 + g + 1 111 7

g6 g2 + 1 101 5

Table 5.5 Generator for GF(23) using x3 + x + 1

We see that the powers of g generate all the nonzero polynomials in GF(23). 
Also, it should be clear that gk = gk mod7 for any integer k. Table 5.5 shows the 
power representation, as well as the polynomial and binary representations.

This power representation makes multiplication easy. To multiply in the 
power notation, add exponents modulo 7. For example, g4 * g6 = g(10 mod 7) =
g3 = g + 1. The same result is achieved using polynomial arithmetic: We have 
g4 = g2 + g and g6 = g2 + 1. Then, (g2 + g) * (g2 + 1) = g4 + g3 + g2 + g. 
Next, we need to determine (g4 + g3 + g2 + g) mod (g3 + g + 1) by division:

g + 1
g3 + g + 1�g4 + g3 + g2 + g

g4 + g2 + g
g3

g3 + g + 1
g + 1

We get a result of g + 1, which agrees with the result obtained using the power 
representation.

Table 5.6 shows the addition and multiplication tables for GF(23) using the 
power representation. Note that this yields the identical results to the polynomi-
al representation (Table 5.3) with some of the rows and columns i nterchanged.

In general, for GF(2n) with primitive polynomial f(x), determine 
gn = f(g) - gn. Then calculate all of the powers of g from gn + 1 through 
g2n - 2. The elements of the field correspond to the powers of g from g0 
through g2n - 2 plus the value 0. For multiplication of two elements in the 
field, use the equality gk = gk mod(2n - 1) for any integer k.
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Summary

In this section, we have shown how to construct a finite field of order 2n. Specifically, 
we defined GF(2n) with the following properties.

1. GF(2n) consists of 2n elements.

2. The binary operations +  and *  are defined over the set. The operations 
of addition, subtraction, multiplication, and division can be performed with-
out leaving the set. Each element of the set other than 0 has a multiplicative 
inverse.

We have shown that the elements of GF(2n) can be defined as the set of all 
polynomials of degree n - 1 or less with binary coefficients. Each such polynomial 
can be represented by a unique n-bit value. Arithmetic is defined as polynomial 
arithmetic modulo some irreducible polynomial of degree n. We have also seen that 
an equivalent definition of a finite field GF(2n) makes use of a generator and that 
arithmetic is defined using powers of the generator.

Review Questions 

 5.1 Briefly define a group.
 5.2 Briefly define a ring.
 5.3 Briefly define a field.
 5.4 Briefly define an irreducible polynomial.

Problems 

 5.1 Consider the group S7 of all permutations of 7 distinct symbols.
a. Let x = (1, 2, 3) (4, 6) and y = (2, 3, 4, 5, 6) in S7 be two permutations that are 

written in disjoint cycle notation. Compute x # y and y # x.
b. Is S7 abelian?

 5.2 Does the set of residue classes (mod3) form a group
a. with respect to modular addition?
b. with respect to modular multiplication?

Key Terms 

commutative
divisor
field

finite field
greatest common divisor
identity element

modular arithmetic
order
relatively prime

 5.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS
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 5.3 Let S = {0, a, b, c} The addition and multiplication on the set S is defined in the 
 following tables:

+ 0 a B C

0 0 a B C

A a 0 c B

B b c 0 A

C c b a 0

* 0 a b c

0 0 0 0 0

a 0 a b c

b 0 a b c

c 0 0 0 0

  Is S a noncommutative ring? Justify your answer.
 5.4 Develop a set of tables similar to Table 5.1 for GF(5).
 5.5 Demonstrate that the set of polynomials whose coefficients form a field is a ring.
 5.6 Let R be the field of real numbers. Let R[x] be the ring of polynomials with coeffi-

cients in field R. State whether each of the following statements is true or false.
a. R[x] is a commutative ring with unity, with multiplicative identity being the con-

stant polynomial 1.
b. f ∈ R[x] has a multiplicative inverse if and only if f is a non-zero constant.
c. R[x] is also a field.

 5.7 For polynomial arithmetic with coefficients in Z11, perform the following calculations.
a. (x2 + 2x + 9)(x3 + 11x2 + x + 7)
b. (8x2 + 3x + 2)(5x2 + 6)

 5.8 Determine which of the following polynomials are reducible over GF(2).
a. x2 + 1
b. x2 + x + 1
c. x4 + x + 1

 5.9 Determine the gcd of the following pairs of polynomials.
a. (x3 + 1) and (x2 + x + 1) over GF(2)
b. (x3 + x + 1) and (x2 + 1) over GF(3)
c. (x3 - 2x + 1) and (x2 - x - 2) over GF(5)
d. (x4 + 8x3 + 7x + 8) and (2x3 + 9x2 + 10x + 1) over GF(11)

 5.10 Develop a set of tables similar to Table 5.3 for GF(3) with m(x) = x2 + x + 1.
 5.11 Determine the multiplicative inverse of x2 + 1 in GF(23) with m(x) = x3 + x - 1.
 5.12 Develop a table similar to Table 5.5 for GF(25) with m(x) = x5 + x4 + x3 + x + 1.

Programming Problems 

 5.1 Write a simple four-function calculator in GF(24). You may use table lookups for the 
multiplicative inverses.

 5.2 Write a simple four-function calculator in GF(28). You should compute the multiplica-
tive inverses on the fly.
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The Advanced Encryption Standard (AES) was published by the National Institute 
of Standards and Technology (NIST) in 2001. AES is a symmetric block cipher 
that is intended to replace DES as the approved standard for a wide range of 
applications. 

[NECH01], available from NIST, summarizes the evaluation criteria used by 
NIST to select from among the candidates for AES, plus the rationale for picking 
Rijndael, which was the winning candidate. This material is useful in understanding not 
just the AES design but also the criteria by which to judge any symmetric encryption 
algorithm. The essence of the criteria was to develop an algorithm with a high level of 
security and good performance on a range of systems.

It is worth making additional comment about the performance of AES. 
Because of the popularity of AES, a number of efforts have been made to im-
prove performance through both software and hardware optimization. Most nota-
bly, in 2008, Intel introduced the Advanced Encryption Standard New Instructions 
(AES-NI) as a hardware extension to the x86 instruction set to improve the speed 
of encryption and decryption. The AES-NI instruction enables x86 processors to 
achieve a performance of 0.64 cycles/byte for an authenticated encryption mode 
known as AES-GCM (described in Chapter 12).

In 2018, Intel added vectorized instructions, referred to as VAES*, to the existing 
AES-NI for its high-end processors [INTE17]. These instructions are intended to push 
the performance of AES software further down, to a new theoretical throughput of 
0.16 cycles/byte [DRUC18].

AES has become the most widely used symmetric cipher. Compared to 
 public-key ciphers such as RSA, the structure of AES and most symmetric ciphers 
is quite complex and cannot be explained as easily as many other cryptographic 
algorithms. Accordingly, the reader may wish to begin with a simplified version of 
AES, which is described in Appendix A. This version allows the reader to perform 
encryption and decryption by hand and gain a good understanding of the working 
of the algorithm details. Classroom experience indicates that a study of this simpli-
fied version enhances understanding of AES. One possible approach is to read the 
chapter first, then carefully read Appendix A and then re-read the main body of 
the chapter.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

◆◆ Present an overview of the general structure of Advanced Encryption 
Standard (AES).

◆◆ Understand the four transformations used in AES.

◆◆ Explain the AES key expansion algorithm.

◆◆ Understand the use of polynomials with coefficients in GF(28).
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 6.1 FINITE FIELD ARITHMETIC

In AES, all operations are performed on 8-bit bytes. In particular, the arithmetic op-
erations of addition, multiplication, and division are performed over the finite field 
GF(28). Section 5.6 discusses such operations in some detail. For the reader who has 
not studied Chapter 5, and as a quick review for those who have, this section sum-
marizes the important concepts.

In essence, a field is a set in which we can do addition, subtraction, multiplica-
tion, and division without leaving the set. Division is defined with the following rule: 
a/b = a(b-1). An example of a finite field (one with a finite number of elements) is 
the set Zp consisting of all the integers {0, 1, c , p - 1}, where p is a prime num-
ber and in which arithmetic is carried out modulo p.

Virtually all encryption algorithms, both conventional and public-key, involve 
arithmetic operations on integers. If one of the operations used in the algorithm 
is division, then we need to work in arithmetic defined over a field; this is because 
division requires that each nonzero element have a multiplicative inverse. For con-
venience and for implementation efficiency, we would also like to work with inte-
gers that fit exactly into a given number of bits, with no wasted bit patterns. That is, 
we wish to work with integers in the range 0 through 2n - 1, which fit into an n-bit 
word. Unfortunately, the set of such integers, Z2n, using modular arithmetic, is not a 
field. For example, the integer 2 has no multiplicative inverse in Z2n, that is, there is 
no integer b, such that 2b mod 2n = 1.

There is a way of defining a finite field containing 2n elements; such a field is 
referred to as GF(2n). Consider the set, S, of all polynomials of degree n - 1 or less 
with binary coefficients. Thus, each polynomial has the form

 f(x) = an - 1x
n - 1 + an - 2x

n - 2 + g + a1x + a0 = a
n - 1

i = 0
aix

i 

where each ai takes on the value 0 or 1. There are a total of 2n different polynomials 
in S. For n = 3, the 23 = 8 polynomials in the set are

 
0 x x2 x2 + x
1 x + 1 x2 + 1 x2 + x + 1

 

With the appropriate definition of arithmetic operations, each such set S is a 
finite field. The definition consists of the following elements.

1. Arithmetic follows the ordinary rules of polynomial arithmetic using the basic 
rules of algebra with the following two refinements.

2. Arithmetic on the coefficients is performed modulo 2. This is the same as the 
XOR operation.

3. If multiplication results in a polynomial of degree greater than n - 1, then the 
polynomial is reduced modulo some irreducible polynomial m(x) of  degree n. 
That is, we divide by m(x) and keep the remainder. For a polynomial f(x), 
the remainder is expressed as r(x) = f(x) mod m(x). A polynomial m(x) is 
called irreducible if and only if m(x) cannot be expressed as a product of two 
 polynomials, both of degree lower than that of m(x).
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For example, to construct the finite field GF(23), we need to choose an irre-
ducible polynomial of degree 3. There are only two such polynomials: (x3 + x2 + 1) 
and (x3 + x + 1). Addition is equivalent to taking the XOR of like terms. Thus, 
(x + 1) + x = 1.

A polynomial in GF(2n) can be uniquely represented by its n binary coefficients 
(an - 1an - 2 c a0). Therefore, every polynomial in GF(2n) can be  represented  by 
an n-bit number. Addition is performed by taking the bitwise XOR of the two n-bit  
elements. There is no simple XOR operation that will accomplish multiplication in 
GF(2n). However, a reasonably straightforward, easily implemented,  technique is 
available. In essence, it can be shown that multiplication of a number in GF(2n) by 
2 consists of a left shift followed by a conditional XOR with a constant. Multiplication 
by larger numbers can be achieved by repeated application of this rule.

For example, AES uses arithmetic in the finite field GF(28) with the  irreducible 
polynomial m(x) = x8 + x4 + x3 + x + 1. Consider two elements A =
(a7a6 c a1a0) and B = (b7b6 c b1b0). The sum A + B = (c7c6 c c1c0), where 
ci = ai ⊕ bi. The multiplication {02} # A equals (a6 c a1a00) if a7 = 0 and equals 
(a6 c a1a00) ⊕ (00011011) if a7 = 1.1

To summarize, AES operates on 8-bit bytes. Addition of two bytes is defined as 
the bitwise XOR operation. Multiplication of two bytes is defined as multiplication 
in the finite field GF(28), with the irreducible polynomial2 m(x) = x8 + x4 + x3 +  
x + 1. The developers of Rijndael give as their motivation for selecting this one of 
the 30 possible irreducible polynomials of degree 8 that it is the first one on the list 
given in [LIDL94].

 6.2 AES STRUCTURE

General Structure

Figure 6.1 shows the overall structure of the AES encryption process. The cipher 
takes a plaintext block size of 128 bits, or 16 bytes. The key length can be 16, 24, or 
32 bytes (128, 192, or 256 bits). The algorithm is referred to as AES-128, AES-192, or 
AES-256, depending on the key length.

The input to the encryption and decryption algorithms is a single 128-bit 
block. In FIPS PUB 197, this block is depicted as a 4 * 4 square matrix of bytes. This 
block is copied into the State array, which is modified at each stage of encryption or 
decryption. After the final stage, State is copied to an output matrix. These opera-
tions are depicted in Figure 6.2a. Similarly, the key is depicted as a square matrix of 
bytes. This key is then expanded into an array of key schedule words. Figure 6.2b 
shows the expansion for the 128-bit key. Each word is four bytes, and the total key 
schedule is 44 words for the 128-bit key. Note that the ordering of bytes within a 
matrix is by column. So, for example, the first four bytes of a 128-bit plaintext input 
to the encryption cipher occupy the first column of the in matrix, the second four 

1In FIPS PUB 197, a hexadecimal number is indicated by enclosing it in curly brackets. We use that convention 
in this chapter.
2In the remainder of this discussion, references to GF(28) refer to the finite field defined with this 
polynomial.
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Figure 6.1 AES Encryption Process
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bytes occupy the second column, and so on. Similarly, the first four bytes of the 
expanded key, which form a word, occupy the first column of the w matrix.

The cipher consists of N rounds, where the number of rounds depends on the 
key length: 10 rounds for a 16-byte key, 12 rounds for a 24-byte key, and 14 rounds 
for a 32-byte key (Table 6.1). The first N - 1 rounds consist of four distinct 
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Figure 6.2 AES Data Structures
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(a) Input, state array, and output

(b) Key and expanded key

Key Size (words/bytes/bits) 4/16/128 6/24/192 8/32/256
Plaintext Block Size (words/bytes/bits) 4/16/128 4/16/128 4/16/128
Number of Rounds 10 12 14
Round Key Size (words/bytes/bits) 4/16/128 4/16/128 4/16/128
Expanded Key Size (words/bytes) 44/176 52/208 60/240

Table 6.1 AES Parameters
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transformation functions: SubBytes, ShiftRows, MixColumns, and AddRoundKey, 
which are described subsequently. The final round contains only three transforma-
tions, and there is a initial single transformation (AddRoundKey) before the first 
round, which can be considered Round 0. Each transformation takes one or more 
4 * 4 matrices as input and produces a 4 * 4 matrix as output. Figure 6.1 shows 
that the output of each round is a 4 * 4 matrix, with the output of the final round 
being the ciphertext. Also, the key expansion function generates N + 1 round keys, 
each of which is a distinct 4 * 4 matrix. Each round key serves as one of the inputs 
to the AddRoundKey transformation in each round.

Detailed Structure

Figure 6.3 shows the AES cipher in more detail, indicating the sequence of transfor-
mations in each round and showing the corresponding decryption function. As was 
done in Chapter 4, we show encryption proceeding down the page and decryption 
proceeding up the page.

Before delving into details, we can make several comments about the overall 
AES structure.

1. One noteworthy feature of this structure is that it is not a Feistel structure. 
Recall that, in the classic Feistel structure, half of the data block is used to 
modify the other half of the data block and then the halves are swapped. AES 
instead processes the entire data block as a single matrix during each round 
using substitutions and permutation.

2. The key that is provided as input is expanded into an array of forty-four 32-bit 
words, w[i]. Four distinct words (128 bits) serve as a round key for each round; 
these are indicated in Figure 6.3.

3. Four different stages are used, one of permutation and three of substitution:

◆■ Substitute bytes: Uses an S-box to perform a byte-by-byte substitution of 
the block.

◆■ ShiftRows: A simple permutation.

◆■ MixColumns: A substitution that makes use of arithmetic over GF(28).

◆■ AddRoundKey: A simple bitwise XOR of the current block with a portion 
of the expanded key.

4. The structure is quite simple. For both encryption and decryption, the cipher 
begins with an AddRoundKey stage, followed by nine rounds that each 
includes all four stages, followed by a tenth round of three stages. Figure 6.4 
depicts the structure of a full encryption round.

5. Only the AddRoundKey stage makes use of the key. For this reason, the cipher 
begins and ends with an AddRoundKey stage. Any other stage, applied at the 
beginning or end, is reversible without knowledge of the key and so would add 
no security.
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Figure 6.3 AES Encryption and Decryption
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6. The AddRoundKey stage is, in effect, a form of Vernam cipher and by itself 
would not be formidable. The other three stages together provide confu-
sion, diffusion, and nonlinearity, but by themselves would provide no security 
because they do not use the key. We can view the cipher as alternating opera-
tions of XOR encryption (AddRoundKey) of a block, followed by scrambling 
of the block (the other three stages), followed by XOR encryption, and so on. 
This scheme is both efficient and highly secure.
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Figure 6.4 AES Encryption Round
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7. Each stage is easily reversible. For the Substitute Byte, ShiftRows, and 
MixColumns stages, an inverse function is used in the decryption algorithm. 
For the AddRoundKey stage, the inverse is achieved by XORing the same 
round key to the block, using the result that A ⊕ B ⊕ B = A.

8. As with most block ciphers, the decryption algorithm makes use of the  expanded 
key in reverse order. However, the decryption algorithm is not identical to the 
encryption algorithm. This is a consequence of the particular structure of AES.

9. Once it is established that all four stages are reversible, it is easy to verify 
that decryption does recover the plaintext. Figure 6.3 lays out encryption 
and decryption going in opposite vertical directions. At each horizontal point 
(e.g., the dashed line in the figure), State is the same for both encryption and 
decryption.

10. The final round of both encryption and decryption consists of only three stages. 
Again, this is a consequence of the particular structure of AES and is required 
to make the cipher reversible.
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 6.3 AES TRANSFORMATION FUNCTIONS

We now turn to a discussion of each of the four transformations used in AES. For 
each stage, we describe the forward (encryption) algorithm, the inverse ( decryption) 
algorithm, and the rationale for the stage.

Substitute Bytes Transformation

Forward and Inverse TransFormaTIons The forward substitute byte 
 transformation, called SubBytes, is a simple table lookup (Figure 6.5a). AES  defines 
a 16 * 16 matrix of byte values, called an S-box (Table 6.2a), that contains a per-
mutation of all possible 256 8-bit values. Each individual byte of State is mapped 
into a new byte in the following way: The leftmost 4 bits of the byte are used as 
a row value and the rightmost 4 bits are used as a column value. These row and 
 column values serve as indexes into the S-box to select a unique 8-bit output value.  

Figure 6.5 AES Byte-Level Operations
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y
0 1 2 3 4 5 6 7 8 9 A B C D E F

0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76
1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0
2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15
3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75
4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84
5 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF
6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8

x
7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2
8 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73
9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB
A E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79
B E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08
C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A
D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E
E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF
F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16

(a) S-box

y
0 1 2 3 4 5 6 7 8 9 A B C D E F

0 52 09 6A D5 30 36 A5 38 BF 40 A3 9E 81 F3 D7 FB
1 7C E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E9 CB
2 54 7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA C3 4E
3 08 2E A1 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25
4 72 F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92
5 6C 70 48 50 FD ED B9 DA 5E 15 46 57 A7 8D 9D 84
6 90 D8 AB 00 8C BC D3 0A F7 E4 58 05 B8 B3 45 06

x
7 D0 2C 1E 8F CA 3F 0F 02 C1 AF BD 03 01 13 8A 6B
8 3A 91 11 41 4F 67 DC EA 97 F2 CF CE F0 B4 E6 73
9 96 AC 74 22 E7 AD 35 85 E2 F9 37 E8 1C 75 DF 6E
A 47 F1 1A 71 1D 29 C5 89 6F B7 62 0E AA 18 BE 1B
B FC 56 3E 4B C6 D2 79 20 9A DB C0 FE 78 CD 5A F4
C 1F DD A8 33 88 07 C7 31 B1 12 10 59 27 80 EC 5F
D 60 51 7F A9 19 B5 4A 0D 2D E5 7A 9F 93 C9 9C EF
E A0 E0 3B 4D AE 2A F5 B0 C8 EB BB 3C 83 53 99 61
F 17 2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 0C 7D

(b) Inverse S-box

Table 6.2 AES S-Boxes
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For  example, the hexadecimal value {95} references row 9, column 5 of the S-box, 
which contains the value {2A}. Accordingly, the value {95} is mapped into the value 
{2A}.

Here is an example of the SubBytes transformation:

EA 04 65 85 87 F2 4D 97

83 45 5D 96 EC 6E 4C 90

5C 33 98 B0 S 4A C3 46 E7

F0 2D AD C5 8C D8 95 A6

The S-box is constructed in the following fashion (Figure 6.6a).

Figure 6.6 Constuction of S-Box and IS-Box
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1. Initialize the S-box with the byte values in ascending sequence row by row. 
The  first row contains {00}, {01}, {02}, c , {0F}; the second row contains 
{10}, {11}, etc.; and so on. Thus, the value of the byte at row y, column x is {yx}.

2. Map each byte in the S-box to its multiplicative inverse in the finite field 
GF(28); the value {00} is mapped to itself.

3. Consider that each byte in the S-box consists of 8 bits labeled 
(b7, b6, b5, b4, b3, b2, b1, b0). Apply the following transformation to each bit of 
each byte in the S-box:

 bi
= = bi ⊕ b(i+ 4) mod 8 ⊕ b(i+ 5) mod 8 ⊕ b(i+ 6) mod 8 ⊕ b(i+ 7) mod 8 ⊕ ci (6.1)

 where ci is the ith bit of byte c with the value {63}; that is, 
(c7c6c5c4c3c2c1c0) = (01100011). The prime (′) indicates that the variable is to 
be updated by the value on the right. The AES standard depicts this transfor-
mation in matrix form as follows.

 Hb0
=

b1
=

b2
=

b3
=

b4
=

b5
=

b6
=

b7
=

X = H1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

X Hb0

b1

b2

b3

b4

b5

b6

b7

X + H1
1
0
0
0
1
1
0

X    (6.2)

Equation (6.2) has to be interpreted carefully. In ordinary matrix multiplica-
tion,3 each element in the product matrix is the sum of products of the elements of 
one row and one column. In this case, each element in the product matrix is the bit-
wise XOR of products of elements of one row and one column. Furthermore, the 
final addition shown in Equation (6.2) is a bitwise XOR. Recall from Section 5.6 
that the bitwise XOR is addition in GF(28).

As an example, consider the input value {95}. The multiplicative inverse in 
GF(28) is {95}-1 = {8A}, which is 10001010 in binary. Using Equation (6.2),

 H1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

X H0
1
0
1
0
0
0
1

X ⊕ H1
1
0
0
0
1
1
0

X = H1
0
0
1
0
0
1
0

X ⊕ H1
1
0
0
0
1
1
0

X = H0
1
0
1
0
1
0
0

X  

3For a brief review of the rules of matrix and vector multiplication, refer to Appendix B.
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The result is {2A}, which should appear in row {09} column {05} of the S-box. 
This is verified by checking Table 6.2a.

The inverse substitute byte transformation, called InvSubBytes, makes use of 
the inverse S-box shown in Table 6.2b. Note, for example, that the input {2A} pro-
duces the output {95}, and the input {95} to the S-box produces {2A}. The inverse 
S-box is constructed (Figure 6.6b) by applying the inverse of the transformation in 
Equation (6.1) followed by taking the multiplicative inverse in GF(28). The inverse 
transformation is

 bi
= = b(i+ 2) mod 8 ⊕ b(i+ 5) mod 8 ⊕ b(i+ 7) mod 8 ⊕ di 

where byte d = {05}, or 00000101. We can depict this transformation as follows.

 Hb0
=

b1
=

b2
=

b3
=

b4
=

b5
=

b6
=

b7
=

X = H0 0 1 0 0 1 0 1
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1
1 0 1 0 0 1 0 0
0 1 0 1 0 0 1 0
0 0 1 0 1 0 0 1
1 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0

X Hb0

b1

b2

b3

b4

b5

b6

b7

X + H1
0
1
0
0
0
0
0

X  

To see that InvSubBytes is the inverse of SubBytes, label the matrices in 
SubBytes and InvSubBytes as X and Y, respectively, and the vector versions of con-
stants c and d as C and D, respectively. For some 8-bit vector B, Equation (6.2) 
becomes B= = XB ⊕ C. We need to show that Y(XB ⊕ C) ⊕ D = B. To multiply 
out, we must show YXB ⊕ YC ⊕ D = B. This becomes

 H0 0 1 0 0 1 0 1
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1
1 0 1 0 0 1 0 0
0 1 0 1 0 0 1 0
0 0 1 0 1 0 0 1
1 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0

X H1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

X Hb0

b1

b2

b3

b4

b5

b6

b7

X ⊕  

 H0 0 1 0 0 1 0 1
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1
1 0 1 0 0 1 0 0
0 1 0 1 0 0 1 0
0 0 1 0 1 0 0 1
1 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0

X H 1
1
0
0
0
1
1
0

X ⊕ H1
0
1
0
0
0
0
0

X =  
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 H1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

X Hb0

b1

b2

b3

b4

b5

b6

b7

X ⊕ H1
0
1
0
0
0
0
0

X ⊕ H1
0
1
0
0
0
0
0

X = Hb0

b1

b2

b3

b4

b5

b6

b7

X  

We have demonstrated that YX equals the identity matrix, and the YC = D, 
so that YC ⊕ D equals the null vector.

raTIonale The S-box is designed to be resistant to known cryptanalytic attacks. 
Specifically, the Rijndael developers sought a design that has a low correlation 
 between input bits and output bits and the property that the output is not a linear 
mathematical function of the input [DAEM01]. The nonlinearity is due to the use 
of the multiplicative inverse. In addition, the constant in Equation (6.1) was chosen 
so that the S-box has no fixed points [S@box(a) = a] and no “opposite fixed points” 
[S@box(a) = a], where a is the bitwise complement of a.

Of course, the S-box must be invertible, that is, IS@box[S@box(a)] = a. 
However, the S-box does not self-inverse in the sense that it is not true that 
S@box(a) = IS@box(a). For example, S@box({95}) = {2A}, but IS@box({95}) = {AD}.

ShiftRows Transformation

Forward and Inverse TransFormaTIons The forward shift row transformation, 
called ShiftRows, is depicted in Figure 6.7a. The first row of State is not altered. For 
the second row, a 1-byte circular left shift is performed. For the third row, a 2-byte 
circular left shift is performed. For the fourth row, a 3-byte circular left shift is per-
formed. The following is an example of ShiftRows.

87 F2 4D 97 87 F2 4D 97

EC 6E 4C 90 6E 4C 90 EC

4A C3 46 E7 S 46 E7 4A C3

8C D8 95 A6 A6 8C D8 95

The inverse shift row transformation, called InvShiftRows, performs the cir-
cular shifts in the opposite direction for each of the last three rows, with a 1-byte 
circular right shift for the second row, and so on.

raTIonale The shift row transformation is more substantial than it may first 
 appear. This is because the State, as well as the cipher input and output, is treated 
as an array of four 4-byte columns. Thus, on encryption, the first 4 bytes of the 
plaintext are copied to the first column of State, and so on. Furthermore, as will 
be seen, the round key is applied to State column by column. Thus, a row shift 
moves an individual byte from one column to another, which is a linear distance 
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performed in GF(28). The MixColumns transformation on a single column of State 
can be expressed as

 s0, j
= = (2 # s0, j) ⊕ (3 # s1, j) ⊕ s2, j ⊕ s3, j

 s1, j
= = s0, j ⊕ (2 # s1, j) ⊕ (3 # s2, j) ⊕ s3, j

 s2, j
= = s0, j ⊕ s1, j ⊕ (2 # s2, j) ⊕ (3 # s3, j)

 s3, j
= = (3 # s0, j) ⊕ s1, j ⊕ s2, j ⊕ (2 # s3, j)  

 (6.4)

The following is an example of MixColumns:

87 F2 4D 97 47 40 A3 4C

6E 4C 90 EC 37 D4 70 9F

46 E7 4A C3 S 94 E4 3A 42

A6 8C D8 95 ED A5 A6 BC

Let us verify the first column of this example. Recall from Section 5.6 that, in 
GF(28), addition is the bitwise XOR operation and that multiplication can be per-
formed according to the rule established in Equation (5.6). In particular, multiplica-
tion of a value by x (i.e., by {02}) can be implemented as a 1-bit left shift followed by 
a conditional bitwise XOR with (0001 1011) if the leftmost bit of the original value 
(prior to the shift) is 1. Thus, to verify the MixColumns transformation on the first 
column, we need to show that

({02} # {87}) ⊕ ({03} # {6E}) ⊕ {46} ⊕ {A6} = {47}
{87} ⊕ ({02} # {6E}) ⊕ ({03} # {46}) ⊕ {A6} = {37}
{87} ⊕ {6E} ⊕ ({02} # {46}) ⊕ ({03} # {A6}) = {94}
({03} # {87}) ⊕ {6E} ⊕ {46} ⊕ ({02} # {A6}) = {ED}

For the first equation, we have {02} # {87} = (0000 1110) ⊕ (0001 1011) =  
(0001 0101) and {03} # {6E} = {6E} ⊕ ({02} # {6E}) = (0110 1110) ⊕ (1101 1100) =  
(1011 0010). Then,

 

{02} # {87} = 0001 0101
{03} # {6E} = 1011 0010
{46} = 0100 0110
{A6} = 1010 0110

0100 0111 = {47}

 

The other equations can be similarly verified.
The inverse mix column transformation, called InvMixColumns, is defined by 

the following matrix multiplication:D 0E 0B 0D 09
09 0E 0B 0D
0D 09 0E 0B
0B 0D 09 0E

T D s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

T = D s0,0
= s0,1

= s0,2
= s0,3

=

s1,0
= s1,1

= s1,2
= s1,3

=

s2,0
= s2,1

= s2,2
= s2,3

=

s3,0
= s3,1

= s3,2
= s3,3

=

T    (6.5)
4We follow the convention of FIPS PUB 197 and use the symbol #  to indicate multiplication over the 
finite field GF(28) and ⊕  to indicate bitwise XOR, which corresponds to addition in GF(28).

of a multiple of 4 bytes. Also note that the transformation ensures that the 4 bytes 
of one column are spread out to four different columns. Figure 6.4  illustrates the 
effect.

MixColumns Transformation

Forward and Inverse TransFormaTIons The forward mix column  transformation, 
called MixColumns, operates on each column individually. Each byte of a column 
is mapped into a new value that is a function of all four bytes in that column. The 
transformation can be defined by the following matrix multiplication on State 
(Figure 6.7b):

 D02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

T D s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

T = D s0,0
= s0,1

= s0,2
= s0,3

=

s1,0
= s1,1

= s1,2
= s1,3

=

s2,0
= s2,1

= s2,2
= s2,3

=

s3,0
= s3,1

= s3,2
= s3,3

=

T    (6.3)

Each element in the product matrix is the sum of products of elements of one row 
and one column. In this case, the individual additions and multiplications4 are 

Figure 6.7 AES Row and Column Operations

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

s0,0 s0,1 s0,2 s0,3

s1,1 s1,2 s1,3 s1,0

s2,2 s2,3 s2,0 s2,1

s3,3 s3,0 s3,1 s3,2

(a) Shift row transformation

(b) Mix column transformation

2  3  1  1
1  2  3  1
1  1  2  3
3  1  1  2

3

¿ ¿ ¿ ¿

¿¿¿¿

¿ ¿ ¿ ¿

¿¿¿¿

5
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performed in GF(28). The MixColumns transformation on a single column of State 
can be expressed as

 s0, j
= = (2 # s0, j) ⊕ (3 # s1, j) ⊕ s2, j ⊕ s3, j

 s1, j
= = s0, j ⊕ (2 # s1, j) ⊕ (3 # s2, j) ⊕ s3, j

 s2, j
= = s0, j ⊕ s1, j ⊕ (2 # s2, j) ⊕ (3 # s3, j)

 s3, j
= = (3 # s0, j) ⊕ s1, j ⊕ s2, j ⊕ (2 # s3, j)  

 (6.4)

The following is an example of MixColumns:

87 F2 4D 97 47 40 A3 4C

6E 4C 90 EC 37 D4 70 9F

46 E7 4A C3 S 94 E4 3A 42

A6 8C D8 95 ED A5 A6 BC

Let us verify the first column of this example. Recall from Section 5.6 that, in 
GF(28), addition is the bitwise XOR operation and that multiplication can be per-
formed according to the rule established in Equation (5.6). In particular, multiplica-
tion of a value by x (i.e., by {02}) can be implemented as a 1-bit left shift followed by 
a conditional bitwise XOR with (0001 1011) if the leftmost bit of the original value 
(prior to the shift) is 1. Thus, to verify the MixColumns transformation on the first 
column, we need to show that

({02} # {87}) ⊕ ({03} # {6E}) ⊕ {46} ⊕ {A6} = {47}
{87} ⊕ ({02} # {6E}) ⊕ ({03} # {46}) ⊕ {A6} = {37}
{87} ⊕ {6E} ⊕ ({02} # {46}) ⊕ ({03} # {A6}) = {94}
({03} # {87}) ⊕ {6E} ⊕ {46} ⊕ ({02} # {A6}) = {ED}

For the first equation, we have {02} # {87} = (0000 1110) ⊕ (0001 1011) =  
(0001 0101) and {03} # {6E} = {6E} ⊕ ({02} # {6E}) = (0110 1110) ⊕ (1101 1100) =  
(1011 0010). Then,

 

{02} # {87} = 0001 0101
{03} # {6E} = 1011 0010
{46} = 0100 0110
{A6} = 1010 0110

0100 0111 = {47}

 

The other equations can be similarly verified.
The inverse mix column transformation, called InvMixColumns, is defined by 

the following matrix multiplication:D 0E 0B 0D 09
09 0E 0B 0D
0D 09 0E 0B
0B 0D 09 0E

T D s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

T = D s0,0
= s0,1

= s0,2
= s0,3

=

s1,0
= s1,1

= s1,2
= s1,3

=

s2,0
= s2,1

= s2,2
= s2,3

=

s3,0
= s3,1

= s3,2
= s3,3

=

T    (6.5)
4We follow the convention of FIPS PUB 197 and use the symbol #  to indicate multiplication over the 
finite field GF(28) and ⊕  to indicate bitwise XOR, which corresponds to addition in GF(28).
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It is not immediately clear that Equation (6.5) is the inverse of Equation (6.3). 
We need to showD 0E 0B 0D 09

09 0E 0B 0D
0D 09 0E 0B
0B 0D 09 0E

T D02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

T D s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

T = D s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s0,3 s3,1 s3,2 s3,3

T
which is equivalent to showing

 D 0E 0B 0D 09
09 0E 0B 0D
0D 09 0E 0B
0B 0D 09 0E

T D02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

T = D1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

T    (6.6)

That is, the inverse transformation matrix times the forward transformation matrix 
equals the identity matrix. To verify the first column of Equation (6.6), we need 
to show

 ({0E} # {02}) ⊕ {0B} ⊕ {0D} ⊕ ({09} # {03}) = {01}
 ({09} # {02}) ⊕ {0E} ⊕ {0B} ⊕ ({0D} # {03}) = {00}
 ({0D} # {02}) ⊕ {09} ⊕ {0E} ⊕ ({0B} # {03}) = {00}

  ({0B} # {02}) ⊕ {0D} ⊕ {09} ⊕ ({0E} # {03}) = {00} 

For the first equation, we have {0E} # {02} = 00011100 and {09} # {03} =  
{09} ⊕ ({09} # {02}) = 00001001 ⊕ 00010010 = 00011011. Then

 

{0E} # {02} = 00011100
{0B} = 00001011
{0D} = 00001101
{09} # {03} = 00011011

00000001

 

The other equations can be similarly verified.
The AES document describes another way of characterizing the MixColumns 

transformation, which is in terms of polynomial arithmetic. In the standard, 
MixColumns is defined by considering each column of State to be a four-term poly-
nomial with coefficients in GF(28). Each column is multiplied modulo (x4 + 1) by 
the fixed polynomial a(x), given by

 a(x) = {03}x3 + {01}x2 + {01}x + {02}   (6.7)

Appendix 6A demonstrates that multiplication of each column of State by 
a(x) can be written as the matrix multiplication of Equation (6.3). Similarly, it 
can be seen that the transformation in Equation (6.5) corresponds to treating 
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each column as a four-term polynomial and multiplying each column by b(x), 
given by

 b(x) = {0B}x3 + {0D}x2 + {09}x + {0E}   (6.8)

It readily can be shown that b(x) = a-1(x) mod (x4 + 1).

raTIonale The coefficients of the matrix in Equation (6.3) are based on a linear 
code with maximal distance between code words, which ensures a good mixing 
among the bytes of each column. The mix column transformation combined with the 
shift row transformation ensures that after a few rounds all output bits depend on all 
input bits. See [DAEM99] for a discussion.

In addition, the choice of coefficients in MixColumns, which are all {01}, {02}, 
or {03}, was influenced by implementation considerations. As was discussed, multi-
plication by these coefficients involves at most a shift and an XOR. The coefficients 
in InvMixColumns are more formidable to implement. However, encryption was 
deemed more important than decryption for two reasons:

1. For the CFB and OFB cipher modes (Figures 7.5 and 7.6; described in 
Chapter 7), only encryption is used.

2. As with any block cipher, AES can be used to construct a message authentica-
tion code (Chapter 12), and for this, only encryption is used.

AddRoundKey Transformation

Forward and Inverse TransFormaTIons In the forward add round key 
 transformation, called AddRoundKey, the 128 bits of State are bitwise XORed with 
the 128 bits of the round key. As shown in Figure 6.5b, the operation is viewed as 
a columnwise operation between the 4 bytes of a State column and one word of 
the round key; it can also be viewed as a byte-level operation. The following is an 
 example of AddRoundKey:

47 40 A3 4C AC 19 28 57 EB 59 8B 1B

37 D4 70 9F 77 FA D1 5C 40 2E A1 C3

94 E4 3A 42 ⊕ 66 DC 29 00 = F2 38 13 42

ED A5 A6 BC F3 21 41 6A 1E 84 E7 D6

The first matrix is State, and the second matrix is the round key.
The inverse add round key transformation is identical to the forward add 

round key transformation, because the XOR operation is its own inverse.

raTIonale The add round key transformation is as simple as possible and affects 
every bit of State. The complexity of the round key expansion, plus the complexity 
of the other stages of AES, ensure security.

Figure 6.8 is another view of a single round of AES, emphasizing the mecha-
nisms and inputs of each transformation.
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 6.4 AES KEY EXPANSION

Key Expansion Algorithm

The AES key expansion algorithm takes as input a four-word (16-byte) key and 
produces a linear array of 44 words (176 bytes). This is sufficient to provide a four-
word round key for the initial AddRoundKey stage and each of the 10 rounds of the 
cipher. The pseudocode on the next page describes the expansion.

The key is copied into the first four words of the expanded key. The remainder 
of the expanded key is filled in four words at a time. Each added word w[i] depends 
on the immediately preceding word, w[i - 1], and the word four positions back, 
w[i - 4]. In three out of four cases, a simple XOR is used. For a word whose posi-
tion in the w array is a multiple of 4, a more complex function is used. Figure 6.9 
illustrates the generation of the expanded key, using the symbol g to represent that 
complex function. The function g consists of the following subfunctions.

Figure 6.8 Inputs for Single AES Round

SubBytes

State matrix
at beginning

of round

State matrix
at end

of round

MixColumns matrix
Round

key

Variable inputConstant inputs

ShiftRows

MixColumns

AddRoundKey

S-box

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02
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KeyExpansion (byte key[16], word w[44])
{
 word temp
 for (i = 0; i < 4; i++) w[i] = (key[4*i], key[4*i+1],
      key[4*i+2],
      key[4*i+3]);
 for (i = 4; i < 44; i++)
 {
 temp = w[i − 1];
 if (i mod 4 = 0) temp = SubWord (RotWord (temp))
     ⊕ Rcon[i/4];
 w[i] = w[i−4] ⊕ temp
 }
}

Figure 6.9 AES Key Expansion

k3

(a) Overall algorithm

(b) Function g

k7 k11 k15

k2 k6 k10 k14

k1 k5 k9 k13

k0 k4 k8 k12

w0 w1 w2 w3 g

w4 w5 w6 w7

w40 w41 w42 w43

g

B0 B1 B2 B3

w

w

B1 B2 B3 B0

0 0 0

B1

S S

B2
9 9 B3

S S

B0
9 9

RCj

œ
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1. RotWord performs a one-byte circular left shift on a word. This means that an 
input word [B0, B1, B2, B3] is transformed into [B1, B2, B3, B0].

2. SubWord performs a byte substitution on each byte of its input word, using the 
S-box (Table 6.2a).

3. The result of steps 1 and 2 is XORed with a round constant, Rcon[j].

The round constant is a word in which the three rightmost bytes are always 0. 
Thus, the effect of an XOR of a word with Rcon is to only perform an XOR on the left-
most byte of the word. The round constant is different for each round and is defined 
as Rcon[j] = (RC[j], 0, 0, 0), with RC[1] = 1, RC[j] = 2 # RC[j - 1] and with mul-
tiplication defined over the field GF(28). The values of RC[j] in hexadecimal are

j 1 2 3 4 5 6 7 8 9 10

RC[j] 01 02 04 08 10 20 40 80 1B 36

For example, suppose that the round key for round 8 is

 EA D2 73 21 B5 8D BA D2 31 2B F5 60 7F 8D 29 2F 

Then the first 4 bytes (first column) of the round key for round 9 are calculated as 
shown in Table 6.3

Table 6.3 Example Round Key Calculation

Description Value

i (decimal) 36

temp = w[i - 1] 7F8D292F

RotWord (temp) 8D292F7F

SubWord (RotWord (temp)) 5DA515D2

Rcon (9) 1B000000

SubWord (RotWord (temp)) ⊕ Rcon (9) 46A515D2

w[i - 4] EAD27321

w[i] = w[i - 4] ⊕ SubWord (RotWord (temp)) ⊕ Rcon (9) AC7766F3

Rationale

The Rijndael developers designed the expansion key algorithm to be resistant to 
known cryptanalytic attacks. The inclusion of a round-dependent round constant 
eliminates the symmetry, or similarity, between the ways in which round keys are 
generated in different rounds. The specific criteria that were used are [DAEM99]

◆■ Knowledge of a part of the cipher key or round key does not enable calcula-
tion of many other round-key bits.

◆■ An invertible transformation [i.e., knowledge of any Nk consecutive words of 
the expanded key enables regeneration of the entire expanded key (Nk = key 
size in words)].

◆■ Speed on a wide range of processors.
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◆■ Usage of round constants to eliminate symmetries.

◆■ Diffusion of cipher key differences into the round keys; that is, each key bit 
affects many round key bits.

◆■ Enough nonlinearity to prohibit the full determination of round key differ-
ences from cipher key differences only.

◆■ Simplicity of description.

The authors do not quantify the first point on the preceding list, but the idea 
is that if you know less than Nk consecutive words of either the cipher key or one 
of the round keys, then it is difficult to reconstruct the remaining unknown bits. The 
fewer bits one knows, the more difficult it is to do the reconstruction or to determine 
other bits in the key expansion.

 6.5 AN AES EXAMPLE

We now work through an example and consider some of its implications. Although 
you are not expected to duplicate the example by hand, you will find it informative 
to study the hex patterns that occur from one step to the next.

For this example, the plaintext is a hexadecimal palindrome. The plaintext, key, 
and resulting ciphertext are

Plaintext: 0123456789abcdeffedcba9876543210

Key: 0f1571c947d9e8590cb7add6af7f6798

Ciphertext: ff0b844a0853bf7c6934ab4364148fb9

Results

Table 6.4 shows the expansion of the 16-byte key into 10 round keys. As previ-
ously explained, this process is performed word by word, with each four-byte word 
 occupying one column of the word round-key matrix. The left-hand column shows 
the four round-key words generated for each round. The right-hand column shows 

Key Words Auxiliary Function

w0 = 0f 15 71 c9
w1 = 47 d9 e8 59
w2 = 0c b7 ad d6
w3 = af 7f 67 98

RotWord (w3) = 7f 67 98 af = x1
SubWord (x1) = d2 85 46 79 = y1
Rcon (1) = 01 00 00 00
y1 ⊕ Rcon (1) = d3 85 46 79 = z1

w4 = w0 ⊕ z1 = dc 90 37 b0
w5 = w4 ⊕ w1 = 9b 49 df e9
w6 = w5 ⊕ w2 = 97 fe 72 3f
w7 = w6 ⊕ w3 = 38 81 15 a7

RotWord (w7) = 81 15 a7 38 = x2
SubWord (x2) = 0c 59 5c 07 = y2
Rcon (2) = 02 00 00 00
y2 ⊕ Rcon (2) = 0e 59 5c 07 = z2

w8 = w4 ⊕ z2 = d2 c9 6b b7
w9 = w8 ⊕ w5 = 49 80 b4 5e
w10 = w9 ⊕ w6 = de 7e c6 61
w11 = w10 ⊕ w7 = e6 ff d3 c6

RotWord (w11) = ff d3 c6 e6 = x3
SubWord (x3) = 16 66 b4 83 = y3
Rcon (3) = 04 00 00 00
y3 ⊕ Rcon (3) = 12 66 b4 8e = z3

Table 6.4 Key Expansion for AES Example

(Continued)
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Key Words Auxiliary Function

w12 = w8 ⊕ z3 = c0 af df 39
w13 = w12 ⊕ w9 = 89 2f 6b 67
w14 = w13 ⊕ w10 = 57 51 ad 06
w15 = w14 ⊕ w11 = b1 ae 7e c0

RotWord (w15) = ae 7e c0 b1 = x4
SubWord (x4) = e4 f3 ba c8 = y4
Rcon (4) = 08 00 00 00
y4 ⊕ Rcon (4) = ec f3 ba c8 = 4

w16 = w12 ⊕ z4 = 2c 5c 65 f1
w17 = w16 ⊕ w13 = a5 73 0e 96
w18 = w17 ⊕ w14 = f2 22 a3 90
w19 = w18 ⊕ w15 = 43 8c dd 50

RotWord (w19) = 8c dd 50 43 = x5
SubWord (x5) = 64 c1 53 1a = y5
Rcon(5) = 10 00 00 00
y5 ⊕ Rcon (5) = 74 c1 53 1a = z5

w20 = w16 ⊕ z5 = 58 9d 36 eb
w21 = w20 ⊕ w17 = fd ee 38 7d
w22 = w21 ⊕ w18 = 0f cc 9b ed
w23 = w22 ⊕ w19 = 4c 40 46 bd

RotWord (w23) = 40 46 bd 4c = x6
SubWord (x6) = 09 5a 7a 29 = y6
Rcon(6) = 20 00 00 00
y6 ⊕ Rcon(6) = 29 5a 7a 29 = z6

w24 = w20 ⊕ z6 = 71 c7 4c c2
w25 = w24 ⊕ w21 = 8c 29 74 bf
w26 = w25 ⊕ w22 = 83 e5 ef 52
w27 = w26 ⊕ w23 = cf a5 a9 ef

RotWord (w27) = a5 a9 ef cf = x7
SubWord (x7) = 06 d3 bf 8a = y7
Rcon (7) = 40 00 00 00
y7 ⊕ Rcon(7) = 46 d3 df 8a = z7

w28 = w24 ⊕ z7 = 37 14 93 48
w29 = w28 ⊕ w25 = bb 3d e7 f7
w30 = w29 ⊕ w26 = 38 d8 08 a5
w31 = w30 ⊕ w27 = f7 7d a1 4a

RotWord (w31) = 7d a1 4a f7 = x8
SubWord (x8) = ff 32 d6 68 = y8
Rcon (8) = 80 00 00 00
y8 ⊕ Rcon(8) = 7f 32 d6 68 = z8

w32 = w28 ⊕ z8 = 48 26 45 20
w33 = w32 ⊕ w29 = f3 1b a2 d7
w34 = w33 ⊕ w30 = cb c3 aa 72
w35 = w34 ⊕ w32 = 3c be 0b 3

RotWord (w35) = be 0b 38 3c = x9
SubWord (x9) = ae 2b 07 eb = y9
Rcon (9) = 1B 00 00 00
y9 ⊕ Rcon (9) = b5 2b 07 eb = z9

w36 = w32 ⊕ z9 = fd 0d 42 cb
w37 = w36 ⊕ w33 = 0e 16 e0 1c
w38 = w37 ⊕ w34 = c5 d5 4a 6e
w39 = w38 ⊕ w35 = f9 6b 41 56

RotWord (w39) = 6b 41 56 f9 = x10
SubWord (x10) = 7f 83 b1 99 = y10
Rcon (10) = 36 00 00 00
y10 ⊕ Rcon (10) = 49 83 b1 99 = z10

w40 = w36 ⊕ z10 = b4 8e f3 52
w41 = w40 ⊕ w37 = ba 98 13 4e
w42 = w41 ⊕ w38 = 7f 4d 59 20
w43 = w42 ⊕ w39 = 86 26 18 76

Table 6.4 Continued

the steps used to generate the auxiliary word used in key expansion. We begin, of 
course, with the key itself serving as the round key for round 0.

Next, Table 6.5 shows the progression of State through the AES encryption 
process. The first column shows the value of State at the start of a round. For the 
first row, State is just the matrix arrangement of the plaintext. The second, third, and 
fourth columns show the value of State for that round after the SubBytes, ShiftRows, 
and MixColumns transformations, respectively. The fifth column shows the round 
key. You can verify that these round keys equate with those shown in Table 6.4. The 
first column shows the value of State resulting from the bitwise XOR of State after 
the preceding MixColumns with the round key for the preceding round.

Avalanche Effect

If a small change in the key or plaintext were to produce a corresponding small 
change in the ciphertext, this might be used to effectively reduce the size of the 
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Start of Round After SubBytes After ShiftRows After MixColumns Round Key

01 89 fe 76
23 ab dc 54
45 cd ba 32
67 ef 98 10

0f 47 0c af
15 d9 b7 7f
71 e8 ad 67
c9 59 d6 98

0e ce f2 d9
36 72 6b 2b
34 25 17 55
ae b6 4e 88

ab 8b 89 35
05 40 7f f1
18 3f f0 fc
e4 4e 2f c4

ab 8b 89 35
40 7f f1 05
f0 fc 18 3f
c4 e4 4e 2f

b9 94 57 75
e4 8e 16 51
47 20 9a 3f
c5 d6 f5 3b

dc 9b 97 38
90 49 fe 81
37 df 72 15
b0 e9 3f a7

65 0f c0 4d
74 c7 e8 d0
70 ff e8 2a
75 3f ca 9c

4d 76 ba e3
92 c6 9b 70
51 16 9b e5
9d 75 74 de

4d 76 ba e3
c6 9b 70 92
9b e5 51 16
de 9d 75 74

8e 22 db 12
b2 f2 dc 92
df 80 f7 c1
2d c5 1e 52

d2 49 de e6
c9 80 7e ff
6b b4 c6 d3
b7 5e 61 c6

5c 6b 05 f4
7b 72 a2 6d
b4 34 31 12
9a 9b 7f 94

4a 7f 6b bf
21 40 3a 3c
8d 18 c7 c9
b8 14 d2 22

4a 7f 6b bf
40 3a 3c 21
c7 c9 8d 18
22 b8 14 d2

b1 c1 0b cc
ba f3 8b 07
f9 1f 6a c3
1d 19 24 5c

c0 89 57 b1
af 2f 51 ae
df 6b ad 7e
39 67 06 c0

71 48 5c 7d
15 dc da a9
26 74 c7 bd
24 7e 22 9c

a3 52 4a ff
59 86 57 d3
f7 92 c6 7a
36 f3 93 de

a3 52 4a ff
86 57 d3 59
c6 7a f7 92
de 36 f3 93

d4 11 fe 0f
3b 44 06 73
cb ab 62 37
19 b7 07 ec

2c a5 f2 43
5c 73 22 8c
65 0e a3 dd
f1 96 90 50

f8 b4 0c 4c
67 37 24 ff
ae a5 c1 ea
e8 21 97 bc

41 8d fe 29
85 9a 36 16
e4 06 78 87
9b fd 88 65

41 8d fe 29
9a 36 16 85
78 87 e4 06
65 9b fd 88

2a 47 c4 48
83 e8 18 ba
84 18 27 23
eb 10 0a f3

58 fd 0f 4c
9d ee cc 40
36 38 9b 46
eb 7d ed bd

72 ba cb 04
1e 06 d4 fa
b2 20 bc 65
00 6d e7 4e

40 f4 1f f2
72 6f 48 2d
37 b7 65 4d
63 3c 94 2f

40 f4 1f f2
6f 48 2d 72
65 4d 37 b7
2f 63 3c 94

7b 05 42 4a
1e d0 20 40
94 83 18 52
94 c4 43 fb

71 8c 83 cf
c7 29 e5 a5
4c 74 ef a9
c2 bf 52 ef

0a 89 c1 85
d9 f9 c5 e5
d8 f7 f7 fb
56 7b 11 14

67 a7 78 97
35 99 a6 d9
61 68 68 0f
b1 21 82 fa

67 a7 78 97
99 a6 d9 35
68 0f 61 68
fa b1 21 82

ec 1a c0 80
0c 50 53 c7
3b d7 00 ef
b7 22 72 e0

37 bb 38 f7
14 3d d8 7d
93 e7 08 a1
48 f7 a5 4a

db a1 f8 77
18 6d 8b ba
a8 30 08 4e
ff d5 d7 aa

b9 32 41 f5
ad 3c 3d f4
c2 04 30 2f
16 03 0e ac

b9 32 41 f5
3c 3d f4 ad
30 2f c2 04
ac 16 03 0e

b1 1a 44 17
3d 2f ec b6
0a 6b 2f 42
9f 68 f3 b1

48 f3 cb 3c
26 1b c3 be
45 a2 aa 0b
20 d7 72 38

f9 e9 8f 2b
1b 34 2f 08
4f c9 85 49
bf bf 81 89

99 1e 73 f1
af 18 15 30
84 dd 97 3b
08 08 0c a7

99 1e 73 f1
18 15 30 af
97 3b 84 dd
a7 08 08 0c

31 30 3a c2
ac 71 8c c4
46 65 48 eb
6a 1c 31 62

fd 0e c5 f9
0d 16 d5 6b
42 e0 4a 41
cb 1c 6e 56

cc 3e ff 3b
a1 67 59 af
04 85 02 aa
a1 00 5f 34

4b b2 16 e2
32 85 cb 79
f2 97 77 ac
32 63 cf 18

4b b2 16 e2
85 cb 79 32
77 ac f2 97
18 32 63 cf

b4 ba 7f 86
8e 98 4d 26
f3 13 59 18
52 4e 20 76

ff 08 69 64
0b 53 34 14
84 bf ab 8f
4a 7c 43 b9

Table 6.5 AES Example
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Round
Number of Bits 

that Differ

0123456789abcdeffedcba9876543210
0023456789abcdeffedcba9876543210

1

0 0e3634aece7225b6f26b174ed92b5588
0f3634aece7225b6f26b174ed92b5588

1

1 657470750fc7ff3fc0e8e8ca4dd02a9c
c4a9ad090fc7ff3fc0e8e8ca4dd02a9c

20

2 5c7bb49a6b72349b05a2317ff46d1294
fe2ae569f7ee8bb8c1f5a2bb37ef53d5

58

3 7115262448dc747e5cdac7227da9bd9c
ec093dfb7c45343d689017507d485e62

59

4 f867aee8b437a5210c24c1974cffeabc
43efdb697244df808e8d9364ee0ae6f5

61

5 721eb200ba06206dcbd4bce704fa654e
7b28a5d5ed643287e006c099bb375302

68

6 0ad9d85689f9f77bc1c5f71185e5fb14
3bc2d8b6798d8ac4fe36a1d891ac181a

64

7 db18a8ffa16d30d5f88b08d777ba4eaa
9fb8b5452023c70280e5c4bb9e555a4b

67

8 f91b4fbfe934c9bf8f2f85812b084989
20264e1126b219aef7feb3f9b2d6de40

65

9 cca104a13e678500ff59025f3bafaa34
b56a0341b2290ba7dfdfbddcd8578205

61

10 ff0b844a0853bf7c6934ab4364148fb9
612b89398d0600cde116227ce72433f0

58

Table 6.6 Avalanche Effect in AES: Change in Plaintext

plaintext (or key) space to be searched. What is desired is the avalanche  effect, in 
which a small change in plaintext or key produces a large change in the ciphertext.

Using the example from Table 6.5, Table 6.6 shows the result when the eighth 
bit of the plaintext is changed. The second column of the table shows the value of 
the State matrix at the end of each round for the two plaintexts. Note that after 
just one round, 20 bits of the State vector differ. After two rounds, close to half 
the bits differ. This magnitude of difference propagates through the remaining 
rounds. A bit difference in approximately half the positions in the most desirable 
outcome. Clearly, if almost all the bits are changed, this would be logically equiva-
lent to almost none of the bits being changed. Put another way, if we select two 
plaintexts at random, we would expect the two plaintexts to differ in about half of 
the bit positions and the two ciphertexts to also differ in about half the positions.

Table 6.7 shows the change in State matrix values when the same plaintext is 
used and the two keys differ in the eighth bit. That is, for the second case, the key is 
0e1571c947d9e8590cb7add6af7f6798. Again, one round produces a signifi-
cant change, and the magnitude of change after all subsequent rounds is roughly 
half the bits. Thus, based on this example, AES exhibits a very strong avalanche 
effect.
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Round
Number of Bits 

that Differ

0123456789abcdeffedcba9876543210
0123456789abcdeffedcba9876543210

0

0 0e3634aece7225b6f26b174ed92b5588
0f3634aece7225b6f26b174ed92b5588

1

1 657470750fc7ff3fc0e8e8ca4dd02a9c
c5a9ad090ec7ff3fc1e8e8ca4cd02a9c

22

2 5c7bb49a6b72349b05a2317ff46d1294
90905fa9563356d15f3760f3b8259985

58

3 7115262448dc747e5cdac7227da9bd9c
18aeb7aa794b3b66629448d575c7cebf

67

4 f867aee8b437a5210c24c1974cffeabc
f81015f993c978a876ae017cb49e7eec

63

5 721eb200ba06206dcbd4bce704fa654e
5955c91b4e769f3cb4a94768e98d5267

81

6 0ad9d85689f9f77bc1c5f71185e5fb14
dc60a24d137662181e45b8d3726b2920

70

7 db18a8ffa16d30d5f88b08d777ba4eaa
fe8343b8f88bef66cab7e977d005a03c

74

8 f91b4fbfe934c9bf8f2f85812b084989
da7dad581d1725c5b72fa0f9d9d1366a

67

9 cca104a13e678500ff59025f3bafaa34
0ccb4c66bbfd912f4b511d72996345e0

59

10 ff0b844a0853bf7c6934ab4364148fb9
fc8923ee501a7d207ab670686839996b

53

Table 6.7 Avalanche Effect in AES: Change in Key

Note that this avalanche effect is stronger than that for DES (Table 4.2), which 
requires three rounds to reach a point at which approximately half the bits are 
changed, both for a bit change in the plaintext and a bit change in the key.

 6.6 AES IMPLEMENTATION

Equivalent Inverse Cipher

As was mentioned, the AES decryption cipher is not identical to the encryption 
cipher (Figure 6.3). That is, the sequence of transformations for decryption differs 
from that for encryption, although the form of the key schedules for encryption 
and decryption is the same. This has the disadvantage that two separate software 
or firmware modules are needed for applications that require both encryption and 
decryption. There is, however, an equivalent version of the decryption algorithm 
that has the same structure as the encryption algorithm. The equivalent version has 
the same sequence of transformations as the encryption algorithm (with transfor-
mations replaced by their inverses). To achieve this equivalence, a change in key 
schedule is needed.
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Two separate changes are needed to bring the decryption structure in line 
with the encryption structure. As illustrated in Figure 6.3, an encryption round has 
the structure SubBytes, ShiftRows, MixColumns, AddRoundKey. The standard 
decryption round has the structure InvShiftRows, InvSubBytes, AddRoundKey, 
InvMixColumns. Thus, the first two stages of the decryption round need to be inter-
changed, and the second two stages of the decryption round need to be interchanged.

InTerchangIng InvshIFTrows and InvsubbyTes InvShiftRows affects the se-
quence of bytes in State but does not alter byte contents and does not depend on 
byte contents to perform its transformation. InvSubBytes affects the contents of 
bytes in State but does not alter byte sequence and does not depend on byte se-
quence to perform its transformation. Thus, these two operations commute and can 
be interchanged. For a given State Si,

 InvShiftRows [InvSubBytes (Si)] = InvSubBytes [InvShiftRows (Si)] 

InTerchangIng addroundKey and InvmIxcolumns The transformations 
AddRoundKey and InvMixColumns do not alter the sequence of bytes in State. If we 
view the key as a sequence of words, then both AddRoundKey and InvMixColumns 
operate on State one column at a time. These two operations are linear with respect 
to the column input. That is, for a given State Si and a given round key wj,

 InvMixColumns (Si ⊕ wj) = [InvMixColumns (Si)] ⊕ [InvMixColumns (wj)] 

To see this, suppose that the first column of State Si is the sequence (y0, y1, y2, y3) 
and the first column of the round key wj is (k0, k1, k2, k3). Then we need to showD 0E 0B 0D 09

09 0E 0B 0D
0D 09 0E 0B
0B 0D 09 0E

T Dy0 ⊕ k0

y1 ⊕ k1

y2 ⊕ k2

y3 ⊕ k3

T = D 0E 0B 0D 09
09 0E 0B 0D
0D 09 0E 0B
0B 0D 09 0E

T Dy0

y1

y2

y3

T ⊕ D 0E 0B 0D 09
09 0E 0B 0D
0D 09 0E 0B
0B 0D 09 0E

T Dk0

k1

k2

k3

T
Let us demonstrate that for the first column entry. We need to show

 [{0E} # (y0 ⊕ k0)] ⊕ [{0B} # (y1 ⊕ k1)] ⊕ [{0D} # (y2 ⊕ k2)] ⊕ [{09} # (y3 ⊕ k3)]

= [{0E} # y0] ⊕ [{0B} # y1] ⊕ [{0D} # y2] ⊕ [{09} # y3] ⊕
 [{0E} # k0] ⊕ [{0B} # k1] ⊕ [{0D} # k2] ⊕ [{09} # k3] 

This equation is valid by inspection. Thus, we can interchange AddRoundKey 
and InvMixColumns, provided that we first apply InvMixColumns to the round 
key. Note that we do not need to apply InvMixColumns to the round key for the 
input to the first AddRoundKey transformation (preceding the first round) nor 
to the last AddRoundKey transformation (in round 10). This is because these two 
AddRoundKey transformations are not interchanged with InvMixColumns to pro-
duce the equivalent decryption algorithm.

Figure 6.10 illustrates the equivalent decryption algorithm.
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Figure 6.10 Equivalent Inverse Cipher
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Implementation Aspects

The Rijndael proposal [DAEM99] provides some suggestions for efficient im-
plementation on 8-bit processors, typical for current smart cards, and on 32-bit 
 processors, typical for PCs.

8-bIT Processor AES can be implemented very efficiently on an 8-bit processor. 
AddRoundKey is a bytewise XOR operation. ShiftRows is a simple byte-shifting 
operation. SubBytes operates at the byte level and only requires a table of 256 
bytes.

The transformation MixColumns requires matrix multiplication in the field 
GF(28), which means that all operations are carried out on bytes. MixColumns only 
requires multiplication by {02} and {03}, which, as we have seen, involved simple 
shifts, conditional XORs, and XORs. This can be implemented in a more efficient 
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way that eliminates the shifts and conditional XORs. Equation set (6.4) shows the 
equations for the MixColumns transformation on a single column. Using the iden-
tity {03} # x = ({02} # x) ⊕ x, we can rewrite Equation set (6.4) as follows.

 Tmp = s0, j ⊕ s1, j ⊕ s2, j ⊕ s3, j

 s0, j
= = s0, j ⊕ Tmp ⊕ [2 # (s0, j ⊕ s1, j)]

 s1, j
= = s1, j ⊕ Tmp ⊕ [2 # (s1, j ⊕ s2, j)] (6.9)

 s2, j
= = s2, j ⊕ Tmp ⊕ [2 # (s2, j ⊕ s3, j)]

 s3, j
= = s3, j ⊕ Tmp ⊕ [2 # (s3, j ⊕ s0, j)]

Equation set (6.9) is verified by expanding and eliminating terms.
The multiplication by {02} involves a shift and a conditional XOR. Such 

an  implementation may be vulnerable to a timing attack of the sort described in 
Section 4.4. To counter this attack and to increase processing efficiency at the cost 
of some storage, the multiplication can be replaced by a table lookup. Define the 256-
byte table X2, such that X2[i] = {02} # i. Then Equation set (6.9) can be  rewritten as

 Tmp = s0, j ⊕ s1, j ⊕ s2, j ⊕ s3, j

 s0, j
= = s0, j ⊕ Tmp ⊕ X2[s0, j ⊕ s1, j]

 s1, c
= = s1, j ⊕ Tmp ⊕ X2[s1, j ⊕ s2, j]

 s2, c
= = s2, j ⊕ Tmp ⊕ X2[s2, j ⊕ s3, j]

 s3, j
= = s3, j ⊕ Tmp ⊕ X2[s3, j ⊕ s0, j]

32-bIT Processor The implementation described in the preceding subsection uses 
only 8-bit operations. For a 32-bit processor, a more efficient implementation can be 
achieved if operations are defined on 32-bit words. To show this, we first define the 
four transformations of a round in algebraic form. Suppose we begin with a State 
matrix consisting of elements ai, j and a round-key matrix consisting of  elements ki, j. 
Then the transformations can be expressed as follows.

SubBytes bi, j = S[ai, j]

ShiftRows D c0, j

c1, j

c2, j

c3, j

T = D b0, j

b1, j- 1

b2, j- 2

b3, j- 3

T
MixColumns Dd0, j

d1, j

d2, j

d3, j

T = D02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

T D c0, j

c1, j

c2, j

c3, j

T
AddRoundKey D e0, j

e1, j

e2, j

e3, j

T = Dd0, j

d1, j

d2, j

d3, j

T ⊕ Dk0, j

k1, j

k2, j

k3, j

T
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In the ShiftRows equation, the column indices are taken mod 4. We can 
 combine all of these expressions into a single equation:

 D e0, j

e1, j

e2, j

e3, j

T = D02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

T D S[a0, j]
S[a1, j- 1]
S[a2, j- 2]
S[a3, j- 3]

T ⊕ Dk0, j

k1, j

k2, j

k3, j

T
 = § D02

01
01
03

T # S[a0, j]¥ ⊕ § D03
02
01
01

T # S[a1, j- 1]¥ ⊕ § D01
03
02
01

T # S[a2, j- 2]¥
⊕ § D01

01
03
02

T # S[a3, j- 3]¥ ⊕ Dk0, j

k1, j

k2, j

k3, j

T  

In the second equation, we are expressing the matrix multiplication as a linear com-
bination of vectors. We define four 256-word (1024-byte) tables as follows.

T0[x] = § D02
01
01
03

T # S[x]¥ T1[x] = § D03
02
01
01

T # S[x]¥ T2[x] = § D01
03
02
01

T # S[x]¥ T3[x] = § D01
01
03
02

T # S[x]¥
Thus, each table takes as input a byte value and produces a column vector (a 32-bit 
word) that is a function of the S-box entry for that byte value. These tables can be 
calculated in advance.

We can define a round function operating on a column in the following fashion.

 D s0, j
=

s1, j
=

s2, j
=

s3, j
=

T = T0[s0, j] ⊕ T1[s1, j- 1] ⊕ T2[s2, j- 2] ⊕ T3[s3, j- 3] ⊕ Dk0, j

k1, j

k2, j

k3, j

T  

As a result, an implementation based on the preceding equation requires only 
four table lookups and four XORs per column per round, plus 4 Kbytes to store the 
table. The developers of Rijndael believe that this compact, efficient implementa-
tion was probably one of the most important factors in the selection of Rijndael 
for AES.
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 6.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Advanced Encryption 
Standard (AES)

avalanche effect

field
finite field

key expansion
S-box

Key Terms 

Review Questions 

 6.1 What was the original set of criteria used by NIST to evaluate candidate AES ciphers?
 6.2 What was the final set of criteria used by NIST to evaluate candidate AES ciphers?
 6.3 How many different key sizes are approved for AES?
 6.4 What is the purpose of the State array?
 6.5 How is the S-box constructed?
 6.6 What is the rationale behind the choice of the specific S-box in the AES?
 6.7 Briefly describe ShiftRows.
 6.8 How many bytes in State are affected by ShiftRows?
 6.9 Why are different round constants used in the key expansion of AES?
 6.10 Briefly describe AddRoundKey.
 6.11 Briefly describe the key expansion algorithm.
 6.12 What is the difference between SubBytes and SubWord?
 6.13 What is the difference between ShiftRows and RotWord?
 6.14 How is the avalanche effect different in AES in comparison to DES? Quantify it in 

terms of number of rounds.

Problems 

 6.1 In the discussion of MixColumns and InvMixColumns, it was stated that

 b(x) = a-1(x) mod(x4 + 1) 

  where a(x) = {03}x3 + {01}x2 + {01}x + {02} and b(x) = {0B}x3 + {0D}x2 + {09}x +  
{0E.} Show that this is true.

 6.2 a. What is {02}-1 in GF(28)?
b. Verify the entry for {02} in the S-box.

 6.3 Show the first eight words of the key expansion for a 128-bit key of all ones.
 6.4 Given the plaintext {0F0E0D0C0B0A09080706050403020100} and the key 

{02020202020202020202020202020202}:
a. Show the original contents of State, displayed as a 4 * 4 matrix.
b. Show the value of State after initial AddRoundKey.
c. Show the value of State after SubBytes.
d. Show the value of State after ShiftRows.
e. Show the value of State after MixColumns.

 6.5 Verify Equation (6.11) in Appendix 6A. That is, show that xi mod (x4 + 1) = xi mod 4.

M06_STAL7484_08_GE_C06.indd   196 20/04/22   11:51



Appendix 6A / pOLYnOMiALS WiTH COeFFiCienTS in GF(28) 197

 6.6 For each of the following elements of DES, indicate the differences with the compa-
rable element in AES.
a. Key size
b. Block size
c. S-box
d. Key expansion function
e. Initial and final permutation

 6.7 How are the coefficients chosen in the specific matrix used in the MixColumns?
 6.8 In the subsection on implementation aspects, it is mentioned that AES can be imple-

mented on 32-bit processors by using certain table lookups. Explain this technique 
and compute the overall cost of implementing one round of AES using the technique.

 6.9 Compute the output of the MixColumns transformation for the following sequence 
of input bytes “A1 B2 C3 D4.” Apply the InvMixColumns transformation to the ob-
tained result to verify your calculations. Change the first byte of the input from “A1” 
to “A3”, perform the MixColumns transformation again for the new input, and deter-
mine how many bits have changed in the output.

 6.10 Use the key 1010 1001 1100 0011 to encrypt the plaintext “hi” as expressed in ASCII 
as 0110 1000 0110 1001. The designers of S-AES got the ciphertext 0011 1110 1111 
1011. Did you?

 6.11 Show that the matrix given here, with entries in GF(24), is the inverse of the matrix 
used in the MixColumns step of S-AES.¢x3 + 1 x

x x3 + 1
≤

 6.12 Carefully write up a complete decryption of the ciphertext 0011 1110 1111 1011 using 
the key 1010 1001 1100 0011 and the S-AES algorithm. You should get the plaintext 
we started with in Problem 6.10. Note that the inverse of the S-boxes can be done with 
a reverse table lookup. The inverse of the MixColumns step is given by the matrix in 
the previous problem.

 6.13 The decryption algorithm in AES uses a sequence of operations that is the reverse of 
the sequence used in the encryption algorithm. This has the disadvantage that differ-
ent circuits or codes are required to implement the encryption and decryption func-
tionality. Explain how it is possible to modify the decryption algorithm such that we 
can bring the decryption structure in line with the encryption structure in AES. 

Programming Problems 

 6.1 Create software that can encrypt and decrypt using S-AES. Test data: A binary 
 plaintext of 0110 1111 0110 1011 encrypted with a binary key of 1010 0111 0011 1011 
should give a binary ciphertext of 0000 0111 0011 1000. Decryption should work 
 correspondingly.

 6.2 Implement a differential cryptanalysis attack on 1-round S-AES.

 APPENDIX 6A POLYNOMIALS WITH COEFFICIENTS IN GF(28)

In Section 5.5, we discussed polynomial arithmetic in which the coefficients are in Zp  
and the polynomials are defined modulo a polynomial m(x) whose highest power 
is some integer n. In this case, addition and multiplication of coefficients occurred 
within the field Zp; that is, addition and multiplication were performed modulo p.
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The AES document defines polynomial arithmetic for polynomials of degree 3 
or less with coefficients in GF(28). The following rules apply.

1. Addition is performed by adding corresponding coefficients in GF(28). As 
was pointed out Section 5.4, if we treat the elements of GF(28) as 8-bit strings, 
then addition is equivalent to the XOR operation. So, if we have

 a(x) = a3x
3 + a2x

2 + a1x + a0   (6.10)

and

 b(x) = b3x
3 + b2x

2 + b1x + b0   (6.11)

then

 a(x) + b(x) = (a3 ⊕ b3)x3 + (a2 ⊕ b2)x2 + (a1 ⊕ b1)x + (a0 ⊕ b0) 

2. Multiplication is performed as in ordinary polynomial multiplication with 
two refinements:

a. Coefficients are multiplied in GF(28).
b. The resulting polynomial is reduced mod (x4 + 1).

We need to keep straight which polynomial we are talking about. Recall from 
Section 5.6 that each element of GF(28) is a polynomial of degree 7 or less with bi-
nary coefficients, and multiplication is carried out modulo a polynomial of degree 
8. Equivalently, each element of GF(28) can be viewed as an 8-bit byte whose bit 
values correspond to the binary coefficients of the corresponding polynomial. For 
the sets defined in this section, we are defining a polynomial ring in which each ele-
ment of this ring is a polynomial of degree 3 or less with coefficients in GF(28), and 
multiplication is carried out modulo a polynomial of degree 4. Equivalently, each 
element of this ring can be viewed as a 4-byte word whose byte values are elements 
of GF(28) that correspond to the 8-bit coefficients of the corresponding polynomial.

We denote the modular product of a(x) and b(x) by a(x) ⊕ b(x). To com-
pute d(x) = a(x) ⊕ b(x), the first step is to perform a multiplication without the 
modulo operation and to collect coefficients of like powers. Let us express this as 
c(x) = a(x) * b(x). Then

 c(x) = c6x
6 + c5x

5 + c4x
4 + c3x

3 + c2x
2 + c1x + c0   (6.12)

where

 

c0 = a0
# b0 c4 = (a3

# b1) ⊕ (a2
# b2) ⊕ (a1

# b3)
c1 = (a1

# b0) ⊕ (a0
# b1) c5 = (a3

# b2) ⊕ (a2
# b3)

c2 = (a2
# b0) ⊕ (a1

# b1) ⊕ (a0
# b2) c6 = a3

# b3

c3 = (a3
# b0) ⊕ (a2

# b1) ⊕ (a1
# b2) ⊕ (a0

# b3)

 

The final step is to perform the modulo operation

 d(x) = c(x) mod (x4 + 1) 
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That is, d(x) must satisfy the equation

 c(x) = [(x4 + 1) * q(x)] ⊕ d(x) 

such that the degree of d(x) is 3 or less.
A practical technique for performing multiplication over this polynomial ring 

is based on the observation that

 xi mod (x4 + 1) = xi mod 4   (6.13)

If we now combine Equations (6.12) and (6.13), we end up with

 d(x) = c(x) mod (x4 + 1)

 = [c6x
6 + c5x

5 + c4x
4 + c3x

3 + c2x
2 + c1x + c0] mod (x4 + 1)

 = c3x
3 + (c2 ⊕ c6)x2 + (c1 ⊕ c5)x + (c0 ⊕ c4)

Expanding the ci coefficients, we have the following equations for the coef-
ficients of d(x).

 d0 = (a0
# b0) ⊕ (a3

# b1) ⊕ (a2
# b2) ⊕ (a1

# b3)
 d1 = (a1

# b0) ⊕ (a0
# b1) ⊕ (a3

# b2) ⊕ (a2
# b3)

 d2 = (a2
# b0) ⊕ (a1

# b1) ⊕ (a0
# b2) ⊕ (a3

# b3)
 d3 = (a3

# b0) ⊕ (a2
# b1) ⊕ (a1

# b2) ⊕ (a0
# b3)

This can be written in matrix form:

 Dd0

d1

d2

d3

T = Da0 a3 a2 a1

a1 a0 a3 a2

a2 a1 a0 a3

a3 a2 a1 a0

T Db0

b1

b2

b3

T  (6.14)

MixColumns Transformation 

In the discussion of MixColumns, it was stated that there were two equivalent 
ways of defining the transformation. The first is the matrix multiplication shown in 
Equation (6.3), which is repeated here:

 D02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

T D s0, 0 s0, 1 s0, 2 s0, 3

s1, 0 s1, 1 s1, 2 s1, 3

s2, 0 s2, 1 s2, 2 s2, 3

s3, 0 s3, 1 s3, 2 s3, 3

T = D s0, 0
= s0, 1

= s0, 2
= s0, 3

=

s1, 0
= s1, 1

= s1, 2
= s1, 3

=

s2, 0
= s2, 1

= s2, 2
= s2, 3

=

s3, 0
= s3, 1

= s3, 2
= s3, 3

=

T  

The second method is to treat each column of State as a four-term polynomial 
with coefficients in GF(28). Each column is multiplied modulo (x4 + 1) by the fixed 
polynomial a(x), given by

 a(x) = {03}x3 + {01}x2 + {01}x + {02} 

APPEndix 6A / PolynomiAlS WiTH CoEFFiCiEnTS in GF(28) 199
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From Equation (6.10), we have a3 = {03}; a2 = {01}; a1 = {01}; and 
a0 = {02}. For the jth column of State, we have the polynomial colj(x) = s3,jx

3 +
s2,jx

2 + s1,jx + s0, j. Substituting into Equation (6.14), we can  express 
d(x) = a(x) * colj(x) as

 Dd0

d1

d2

d3

T = Da0 a3 a2 a1

a1 a0 a3 a2

a2 a1 a0 a3

a3 a2 a1 a0

T D s0,j

s1,j

s2,j

s3,j

T = D02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

T D s0,j

s1,j

s2,j

s3,j

T  

which is equivalent to Equation (6.3).

Multiplication by x 

Consider the multiplication of a polynomial in the ring by x: c(x) = x ⊕ b(x). 
We have

 c(x) = x ⊕ b(x) = [x * (b3x
3 + b2x

2 + b1x + b0] mod (x4 + 1) 

 = (b3x
4 + b2x

3 + b1x
2 + b0x) mod (x4 + 1)

 = b2x
3 + b1x

2 + b0x + b3

Thus, multiplication by x corresponds to a 1-byte circular left shift of the 4 bytes 
in the word representing the polynomial. If we represent the polynomial as a 4-byte 
column vector, then we have

 D c0

c1

c2

c3

T = D00 00 00 01
01 00 00 00
00 01 00 00
00 00 01 00

T Db0

b1

b2

b3

T  
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202  CHAPTER 7 / BlOCk CiPHER OPERATiOn

This chapter continues our discussion of symmetric ciphers. We begin with the topic of 
multiple encryption, looking in particular at the most widely used multiple-encryption 
scheme: triple DES.

The chapter next turns to the subject of block cipher modes of operation. We 
find that there are a number of different ways to apply a block cipher to plaintext, each 
with its own advantages and particular applications.

 7.1 MULTIPLE ENCRYPTION AND TRIPLE DES

Because of its vulnerability to brute-force attack, DES, once the most widely used 
symmetric cipher, has been largely replaced by stronger encryption schemes. Two 
approaches have been taken. One approach is to design a completely new algorithm 
that is resistant to both cryptanalytic and brute-force attacks, of which AES is a 
prime example. Another alternative, which preserves the existing investment in soft-
ware and equipment, is to use multiple encryption with DES and multiple keys. We 
begin by examining the simplest example of this second alternative. We then look at 
the widely accepted triple DES (3DES) algorithm.

Double DES

The simplest form of multiple encryption has two encryption stages and two keys 
(Figure 7.1a). Given a plaintext P and two encryption keys K1 and K2, ciphertext C 
is generated as

 C = E(K2, E(K1, P)) 

Decryption requires that the keys be applied in reverse order:

 P = D(K1, D(K2, C)) 

For DES, this scheme appears to involve a key length of 56 * 2 = 112 bits, and 
should result in a dramatic increase in cryptographic strength. But we need to exam-
ine the algorithm more closely.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

 ◆ Analyze the security of multiple encryption schemes.

 ◆ Explain the meet-in-the-middle attack.

 ◆ Compare and contrast ECB, CBC, CFB, OFB, and counter modes of operation.

 ◆ Present an overview of the XTS-AES mode of operation.
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7.1 / MulTiPlE EnCRyPTiOn And TRiPlE dEs 203

Reduction to a Single Stage Suppose it were true for DES, for all 56-bit key val-
ues, that given any two keys K1 and K2, it would be possible to find a key K3 such that

  E(K2, E(K1, P)) = E(K3, P)   (7.1)

If this were the case, then double encryption, and indeed any number of stages of 
multiple encryption with DES, would be useless because the result would be equiva-
lent to a single encryption with a single 56-bit key.

On the face of it, it does not appear that Equation (7.1) is likely to hold. 
Consider that encryption with DES is a mapping of 64-bit blocks to 64-bit blocks. 
In fact, the mapping can be viewed as a permutation. That is, if we consider all 264 
possible input blocks, DES encryption with a specific key will map each block into 
a unique 64-bit block. Otherwise, if, say, two given input blocks mapped to the same 
output block, then decryption to recover the original plaintext would be impossible. 

Figure 7.1 Multiple Encryption
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With 264 possible inputs, how many different mappings are there that generate a 
permutation of the input blocks? The value is easily seen to be

 (264)! = 10347380000000000000000 7 (101020
) 

On the other hand, DES defines one mapping for each different key, for a total 
number of mappings:

 256 6 1017 

Therefore, it is reasonable to assume that if DES is used twice with different keys, it 
will produce one of the many mappings that are not defined by a single application 
of DES. Although there was much supporting evidence for this assumption, it was 
not until 1992 that the assumption was proven [CAMP92].

Meet-in-the-Middle attack Thus, the use of double DES results in a mapping 
that is not equivalent to a single DES encryption. But there is a way to attack this 
scheme, one that does not depend on any particular property of DES but that will 
work against any block encryption cipher.

The algorithm, known as a meet-in-the-middle attack, was first described in 
[DIFF77]. It is based on the observation that, if we have

 C = E(K2, E(K1, P)) 

then (see Figure 7.1a)

 X = E(K1, P) = D(K2, C) 

Given a known pair, (P, C), the attack proceeds as follows. First, encrypt P for all 
256 possible values of K1. Store these results in a table and then sort the table by the 
values of X. Next, decrypt C using all 256 possible values of K2. As each decryption 
is produced, check the result against the table for a match. If a match occurs, then 
test the two resulting keys against a new known plaintext–ciphertext pair. If the two 
keys produce the correct ciphertext, accept them as the correct keys.

For any given plaintext P, there are 264 possible ciphertext values that could 
be produced by double DES. Double DES uses, in effect, a 112-bit key, so that there 
are 2112 possible keys. Therefore, for a given plaintext P, the maximum number of 
different 112-bit keys that could produce a given ciphertext C is 2112/264 = 248. Thus, 
the foregoing procedure can produce about 248 false alarms on the first (P, C) pair. 
A similar argument indicates that with an additional 64 bits of known plaintext 
and ciphertext, the false alarm rate is reduced to 248 - 64 = 2-16. Put another way, 
if the meet-in-the-middle attack is performed on two blocks of known plaintext– 
ciphertext, the probability that the correct keys are determined is 1 - 2-16. The 
 result is that a known plaintext attack will succeed against double DES, which has a 
key size of 112 bits, with an effort on the order of 256, which is not much more than 
the 255 required for single DES.

Triple DES with Two Keys

An obvious counter to the meet-in-the-middle attack is to use three stages of 
encryption with three different keys. Using DES as the underlying algorithm, 
this approach is commonly referred to as 3DES, or Triple Data Encryption 
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Algorithm (TDEA). As shown in Figure 7.1b, there are two versions of 3DES; one 
using two keys and one using three keys. NIST SP 800-67 (Recommendation for 
the Triple Data Encryption Block Cipher, January 2012) defines the two-key and 
three-key versions. We look first at the strength of the two-key version and then 
examine the three-key version.

Two-key triple encryption was first proposed by Tuchman [TUCH79]. The 
function follows an encrypt-decrypt-encrypt (EDE) sequence (Figure 7.1b):

 C = E(K1, D(K2, E(K1, P)))

 P = D(K1, E(K2, D(K1, C)))

There is no cryptographic significance to the use of decryption for the second 
stage. Its only advantage is that it allows users of 3DES to decrypt data encrypted by 
users of the older single DES:

 C = E(K1, D(K1, E(K1, P))) = E(K1, P)

 P = D(K1, E(K1, D(K1, C))) = D(K1, C)

3DES with two keys is a relatively popular alternative to DES and has been 
adopted for use in the key management standards ANSI X9.17 and ISO 8732.1

Currently, there are no practical cryptanalytic attacks on 3DES. Coppersmith 
[COPP94] notes that the cost of a brute-force key search on 3DES is on the order of 
2112 ≈ (5 * 1033) and estimates that the cost of differential cryptanalysis suffers an 
exponential growth, compared to single DES, exceeding 1052.

It is worth looking at several proposed attacks on 3DES that, although not 
practical, give a flavor for the types of attacks that have been considered and that 
could form the basis for more successful future attacks.

The first serious proposal came from Merkle and Hellman [MERK81]. Their 
plan involves finding plaintext values that produce a first intermediate value of 
A = 0 (Figure 7.1b) and then using the meet-in-the-middle attack to determine 
the two keys. The level of effort is 256, but the technique requires 256 chosen  
plaintext–ciphertext pairs, which is a number unlikely to be provided by the holder 
of the keys.

A known-plaintext attack is outlined in [VANO90]. This method is an improve-
ment over the chosen-plaintext approach but requires more effort. The attack is 
based on the observation that if we know A and C (Figure 7.1b), then the problem 
reduces to that of an attack on double DES. Of course, the attacker does not know 
A, even if P and C are known, as long as the two keys are unknown. However, the 
attacker can choose a potential value of A and then try to find a known (P, C) pair 
that produces A. The attack proceeds as follows.

1. Obtain n (P, C) pairs. This is the known plaintext. Place these in a table 
(Table 1) sorted on the values of P (Figure 7.2b).

1American National Standards Institute (ANSI): Financial Institution Key Management (Wholesale). 
From its title, X9.17 appears to be a somewhat obscure standard. Yet a number of techniques specified in 
this standard have been adopted for use in other standards and applications, as we shall see throughout 
this book.
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2. Pick an arbitrary value a for A, and create a second table (Figure 7.2c) with 
entries defined in the following fashion. For each of the 256 possible keys 
K1 = i, calculate the plaintext value Pi such that

Pi = D(i, a)

For each Pi that matches an entry in Table 1, create an entry in Table 2 consist-
ing of the K1 value and the value of B that is produced for the (P, C) pair from 
Table 1, assuming that value of K1:

B = D(i, C)

At the end of this step, sort Table 2 on the values of B.

3. We now have a number of candidate values of K1 in Table 2 and are in a 
 position to search for a value of K2. For each of the 256 possible keys K2 = j, 
 calculate the second intermediate value for our chosen value of a:

Bj = D(j, a)

At each step, look up Bj in Table 2. If there is a match, then the corresponding 
key i from Table 2 plus this value of j are candidate values for the unknown 
keys (K1, K2). Why? Because we have found a pair of keys (i, j) that produce a 
known (P, C) pair (Figure 7.2a).

4. Test each candidate pair of keys (i, j) on a few other plaintext–ciphertext pairs. 
If a pair of keys produces the desired ciphertext, the task is complete. If no pair 
succeeds, repeat from step 1 with a new value of a.

Figure 7.2 Known-Plaintext Attack on Triple DES
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For a given known (P, C), the probability of selecting the unique value of a 
that leads to success is 1/264. Thus, given n (P, C) pairs, the probability of success for 
a single selected value of a is n/264. A basic result from probability theory is that the 
expected number of draws required to draw one red ball out of a bin containing n 
red balls and N - n green balls is (N + 1)/(n + 1) if the balls are not replaced. So 
the expected number of values of a that must be tried is, for large n,

 
264 + 1
n + 1

≈
264

n
 

Thus, the expected running time of the attack is on the order of

 (256) 
264

n
= 2120 - log2 n 

Triple DES with Three Keys

Although the attacks just described appear impractical, anyone using two-key 3DES 
may feel some concern. Thus, many researchers now feel that three-key 3DES is the 
preferred alternative (e.g., [KALI96a]). In SP 800-57, Part 1 (Recommendation for 
Key Management—Part 1: General, July 2012) NIST recommends that 2-key 3DES 
be retired as soon as practical and replaced with 3-key 3DES. 

Three-key 3DES is defined as

 C = E(K3, D(K2, E(K1, P))) 

Backward compatibility with DES is provided by putting K3 = K2 or K1 = K2. One 
might expect that 3TDEA would provide 56 #  3 = 168 bits of strength. However, 
there is an attack on 3TDEA that reduces the strength to the work that would be 
involved in exhausting a 112-bit key [MERK81].

A number of Internet-based applications have adopted three-key 3DES, 
including PGP and S/MIME, both discussed in Chapter 21.

 7.2 ELECTRONIC CODEBOOK

A block cipher takes a fixed-length block of text of length b bits and a key as input 
and produces a b-bit block of ciphertext. If the amount of plaintext to be encrypted 
is greater than b bits, then the block cipher can still be used by breaking the plaintext 
up into b-bit blocks. When multiple blocks of plaintext are encrypted using the same 
key, a number of security issues arise. To apply a block cipher in a variety of applica-
tions, five modes of operation have been defined by NIST (SP 800-38A). In essence, 
a mode of operation is a technique for enhancing the effect of a cryptographic algo-
rithm or adapting the algorithm for an application, such as applying a block cipher 
to a sequence of data blocks or a data stream. The five modes are intended to cover 
a wide variety of applications of encryption for which a block cipher could be used. 
These modes are intended for use with any symmetric block cipher, including triple 
DES and AES. The modes are summarized in Table 7.1 and described in this and the 
following sections.
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The simplest mode is the electronic codebook (ECB) mode, in which plaintext 
is handled one block at a time and each block of plaintext is encrypted using the 
same key (Figure 7.3). The term codebook is used because, for a given key, there is 
a unique ciphertext for every b-bit block of plaintext. Therefore, we can imagine a 
gigantic codebook in which there is an entry for every possible b-bit plaintext pat-
tern showing its corresponding ciphertext.

For a message longer than b bits, the procedure is simply to break the message 
into b-bit blocks, padding the last block if necessary. Decryption is performed one 
block at a time, always using the same key. In Figure 7.3, the plaintext (padded as 
necessary) consists of a sequence of b-bit blocks, P1, P2, c , PN; the correspond-
ing sequence of ciphertext blocks is C1, C2, c , CN. We can define ECB mode as 
follows.

ECB Cj = E(K, Pj)   j = 1, c , N Pj = D(K, Cj)   j = 1, c , N

The ECB mode should be used only to secure messages shorter than a single 
block of underlying cipher (i.e., 64 bits for 3DES and 128 bits for AES), such as 
to encrypt a secret key. Because in most of the cases messages are longer than the 
encryption block mode, this mode has a minimum practical value.

The most significant characteristic of ECB is that if the same b-bit block 
of plaintext appears more than once in the message, it always produces the same 
ciphertext.

Mode Description Typical Application

Electronic Codebook (ECB) Each block of plaintext bits is 
encoded independently using the 
same key.

• Secure transmission of 
single values (e.g., an 
encryption key)

Cipher Block Chaining (CBC) The input to the encryption algo-
rithm is the XOR of the next block 
of plaintext and the preceding 
block of ciphertext.

• General-purpose block-
oriented transmission

• Authentication

Cipher Feedback (CFB) Input is processed s bits at a time. 
Preceding ciphertext is used as 
input to the encryption algorithm 
to produce pseudorandom output, 
which is XORed with plaintext to 
produce next unit of ciphertext.

• General-purpose 
stream-oriented 
transmission

• Authentication

Output Feedback (OFB) Similar to CFB, except that the 
input to the encryption algorithm 
is the preceding encryption output, 
and full blocks are used.

• Stream-oriented 
transmission over noisy 
channel (e.g., satellite 
communication)

Counter (CTR) Each block of plaintext is XORed 
with an encrypted counter. The 
counter is incremented for each 
subsequent block.

• General-purpose block-
oriented transmission

• Useful for high-speed 
requirements

Table 7.1 Block Cipher Modes of Operation
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For lengthy messages, the ECB mode may not be secure. If the message is 
highly structured, it may be possible for a cryptanalyst to exploit these regularities. 
For example, if it is known that the message always starts out with certain predefined 
fields, then the cryptanalyst may have a number of known plaintext–ciphertext pairs 
to work with. If the message has repetitive elements with a period of repetition a 
multiple of b bits, then these elements can be identified by the analyst. This may help 
in the analysis or may provide an opportunity for substituting or rearranging blocks.

We now turn to more complex modes of operation. [KNUD00] lists the fol-
lowing criteria and properties for evaluating and constructing block cipher modes of 
operation that are superior to ECB:

 ■ Overhead: The additional operations for the encryption and decryption opera-
tion when compared to encrypting and decrypting in the ECB mode.

 ■ Error recovery: The property that an error in the ith ciphertext block is inher-
ited by only a few plaintext blocks after which the mode resynchronizes.

 ■ Error propagation: The property that an error in the ith ciphertext block is 
inherited by the ith and all subsequent plaintext blocks. What is meant here is 
a bit error that occurs in the transmission of a ciphertext block, not a computa-
tional error in the encryption of a plaintext block.

Figure 7.3 Electronic Codebook (ECB) Mode
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 ■ Diffusion: How the plaintext statistics are reflected in the ciphertext. Low entropy 
plaintext blocks should not be reflected in the ciphertext blocks. Roughly, low 
entropy equates to predictability or lack of randomness (see Appendix B).

 ■ Security: Whether or not the ciphertext blocks leak information about the 
plaintext blocks.

 7.3 CIPHER BLOCK CHAINING MODE

To overcome the security deficiencies of ECB, we would like a technique in which 
the same plaintext block, if repeated, produces different ciphertext blocks. A simple 
way to satisfy this requirement is the cipher block chaining (CBC) mode (Figure 7.4). 
In this scheme, the input to the encryption algorithm is the XOR of the current 
plaintext block and the preceding ciphertext block; the same key is used for each 
block. In effect, we have chained together the processing of the sequence of plain-
text blocks. The input to the encryption function for each plaintext block bears no 
fixed relationship to the plaintext block. Therefore, repeating patterns of b bits are 
not exposed. As with the ECB mode, the CBC mode requires that the last block be 
padded to a full b bits if it is a partial block.

Figure 7.4 Cipher Block Chaining (CBC) Mode
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For decryption, each cipher block is passed through the decryption algorithm. 
The result is XORed with the preceding ciphertext block to produce the plaintext 
block. To see that this works, we can write

 Cj = E(K, [Cj - 1 ⊕ Pj]) 

Then

D(K, Cj) = D(K, E(K, [Cj - 1 ⊕ Pj]))

D(K, Cj) = Cj - 1 ⊕ Pj

Cj - 1 ⊕ D(K, Cj) = Cj - 1 ⊕ Cj - 1 ⊕ Pj = Pj

To produce the first block of ciphertext, an initialization vector (IV) is XORed 
with the first block of plaintext. On decryption, the IV is XORed with the output 
of the decryption algorithm to recover the first block of plaintext. The IV is a data 
block that is the same size as the cipher block. We can define CBC mode as

CBC
 C1 = E(K, [P1 ⊕ IV])

 Cj = E(K, [Pj ⊕ Cj - 1])j = 2, c , N

 P1 = D(K, C1) ⊕ IV

 Pj = D(K, Cj) ⊕ Cj - 1 j = 2, c , N

The IV must be known to both the sender and receiver but be unpredictable 
by a third party. In particular, for any given plaintext, it must not be possible to 
predict the IV that will be associated to the plaintext in advance of the generation 
of the IV. For maximum security, the IV should be protected against unauthorized 
changes. This could be done by sending the IV using ECB encryption. One reason 
for protecting the IV is as follows: If an opponent is able to fool the receiver into 
using a different value for IV, then the opponent is able to invert selected bits in the 
first block of plaintext. To see this, consider

 C1 = E(K, [IV ⊕ P1])

 P1 = IV ⊕ D(K, C1)

Now use the notation that X[i] denotes the ith bit of the b-bit quantity X. Then

 P1[i] = IV[i] ⊕ D(K, C1)[i] 

Then, using the properties of XOR, we can state

 P1[i]′ = IV[i]′ ⊕ D(K, C1)[i] 

where the prime notation denotes bit complementation. This means that if an oppo-
nent can predictably change bits in IV, the corresponding bits of the received value 
of P1 can be changed.

For other possible attacks based on prior knowledge of IV, see [VOYD83].
So long as it is unpredictable, the specific choice of IV is unimportant.  SP 800-

38A recommends two possible methods: The first method is to apply the encryp-
tion function, under the same key that is used for the encryption of the plaintext, 
to a nonce.2 The nonce must be a data block that is unique to each  execution of 

2NIST SP 800-90 (Recommendation for Random Number Generation Using Deterministic Random Bit 
Generators) defines nonce as follows: A time-varying value that has at most a negligible chance of repeat-
ing, for example, a random value that is generated anew for each use, a timestamp, a sequence number, 
or some combination of these.
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the encryption operation. For example, the nonce may be a counter, a timestamp, 
or a message number. The second method is to generate a random data block 
using a random number generator.

In conclusion, because of the chaining mechanism of CBC, it is an appropriate 
mode for encrypting messages of length greater than b bits.

In addition to its use to achieve confidentiality, the CBC mode can be used for 
authentication. This use is described in Chapter 12.

 7.4 CIPHER FEEDBACK MODE

For AES, DES, or any block cipher, encryption is performed on a block of b bits. 
In the case of DES, b = 64 and in the case of AES, b = 128. However, it is pos-
sible to convert a block cipher into a stream cipher, using one of the three modes 
to be discussed in this and the next two sections: cipher feedback (CFB) mode, 
output feedback (OFB) mode, and counter (CTR) mode. A stream cipher elimi-
nates the need to pad a message to be an integral number of blocks. It also can 
operate in real time. Thus, if a character stream is being transmitted, each char-
acter can be encrypted and transmitted immediately using a character-oriented 
stream cipher.

One desirable property of a stream cipher is that the ciphertext be of the same 
length as the plaintext. Thus, if 8-bit characters are being transmitted, each character 
should be encrypted to produce a ciphertext output of 8 bits. If more than 8 bits are 
produced, transmission capacity is wasted.

Figure 7.5 depicts the CFB scheme. In the figure, it is assumed that the unit of 
transmission is s bits; a common value is s = 8. As with CBC, the units of plaintext 
are chained together, so that the ciphertext of any plaintext unit is a function of 
all the preceding plaintext. In this case, rather than blocks of b bits, the plaintext is 
divided into segments of s bits.

First, consider encryption. The input to the encryption function is a b-bit shift 
register that is initially set to some initialization vector (IV). The leftmost (most 
significant) s bits of the output of the encryption function are XORed with the first 
segment of plaintext P1 to produce the first unit of ciphertext C1, which is then trans-
mitted. In addition, the contents of the shift register are shifted left by s bits, and C1 
is placed in the rightmost (least significant) s bits of the shift register. This process 
continues until all plaintext units have been encrypted.

For decryption, the same scheme is used, except that the received ciphertext 
unit is XORed with the output of the encryption function to produce the plaintext 
unit. Note that it is the encryption function that is used, not the decryption function. 
This is easily explained. Let MSBs(X) be defined as the most significant s bits of X. 
Then

 C1 = P1 ⊕ MSBs[E(K, IV)] 

Therefore, by rearranging terms:

 P1 = C1 ⊕ MSBs[E(K, IV)] 

The same reasoning holds for subsequent steps in the process.
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We can define CFB mode as follows.

CFB

 I1 = IV

 Ij = LSBb - s(Ij - 1) }Cj - 1   j = 2, c , N

 Oj = E(K, Ij)        j = 1, c , N

 Cj = Pj ⊕ MSBs(Oj)       j = 1, c , N

 I1 = IV

 Ij = LSBb - s(Ij - 1) }Cj - 1 j = 2, c , N

 Oj = E(K, Ij)         j = 1, c , N

 Pj = Cj ⊕ MSBs(Oj)      j = 1, c , N

Although CFB can be viewed as a stream cipher, it does not conform to the 
typical construction of a stream cipher. In a typical stream cipher, the cipher takes 

Figure 7.5 s-bit Cipher Feedback (CFB) Mode
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as input some initial value and a key and generates a stream of bits, which is then 
XORed with the plaintext bits (see Figure 4.1). In the case of CFB, the stream of bits 
that is XORed with the plaintext also depends on the plaintext.

In CFB encryption, like CBC encryption, the input block to each forward 
 cipher function (except the first) depends on the result of the previous forward 
 cipher function; therefore, multiple forward cipher operations cannot be performed 
in parallel. In CFB decryption, the required forward cipher operations can be per-
formed in parallel if the input blocks are first constructed (in series) from the IV and 
the ciphertext.

 7.5 OUTPUT FEEDBACK MODE

The output feedback (OFB) mode is similar in structure to that of CFB. For OFB, 
the output of the encryption function is fed back to become the input for encrypting 
the next block of plaintext (Figure 7.6). In CFB, the output of the XOR unit is fed 
back to become input for encrypting the next block. The other difference is that the 
OFB mode operates on full blocks of plaintext and ciphertext, whereas CFB oper-
ates on an s-bit subset. OFB encryption can be expressed as

 Cj = Pj ⊕ E(K, Oj - 1) 

where

 Oj - 1 = E(K, Oj - 2) 

Some thought should convince you that we can rewrite the encryption expres-
sion as:

 Cj = Pj ⊕ E(K, [Cj - 1 ⊕ Pj - 1]) 

By rearranging terms, we can demonstrate that decryption works.

 Pj = Cj ⊕ E(K, [Cj - 1 ⊕ Pj - 1]) 

We can define OFB mode as follows.

OFB

I1 = Nonce

Ij = Oj - 1         j = 2, c , N

Oj = E(K, Ij)  j = 1, c , N

Cj = Pj ⊕ Oj  j = 1, c , N - 1

CN
* = PN

* ⊕ MSBu(ON)

I1 = Nonce

Ij = Oj - 1          j = 2, c , N

Oj = E(K, Ij)      j = 1, c , N

Pj = Cj ⊕ Oj  j = 1, c , N - 1

PN
* = CN

* ⊕ MSBu(ON)

Let the size of a block be b. If the last block of plaintext contains u bits (indi-
cated by *), with u 6 b, the most significant u bits of the last output block ON are 
used for the XOR operation; the remaining b - u bits of the last output block are 
discarded.

As with CBC and CFB, the OFB mode requires an initialization vector. In 
the case of OFB, the IV must be a nonce; that is, the IV must be unique to each 
execution of the encryption operation. The reason for this is that the sequence of 
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encryption output blocks, Oi, depends only on the key and the IV and does not 
depend on the plaintext. Therefore, for a given key and IV, the stream of output bits 
used to XOR with the stream of plaintext bits is fixed. If two different messages had 
an identical block of plaintext in the identical position, then an attacker would be 
able to determine that portion of the Oi stream.

One advantage of the OFB method is that bit errors in transmission do not 
propagate. For example, if a bit error occurs in C1, only the recovered value of P1 is 
affected; subsequent plaintext units are not corrupted. With CFB, C1 also serves as 
input to the shift register and therefore causes additional corruption downstream.

The disadvantage of OFB is that it is more vulnerable to a message stream 
modification attack than is CFB. Consider that complementing a bit in the cipher-
text complements the corresponding bit in the recovered plaintext. Thus, controlled 

Figure 7.6 Output Feedback (OFB) Mode
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changes to the recovered plaintext can be made. This may make it possible for an 
opponent, by making the necessary changes to the checksum portion of the mes-
sage as well as to the data portion, to alter the ciphertext in such a way that it is not 
detected by an error-correcting code. For a further discussion, see [VOYD83].

OFB has the structure of a typical stream cipher, because the cipher generates 
a stream of bits as a function of an initial value and a key, and that stream of bits is 
XORed with the plaintext bits (see Figure 4.1). The generated stream that is XORed 
with the plaintext is itself independent of the plaintext; this is highlighted by dashed 
boxes in Figure 7.6. One distinction from the stream ciphers we discuss in Chapter 8 
is that OFB encrypts plaintext a full block at a time, where typically a block is 64 or 
128 bits. Many stream ciphers encrypt one byte at a time.

 7.6 COUNTER MODE

Although interest in the counter (CTR) mode has increased recently with appli-
cations to ATM (asynchronous transfer mode) network security and IPsec  
(IP  security), this mode was proposed in 1979 (e.g., [DIFF79]).

Figure 7.7 depicts the CTR mode. A counter equal to the plaintext block size is 
used. The only requirement stated in SP 800-38A is that the counter value must be 
different for each plaintext block that is encrypted. Typically, the counter is initial-
ized to some value and then incremented by 1 for each subsequent block (modulo 2b, 
where b is the block size). For encryption, the counter is encrypted and then XORed 
with the plaintext block to produce the ciphertext block; there is no chaining. For 
decryption, the same sequence of counter values is used, with each encrypted counter 
XORed with a ciphertext block to recover the corresponding plaintext block. Thus, 
the initial counter value must be made available for decryption. Given a sequence of 
counters T1, T2, c , TN, we can define CTR mode as follows.

CTR
Cj = Pj ⊕ E(K, Tj)  j = 1, c , N - 1

CN
* = PN

* ⊕ MSBu[E(K, TN)]

Pj = Cj ⊕ E(K, Tj)  j = 1, c , N - 1

PN
* = CN

* ⊕ MSBu[E(K, TN)]

For the last plaintext block, which may be a partial block of u bits, the most sig-
nificant u bits of the last output block are used for the XOR operation; the remain-
ing b - u bits are discarded. Unlike the ECB, CBC, and CFB modes, we do not need 
to use padding because of the structure of the CTR mode.

As with the OFB mode, the initial counter value must be a nonce; that is, T1 
must be different for all of the messages encrypted using the same key. Further, 
all Ti values across all messages must be unique. If, contrary to this requirement, a 
counter value is used multiple times, then the confidentiality of all of the plaintext 
blocks corresponding to that counter value may be compromised. In particular, if 
any plaintext block that is encrypted using a given counter value is known, then 
the output of the encryption function can be determined easily from the associated 
ciphertext block. This output allows any other plaintext blocks that are encrypted 
using the same counter value to be easily recovered from their associated ciphertext 
blocks.
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One way to ensure the uniqueness of counter values is to continue to incre-
ment the counter value by 1 across messages. That is, the first counter value of the 
each message is one more than the last counter value of the preceding message.

[LIPM00] lists the following advantages of CTR mode.

 ■ Hardware efficiency: Unlike the three chaining modes, encryption (or decryp-
tion) in CTR mode can be done in parallel on multiple blocks of plaintext or 
ciphertext. For the chaining modes, the algorithm must complete the computa-
tion on one block before beginning on the next block. This limits the maximum 
throughput of the algorithm to the reciprocal of the time for one execution of 
block encryption or decryption. In CTR mode, the throughput is only limited 
by the amount of parallelism that is achieved.

Figure 7.7 Counter (CTR) Mode
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 ■ Software efficiency: Similarly, because of the opportunities for parallel execu-
tion in CTR mode, processors that support parallel features, such as aggressive 
pipelining, multiple instruction dispatch per clock cycle, a large number of reg-
isters, and SIMD instructions, can be effectively utilized.

 ■ Preprocessing: The execution of the underlying encryption algorithm does 
not depend on input of the plaintext or ciphertext. Therefore, if sufficient 
memory is available and security is maintained, preprocessing can be used to 
prepare the output of the encryption boxes that feed into the XOR functions, 
as in Figure 7.7. When the plaintext or ciphertext input is presented, then 
the only computation is a series of XORs. Such a strategy greatly enhances 
throughput.

 ■ Random access: The ith block of plaintext or ciphertext can be processed in 
random-access fashion. With the chaining modes, block Ci cannot be com-
puted until the i - 1 prior blocks are computed. There may be applications in 
which a ciphertext is stored and it is desired to decrypt just one block; for such 
applications, the random access feature is attractive.

 ■ Provable security: It can be shown that CTR is at least as secure as the other 
modes discussed in this chapter.

 ■ Simplicity: Unlike ECB and CBC modes, CTR mode requires only the imple-
mentation of the encryption algorithm and not the decryption algorithm. 
This matters most when the decryption algorithm differs substantially from 
the encryption algorithm, as it does for AES. In addition, the decryption key 
scheduling need not be implemented.

Note that, with the exception of ECB, all of the NIST-approved block cipher 
modes of operation involve feedback. This is clearly seen in Figure 7.8. To high-
light the feedback mechanism, it is useful to think of the encryption function 
as taking input from an input register whose length equals the encryption block 
length and with output stored in an output register. The input register is updated 
one block at a time by the feedback mechanism. After each update, the encryp-
tion algorithm is executed, producing a result in the output register. Meanwhile, a 
block of plaintext is accessed. Note that both OFB and CTR produce output that 
is independent of both the plaintext and the ciphertext. Thus, they are natural 
candidates for stream ciphers that encrypt plaintext by XOR one full block at a 
time.

 7.7  XTS-AES MODE FOR BLOCK-ORIENTED 
STORAGE DEVICES

In 2010, NIST approved an additional block cipher mode of operation, XTS-AES. 
This mode is also an IEEE standard, IEEE Std 1619-2007, which was developed 
by the IEEE Security in Storage Working Group (P1619). The standard describes 
a method of encryption for data stored in sector-based devices where the threat 
model includes possible access to stored data by the adversary. The standard has 
received widespread industry support.
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Tweakable Block Ciphers

The XTS-AES mode is based on the concept of a tweakable block cipher, intro-
duced in [LISK02]. The form of this concept used in XTS-AES was first described 
in [ROGA04a].

Before examining XTS-AES, let us consider the general structure of a tweak-
able block cipher. A tweakable block cipher is one that has three inputs: a plain-
text P, a symmetric key K, and a tweak T; and produces a ciphertext output C. We 
can write this as C = E(K, T, P). The tweak need not be kept secret. Whereas the 
purpose of the key is to provide security, the purpose of the tweak is to provide 

Figure 7.8 Feedback Characteristic of Modes of Operation
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variability. That is, the use of different tweaks with the same plaintext and same key 
produces different outputs. The basic structure of several tweakable block ciphers 
that have been implemented is shown in Figure 7.9. Encryption can be expressed as:

 C = H(T) ⊕ E(K, H(T) ⊕ P) 

where H is a hash function. For decryption, the same structure is used with the plain-
text as input and decryption as the function instead of encryption. To see that this 
works, we can write

H(T) ⊕ C = E(K, H(T) ⊕ P)

D[K, H(T) ⊕ C] = H(T) ⊕ P

H(T) ⊕ D(K, H(T) ⊕ C) = P

It is now easy to construct a block cipher mode of operation by using a differ-
ent tweak value on each block. In essence, the ECB mode is used but for each block 
the tweak is changed. This overcomes the principal security weakness of ECB, which 
is that two encryptions of the same block yield the same ciphertext.

Storage Encryption Requirements

The requirements for encrypting stored data, also referred to as “data at rest” dif-
fer somewhat from those for transmitted data. The P1619 standard was designed to 
have the following characteristics:

1. The ciphertext is freely available for an attacker. Among the circumstances 
that lead to this situation:

a. A group of users has authorized access to a database. Some of the records in 
the database are encrypted so that only specific users can successfully read/

Figure 7.9 Tweakable Block Cipher
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write them. Other users can retrieve an encrypted record but are unable to 
read it without the key.

b. An unauthorized user manages to gain access to encrypted records.
c. A data disk or laptop is stolen, giving the adversary access to the encrypted 

data.
2. The data layout is not changed on the storage medium and in transit. The 

encrypted data must be the same size as the plaintext data.

3. Data are accessed in fixed sized blocks, independently from each other. That is, 
an authorized user may access one or more blocks in any order.

4. Encryption is performed in 16-byte blocks, independently from other blocks 
(except the last two plaintext blocks of a sector, if its size is not a multiple of 
16 bytes).

5. There are no other metadata used, except the location of the data blocks 
within the whole data set.

6. The same plaintext is encrypted to different ciphertexts at different locations, 
but always to the same ciphertext when written to the same location again.

7. A standard conformant device can be constructed for decryption of data 
encrypted by another standard conformant device.

The P1619 group considered some of the existing modes of operation for use with 
stored data. For CTR mode, an adversary with write access to the encrypted media can 
flip any bit of the plaintext simply by flipping the corresponding ciphertext bit.

Next, consider requirement 6 and the use of CBC. To enforce the require-
ment that the same plaintext encrypts to different ciphertext in different loca-
tions, the IV could be derived from the sector number. Each sector contains 
multiple blocks. An adversary with read/write access to the encrypted disk can 
copy a ciphertext sector from one position to another within the same block, 
and an application reading the sector off the new location will still get the same 
plaintext sector (except perhaps the first 128 bits). Another weakness is that an 
adversary can flip any bit of the plaintext by flipping the corresponding cipher-
text bit of the previous block, with the side-effect of “randomizing” the previous 
block.

Operation on a Single Block

Figure 7.10 shows the encryption and decryption of a single block. The operation in-
volves two instances of the AES algorithm with two keys. The following parameters 
are associated with the algorithm.

Key The 256 or 512 bit XTS-AES key; this is parsed as a concatenation of two 
fields of equal size called Key1 and Key2, such that Key = Key1 }Key2.

Pj The jth block of plaintext. All blocks except possibly the final block have a 
length of 128 bits. A plaintext data unit, typically a disk sector, consists of a 
sequence of plaintext blocks P1, P2, c , Pm.

Cj The jth block of ciphertext. All blocks except possibly the final block have a 
length of 128 bits.
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j The sequential number of the 128-bit block inside the data unit.

i The value of the 128-bit tweak. Each data unit (sector) is assigned a 
tweak value that is a nonnegative integer. The tweak values are assigned 
 consecutively, starting from an arbitrary nonnegative integer.

a A primitive element of GF(2128) that corresponds to polynomial x 
(i.e., 0000 c 0102).

aj a multiplied by itself j times, in GF(2128).

⊕ Bitwise XOR.

⊗ Modular multiplication of two polynomials with binary coefficients modulo 
x128 + x7 + x2 + x + 1. Thus, this is multiplication in GF(2128).

Figure 7.10 XTS-AES Operation on Single Block
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In essence, the parameter j functions much like the counter in CTR mode. It 
assures that if the same plaintext block appears at two different positions within a 
data unit, it will encrypt to two different ciphertext blocks. The parameter i functions 
much like a nonce at the data unit level. It assures that, if the same plaintext block 
appears at the same position in two different data units, it will encrypt to two differ-
ent ciphertext blocks. More generally, it assures that the same plaintext data unit will 
encrypt to two different ciphertext data units for two different data unit positions.

The encryption and decryption of a single block can be described as

XTS-AES block 
operation

 T = E(K2, i) ⊗ aj

 PP = P ⊕ T

 CC = E(K1, PP)
 C = CC ⊕ T

 T = E(K2, i) ⊗ aj

 CC = C ⊕ T

 PP = D(K1, CC)
 P = PP ⊕ T

To see that decryption recovers the plaintext, let us expand the last line of both en-
cryption and decryption. For encryption, we have

 C = CC ⊕ T = E(K1, PP) ⊕ T = E(K1, P ⊕ T) ⊕ T 

and for decryption, we have

 P = PP ⊕ T = D(K1, CC) ⊕ T = D(K1, C ⊕ T) ⊕ T 

Now, we substitute for C:

 P = D(K1, C ⊕ T) ⊕ T

 = D(K1, [E(K1, P ⊕ T) ⊕ T] ⊕ T) ⊕ T

 = D(K1, E(K1, P ⊕ T)) ⊕ T

 = (P ⊕ T) ⊕ T = P

Operation on a Sector

The plaintext of a sector or data unit is organized into blocks of 128 bits. Blocks are 
labeled P0, P1, c , Pm. The last block my be null or may contain from 1 to 127 bits. 
In other words, the input to the XTS-AES algorithm consists of m 128-bit blocks 
and possibly a final partial block.

For encryption and decryption, each block is treated independently and 
encrypted/decrypted as shown in Figure 7.10. The only exception occurs when the 
last block has less than 128 bits. In that case, the last two blocks are encrypted/
decrypted using a ciphertext-stealing technique instead of padding. Figure 7.11 
shows the scheme. Pm - 1 is the last full plaintext block, and Pm is the final plaintext 
block, which contains s bits with 1 … s … 127. Cm - 1 is the last full ciphertext block, 
and Cm is the final ciphertext block, which contains s bits. This technique is com-
monly called ciphertext stealing because the processing of the last block “steals” a 
temporary ciphertext of the penultimate block to complete the cipher block.

Let us label the block encryption and decryption algorithms of Figure 7.10 as

Block encryption: XTS-AES-blockEnc(K, Pj, i, j)
Block decryption: XTS-AES-blockDec(K, Cj, i, j)
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Then, XTS-AES mode is defined as follows:

XTS-AES mode with null 
final block

Cj = XTS@AES@blockEnc(K, Pj, i, j) j = 0, c , m - 1

Pj = XTS@AES@blockEnc(K, Cj, i, j) j = 0, c , m - 1

XTS-AES mode with final 
block containing s bits

Cj = XTS@AES@blockEnc(K, Pj, i, j) j = 0, c , m - 2
XX = XTS@AES@blockEnc(K, Pm - 1, i, m - 1)
CP = LSB128 - s(XX)
YY = Pm }CP

Cm - 1 = XTS@AES@blockEnc(K, YY, i, m)
Cm = MSBs(XX)

Pj = XTS@AES@blockDec(K, Cj, i, j) j = 0, c , m - 2
YY = XTS@AES@blockDec(K, Cm - 1, i, m - 1)
CP = LSB128 - s(YY)
XX = Cm }CP

Pm - 1 = XTS@AES@blockDec(K, XX, i, m)
Pm = MSBs(YY)

Figure 7.11 XTS-AES Mode
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As can be seen, XTS-AES mode, like CTR mode, is suitable for parallel opera-
tion. Because there is no chaining, multiple blocks can be encrypted or decrypted 
simultaneously. Unlike CTR mode, XTS-AES mode includes a nonce (the param-
eter i) as well as a counter (parameter j).

 7.8 FORMAT-PRESERVING ENCRYPTION

Format-preserving encryption (FPE) refers to any encryption technique that takes a 
plaintext in a given format and produces a ciphertext in the same format. For  example, 
credit cards consist of 16 decimal digits. An FPE that can accept this type of input 
would produce a ciphertext output of 16 decimal digits. Note that the ciphertext need 
not be, and in fact is unlikely to be, a valid credit card number. But it will have the 
same format and can be stored in the same way as credit card number plaintext.

A simple encryption algorithm is not format preserving, with the exception 
that it preserves the format of binary strings. For example, Table 7.2 shows three 
types of plaintext for which it might be desired to perform FPE. The third row shows 
examples of what might be generated by an FPE algorithm. The fourth row shows 
(in hexadecimal) what is produced by AES with a given key.

Motivation

FPE facilitates the retrofitting of encryption technology to legacy applications, 
where a conventional encryption mode might not be feasible because it would dis-
rupt data fields/pathways. FPE has emerged as a useful cryptographic tool, whose 
applications include financial-information security, data sanitization, and transpar-
ent encryption of fields in legacy databases.

The principal benefit of FPE is that it enables protection of particular data 
 elements in a legacy database that did not provide encryption of those data ele-
ments, while still enabling workflows that were in place before FPE was in use. With 
FPE, as opposed to ordinary AES encryption or 3DES encryption, no database 
schema changes and minimal application changes are required. Only applications 
that need to see the plaintext of a data element need to be modified and generally 
these modifications will be minimal.

Some examples of legacy applications where FPE is desirable:

 ■ COBOL data-processing applications: Any changes in the structure of a record 
requires corresponding changes in all code that references that record struc-
ture. Typical code sizes involve hundreds of modules, each containing around 
5,000–10,000 lines on average.

Credit Card Tax ID Bank Account Number

Plaintext 8123 4512 3456 6780 219-09-9999 800N2982K-22

FPE 8123 4521 7292 6780 078-05-1120 709G9242H-35

AES (hex) af411326466add24
c86abd8aa525db7a

7b9af4f3f218ab25
07c7376869313afa

9720ec7f793096ff
d37141242e1c51bd

Table 7.2 Comparison of Format-Preserving Encryption and AES
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 ■ Database applications: Fields that are specified to take only character strings 
cannot be used to store conventionally encrypted binary ciphertext. Base64 
encoding of such binary ciphertext is not always feasible without increase in 
data lengths, requiring augmentation of corresponding field lengths.

 ■ FPE-encrypted characters can be significantly compressed for efficient trans-
mission. This cannot be said about AES-encrypted binary ciphertext.

Difficulties in Designing an FPE

A general-purpose standardized FPE should meet a number of requirements:

1. The ciphertext is of the same length and format as the plaintext.

2. It should be adaptable to work with a variety of character and number types. 
Examples include decimal digits, lowercase alphabetic characters, and the full 
character set of a standard keyboard or international keyboard.

3. It should work with variable plaintext lengths.

4. Security strength should be comparable to that achieved with AES.

5. Security should be strong even for very small plaintext lengths.

Meeting the first requirement is not at all straightforward. As illustrated in 
Table 7.2, a straightforward encryption with AES yields a 128-bit binary block that 
does not resemble the required format. Also, a standard symmetric block cipher is 
not easily adaptable to produce an FPE.

Consider a simple example. Assume that we want an algorithm that can 
encrypt decimal digit strings of maximum length of 32 digits. The input to the algo-
rithm can be stored in 16 bytes (128 bits) by encoding each digit as four bits and 
using the corresponding binary value for each digit (e.g., 6 is encoded as 0101). Next, 
we use AES to encrypt the 128-bit block, in the following fashion:

1. The plaintext input X is represented by the string of 4-bit decimal digits 
X[1] . . . X[16]. If the plaintext is less than 16 digits long, it is padded out to the 
left (most significant) with zeros.

2. Treating X as a 128-bit binary string and using key K, form ciphertext 
Y = AESK(X).

3. Treat Y as a string of length 16 of 4-bit elements.

4. Some of the entries in Y may have values greater than 9 (e.g., 1100). To gener-
ate ciphertext Z in the required format, calculate

 Z[i] = Y[i] mod 10,  1 … i … 16 

This generates a ciphertext of 16 decimal digits, which conforms to the 
desired format. However, this algorithm does not meet the basic requirement of 
any encryption algorithm of reversibility. It is impossible to decrypt Z to recover 
the original plaintext X because the operation is one-way; that is, it is a many-
to-one function. For example, 12 mod 10 = 2 mod 10 = 2. Thus, we need to 
design a reversible function that is both a secure encryption algorithm and format 
preserving.
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A second difficulty in designing an FPE is that some of the input strings are 
quite short. For example, consider the 16-digit credit card number (CCN). The first 
six digits provide the issuer identification number (IIN), which identifies the insti-
tution that issued the card. The final digit is a check digit to catch typographical 
errors or other mistakes. The remaining nine digits are the user’s account num-
ber. However, a number of applications require that the last four digits be in the 
clear (the check digit plus three account digits) for applications such as credit card 
receipts, which leaves only six digits for encryption. Now suppose that an adversary 
is able to obtain a number of plaintext/ciphertext pairs. Each such pair corresponds 
to not just one CCN, but multiple CCNs that have the same middle six digits. In a 
large database of credit card numbers, there may be multiple card numbers with 
the same middle six digits. An adversary may be able to assemble a large diction-
ary mapping known as six-digit plaintexts to their corresponding ciphertexts. This 
could be used to decrypt unknown ciphertexts from the database. As pointed out 
in [BELL10a], in a database of 100 million entries, on average about 100 CCNs 
will share any given middle-six digits. Thus, if the adversary has learned k CCNs 
and gains access to such a database, the adversary can decrypt approximately 
100k CCNs.

The solution to this second difficulty is to use a tweakable block cipher; this 
concept is described in Section 7.7. For example, the tweak for CCNs could be the first 
two and last four digits of the CCN. Prior to encryption, the tweak is added, digit-by-
digit mod 10, to the middle six-digit plaintext, and the result is then encrypted. Two 
different CCNs with identical middle six digits will yield different tweaked inputs 
and therefore different ciphertexts. Consider the following:

CCN Tweak Plaintext Plaintext + Tweak

4012 8812 3456 1884 401884 123456 524230

5105 1012 3456 6782 516782 123456 639138

Two CCNs with the same middle six digits have different tweaks and therefore 
different values to the middle six digits after the tweak is added.

Feistel Structure for Format-Preserving Encryption

As the preceding discussion shows, the challenge with FPE is to design an algo-
rithm for scrambling the plaintext that is secure, preserves format, and is  reversible. 
A number of approaches have been proposed in recent years [ROGA10, BELL09] 
for FPE algorithms. The majority of these proposals use a Feistel structure. Although 
IBM introduced this structure with their Lucifer cipher [SMIT71] almost half a cen-
tury ago, it remains a powerful basis for implementing ciphers.

This section provides a general description of how the Feistel structure can 
be used to implement an FPE. In the following section, we look at three specific 
Feistel-based algorithms that are in the process of receiving NIST approval.

encRyption and decRyption Figure 7.12 shows the Feistel structure used in all of 
the NIST algorithms, with encryption shown on the left-hand side and decryption 
on the right-hand side. The structure in Figure 7.12 is the same as that shown in 
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Figure 4.3 but, to simplify the presentation, it is untwisted, not illustrating the swap 
that occurs at the end of each round.

The input to the encryption algorithm is a plaintext character string of 
n = u + v characters. If n is even, then u = v, otherwise u and v differ by 1. The two 
parts of the string pass through an even number of rounds of processing to produce 
a ciphertext block of n characters and the same format as the plaintext. Each round 
i has inputs Ai and Bi, derived from the preceding round (or plaintext for round 0).

All rounds have the same structure. On even-numbered rounds, a substitution 
is performed on the left part (length u) of the data, Ai. This is done by applying the 
round function FK to the right part (length v) of the data, Bi, and then performing 

Figure 7.12 Feistel Structure for Format-Preserving Encryption
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a modular addition of the output of FK with Ai. The modular addition function and 
the selection of modulus are described subsequently. On odd-numbered rounds, the 
substitution is done on the right part of the data. FK is a one-way function that con-
verts the input into a binary string, performs a scrambling transformation on the 
string, and then converts the result back into a character string of suitable format 
and length. The function has as parameters the secret key K, the plaintext length n, a 
tweak T, and the round number i.

Note that on even-numbered rounds, FK has an input of v characters, and that 
the modular addition produces a result of u characters, whereas on odd-numbered 
rounds, FK has an input of u characters, and that the modular addition produces a 
result of v characters. The total number of rounds is even, so that the output consists 
of an A portion of length u concatenated with a B portion of length v, matching the 
partition of the plaintext.

The process of decryption is essentially the same as the encryption process. 
The differences are: (1) the addition function is replaced by a subtraction function 
that is its inverse; and (2) the order of the round indices is reversed.

To demonstrate that the decryption produces the correct result, Figure 7.12b 
shows the encryption process going down the left-hand side and the decryption pro-
cess going up the right-hand side. The diagram indicates that, at every round, the 
intermediate value of the decryption process is equal to the corresponding value of 
the encryption process. We can walk through the figure to validate this, starting at 
the bottom. The ciphertext is produced at the end of round r - 1 as a string of the 
form A

  r }B
  r, with Ar and Br having string lengths u and v, respectively. Encryption 

round r - 1 can be described with the following equations:

 Ar = Br - 1

 Br = Ar - 1 + FK[Br - 1]

Because we define the subtraction function to be the inverse of the addition 
function, these equations can be rewritten:

 Br - 1 = Ar

 Ar - 1 = Br - FK[Br - 1]

It can be seen that the last two equations describe the action of round 0 of the 
decryption function, so that the output of round 0 of decryption equals the input 
of round r - 1 of encryption. This correspondence holds all the way through the r 
iterations, as is easily shown.

Note that the derivation does not require that F be a reversible function. To 
see this, take a limiting case in which F produces a constant output (e.g., all ones) 
regardless of the values of its input. The equations still hold.

chaRacteR StRingS The NIST algorithms, and the other FPE algorithms that have 
been proposed, are used with plaintext consisting of a string of elements, called 
 characters. Specifically, a finite set of two or more symbols is called an alphabet, 
and the elements of an alphabet are called characters. A character string is a finite 
sequence of characters from an alphabet. Individual characters may repeat in the 
string. The number of different characters in an alphabet is called the base, also 
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referred to as the radix of the alphabet. For example, the lowercase English alphabet 
a, b, c, . . . has a radix, or base, of 26. For purposes of encryption and decryption, the 
plaintext alphabet must be converted to numerals, where a numeral is a nonnegative 
integer that is less than the base. For example, for the lowercase alphabet, the assign-
ment could be characters a, b, c, . . . , z map into 0, 1, 2, . . . , 25.

A limitation of this approach is that all of the elements in a plaintext format 
must have the same radix. So, for example, an identification number that consists 
of an alphabetic character followed by nine numeric digits cannot be handled in 
format-preserving fashion by the FPEs that have been implemented so far.

The NIST document defines notation for specifying these conversions 
(Table 7.3a). To begin, it is assumed that the character string is represented by a 
numeral string. To convert a numeral string X into a number x, the function 
NUMradix(X) is used. Viewing X as the string X[1] . . . X [m] with the most significant 
numeral first, the function is defined as

 NUMradix(X) = a
m

i = 1
X[i] radixm - i = a

m - 1

i = 0
X[m - i] radixi 

Observe that 0 … NUMradix(X) 6 radixm and that 0 … X[i] 6 radix.

[x]s Converts an integer into a byte string; it is the string of s bytes that encodes the 
number x, with 0 … x 6 28s. The equivalent notation is STR2

8s(x).

LEN(X) Length of the character string X.

NUMradix(X) Converts strings to numbers. The number that the numeral string X represents in 
base radix, with the most significant character first. In other words, it is the non-
negative integer less than radixLEN(X) whose most-significant-character-first repre-
sentation in base radix is X.

PRFK(X) A pseudorandom function that produces a 128-bit output with X as the input, 
using encryption key K.

STRradix
m (x) Given a nonnegative integer x less than radixm, this function produces a repre-

sentation of x as a string of m characters in base radix, with the most significant 
character first.

[i .. j] The set of integers between two integers i and j, including i and j.

X[i .. j] The substring of characters of a string X from X[i] to X[j], including X[i] and X[j].

REV(X) Given a bit string, X, the string that consists of the bits of X in reverse order.

(a) Notation

radix The base, or number of characters, in a given plaintext alphabet.

tweak Input parameter to the encryption and decryption functions whose confidentiality 
is not protected by the mode.

tweakradix The base for tweak strings

minlen Minimum message length, in characters.

maxlen Maximum message length, in characters.

maxTlen Maximum tweak length

(b) Parameters

Table 7.3 Notation and Parameters Used in FPE Algorithms
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For example, consider the string zaby in radix 26, which converts to the 
 numeral string 25 0 1 24. This converts to the number x = (25 * 263) + (1 * 261)
+ 24 = 439450. To go in the opposite direction and convert from a number 
x 6 radixm to a numeral string X of length m, the function STRradix

m (x) is used:

STRradix
m (x) = X[1] c X[m], where

X[i] = j x

radixm - i kmod radix, i = 1, c, m

With the mapping of characters to numerals and the use of the NUM func-
tion, a plaintext character string can be mapped to a number and stored as an 
 unsigned integer. We would like to treat this unsigned integer as a bit string that 
can be input to a bit-scrambling algorithm in FK. However, different platforms store 
 unsigned integers differently, some in little-endian and some in big-endian fashion. 
So one more step is needed. By the definition of the STR function, STR2

8s(x) will 
generate a bit string of length 8s, equivalently a byte string of length s, which is a 
binary integer with the most significant bit first, regardless of how x is stored as an 
unsigned integer. For convenience the following notation is used: [x]s = STR2

8s(x). 
Thus, [NUMradix(X)]s will convert the character string X into an unsigned integer 
and then convert that to a byte string of length s bytes with the most significant  
bit first.

Continuing, the preceding example should help clarify the issues involved.

Character string “zaby”

Numeral string X representation of 
character string

25 0 1 24

Convert X to number 
x = NUM26(X)

decimal: 439450
hex: 6B49A
binary: 1101011010010011010

x stored on big-endian byte order 
machine as a 32-bit unsigned 
 integer

hex: 00 06 B4 9A
binary: 00000000000001101011010010011010

x stored on little-endian byte 
order machine as a 32-bit unsigned 
 integer

hex: 9A B4 06 00
binary: 10011010101101000000011000000000

Convert x, regardless of endian 
 format, to a bit string of length 
32 bits (4 bytes), expressed as [x]4

00000000000001101011010010011010

the Function FK We can now define in general terms the function FK. The core 
of FK is some type of randomizing function whose input and output are bit strings. 
For convenience, the strings should be multiples of 8 bits, forming byte strings. 
Define m to be u for even rounds and v for odd rounds; this specifies the de-
sired output character string length. Define b to be the number of bytes needed 
to store the number representing a character string of m bytes. Then the round, 
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including FK, consists of the following general steps (A and B refer to Ai and Bi 
for round i):

1. Q d [NUMradix(X)]bE Converts numeral string X into byte string Q of 
length b bytes.

2. Y d RAN[Q] A pseudorandom function PRNF that produces 
a pseudorandom byte string Y as a function of 
the bits of Q.

3. y d NUM2(Y) Converts Y into unsigned integer.

4. c d (NUMradix(A) + y) mod radixm Converts numeral string A into an integer and 
adds to y, modulo radixm.

5. C d STRradix
m (c) Converts c into a numeral string C of length m.

6. A d B;
B d C

Completes the round by placing the unchanged 
value of B from the preceding round into A, and 
placing C into B.

Steps 1 through 3 constitute the round function FK. Step 3 is presented with Y, 
which is an unstructured bit string. Because different platforms may store unsigned 
integers using different word lengths and endian conventions, it is necessary to per-
form NUM2(Y) to get an unsigned integer y. The stored bit sequence for y may or 
may not be identical to the bit sequence for Y.

As mentioned, the pseudorandom function in step 2 need not be reversible. Its 
purpose is to provide a randomized, scrambled bit string. For DES, this is achieved 
by using fixed S-boxes, as described in Appendix C. Virtually all FPE schemes that 
use the Feistel structure use AES as the basis for the scrambling function to achieve 
stronger security.

RelationShip Between Radix, MeSSage length, and Bit length Consider 
a numeral string X of length len and base radix. If we convert this to a number 
x = NUMradix(X), then the maximum value of x is radixlen - 1. The number of bits 
needed to encode x is

 bitlen = <LOG2(radixlen)= = <lenLOG2(radix)= 

Observe that an increase in either radix or len increases bitlen. Often, we want 
to limit the value of bitlen to some fixed upper limit, for example, 128 bits, which is 
the size of the input to AES encryption. We also want the FPE to handle a variety of 
radix values. The typical FPE, and all of those discussed subsequently, allow a given 
range of radix values and then define a maximum character string length in order to 
provide the algorithm with a fixed value of bitlen. Let the range of radix values be 
from 2 to maxradix, and the maximum allowable character string value be maxlen. 
Then the following relationship holds:

 maxlen … :bitlen/LOG2(radix); , or equivalently

 maxlen … :bitlen * LOGradix(2);
For example, for a radix of 10, maxlen … :0.3 * bitlen; ; for a radix of 26, 

maxlen … :0.21 * bitlen; . The larger the radix, the smaller the maximum character 
length for a given bit length.
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NIST Methods for Format-Preserving Encryption

In 2013, NIST issued SP 800-38G: Recommendation for Block Cipher Modes of 
Operation: Methods for Format-Preserving Encryption. This Recommendation spec-
ifies three methods for format-preserving encryption, called FF1, FF2, and FF3. The 
three methods all use the Feistel structure shown in Figure 7.12. They employ some-
what different round functions FK, which are built using AES. Important differences 
are the following:

 ■ FF1 supports the greatest range of lengths for the plaintext character string 
and the tweak. To achieve this, the round function uses a cipher-block-chaining 
(CBC) style of encryption, whereas FF2 and FF3 employ simple electronic 
codebook (ECB) encryption.

 ■ FF2 uses a subkey generated from the encryption key and the tweak, whereas 
FF1 and FF3 use the encryption key directly. The use of a subkey may help 
protect the original key from side-channel analysis, which is an attack based 
on information gained from the physical implementation of a cryptosystem, 
rather than brute force or cryptanalysis. Examples of such attacks are attempts 
to deduce key bits based on power consumption or execution time.

 ■ FF3 offers the lowest round count, eight, compared to ten for FF1 and FF2, 
and is the least flexible in the tweaks that it supports.

algoRithM FF1 Algorithm FF1 was submitted to NIST as a proposed FPE mode 
[BELL10a, BELL10b] with the name FFX[Radix]. FF1 uses a pseudorandom func-
tion PRFK(X) that produces a 128-bit output with inputs X that is a multiple of 128 
bits and encryption key K (Figure 7.13). In essence, PRFK(X) use CBC encryption 
(Figure 7.4) with X as the plaintext input, encryption key K, and an initial vector 
(IV) of all zeros. The output is the last block of ciphertext produced. This is also 

Prerequisites:

Approved, 128-bit block cipher, CIPH;
Key, K, for the block cipher; 

Input:

Nonempty bit string, X, such that LEN(X) is a multiple of 128.
Output:
128-bit block, Y

Steps:

 1. Let m = LEN(X)/128.

 2. Partition X into m 128-bit blocks X1, c , Xm, so that X = X1 } c}Xm

 3. Let Y0 = [0]16

 4. For j from 1 to m:

 5. let Yj = CIPHK(Yj - 1 ⊕ Xj).

 6. Return Ym.

Figure 7.13 Algorithm PRF(X)
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equivalent to the message authentication code known as CBC-MAC, or CMAC, 
described in Chapter 12.

The FF1 encryption algorithm is illustrated in Figure 7.14. The shaded lines 
correspond to the function FK. The algorithm has 10 rounds and the following 
 parameters (Table 7.3b):

 ■ radix ∈ [2 .. 216]

 ■ radixminlen Ú 100

 ■ minlen Ú 2

 ■ maxlen 6 232. For the maximum radix value of 216, the maximum bit length to 
store the integer value of X is 16 * 232 bits; for the minimum radix value of 2, 
the maximum bit length to store the integer value of X is 232 bits.

 ■ maxTlen 6 232

The inputs to the encryption algorithm are a character string X of length n 
and a tweak T of length t. The tweak is optional in that it may be the empty string. 

Prerequisites:

Approved, 128-bit block cipher, CIPH;
Key, K, for the block cipher; 
Base, radix, for the character alphabet;
Range of supported message lengths, [minlen .. maxlen];
Maximum byte length for tweaks, maxTlen.

Inputs: 

Character string, X, in base radix of length n such that n ∈ [minlen .. maxlen];
Tweak T, a byte string of byte length t, such that t ∈ [0 .. maxTlen].

Output:

Character string, Y, such that LEN(Y) = n. 

Steps:

1. Let u = :n/2; ; v = n - u.
2. Let A = X[1 .. u]; B = X[u + 1 .. n].
3. Let b = < <v LOG2(radix)=/8=; d = 4<b/4= + 4
4. Let P = [1]1 } [2]1 } [1]1 } [radix]3 } [10]1 } [u mod 256]1 } [n]4 } [t]4.
5. For i from 0 to 9:

i. Let Q = T } [0](-t - b - 1) mod 16 } [i]1 } [NUMradix(B)]b.
ii. Let R = PRFK(P }Q).

iii. Let S be the first d bytes of the following string of [d/16] 128-bit blocks: 
R }CIPHK(R ⊕ [1]16) }CIPHK(R ⊕ [2]16) } c }CIPHK(R ⊕ [<d/16= - 1]16).

iv. Let y = NUM2(S).
v. If i is even, let m = u; else, let m = v.

vi. Let c = (NUMradix(A) + y) mod radixm.
vii. Let C = STRradix

m (c).
viii. Let A = B.

ix. Let B = C.

6. Return Y = A }B.

Figure 7.14 Algorithm FF1 (FFX[Radix])
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The output is the encrypted character string Y of length n. What follows is a step-by-
step description of the algorithm.

 1., 2.  The input X is split into two substrings A and B. If n is even, A and B are 
of equal length. Otherwise, B is one character longer than A.

 3.  The expression <v LOG2(radix)= equals the number of bits needed to 
encode B, which is v characters long. Encoding B as a byte string, b is 
the number of bytes in the encoding. The definition of d ensures that the 
output of the Feistel round function is at least 4 bytes longer than this 
encoding of B, which minimizes any bias in the modular reduction in 
step 5.vi, as explained subsequently.

 4. P is a 128-bit (16-byte) block that is a function of radix, u, n, and t. It 
serves as the first block of plaintext input to the CBC encryption mode 
used in 5.ii, and is intended to increase security.

 5. The loop through the 10 rounds of encryption.

 5.i The tweak, T, the substring, B, and the round number, i, are encoded 
as a binary string, Q, which is one or more 128-bit blocks in length. To 
understand this step, first note that the value NUMradix(B) produces a 
numeral string that represents B in base radix. How this numeral string is 
formatted and stored is outside the scope of the standard. Then, the value 
[NUMradix(B)]b produces the representation of the numerical value of B 
as a binary number in a string of b bytes. We also have the length of T 
is t bytes, and the round number is stored in a single byte. This yields a 
length of (t + b + 1) bytes. This is padded out with z = (- t - b - 1) 
mod 16 bytes. From the rules of modular arithmetic, we know that 
(z + t + b + 1) mod 16 = 0. Thus the length of Q is one or more 128-
bit blocks.

 5.ii The concatenation of P and Q is input to the pseudorandom func-
tion PRF to produce a 128-bit output R. This function is the pseudo-
random core of the Feistel round function. It scrambles the bits of Bi 
 (Figure 7.12).

 5.iii This step either truncates or expands R to a byte string S of length d 
bytes. That is, if d … 16 bytes, then R is the first d bytes of R. Otherwise 
the 16-byte R is concatenated with successive encryptions of R XORed 
with successive constants to produce the shortest string of 16-byte blocks 
whose length is greater than or equal to d bytes.

 5.iv This step begins the process of converting the results of the scrambling 
of Bi into a form suitable for combining with Ai. In this step, the d-byte 
string S is converted into a numeral string in base 2 that represents S. 
That is, S is represented as a binary string y.

 5.v This step determines the length m of the character string output that is 
required to match the length of the B portion of the round output. For 
even-numbered rounds, the length is u characters, and for odd- numbered 
rounds it is v characters, as shown in Figure 7.12.

 5.vi The numerical values of A and y are added modulo radixm. This truncates 
the value of the sum to a value c that can be stored in m characters.
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 5.vii This step converts the c into the proper representation C as a string of m 
characters.

 5.viii, 5.ix  These steps complete the round by placing the unchanged value of B 
from the preceding round into A, and placing C into B.

 6. After the final round, the result is returned as the concatenation of A and B.

It may be worthwhile to clarify the various uses of the NUM function in FF1. 
NUM converts strings with a given radix into integers. In step 5.i, B is a character 
string in base radix, so NUMradix(B) converts this into an integer, which is stored as a 
byte string, suitable for encryption in step 5.ii. For step 5.iv, S is a byte string output 
of an encryption function, which can be viewed a bit string, so NUM2(S) converts 
this into an integer.

Finally, a brief explanation of the variable d is in order, which is best explained 
by example. Let radix = 26 and v = 30 characters. Then b = 18 bytes, and d = 24 
bytes. Step 5.ii produces an output R of 16 bytes. We desire a scrambled output of 
b bytes to match the input, and so R needs to be padded out. Rather than padding 
with a constant value such as all zeros, step 5.iii pads out with random bits. The 
result, in step 5.iv is a number greater than radixm of fully randomized bits. The use 
of randomized padding avoids a potential security risk of using a fixed padding.

algoRithM FF2 Algorithm FF2 was submitted to NIST as a proposed FPE mode 
with the name VAES3 [VANC11]. The encryption algorithm is defined in Figure 7.15. 
The shaded lines correspond to the function FK. The algorithm has the following 
parameters:

 ■ radix ∈ [2 .. 28]

 ■ tweakradix ∈ [2 .. 28]

 ■ radixminlen Ú 100

 ■ minlen Ú 2

 ■ maxlen … 2:120/LOG2(radix);  if radix is a power of 2. For the maximum radix 
value of 28, maxlen … 30; for the minimum radix value of 2, maxlen … 240. In 
both cases, the maximum bit length to store the integer value of X is 240 bits, 
or 30 bytes.

 ■ maxlen … 2:98/LOG2(radix);  if radix is a not a power of 2. For the maxi-
mum radix value of 255, maxlen … 24; for the minimum radix value of 3, 
maxlen … 124.

 ■ maxTlen … :104/LOG2(tweakradix); . For the maximum tweakradix value of 
28, maxTlen … 13.

For FF2, the plaintext character alphabet and that of the tweak may be different.
The first two steps of FF2 are the same as FF1, setting values for v, u, A, and B.  

FF2 proceeds with the following steps:

3. P is a 128-bit (16-byte) block. If there is a tweak, then P is a function of 
 radix, t, n, and the 13-byte numerical value of the tweak. If there is no tweak 
(t = 0), then P is a function of radix and n. P is used to form an encryption key 
in step 4.

4. J is the encryption of P using the input key K.
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5. The loop through the 10 rounds of encryption.

5.i B is converted into a 15-byte number, prepended by the round number to 
form a 16-byte block Q.

5.ii Q is encrypted using the encryption key J to yield Y.

The remaining steps are the same as for FF1. The essential difference is in the 
way in which all of the parameters are incorporated into the encryption that takes 
place in the block FK. In both cases, the encryption is not simply an encryption of B 
using key K. For FF1, B is combined with the tweak, the round number, t, n, u, and 
radix to form a string of multiple 16-byte blocks. Then CBC encryption is used with 
K to produce a 16-byte output. For FF2, all of the parameters besides B are com-
bined to form a 16-byte block, which is then encrypted with K to form the key value 
J. J is then used as the key for the one-block encryption of B.

The structure of FF2 explains the maximum length restrictions. In step 3, P 
incorporates the radix, tweak length, the numeral string length, and the tweak into 
the calculation. As input to AES, P is restricted to 16 bytes. With a maximum radix 
value of 28, the radix value can be stored in one byte (byte value 0 corresponds 
to 256). The string length n and tweak length t each easily fits into one byte. This 
leaves a  restriction that the value of the tweak should be stored in at most 13 bytes,  

Approved, 128-bit block cipher, CIPH;
Key, K, for the block cipher; 
Base, tweakradix, for the tweak character alphabet;
Range of supported message lengths, [minlen .. maxlen];
Maximum supported tweak length, maxTlen.

Inputs:

Numeral string, X, in base radix, of length n such that n ∈ [minlen .. maxlen];
Tweak numeral string, T, in base tweakradix, of length t such that t ∈ [0 .. maxTlen].

Output:
Numeral string, Y, such that LEN(Y) = n.

Steps:

1. Let u = :n/2; ; v = n - u.
2. Let A = X[1 .. u]; B = X[u + 1 .. n].
3. If t 7 0, P = [radix]1 }  [t]1 }  [n]1 }  [NUMtweakradix(T)]13; else P = [radix]1 }  [0]1 }  [n]1 }  [0]13.
4. Let J = CIPHK(P).
5. For i from 0 to 9:

i. Let Q d [i]1 }  [NUMradix(B)]15

ii. Let Y d CIPHJ(Q).
iii. Let y d NUM2(Y).
iv. If i is even, let m = u; else, let m = v.

v. Let c = (NUMradix(A) + y) mod radixm.
vi. Let C = STRradix

m (c).
vii. Let A = B.

viii. Let B = C.

6. Return Y = A }B.

Figure 7.15 Algorithm FF2 (VAES3)
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or 104 bits. The number of bits to store the tweak is LOG2(tweakradixTlen). This 
leads to the restriction maxTlen Ú :104/LOG2(tweakradix); . Similarly step 5i  
incorporates B and the round number into a 16-byte input to AES, leaving  
15 bytes to encode B, or 120 bits, so that the length must be less than or equal to 
:120/LOG2(radix); . The parameter maxlen refers to the entire block, consisting of 
partitions A and B, thus maxlen Ú 2:120/LOG2(radix); .

There is a further restriction on maxlen for a radix that is not a power of 2. 
As explained in [VANC11], when the radix is not a power of 2, modular arithme-
tic causes the value (y mod radixm) to not have uniform distribution in the output 
space, which can result in a cryptographic weakness.

algoRithM FF3 Algorithm FF3 was submitted to NIST as a proposed FPE mode 
with the name BPS-BC [BRIE10]. The encryption algorithm is illustrated in 
Figure 7.16. The shaded lines correspond to the function FK. The algorithm has the 
following parameters:

 ■ radix ∈ [2 .. 216]

 ■ radixminlen Ú 100

 ■ minlen Ú 2

Approved, 128-bit block cipher, CIPH;
Key, K, for the block cipher;
Base, radix, for the character alphabet such that radix ∈ [2..216];
Range of supported message lengths, [minlen .. maxlen], such that minlen Ú 2 and 
maxlen … 2:logradix(296); .

Inputs:

Numeral string, X, in base radix of length n such that n ∈ [minlen .. maxlen];
Tweak bit string, T, such that LEN(T) = 64.

Output:
Numeral string, Y, such that LEN(Y) = n.

Steps:

1. Let u = <n/2=; v = n - u.
2. Let A = X[1 .. u]; B = X[u + 1 .. n].
3. Let TL = T[0 .. 31] and TR = T[32 .. 63].
4. For i from 0 to 7:

i. If i is even, let m = u and W = TR, else let m = v and W = TL.
ii. Let P = REV([NUMradix(REV(B))]12) } [W ⊕ REV([i]4]).

iii. Let Y = CIPHK(P).
iv. Let y = NUM2(REV(Y)).

v. Let c = (NUMradix(REV(A)) + y) mod radixm.
vi. Let C = REV(STRradix

m (c)).
vii. Let A = B.

viii. Let B = C.

5. Return A }B.

Figure 7.16 Algorithm FF3 (BPS-BC)
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 ■ maxlen … 2:LOGradix(296); . For the maximum radix value of 216, maxlen … 12; 
for the minimum radix value of 2, maxlen … 192. In both cases, the maximum 
bit length to store the integer value of X is 192 bits, or 24 bytes.

 ■ Tweak length = 64 bits

FF3 proceeds with the following steps:

1., 2. The input X is split into two substrings A and B. If n is even, A and B are 
of equal length. Otherwise, A is one character longer than B, in contrast 
to FF1 and FF2, where B is one character longer than A.

3. The tweak is partitioned into a 32-bit left tweak TL and a 32-bit right 
tweak TR.

4. The loop through the 8 rounds of encryption.

4.i As in FF1 and FF2, this step determines the length m of the character 
string output that is required to match the length of the B portion of the 
round output. The step also determines whether TL or TR will be used as 
W in step 4ii.

4.ii The bits of B are reversed, then NUMradix(B) produces a 12-byte numeral 
string in base radix; the results are again reversed. A 32-bit encoding of 
the round number i is stored in a 4-byte unit, which is reversed and then 
XORed with W. P is formed by concatenating these two results to form a 
16-byte block.

4.iii P is encrypted using the encryption key K to yield Y.

4.iv This is similar to step 5.iv in FF1, except that Y is reversed before convert-
ing it into a numeral string in base 2.

4.v The numerical values of the reverse of A and y are added modulo radixm. 
This truncates the value of the sum to a value c that can be stored in m 
characters.

4.vi This step converts c to a numeral string C.

The remaining steps are the same as for FF1.

Key Terms 

block cipher modes of 
operation

ciphertext stealing

meet-in-the-middle attack 
nonce
triple DES (3DES)

Tweakable block cipher

 7.9 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS
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Review Questions 

 7.1 What is a tweakable block cipher?
 7.2 Why does double encryption of a plaintext with DES, with two different keys of  

56 bits, not provide 112 bits of security?
 7.3 Why is double encryption in DES with two different keys not likely to be equivalent 

to single encryption with a different key?
 7.4 List and briefly define the block cipher modes of operation.
 7.5 Why is the ECB mode not secure for encrypting large amounts of data or structured data?

Problems 

 7.1 You want to build a hardware device to do block encryption in the cipher block chain-
ing (CBC) mode using an algorithm stronger than DES. 3DES is a good candidate. 
Figure 7.17 shows two possibilities, both of which follow from the definition of CBC. 
Which of the two would you choose:
a. For security?
b. For performance?

 7.2 Can you suggest a security improvement to either option in Figure 7.17, using only 
three DES chips and some number of XOR functions? Assume you are still limited to 
two keys.

Figure 7.17 Use of Triple DES in CBC Mode
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 7.3 The Merkle–Hellman attack on 3DES begins by assuming a value of A = 0 
(Figure 7.1b). Then, for each of the 256 possible values of K1, the plaintext P that pro-
duces A = 0 is determined. Describe the rest of the algorithm.

 7.4 With the ECB mode, if there is an error in a block of the transmitted ciphertext, only 
the corresponding plaintext block is affected. However, in the CBC mode, this error 
propagates. For example, an error in the transmitted C1 (Figure 7.4) obviously cor-
rupts P1 and P2.
a. Are any blocks beyond P2 affected?
b. Suppose that there is a bit error in the source version of P1. Through how many 

ciphertext blocks is this error propagated? What is the effect at the receiver?
 7.5 Why should the initialization vector be protected against unauthorised use in the 

CBC mode of encryption?
 7.6 By the end of the 1970s, it was already realized by practitioners of cryptography that a 

DES key size of 56 bits was small enough to permit brute-force key search attacks by 
adversaries having enough hardware. A proposal to increase the key size of a modi-
fied version of DES (potentially to 184 bits) was made by Rivest in 1984. The method 
is known as DESX and encrypts a message m with keys k1, k2, and k3 of size 64, 56, and 
64 bits, respectively, as follows: DES-X(k1, k2, k3, m) = k1 ⊕ DES(k2, m ⊕ k3). 

  Show that it only gives a security of 120 bits against key search when the attacker has 
a few pairs of plaintext-ciphertext available. In fact, due to this attack, Rivest sug-
gested keeping k1 = k3 with a security level of 120 bits.

 7.7 Given n blocks of message, the ECB mode produces exactly n blocks of ciphertext. 
However, the CBC mode produces (n + 1) blocks, due to the use of IV. Other modes 
such as CFB, OFB, and CTR also use an IV to encrypt messages. Show that secure 
encryption of multiple blocks of plaintext necessarily requires the use of IV (or some 
other form of randomization in the encryption process).

 7.8 If a block of ciphertext gets corrupted during transmission in the OFB mode, how 
does it affect the decryption?

 7.9 Is it possible to parallelize encryption in the CFB mode? What about decryption?
 7.10 What are the advantages of CTR mode over the CBC mode? Explain in terms of the 

implementation benefits in software, hardware, and decryption throughput. 
 7.11 Padding may not always be appropriate. For example, one might wish to store the 

encrypted data in the same memory buffer that originally contained the plaintext. In 
that case, the ciphertext must be the same length as the original plaintext. We saw the 
use of ciphertext stealing in the case of XTS-AES to deal with partial blocks. Figure 7.18a 
shows the use of ciphertext stealing to modify CBC mode, called CBC-CTS.
a. Explain how it works.
b. Describe how to decrypt Cn - 1 and Cn.

 7.12 Figure 7.18b shows an alternative to CBC-CTS for producing ciphertext of equal 
length to the plaintext when the plaintext is not an integer multiple of the block size.
a. Explain the algorithm.
b. Explain why CBC-CTS is preferable to this approach illustrated in Figure 7.18b.

 7.13 Draw a figure similar to those of Figure 7.8 for XTS-AES mode.
 7.14 Work out the following problems from first principles without converting to binary 

and counting the bits. Then, compare with the formulae presented for encoding a 
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character string into an integer, and vice-versa, in the specified radix. (Hint: Consider 
the next-lower and next-higher power of two for each integer.)
a. How many bits are exactly required to encode the following integers? (The num-

ber shown as an integer’s subscript refers to the radix of that integer.)
i. 204710

ii. 204810
iii. 3276710
iv. 3276810
v. 3276716

vi. 3276816
vii. 537F16

viii. 2943110
b. Exactly how many bytes are required to represent the numbers in (a) above?

 7.15 a.  In radix-26, write down the numeral string X for each of the following character 
strings, followed by the number of “digits” (i.e., the length of the numeral string) 
in each case.
i. “hex”

ii. “cipher”
iii. “not”
iv. “symbol”

Figure 7.18 Block Cipher Modes for Plaintext not a Multiple of Block Size
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b. For each case of problem (a), determine the number x = NUM26(X)
c. Determine the byte form [x] for each number x computed in problem (b).
d. What is the smallest power of the radix (26) that is greater than each of the 

 numerical strings determined in (b)?
e. Is it related to the length of the numeral string in each case, in problem (a)? If so, 

what is this relationship?
 7.16 Refer to algorithms FF1 and FF2.

a. For step 1, for each algorithm, u d :n/2;  and v d <n - u=. Show that for any 
three integers x, y, and n:

if x = :n/2;  and y = <n - x=, then:
i. Either x = n/2, or x = (n - 1)/2.

ii. Either y = n/2, or y = (n + 1)/2.
iii. x … y. (Under what condition is x = y?)

b. What is the significance of result in the previous sub-problem (iii), in terms of the 
lengths u and v of the left and right half-strings, respectively?

 7.17 In step 3 of Algorithm FF1, what do b and d represent? What is the unit of measure-
ment (bits, bytes, digits, characters) of each of these quantities?

 7.18 In the inputs to algorithms FF1, FF2, and FF3, why are the specified radix ranges 
 important? For example, why should radix ∈ [0..28] for Algorithm FF2, or 
radix ∈ [2..216] in the case of Algorithm FF3?

Programming Problems 

 7.1 Create software that can encrypt and decrypt in cipher block chaining mode using one 
of the following ciphers: affine modulo 256, Hill modulo 256, S-DES, DES.

  Test data for S-DES using a binary initialization vector of 1010 1010. A binary plain-
text of 0000 0001 0010 0011 encrypted with a binary key of 01111 11101 should give 
a binary plaintext of 1111 0100 0000 1011. Decryption should work correspondingly.

 7.2 Create software that can encrypt and decrypt in 4-bit cipher feedback mode using one 
of the following ciphers: additive modulo 256, affine modulo 256, S-DES;

or
  8-bit cipher feedback mode using one of the following ciphers: 2 * 2 Hill modulo 256. 

Test data for S-DES using a binary initialization vector of 1010 1011. A binary plain-
text of 0001 0010 0011 0100 encrypted with a binary key of 01111 11101 should give 
a binary plaintext of 1110 1100 1111 1010. Decryption should work correspondingly.

 7.3 Create software that can encrypt and decrypt in counter mode using one of the follow-
ing ciphers: affine modulo 256, Hill modulo 256, S-DES.

  Test data for S-DES using a counter starting at 0000 0000. A binary plaintext of 0000 
0001 0000 0010 0000 0100 encrypted with a binary key of 01111 11101 should give 
a binary plaintext of 0011 1000 0100 1111 0011 0010. Decryption should work cor-
respondingly.

 7.4 Implement a differential cryptanalysis attack on 3-round S-DES.
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An important cryptographic function is the generation of random bit streams. Random 
bits streams are used in a wide variety of contexts, including key generation and 
 encryption. In essence, there are two fundamentally different strategies for generating 
random bits or random numbers. One strategy, which until recently dominated in cryp-
tographic applications, computes bits deterministically using an algorithm. This class 
of random bit generators is known as pseudorandom number generators (PRNGs) or 
deterministic random bit generators (DRBGs). The other strategy is to produce bits 
non-deterministically using some physical source that produces some sort of random 
output. This latter class of random bit generators is known as true random number gen-
erators (TRNGs) or non-deterministic random bit generators (NRBGs).

The chapter begins with an analysis of the basic principles of PRNGs. Next, we 
look at some common PRNGs, including PRNGs based on the use of a symmetric 
block cipher. The chapter then moves on to the topic of symmetric stream ciphers, 
which are based on the use of a PRNG.

The remainder of the chapter is devoted to TRNGs. We look first at the basic 
principles and structure of TRNGs, and then examine a specific product, the Intel 
Digital Random Number Generator.

Throughout this chapter, reference is made to four important NIST documents:

■■ SP 800-90A (Recommendation for Random Number Generation Using 
Deterministic Random Bit Generators, June 2015): Specifies mechanisms for 
the generation of random bits using deterministic methods.

■■ SP 800-90B (Recommendation for the Entropy Sources Used for Random Bit 
Generation, January 2018): Covers design principles and requirements for 
entropy sources (ES), the devices from which we get unpredictable random-
ness and NRNGs.

■■ SP 800-90C (Recommendation for Random Bit Generator (RBG) 
Constructions, April 2016): Discusses how to combine the entropy sources in 
90B with the DRNG’s from 90A to provide large quantities of unpredictable 
bits for cryptographic applications.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

■◆ Explain the concepts of randomness and unpredictability with respect to 
random numbers.

■◆ Understand the differences among true random number generators, 
 pseudorandom number generators, and pseudorandom functions.

■◆ Present an overview of requirements for pseudorandom number  generators.

■◆ Explain how a block cipher can be used to construct a pseudorandom 
number generator.

■◆ Present an overview of stream ciphers and RC4.

■◆ Explain the significance of skew.
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■■ SP 800-22 (A Statistical Test Suite for Random and Pseudorandom Number 
Generators for Cryptographic Applications, April 2010) discusses the selection 
and testing of NRBGs and DRBGs.

These specifications have heavily influenced the implementation of random bit 
generators in industry both in the U.S. and worldwide.

 8.1 PRINCIPLES OF PSEUDORANDOM NUMBER GENERATION

Random numbers play an important role in the use of encryption for various net-
work security applications. In this section, we provide a brief overview of the use of 
random numbers in cryptography and network security and then focus on the prin-
ciples of pseudorandom number generation.

The Use of Random Numbers

A number of network security algorithms and protocols based on cryptography 
make use of random binary numbers. For example,

■■ Key distribution and reciprocal (mutual) authentication schemes, such as those 
discussed in Chapters 14 and 15. In such schemes, two communicating parties 
cooperate by exchanging messages to distribute keys and/or authenticate each 
other. In many cases, nonces are used for handshaking to prevent replay attacks. 
The use of random numbers for the nonces frustrates an opponent’s efforts to 
determine or guess the nonce, in order to repeat an obsolete transaction.

■■ Session key generation. We will see a number of protocols in this book where a 
secret key for symmetric encryption is generated for use for a particular trans-
action (or session) and is valid for a short period of time. This key is generally 
called a session key.

■■ Generation of keys for the RSA public-key encryption algorithm (described 
in Chapter 9).

■■ Generation of a bit stream for symmetric stream encryption (described in this 
chapter).

These applications give rise to two distinct and not necessarily compatible 
 requirements for a sequence of random numbers: randomness and unpredictability.

Randomness Traditionally, the concern in the generation of a sequence of alleg-
edly random numbers has been that the sequence of numbers be random in some 
well-defined statistical sense. The following two criteria are used to validate that a 
sequence of numbers is random:

■■ Uniform distribution: The distribution of bits in the sequence should be 
 uniform; that is, the frequency of occurrence of ones and zeros should be 
 approximately equal.

■■ Independence: No one subsequence in the sequence can be inferred from the 
others.
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Although there are well-defined tests for determining that a sequence of bits 
matches a particular distribution, such as the uniform distribution, there is no such 
test to “prove” independence. Rather, a number of tests can be applied to demon-
strate if a sequence does not exhibit independence. The general strategy is to apply 
a number of such tests until the confidence that independence exists is sufficiently 
strong. That is, if each of a number of tests fails to show that a sequence of bits is not 
independent, then we can have a high level of confidence that the sequence is in fact 
independent.

In the context of our discussion, the use of a sequence of numbers that appear 
statistically random often occurs in the design of algorithms related to cryptography. 
For example, a fundamental requirement of the RSA public-key encryption scheme 
discussed in Chapter 9 is the ability to generate prime numbers. In general, it is diffi-
cult to determine if a given large number N is prime. A brute-force approach would 
be to divide N by every odd integer less than 2N. If N is on the order, say, of 10150, 
which is a not uncommon occurrence in public-key cryptography, such a brute-force 
approach is beyond the reach of human analysts and their computers. However, a 
number of effective algorithms exist that test the primality of a number by using a 
sequence of randomly chosen integers as input to relatively simple computations. 
If the sequence is sufficiently long (but far, far less than 210150), the primality of a 
number can be determined with near certainty. This type of approach, known as ran-
domization, crops up frequently in the design of algorithms. In essence, if a problem 
is too hard or time-consuming to solve exactly, a simpler, shorter  approach based 
on randomization is used to provide an answer with any desired level of confidence.

UnpRedictability In applications such as reciprocal authentication, session key 
generation, and stream ciphers, the requirement is not just that the sequence of 
numbers be statistically random but that the successive members of the sequence 
are unpredictable. With “true” random sequences, each number is statistically inde-
pendent of other numbers in the sequence and therefore unpredictable. Although 
true random numbers are used in some applications, they have their limitations, 
such as inefficiency, as is discussed shortly. Thus, it is more common to implement 
algorithms that generate sequences of numbers that appear to be random but are in 
fact not random. In this latter case, care must be taken that an opponent not be able 
to predict future  elements of the sequence on the basis of earlier elements.

TRNGs, PRNGs, and PRFs

Cryptographic applications typically make use of algorithmic techniques for ran-
dom number generation. These algorithms are deterministic and therefore produce 
sequences of numbers that are not statistically random. However, if the algorithm is 
good, the resulting sequences will pass many tests of randomness. Such numbers are 
referred to as pseudorandom numbers.

You may be somewhat uneasy about the concept of using numbers generated 
by a deterministic algorithm as if they were random numbers. Despite what might be 
called philosophical objections to such a practice, it generally works. That is, under 
most circumstances, pseudorandom numbers will perform as well as if they were 
random for a given use. The phrase “as well as” is unfortunately subjective, but the 
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use of pseudorandom numbers is widely accepted. The same principle  applies in 
statistical applications, in which a statistician takes a sample of a population and 
assumes that the results will be approximately the same as if the whole population 
were measured.

Figure 8.1 contrasts a true random number generator (TRNG) with two forms 
of pseudorandom number generators. A TRNG takes as input a source that is 
 effectively random; the source is often referred to as an entropy source. We discuss 
such sources in Section 8.6. In essence, the entropy source is drawn from the physi-
cal environment of the computer and could include things such as keystroke timing 
patterns, disk electrical activity, mouse movements, and instantaneous values of the 
system clock. The source, or combination of sources, serve as input to an algorithm 
that produces random binary output. The TRNG may simply involve conversion of 
an analog source to a binary output. The TRNG may involve additional processing 
to overcome any bias in the source; this is discussed in Section 8.6.

In contrast, a PRNG takes as input a fixed value, called the seed, and produces 
a sequence of output bits using a deterministic algorithm. Quite often, the seed is 
generated by a TRNG. Typically, as shown, there is some feedback path by which 
some of the results of the algorithm are fed back as input as additional output bits 
are produced. The important thing to note is that the output bit stream is deter-
mined solely by the input value or values, so that an adversary who knows the algo-
rithm and the seed can reproduce the entire bit stream.

Figure 8.1 shows two different forms of PRNGs, based on application.

■■ Pseudorandom number generator: An algorithm that is used to produce an 
open-ended sequence of bits is referred to as a PRNG. A common application 
for an open-ended sequence of bits is as input to a symmetric stream cipher, 
as discussed in Section 8.4. Also, see Figure 4.1a.

Figure 8.1 Random and Pseudorandom Number Generators
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■■ Pseudorandom function (PRF): A PRF is used to produce a pseudorandom 
string of bits of some fixed length. Examples are symmetric encryption keys 
and nonces. Typically, the PRF takes as input a seed plus some context specific 
values, such as a user ID or an application ID. A number of examples of PRFs 
will be seen throughout this book, notably in Chapters 19 and 20.

Other than the number of bits produced, there is no difference between 
a PRNG and a PRF. The same algorithms can be used in both applications. Both 
require a seed and both must exhibit randomness and unpredictability. Further, 
a PRNG application may also employ context-specific input. In what follows, we 
make no distinction between these two applications.

PRNG Requirements

When a PRNG or PRF is used for a cryptographic application, then the basic 
 requirement is that an adversary who does not know the seed is unable to determine 
the pseudorandom string. For example, if the pseudorandom bit stream is used in a 
stream cipher, then knowledge of the pseudorandom bit stream would enable the 
adversary to recover the plaintext from the ciphertext. Similarly, we wish to protect 
the output value of a PRF. In this latter case, consider the following scenario. A 128-
bit seed, together with some context-specific values, are used to generate a 128-bit 
secret key that is subsequently used for symmetric encryption. Under normal cir-
cumstances, a 128-bit key is safe from a brute-force attack. However, if the PRF 
does not generate effectively random 128-bit output values, it may be possible for an 
adversary to narrow the possibilities and successfully use a brute force attack.

This general requirement for secrecy of the output of a PRNG or PRF leads 
to specific requirements in the areas of randomness, unpredictability, and the char-
acteristics of the seed. We now look at these in turn.

Randomness In terms of randomness, the requirement for a PRNG is that the gen-
erated bit stream appear random even though it is deterministic. There is no single 
test that can determine if a PRNG generates numbers that have the characteristic 
of randomness. The best that can be done is to apply a sequence of tests to the 
PRNG. If the PRNG exhibits randomness on the basis of multiple tests, then it can 
be  assumed to satisfy the randomness requirement. NIST SP 800-22 specifies that 
the tests should seek to establish the following three characteristics.

■■ Uniformity: At any point in the generation of a sequence of random or pseu-
dorandom bits, the occurrence of a zero or one is equally likely, that is, the 
probability of each is exactly 1/2. The expected number of zeros (or ones) is 
n/2, where n = the sequence length.

■■ Scalability: Any test applicable to a sequence can also be applied to subse-
quences extracted at random. If a sequence is random, then any such extracted 
subsequence should also be random. Hence, any extracted subsequence should 
pass any test for randomness.

■■ Consistency: The behavior of a generator must be consistent across starting 
values (seeds). It is inadequate to test a PRNG based on the output from 
a  single seed or a TRNG on the basis of an output produced from a single 
physical output.
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SP 800-22 lists 15 separate tests of randomness. An understanding of these 
tests requires a basic knowledge of statistical analysis, so we don’t attempt a techni-
cal description here. Instead, to give some flavor for the tests, we list three of the 
tests and the purpose of each test, as follows.

■■ Frequency test: This is the most basic test and must be included in any test 
suite. The purpose of this test is to determine whether the number of ones and 
zeros in a sequence is approximately the same as would be expected for a truly 
random sequence.

■■ Runs test: The focus of this test is the total number of runs in the sequence, 
where a run is an uninterrupted sequence of identical bits bounded before 
and after with a bit of the opposite value. The purpose of the runs test is to 
determine whether the number of runs of ones and zeros of various lengths is 
as expected for a random sequence.

■■ Maurer’s universal statistical test: The focus of this test is the number of 
bits between matching patterns (a measure that is related to the length of a 
compressed sequence). The purpose of the test is to detect whether or not 
the  sequence can be significantly compressed without loss of information. 
A  significantly compressible sequence is considered to be non-random.

UnpRedictability A stream of pseudorandom numbers should exhibit two forms of 
unpredictability:

■■ Forward unpredictability: If the seed is unknown, the next output bit in the 
sequence should be unpredictable in spite of any knowledge of previous bits 
in the sequence.

■■ Backward unpredictability: It should also not be feasible to determine the 
seed from knowledge of any generated values. No correlation between a seed 
and any value generated from that seed should be evident; each element of the 
sequence should appear to be the outcome of an independent random event 
whose probability is 1/2.

The same set of tests for randomness also provide a test of unpredictability. If 
the generated bit stream appears random, then it is not possible to predict some bit 
or bit sequence from knowledge of any previous bits. Similarly, if the bit sequence 
appears random, then there is no feasible way to deduce the seed based on the bit 
sequence. That is, a random sequence will have no correlation with a fixed value (the 
seed).

seed ReqUiRements For cryptographic applications, the seed that serves as input to 
the PRNG must be secure. Because the PRNG is a deterministic algorithm, if the 
adversary can deduce the seed, then the output can also be determined. Therefore, 
the seed must be unpredictable. In fact, the seed itself must be a random or pseudo-
random number.

Typically, the seed is generated by a TRNG, as shown in Figure 8.2. This is 
the scheme recommended by SP 800-90A. The reader may wonder, if a TRNG is 
available, why it is necessary to use a PRNG. If the application is a stream cipher, 
then a TRNG is not practical. The sender would need to generate a keystream of 
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bits as long as the plaintext and then transmit the keystream and the ciphertext 
 securely to the receiver. If a PRNG is used, the sender need only find a way to 
deliver the stream cipher key, which is typically 128 or 256 bits, to the receiver in a 
secure fashion.

Even in the case of a PRF application, in which only a limited number of bits 
is generated, it is generally desirable to use a TRNG to provide the seed to the 
PRF and use the PRF output rather than use the TRNG directly. As is explained 
in Section 8.6, a TRNG may produce a binary string with some bias. The PRF 
would have the effect of conditioning the output of the TRNG so as to eliminate 
that bias.

Finally, the mechanism used to generate true random numbers may not be 
able to generate bits at a rate sufficient to keep up with the application requiring the 
random bits.

Algorithm Design

Cryptographic PRNGs have been the subject of much research over the years, 
and a wide variety of algorithms have been developed. These fall roughly into two 
categories.

■■ Purpose-built algorithms: These are algorithms designed specifically and 
solely for the purpose of generating pseudorandom bit streams. Some of these 
algorithms are used for a variety of PRNG applications; several of these are 
described in the next section. Others are designed specifically for use in a 
stream cipher. This topic is examined later in this chapter.

■■ Algorithms based on existing cryptographic algorithms: Cryptographic 
 algorithms have the effect of randomizing input data. Indeed, this is a require-
ment of such algorithms. For example, if a symmetric block cipher produced 

Figure 8.2 Generation of Seed Input to PRNG
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ciphertext that had certain regular patterns in it, it would aid in the process of 
cryptanalysis. Thus, cryptographic algorithms can serve as the core of PRNGs. 
SP 800-90A recommends three categories of such algorithms:

–Symmetric block ciphers: This approach is discussed in Section 8.3.

–Hash functions and message authentication codes: These approaches are  
examined in Chapter 12.

Any of these approaches can yield a cryptographically strong PRNG. 
A  purpose-built algorithm may be provided by an operating system for general use. 
For applications that already use certain cryptographic algorithms for encryption 
or  authentication, it makes sense to reuse the same code for the PRNG. Thus, all of 
these approaches are in common use.

 8.2 PSEUDORANDOM NUMBER GENERATORS

In this section, we look at two types of algorithms for PRNGs.

Linear Congruential Generators

A widely used technique for pseudorandom number generation is an algorithm first 
proposed by Lehmer [LEHM51], which is known as the linear congruential method. 
The algorithm is parameterized with four numbers, as follows:

m the modulus m 7 0
a the multiplier 0 6 a 6 m
c the increment 0 … c 6 m
X0 the starting value, or seed 0 … X0 6 m

The sequence of random numbers {Xn} is obtained via the following iterative 
equation:

 Xn + 1 = (aXn + c) mod m 

If m, a, c, and X0 are integers, then this technique will produce a sequence of integers 
with each integer in the range 0 … Xn 6 m.

The selection of values for a, c, and m is critical in developing a good ran-
dom number generator. For example, consider a = c = 1. The sequence produced 
is obviously not satisfactory. Now consider the values a = 7, c = 0, m = 32, and 
X0 = 1. This generates the sequence {7, 17, 23, 1, 7, etc.}, which is also clearly 
 unsatisfactory. Of the 32 possible values, only four are used; thus, the sequence is said 
to have a period of 4. If, instead, we change the value of a to 5, then the  sequence is 
{5, 25, 29, 17, 21, 9, 13, 1, 5, etc. }, which increases the period to 8.

We would like m to be very large, so that there is the potential for producing 
a long series of distinct random numbers. A common criterion is that m be nearly 
equal to the maximum representable nonnegative integer for a given computer. 
Thus, a value of m near to or equal to 231 is typically chosen.
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[PARK88] proposes three tests to be used in evaluating a random number 
generator:

T1: The function should be a full-period generating function. That is, the function 
should generate all the numbers from 0 through m - 1 before repeating.

T2: The generated sequence should appear random.
T3: The function should implement efficiently with 32-bit arithmetic.

With appropriate values of a, c, and m, these three tests can be passed. With 
respect to T1, it can be shown that if m is prime and c = 0, then for certain values 
of a the period of the generating function is m - 1, with only the value 0 missing. 
For 32-bit arithmetic, a convenient prime value of m is 231 - 1. Thus, the generating 
function becomes

 Xn + 1 = (aXn) mod (231 - 1) 

Of the more than 2 billion possible choices for a, only a handful of multipliers 
pass all three tests. One such value is a = 75 = 16807, which was originally selected 
for use in the IBM 360 family of computers [LEWI69]. This generator is widely 
used and has been subjected to a more thorough testing than any other PRNG. It is 
 frequently recommended for statistical and simulation work (e.g., [JAIN91]).

The strength of the linear congruential algorithm is that if the multiplier and 
modulus are properly chosen, the resulting sequence of numbers will be statisti-
cally indistinguishable from a sequence drawn at random (but without replacement) 
from the set 1, 2, c , m - 1. But there is nothing random at all about the algo-
rithm, apart from the choice of the initial value X0. Once that value is chosen, the 
remaining numbers in the sequence follow deterministically. This has implications 
for cryptanalysis.

If an opponent knows that the linear congruential algorithm is being used and 
if the parameters are known (e.g., a = 75, c = 0, m = 231 - 1), then once a single 
number is discovered, all subsequent numbers are known. Even if the opponent 
knows only that a linear congruential algorithm is being used, knowledge of a small 
part of the sequence is sufficient to determine the parameters of the algorithm. 
Suppose that the opponent is able to determine values for X0, X1, X2, and X3. Then

 X1 = (aX0 + c) mod m
 X2 = (aX1 + c) mod m
 X3 = (aX2 + c) mod m

These equations can be solved for a, c, and m.
Thus, although it is nice to be able to use a good PRNG, it is desirable to 

make the actual sequence used nonreproducible, so that knowledge of part of the 
sequence on the part of an opponent is insufficient to determine future elements of 
the sequence. This goal can be achieved in a number of ways. For example, [BRIG79] 
suggests using an internal system clock to modify the random number stream. One 
way to use the clock would be to restart the sequence after every N numbers using 
the current clock value (mod m) as the new seed. Another way would be simply to 
add the current clock value to each random number (mod m).
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Blum Blum Shub Generator

A popular approach to generating secure pseudorandom numbers is known as 
the Blum Blum Shub (BBS) generator (see Figure 8.3), named for its developers 
[BLUM86]. It has perhaps the strongest public proof of its cryptographic strength 
of any purpose-built algorithm. The procedure is as follows. First, choose two large 
prime numbers, p and q, that both have a remainder of 3 when divided by 4. That is,

 p K q K 3(mod 4) 

This notation, explained more fully in Chapter 2, simply means that (p mod 4) =
(q mod 4) = 3. For example, the prime numbers 7 and 11 satisfy 7 K 11 K 3(mod 4). 
Let n = p * q. Next, choose a random number s, such that s is relatively prime to n; 
this is equivalent to saying that neither p nor q is a factor of s. Then the BBS genera-
tor produces a sequence of bits Bi according to the following algorithm:

X0 = s2 mod n
for i = 1 to ∞

Xi = (Xi−1)2 mod n
Bi = Xi mod 2

Thus, the least significant bit is taken at each iteration. Table 8.1 shows an example 
of BBS operation. Here, n = 192649 = 383 * 503, and the seed s = 101355.

The BBS is referred to as a cryptographically secure pseudorandom bit 
 generator (CSPRBG). A CSPRBG is defined as one that passes the next-bit test, 
which, in turn, is defined as follows [MENE97]: A pseudorandom bit generator is 
said to pass the next-bit test if there is not a polynomial-time algorithm1 that, on 
input of the first k bits of an output sequence, can predict the (k + 1)st bit with 
probability significantly greater than 1/2. In other words, given the first k bits of the 

sequence, there is not a practical algorithm that can even allow you to state that the 
next bit will be 1 (or 0) with probability greater than 1/2. For all practical purposes, 
the sequence is unpredictable. The security of BBS is based on the difficulty of 
 factoring n. That is, given n, we need to determine its two prime factors p and q.

 8.3 PSEUDORANDOM NUMBER GENERATION USING 
A BLOCK CIPHER

A popular approach to PRNG construction is to use a symmetric block cipher as the 
heart of the PRNG mechanism. For any block of plaintext, a symmetric block cipher 
produces an output block that is apparently random. That is, there are no patterns 
or regularities in the ciphertext that provide information that can be used to deduce 
the plaintext. Thus, a symmetric block cipher is a good candidate for building a pseu-
dorandom number generator.

If an established, standardized block cipher is used, such as DES or AES, then 
the security characteristics of the PRNG can be established. Further, many applica-
tions already make use of DES or AES, so the inclusion of the block cipher as part 
of the PRNG algorithm is straightforward.

PRNG Using Block Cipher Modes of Operation

Two approaches that use a block cipher to build a PNRG have gained widespread 
acceptance: the CTR mode and the OFB mode. The CTR mode is recommended in 
NIST SP 800-90A, in the ANSI standard X9.82 (Random Number Generation), and 
in RFC 4086 (Randomness Requirements for Security, June 2005). The OFB mode is 
recommended in X9.82 and RFC 4086.

Figure 8.4 illustrates the two methods. In each case, the seed consists of two 
parts: the encryption key value and a value V that will be updated after each block 
of pseudorandom numbers is generated. Thus, for AES-128, the seed consists of a 
128-bit key and a 128-bit V value. In the CTR case, the value of V is incremented 1A polynomial-time algorithm of order k is one whose running time is bounded by a polynomial of order k.

Figure 8.3 Blum Blum Shub Block Diagram
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sequence, there is not a practical algorithm that can even allow you to state that the 
next bit will be 1 (or 0) with probability greater than 1/2. For all practical purposes, 
the sequence is unpredictable. The security of BBS is based on the difficulty of 
 factoring n. That is, given n, we need to determine its two prime factors p and q.

 8.3 PSEUDORANDOM NUMBER GENERATION USING 
A BLOCK CIPHER

A popular approach to PRNG construction is to use a symmetric block cipher as the 
heart of the PRNG mechanism. For any block of plaintext, a symmetric block cipher 
produces an output block that is apparently random. That is, there are no patterns 
or regularities in the ciphertext that provide information that can be used to deduce 
the plaintext. Thus, a symmetric block cipher is a good candidate for building a pseu-
dorandom number generator.

If an established, standardized block cipher is used, such as DES or AES, then 
the security characteristics of the PRNG can be established. Further, many applica-
tions already make use of DES or AES, so the inclusion of the block cipher as part 
of the PRNG algorithm is straightforward.

PRNG Using Block Cipher Modes of Operation

Two approaches that use a block cipher to build a PNRG have gained widespread 
acceptance: the CTR mode and the OFB mode. The CTR mode is recommended in 
NIST SP 800-90A, in the ANSI standard X9.82 (Random Number Generation), and 
in RFC 4086 (Randomness Requirements for Security, June 2005). The OFB mode is 
recommended in X9.82 and RFC 4086.

Figure 8.4 illustrates the two methods. In each case, the seed consists of two 
parts: the encryption key value and a value V that will be updated after each block 
of pseudorandom numbers is generated. Thus, for AES-128, the seed consists of a 
128-bit key and a 128-bit V value. In the CTR case, the value of V is incremented 1A polynomial-time algorithm of order k is one whose running time is bounded by a polynomial of order k.

Table 8.1 Example Operation of BBS Generator

i Xi Bi

0 20749
1 143135 1
2 177671 1
3 97048 0
4 89992 0
5 174051 1
6 80649 1
7 45663 1
8 69442 0
9 186894 0
10 177046 0

i Xi Bi

11 137922 0
12 123175 1
13 8630 0
14 114386 0
15 14863 1
16 133015 1
17 106065 1
18 45870 0
19 137171 1
20 48060 0
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by 1 after each encryption. In the case of OFB, the value of V is updated to equal the 
value of the preceding PRNG block. In both cases, pseudorandom bits are produced 
one block at a time (e.g., for AES, PRNG bits are generated 128 bits at a time).

The CTR algorithm for PRNG, called CTR_DRBG, can be summarized 
as follows.

while (len (temp) < requested_number_of_bits) do
 V = (V + 1) mod 2128

 output_block = E(Key, V)
 temp = temp || output_block

The OFB algorithm can be summarized as follows.

while (len (temp) < requested_number_of_bits) do
 V = E(Key, V)
 temp = temp || V

To get some idea of the performance of these two PRNGs, consider the follow-
ing short experiment. A random bit sequence of 256 bits was obtained from random.
org, which uses three radios tuned between stations to pick up atmospheric noise. 
These 256 bits form the seed, allocated as

Key: cfb0ef3108d49cc4562d5810b0a9af60

V: 4c89af496176b728ed1e2ea8ba27f5a4

The total number of one bits in the 256-bit seed is 124, or a fraction of 0.48, 
which is reassuringly close to the ideal of 0.5.

For the OFB PRNG, Table 8.2 shows the first eight output blocks (1024 bits) 
with two rough measures of security. The second column shows the fraction of one 
bits in each 128-bit block. This corresponds to one of the NIST tests. The results indi-
cate that the output is split roughly equally between zero and one bits. The third col-
umn shows the fraction of bits that match between adjacent blocks. If this number 

Figure 8.4 PRNG Mechanisms Based on Block Ciphers

(a) CTR mode

V

Encrypt

Pseudorandom bits

K

1

1

(b) OFB mode

V

Encrypt

Pseudorandom bits

K

M08_STAL7484_08_GE_C08.indd   256 20/04/22   12:02

http://random.org
http://random.org


8.3 / pSeudoRandom numBeR GeneRation uSinG a BloCk CipheR 257

Output Block
Fraction of 
One Bits

Fraction of Bits 
that Match with 
Preceding Block

1786f4c7ff6e291dbdfdd90ec3453176 0.57 —
5e17b22b14677a4d66890f87565eae64 0.51 0.52
fd18284ac82251dfb3aa62c326cd46cc 0.47 0.54
c8e545198a758ef5dd86b41946389bd5 0.50 0.44
fe7bae0e23019542962e2c52d215a2e3 0.47 0.48
14fdf5ec99469598ae0379472803accd 0.49 0.52
6aeca972e5a3ef17bd1a1b775fc8b929 0.57 0.48
f7e97badf359d128f00d9b4ae323db64 0.55 0.45

Table 8.2 Example Results for PRNG Using OFB

Output Block
Fraction of 
One Bits

Fraction of Bits 
that Match with 
Preceding Block

1786f4c7ff6e291dbdfdd90ec3453176 0.57 —

60809669a3e092a01b463472fdcae420 0.41 0.41

d4e6e170b46b0573eedf88ee39bff33d 0.59 0.45

5f8fcfc5deca18ea246785d7fadc76f8 0.59 0.52

90e63ed27bb07868c753545bdd57ee28 0.53 0.52

0125856fdf4a17f747c7833695c52235 0.50 0.47
f4be2d179b0f2548fd748c8fc7c81990 0.51 0.48
1151fc48f90eebac658a3911515c3c66 0.47 0.45

Table 8.3 Example Results for PRNG Using CTR

differs substantially from 0.5, that suggests a correlation between blocks, which 
could be a security weakness. The results suggest no correlation.

Table 8.3 shows the results using the same key and V values for CTR mode. 
Again, the results are favorable.

NIST CTR_DRBG

We now look more closely at the details of the PRNG defined in NIST SP 800-90A 
based on the CTR mode of operation. The PRNG is referred to as CTRDRBG 
(counter mode–deterministic random bit generator). CTR_DRBG is widely imple-
mented and is part of the hardware random number generator implemented on all 
recent Intel processor chips (discussed in Section 8.6).

The DRBG assumes that an entropy source is available to provide random 
bits. Typically, the entropy source will be a TRNG based on some physical source. 
Other sources are possible if they meet the required entropy measure of the 
 application. Entropy is an information theoretic concept that measures unpredict-
ability, or randomness; see Appendix B for details. The encryption algorithm used 
in the DRBG may be 3DES with three keys or AES with a key size of 128, 192, or 
256 bits.
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Four parameters are associated with the algorithm:

■■ Output block length (outlen): Length of the output block of the encryption 
algorithm.

■■ Key length (keylen): Length of the encryption key.

■■ Seed length (seedlen): The seed is a string of bits that is used as input to a 
DRBG mechanism. The seed will determine a portion of the internal state of 
the DRBG, and its entropy must be sufficient to support the security strength 
of the DRBG. seedlen = outlen + keylen.

■■ Reseed interval (reseed_interval): Length of the encryption key. It is the maxi-
mum number of output blocks generated before updating the algorithm with 
a new seed.

Table 8.4 lists the values specified in SP 800-90A for these parameters.

initialize Figure 8.5 shows the two principal functions that comprise CTR_DRBG. 
We first consider how CTR_DRBG is initialized, using the initialize and update 
function (Figure 8.5a). Recall that the CTR block cipher mode requires both an 
 encryption key K and an initial counter value, referred to in SP 800-90A as the 
counter V. The combination of K and V is referred to as the seed. To start the DRGB 
operation, initial values for K and V are needed, and can be chosen arbitrarily. As an 
example, the Intel Digital Random Number Generator, discussed in Section 8.6, 
uses the values K = 0 and V = 0. These values are used as parameters for the CTR 
mode of operation to produce at least seedlen bits. In addition,  exactly seedlen bits 
must be supplied from what is referred to as an entropy source. Typically, the  entropy 
source would be some form of TRNG.

With these inputs, the CTR mode of encryption is iterated to produce a 
 sequence of output blocks, with V incremented by 1 after each encryption. The pro-
cess continues until at least seedlen bits have been generated. The leftmost seedlen 
bits of output are then XORed with the seedlen entropy bits to produce a new seed. 
In turn, the leftmost keylen bits of the seed form the new key and the rightmost 
 outlen bits of the seed form the new counter value V.

GeneRate Once values of Key and V are obtained, the DRBG enters the  generate 
phase and is able to generate pseudorandom bits, one output block at a time 
(Figure 8.5b). The encryption function is iterated to generate the number of pseudo-
random bits desired. Each iteration uses the same encryption key. The counter value 
V is incremented by 1 for each iteration.

3DES AES-128 AES-192 AES-256

outlen 64 128 128 128
keylen 168 128 192 256
seedlen 232 256 320 384
reseed_interval …232 …248 …248 …248

Table 8.4 CTR_DRBG Parameters
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Update To enhance security, the number of bits generated by any PRNG should be 
limited. CTR_DRGB uses the parameter reseed_interval to set that limit. During the 
generate phase, a reseed counter is initialized to 1 and then incremented with each 
iteration (each production of an output block). When the reseed counter reaches 
reseed_interval, the update function is invoked (Figure 8.5a). The update function is 
the same as the initialize function. In the update case, the Key and V  values last used 
by the generate function serve as the input parameters to the update function. The 
update function takes seedlen new bits from an entropy source and produces a new 
seed (Key, V). The generate function can then resume production of pseudorandom 

Figure 8.5 CTR_DRBG Functions
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bits. Note that the result of the update function is to change both the Key and V 
values used by the generate function.

 8.4 STREAM CIPHERS

Stream ciphers can be viewed a pseudorandom equivalent of a one-time pad. The 
one-time pad uses a long random key, of length equal to the plaintext message. A 
stream cipher uses a short secret key and a pseudorandomly generated stream of 
bits, computationally indistinguishable from a stream of random digits. Traditionally, 
block ciphers have been more widely used, in a greater range of applications. This 
is primarily due to the ability of block ciphers to easily be used in a variety of ways 
using different modes of operation. In addition, block ciphers can be used as stream 
ciphers via modes of operation such as Counter, OFB, and CBC.

In recent years, there has been a resurgence of interest in the use of stream 
ciphers [BIRY04]. Stream ciphers are useful when there is a need to encrypt large 
amounts of fast streaming data. And stream ciphers are well suited to use in de-
vices with very limited memory and processing power, called constrained devices. 
Examples include small wireless sensors as part of an Internet of Things (IoT) and 
radio frequency identification (RFID) tags.

Figure 8.6 shows the structure of a typical stream cipher. There are three 
 internal elements. There is a secret state si (i.e., memory) that evolves with time dur-
ing encryption and decryption; the initial state is designated as s0. A state  transition 
function f, at each bit generation time, computes a new state value from the old 
state value. An output function g produces the stream of bits used for encryption 
and decryption, known as the keystream zi. A secret key K provides input to the 
stream cipher, and is used to initialize the state. K may also serve as an input  
parameter to f. Some stream ciphers also include an initialization vector IV that is  

Figure 8.6 Generic Structure of a Typical Stream Cipher
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used, along with K, to initialize the state. As is the case for block ciphers, the IV for 
a stream cipher need not be secret. However, it should be unpredictable and unique.

The keystream is combined one byte at a time with the plaintext stream using 
the bitwise exclusive-OR (XOR) operation. For example, if the next byte gener-
ated by the generator is 01101100 and the next plaintext byte is 11001100, then the  
resulting ciphertext byte is

11001100 plaintext
∙ 01101100 key stream

10100000 ciphertext

Decryption requires the use of the same pseudorandom sequence:

10100000 ciphertext
∙ 01101100 key stream

11001100 plaintext

The stream cipher is similar to the one-time pad discussed in Chapter 3. The 
difference is that a one-time pad uses a genuine random number stream, whereas a 
stream cipher uses a pseudorandom number stream.

[KUMA97] lists the following important design considerations for a stream cipher.

1. The encryption sequence should have a large period. A pseudorandom num-
ber generator uses a function that produces a deterministic stream of bits that 
eventually repeats. The longer the period of repeat the more difficult it will be  
to do cryptanalysis. This is essentially the same consideration that was discussed  
with reference to the Vigenère cipher, namely that the longer the keyword  
the more difficult the cryptanalysis.

2. The keystream should approximate the properties of a true random number 
stream as close as possible. For example, there should be an approximately 
equal number of 1s and 0s. If the keystream is treated as a stream of bytes, 
then all of the 256 possible byte values should appear approximately equally 
often. The more random-appearing the keystream is, the more randomized the 
ciphertext is, making cryptanalysis more difficult.

3. Note from Figure 8.6 that the output of the pseudorandom number genera-
tor is conditioned on the value of the input key. To guard against brute-force 
 attacks, the key needs to be sufficiently long. The same considerations that 
apply to block ciphers are valid here. Thus, with current technology, a key 
length of at least 128 bits is desirable.

With a properly designed pseudorandom number generator, a stream cipher can 
be as secure as a block cipher of comparable key length. A potential advantage of a 
stream cipher is that stream ciphers that do not use block ciphers as a building block are 
typically faster and use far less code than do block ciphers. The example in this chap-
ter, RC4, can be implemented in just a few lines of code. In recent years, this advan-
tage has diminished with the introduction of AES, which is quite efficient in software. 
Furthermore, hardware acceleration techniques are now available for AES. For exam-
ple, the Intel AES Instruction Set has machine instructions for one round of encryption 
and decryption and key generation. Using the hardware instructions results in speedups 
of about an order of magnitude compared to pure software implementations [XU10].
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One advantage of a block cipher is that you can reuse keys. In contrast, if two plain-
texts are encrypted with the same key using a stream cipher, then cryptanalysis is often 
quite simple [DAWS96]. If the two ciphertext streams are XORed together, the result is 
the XOR of the original plaintexts. If the plaintexts are text strings, credit card numbers, 
or other byte streams with known properties, then  cryptanalysis may be successful.

For applications that require encryption/decryption of a stream of data, such as 
over a data communications channel or a browser/Web link, a stream cipher might 
be the better alternative. For applications that deal with blocks of data, such as file 
transfer, email, and database, block ciphers may be more appropriate. However, 
either type of cipher can be used in virtually any application.

A stream cipher can be constructed with any cryptographically strong PRNG, 
such as the ones discussed in Sections 8.2 and 8.3. In the next section, we look at a 
stream cipher that uses a PRNG designed specifically for the stream cipher.

 8.5 RC4

RC4 is a stream cipher designed in 1987 by Ron Rivest for RSA Security. It is a variable 
key size stream cipher with byte-oriented operations. The algorithm is based on the use 
of a random permutation. Analysis shows that the period of the cipher is overwhelm-
ingly likely to be greater than 10100 [ROBS95a]. Eight to sixteen  machine operations are 
required per output byte, and the cipher can be expected to run very quickly in software. 
RC4 is used in the WiFi Protected Access (WPA) protocol that are part of the IEEE 
802.11 wireless LAN standard. It is optional for use in Secure Shell (SSH) and Kerberos. 
RC4 was kept as a trade secret by RSA Security. In September 1994, the RC4 algorithm 
was anonymously posted on the Internet on the Cypherpunks anonymous remailers list.

The RC4 algorithm is remarkably simple and quite easy to explain. 
A  variable-length key of from 1 to 256 bytes (8 to 2048 bits) is used to initialize a 
256-byte state vector S, with elements S[0],S[1], . . . ,S[255]. At all times, S contains 
a permutation of all 8-bit numbers from 0 through 255. For encryption and decryp-
tion, a byte k is generated from S by selecting one of the 255 entries in a systematic 
fashion. As each value of k is generated, the entries in S are once again permuted.

Initialization of S

To begin, the entries of S are set equal to the values from 0 through 255 in ascending 
order; that is, S[0] = 0, S[1] = 1, c , S[255] = 255. A temporary vector, T, is also 
created. If the length of the key K is 256 bytes, then K is transferred to T. Otherwise, 
for a key of length keylen bytes, the first keylen elements of T are copied from K, and 
then K is repeated as many times as necessary to fill out T. These preliminary opera-
tions can be summarized as

/* Initialization */
for i = 0 to 255 do
S[i] = i;
T[i] = K[i mod keylen];
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Next we use T to produce the initial permutation of S. This involves starting 
with S[0] and going through to S[255], and for each S[i], swapping S[i] with another 
byte in S according to a scheme dictated by T[i]:

/* Initial Permutation of S */
j = 0;
for i = 0 to 255 do

 j = (j + S[i] + T[i]) mod 256;
 Swap (S[i], S[j]);

Because the only operation on S is a swap, the only effect is a permutation. 
S still contains all the numbers from 0 through 255.

Stream Generation

Once the S vector is initialized, the input key is no longer used. Stream 
 generation involves cycling through all the elements of S[i], and for each S[i], 
swapping S[i] with another byte in S according to a scheme dictated by the cur-
rent  configuration of S. After S[255] is reached, the process continues, starting 
over again at S[0]:

/* Stream Generation */
i, j = 0;
while (true)
i = (i + 1) mod 256;
j = (j + S[i]) mod 256;
Swap (S[i], S[j]);
t = (S[i] + S[j]) mod 256;
k = S[t];

To encrypt, XOR the value k with the next byte of plaintext. To decrypt, XOR 
the value k with the next byte of ciphertext.

Figure 8.7 illustrates the RC4 logic.

Strength of RC4

More recently, [PAUL07] revealed a more fundamental vulnerability in the RC4 key 
scheduling algorithm that reduces the amount of effort to discover the key. Recent 
cryptanalysis results [ALFA13] exploit biases in the RC4 keystream to recover re-
peatedly encrypted plaintexts. As a result of the discovered weaknesses, particu-
larly those reported in [ALFA13], the IETF issued RFC 7465 prohibiting the use 
of RC4 in TLS (Prohibiting RC4 Cipher Suites, February 2015). In its latest TLS 
guidelines, NIST also prohibited the use of RC4 for government use (SP 800-52,  
Guidelines for the Selection, Configuration, and Use of Transport Layer Security 
(TLS) Implementations, September 2013).

M08_STAL7484_08_GE_C08.indd   263 20/04/22   12:02



264  ChapteR 8 / Random Bit GeneRation and StReam CipheRS

 8.6 STREAM CIPHERS USING FEEDBACK SHIFT REGISTERS

With the increasing use of highly constrained devices, such as those used in the 
IoT, there has been increasing interest in developing new stream ciphers that take 
up minimal memory, are highly efficient, and have minimal power consumption 
requirements. Most of the recently developed stream ciphers are based on the use of 
feedback shift registers (FSRs). Feedback shift registers exhibit the desired perfor-
mance behavior, are well-suited to compact hardware implementation, and there are 
well-developed theoretical results on the statistical properties of the bit sequences 
they produce.

An FSR consists of a sequence of 1-bit memory cells. Each cell has an output 
line, which indicates the value currently stored, and an input line. At discrete time 
instants, known as clock times, the value in each storage device is replaced by the 
value indicated by its input line. The effect is as follows: The rightmost (least signifi-
cant) bit is shifted out as the output bit for this clock cycle. The other bits are shifted 
one bit position to the right. The new leftmost (most significant) bit is calculated as 
a function of the other bits in the FSR.

Figure 8.7 RC4
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This section introduces the two types of feedback shift registers: linear feed-
back shift registers (LFSRs) and nonlinear feedback shift registers. We then exam-
ine a contemporary example: the Grain stream cipher.

Linear Feedback Shift Registers

In general, a function f is linear if f1x + y2 = f1x2 + f1y2 , and af1x2 = f1ax2 .  
For the specific case of an FSR, an FSR is linear if the feedback function only 
involves modulo-2 (logical exclusive-OR) addition of bits in the register.

The circuit is implemented as follows:

1. The LFSR contains n bits.

2. There are from 1 to (n - 1) XOR gates.

3. The presence or absence of a gate corresponds to the presence or absence 
of a term in the characteristic polynomial (explained subsequently), P1X2 ,  
excluding the Xn term.

Two equivalent ways of characterizing the LFSR are used. We can think of the 
generator as implementing a sum of XOR terms:

 Bn = A1Bn - 1  A2Bn - 2  A3Bn - 3   • • • AnB0 = a
n

i = 1
Ai Bn - i (8.1)

Figure 8.8 illustrates this equation. At each clock signal, the Bi values are cal-
culated and shifted right. Thus, the calculated value of Bn becomes the value in the 
Bn - 1 cell, and so on down to B0, which is shifted out as the output bit. An actual 
implementation would not have the multiply circuits; instead, for Ai = 0, the cor-
responding XOR circuit is eliminated. Figure 8.9a is an example of a 4-bit LFSR that 
implements the equation:

 B4 = B0 ∙ B1 (8.2)

•  •  • B1 B0

•  •  •

Bn   2 Output

AnAn   1A2A1

Bn   1Bn

1-bit shift register Exclusive-OR5 55 Multiply circuit (logical AND)

2

22

Figure 8.8 Binary Linear Feedback Shift Register Sequence Generator
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The shift register technique has several important advantages. The sequences 
generated by an LFSR can be nearly random with long periods. In addition, LFSRs 
are easy to implement in hardware and can run at high speeds.

It can be shown that the output of an n-bit LFSR is periodic with  maximum 
period N =  2n - 1. The all-zeros sequence occurs only if either the initial 
 contents of the LFSR are all zero or the coefficients in Equation (8.1) are all 
zero (no  feedback). A feedback configuration can always be found that gives 
a period of N; the resulting sequences are called maximal-length sequences, or 
m-sequences.

(b) Example with initial state of 1000

(a) Shift-register implementation
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Figure 8.9b shows the generation of an m-sequence for the LFSR of 
Figure 8.9a. The LFSR implements Equation (8.2) with an initial state of 1000 
(B3 =  1,  B2 =  0,  B1 =  0,  B0 =  0). Figure 8.9b shows the step-by-step operation 
as the LFSR is clocked one bit at a time. Each row of the table shows the values 
currently stored in the four shift register elements. In addition, the row shows the 
value that appears at the output of the exclusive-OR circuit. Finally, the row shows 
the value of the output bit, which is just B0. Note that the output repeats after 15 bits. 
That is, the period of the sequence, or the length of the m-sequence, is 15 = 24-1.  
This same periodic m-sequence is generated regardless of the initial state of the 
LFSR (except for 0000), as shown in Figure 8.9. With each different initial state, the 
m-sequence begins at a different point in its cycle, but it is the same sequence.

For any given size of LFSR, a number of different unique m-sequences can be 
generated by using different values for the Ai in Equation (8.1).

An equivalent definition of an LFSR configuration is a characteristic  
polynomial. The characteristic polynomial P1X2  that corresponds to Equation (8.1) 
has the form:

 P1X2 = 1 +  A1X +  A2X
2 +   • • •  +  An - 1X

n - 1 + AnXn = 1 + a
n

i = 1
Ai X

i (8.3)

One useful attribute of the characteristic polynomial is that it can be used to 
find the sequence generated by the corresponding LFSR, by taking the reciprocal 
of the polynomial. For example, for the 3-bit LSFR with P1X2 = 1 + X + X3 , 

Figure 8.10 1> 11 +  X +  X32
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we perform the division 1>(1 + X + X3). Figure 8.10 depicts the long division. The 
result is:

1 + X + X2 + (0 * X3) + X4 + (0 * X5) + (0 * X6)

after which the pattern repeats. This means that the shift register output is 1110100.
Because the period of this sequence is 7 =  23 - 1, this is an m-sequence. 

Notice that we are doing division somewhat differently from the normal method. 
This is because the subtractions are done modulo 2, or using the XOR function, and 
in this system, subtraction produces the same result as addition.

A characteristic polynomial produces an m-sequence if and only if it is a primi-
tive polynomial.2 Thus, P1X2 = 1 + X + X3  is a primitive polynomial. Similarly, 
the polynomial corresponding to Figure 8.9a is P1X2 = 1 + X + X4, which is a 
primitive polynomial.

Alternatively, some sources in the literature define a generating polynomial as 
follows:

G1X2 = Xn Pa 1
X
b = Xn + a

n

i = 1
Ai X

n - i

There is no practical difference; both P1X2  and G1X2 generate the same out-
put bit sequence.

Although a LFSR defined by a primitive polynomial produces a good pseu-
dorandom number bit stream, a single LFSR by itself is not suitable as a stream 
cipher. The stream cipher would simply consist of taking the XOR of successive bits 
of plaintext with successive bits generated by the LFSR. If an n-bit LFSR is used as 
a stream cipher, then the initial contents of the register constitute the key. It can be 
shown that if the feedback function is known (i.e., the values of the Ai are known) 
and if an adversary can determine n consecutive bits of the stream, then the adver-
sary can determine the entire stream. This is due to the linearity of the feedback 
function. Further, if the feedback function is not known, then 2n bits of the output 
stream suffice to determine the entire stream.

One way to develop an LFSR-based stream cipher is to use multiple LFSRs, 
perhaps of different lengths, that are combined in some fashion. Another way is to 
incorporate a nonlinear feedback shift register (NFSR).

Nonlinear Feedback Shift Registers

The term linear, in the context of LFSR, means that the coefficients Ai in Equations 
8.1 and 8.3 are constants; in particular these are Boolean constants (0 or 1). For an 
NFSR, the coefficients may be variables. An example is Figure 8.11, which can be 
expressed as:

B5 = B4 ∙ B3B2

2Primitive polynomials are defined in Chapter 5.
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or, equivalently:

P1X2 = 1 + X + X2X4

As with LFSRs, an NFSR is not by itself suitable as a stream cipher. There is 
no theory to analyze them. However, it may be combined with an NFSR to produce 
a stream cipher of known maximum period and high security.

Grain-128a

Grain is a family of hardware-efficient stream ciphers. Grain was accepted as part 
of the eSTREAM effort to approve a number of new stream ciphers (described 
in Chapter 23). The eSTREAM specification, called Grain v1, defines two stream 
ciphers, one with an 80-bit key and a 64-bit initialization vector (IV), and one with 
a 128-bit key and 80-bit IV. Grain has since been revised and expanded to include 
authentication, referred to as Grain-128a [AGRE11, HELL06]. The eSTREAM 
final report [BABB08] states that Grain has pushed the state of the art in terms of 
compact implementation.

Grain-128a consists of two shift registers, one with linear feedback and the 
second with nonlinear feedback, and a filter function. The registers are coupled by 
very lightweight, but judiciously chosen Boolean functions. The LFSR  guarantees 
a  minimum period for the keystream, and it also provides balancedness in the 
 output.  The NFSR, together with a nonlinear filter, introduces nonlinearity to 
the cipher. The input to the NFSR is masked with the output of the LFSR so that the 
state of the NFSR is balanced.

oUtpUt foR encRyption Figure 8.12a shows the structure of Grain-128a for pro-
ducing a stream of output bits to be used for encrypting a stream of plaintext by a 
simple bitwise XOR operation. Grain-128a uses a convention of numbering the bits 
in the registers increasing from left to right and doing a left shift, with the leftmost 
bit as output. The LFSR at iteration i is defined as follows:

si+ 128 = si ∙ si+ 7 ∙ si+ 38 ∙ si+ 70 ∙ si+ 81 ∙ si+ 96

The equivalent generator function is:

f1x2 = 1 + x32 + x47 + x58 + x90 + x121 + x128

B1 B0 OutputB2B4 B3

Figure 8.11 A Nonlinear Feedback Shift Register
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The NFSR is defines as follows:

bi+ 128 = si ∙ bi ∙ bi+ 26 ∙ bi+ 56 ∙ bi+ 91 ∙ bi+ 96

∙  bi+ 3bi+ 67 ∙ bi+ 11bi+ 13 ∙ bi+ 17bi+ 18

∙  bi+ 27bi+ 59 ∙ bi+ 40bi+ 48 ∙ bi+ 61bi+ 65

∙  bi+ 68bi+ 84 ∙ bi+ 88bi+ 92bi+ 93bi+ 95

∙  bi+ 22bi+ 24bi+ 25 ∙ bi+ 70bi+ 78bi+ 82

The equivalent generator function, which is a primitive polynomial, is:

g11x2 = 1 + x32 + x37 + x72 + x102 + x128

g21x2 = x44x60 + x61x125 + x63x67 + x69x101 + x80x88 + x110x111

+ x115x117 + x46x50x58 + x103x104x106 + x33x35x36x40

g1x2 = g11x2 + g21x2
Thus, the NFSR output has both linear and nonlinear components. Note that the 
generator function for the NFSR does not feed directly back into the register but is 
XORed with the LFSR output si, which masks the input to the NFSR.

The actual generation of an output bit from the grain structure proceeds in 
several stages. The filter function h takes 9 variables from the two shift registers. 
It is designed to be balanced, highly nonlinear, and produce secure output. It is 
defined as:

h = bi+ 12si+ 8 ∙ si+ 13si+ 20 ∙ si+ 95si+ 42 ∙ si+ 60si+ 79si+ 94

Next, a pre-output function masks h with 1 bit of the LFSR and 7 bits of the 
NFSR, using the following simple linear function:

yi = h ∙ si+ 93 ∙ a
j∈A

bi+ j

where A = 52, 15, 36, 45, 64, 73, 896 . The output function is defined as

zi = y64 + 2i

That is, the output consists of every second bit after skipping the first 64 bits. 
These 64 initial bits and the other half may be used for authentication, as described 
subsequently.

Because the LFSR is 128 bits and uses a primitive polynomial, the period is 
guaranteed to be at least 2128 - 1. Because of the NFSR and the fact that the input 
to this is masked with the output of the LFSR, the exact period will depend on the 
key and the IV used. The input to the NFSR is masked with the output of the LFSR 
in order to make sure that the NFSR state is balanced.

Key and iV initialization Grain-128a is initialized by placing the 128-bit key in 
the 128-bit NFSR. The 128-bit LFSR is initialized using the 96 bits IVi of the IV as 
follows:
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si = •
IVi 0 … i … 95
1 96 … i … 126
0 i = 127

Then, the two registers, comprising 256 bits, are clocked 256 times without pro-
ducing any keystream. Instead, the pre-output function is fed back and XORed with 
the input to both the NFSR and LFSR (Figure 8.12b). This operation fully replaces 
the IV and key with the initial state of the registers. This process effectively scram-
bles the contents of the shift registers before the keystream is generated.

NFSR

24
5 6

7 2

g2

bi+127bi

zi

si+127si

g2

h

g

7 1

LFSR

y

f

(b) Key initialization

(a) Output generator

NFSR

24
5 6

7 2

g2

bi1127bi si1127si

g2

h

g

7 1

LFSR

f

Figure 8.12 Grain-128a Stream Cipher
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encRyption Encryption is now easily defined. Assume a message of length L de-
fined by the bits m0, c , mL - 1. Then the ciphertext bits ci are calculated as:

ci = zi ∙ mi

And the message is recovered from the ciphertext as follows:

mi = zi ∙ ci

aUthentication Optionally, Grain-128a generates a 32-bit authentication tag. For 
this purpose, there is a 32-bit register called the accumulator, with the bits at time 
i denoted by a0

i , c , a31
i . There is also a 32-bit shift register, with the bits at time i 

denoted by ri, c , ri+ 31. The accumulator is initialized with the first 32 bits of yi and 
the register is initialized with the second sequence of 32 bits of yi. Recall that these 
64 bits were excluded in forming zi. At each time i, the shift register is updated by as-
signing ri+ 32 = y64 + 2i+ 1, and then shifting left 1 bit. Thus, the bits not used in encryp-
tion are used for authentication. At each time i, all of the bits of the accumulator are 
updated as aj

i+ 1 = aj
i ∙ miri+ j for 0 … j … 31 and 0 … i … L. The final content of 

the accumulator,  a0
L + 1, c , a31

L + 1, is the authentication tag.

 8.7 TRUE RANDOM NUMBER GENERATORS

Entropy Sources

A true random number generator (TRNG) uses a nondeterministic source to pro-
duce randomness. Most operate by measuring unpredictable natural processes, such 
as pulse detectors of ionizing radiation events, gas discharge tubes, and leaky capaci-
tors. Intel has developed a commercially available chip that samples thermal noise 
by sampling the output of a coupled pair of inverters. LavaRnd is an open source 
project for creating truly random numbers using inexpensive cameras, open source 
code, and inexpensive hardware. The system uses a saturated CCD in a light-tight 
can as a chaotic source to produce the seed. Software processes the result into truly 
random numbers in a variety of formats.

RFC 4086 lists the following possible sources of randomness that, with care, 
easily can be used on a computer to generate true random sequences.

■■ Sound/video input: Many computers are built with inputs that digitize some 
real-world analog source, such as sound from a microphone or video input 
from a camera. The “input” from a sound digitizer with no source plugged in or 
from a camera with the lens cap on is essentially thermal noise. If the system 
has enough gain to detect anything, such input can provide reasonably high 
quality random bits.

■■ Disk drives: Disk drives have small random fluctuations in their rotational 
speed due to chaotic air turbulence [JAKO98]. The addition of low-level disk 
seek-time instrumentation produces a series of measurements that contain this 
randomness. Such data is usually highly correlated, so significant processing is 
needed. Nevertheless, experimentation a decade ago showed that, with such 
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processing, even slow disk drives on the slower computers of that day could 
easily produce 100 bits a minute or more of excellent random data.

There is also an online service (random.org), which can deliver random 
 sequences securely over the Internet.

Comparison of PRNGs and TRNGs

Table 8.5 summarizes the principal differences between PRNGs and TRNGs. 
PRNGs are efficient, meaning they can produce many numbers in a short time, and 
deterministic, meaning that a given sequence of numbers can be reproduced at a 
later date if the starting point in the sequence is known. Efficiency is a nice char-
acteristic if your application needs many numbers, and determinism is handy if you 
need to replay the same sequence of numbers again at a later stage. PRNGs are 
typically also periodic, which means that the sequence will eventually repeat itself. 
While periodicity is hardly ever a desirable characteristic, modern PRNGs have a 
period that is so long that it can be ignored for most practical purposes.

TRNGs are generally rather inefficient compared to PRNGs, taking consider-
ably longer time to produce numbers. This presents a difficulty in many applications. 
For example, cryptography system in banking or national security might need to gen-
erate millions of random bits per second. TRNGs are also nondeterministic, meaning 
that a given sequence of numbers cannot be reproduced, although the same sequence 
may of course occur several times by chance. TRNGs have no period.

Conditioning3

A TRNG may produce an output that is biased in some way, such as having more 
ones than zeros or vice versa. More generally, NIST SP 800-90B defines a random 
process as biased with respect to an assumed discrete set of potential outcomes 
(i.e., possible output values) if some of those outcomes have a greater probability 
of occurring than do others. For example, a physical source such as electronic noise 
may contain a superposition of regular structures, such as waves or other periodic 
phenomena, which may appear to be random, yet are determined to be non-random 
using statistical tests.

In addition to bias, another concept used by SP 800-98B is that of entropy rate. SP 
800-90B defines entropy rate as the rate at which a digitized noise source (or entropy 
source) provides entropy; it is computed as the assessed amount of  entropy provided by 
a bit string output from the source, divided by the total number of bits in the bit string 

3 The reader unfamiliar with the concepts of entropy and min-entropy should read Appendix B before 
proceeding.

Pseudorandom Number 
Generators

True Random Number 
Generators

Efficiency Very efficient Generally inefficient
Determinism Deterministic Nondeterministic
Periodicity Periodic Aperiodic

Table 8.5 Comparison of PRNGs and TRNGs
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(yielding assessed bits of entropy per output bit). This will be a value between 0 (no 
entropy) and 1 (full entropy). Entropy rate is a measure of the randomness or unpre-
dictability of a bit string. Another way of expressing it is that the entropy rate is k/n for 
a random source of length n bits and min- entropy k.  Min-entropy is a measure of the 
number of random bits and is explained in Appendix B. In essence, a block of bits or a 
bit stream that is unbiased, and in which each bit and each group of bits is independent 
of all other bits and groups of bits will have an entropy rate of 1.

For hardware sources of random bits, the recommended approach is to assume 
that there may be bias and/or an entropy rate of less than 1 and to apply techniques 
to further “randomize” the bits. Various methods of modifying a bit stream for this 
purpose have been developed. These are referred to as conditioning algorithms or 
deskewing algorithms.

Typically, conditioning is done by using a cryptographic algorithm to “ scramble” 
the random bits so as to eliminate bias and increase entropy. The two most common 
approaches are the use of a hash function or a symmetric block cipher.

hash fUnction As we describe in Chapter 11, a hash function produces an n-bit 
output from an input of arbitrary length. A simple way to use a hash function for 
conditioning is as follows. Blocks of m input bits, with m Ú n, are passed through 
the hash function and the n output bits are used as random bits. To generate a stream 
of random bits, successive input blocks pass through the hash function to produce 
successive hashed output blocks.

Operating systems typically provide a built-in mechanism for generating ran-
dom numbers. For example, Linux uses four entropy sources: mouse and keyboard 
activity, disk I/O operations, and specific interrupts. Bits are generated from these 
four sources and combined in a pooled buffer. When random bits are needed, the 
appropriate number of bits are read from the buffer and passed through the SHA-1 
hash function [GUTT06].

A more complex approach is the hash derivation function specified in  
SP800-90A. Hash_df can be defined as follows:

Parameters:

input_string: The string to be hashed.

outlen: Output length.

no_of_bits_to_return: The number of bits to be returned by Hash_df.  The maxi-
mum length (max_number_of_bits) is implementation dependent, but shall be 
less than or equal to (255 * outlen). no_of_bits_to_return is represented as a 
32-bit integer.

requested_bits: The result of performing the Hash_df.

Hash_df Process:

1. temp = the Null string

2. len = l no_of_bits_to_return

outlen
m
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3. counter = 0x01 Comment: An 8-bit binary value representing the integer “1”.

4. For i = 1 to len do  Comment: In 4.1, no_of_bits_to_return is used as a 32-bit 
string.

4.1. temp = temp }  Hash (counter }  no_of_bits_to_return }  input_string).

4.2. counter = counter + 1.

5. requested_bits = leftmost (temp, no_of_bits_to_return).

6. Return (SUCCESS, requested_bits).

This algorithm takes an input block of bits of arbitrary length and returns the 
requested number of bits, which may be up to 255 times as long as the hash output 
length.

The reader may be uneasy that the output consists of hashed blocks in which 
the input to the hash function for each block is the same input string and differs 
only by the value of the counter. However, cryptographically strong hash functions, 
such as the SHA family, provide excellent diffusion (as defined in Chapter 4) so that 
change in the counter value results in dramatically different outputs.

blocK cipheR Instead of a hash function, a block cipher such as AES can be 
used to scramble the TRNG bits. Using AES, a simple approach would be to take  
128-bit blocks of TRNG bits and encrypt each block with AES and some arbitrary 
key. SP 800-90B outlines an approach similar to the hash_df function described pre-
viously. The Intel implementation discussed subsequently provides an example of 
using AES for conditioning.

Health Testing

Figure 8.13 provides a general model for a nondeterministic random bit generator. 
A hardware noise source produces a true random output. This is digitized to pro-
duce true, or nondeterministic, source of bits. This bit source then passes through a 
conditioning module to mitigate bias and maximize entropy.

Figure 8.13 also shows a health-testing module, which is used on the outputs 
of both the digitizer and conditioner. In essence, health testing is used to validate 
that the noise source is working as expected and that the conditioning module is 
produced output with the desired characteristics. Both forms of health testing are 
recommended by SP 800-90B.

health tests on the noise soURce The nature of the health testing of the noise 
source depends strongly on the technology used to produce noise. In general, we 
can assume that the digitized output of the noise source will exhibit some bias. Thus, 
the traditional statistical tests, such as those defined in SP 800-22 and discussed in 
Section 8.1, are not useful for monitoring the noise source, because the noise source 
is likely to always fail. Rather, the tests on the noise source need to be tailored to the 
expected statistical behavior of the correctly operating noise source. The goal is not 
to determine if the source is unbiased, which it isn’t, but if it is operating as expected.

SP 800-90B specifies that continuous tests be done on digitized samples 
 obtained from the noise source (point A in Figure 8.13). The purpose is to test 
for variability. More specifically, the purpose is to determine if the noise source is 
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producing at the expected entropy rate. SP 800-90B mandates the use of two tests: 
the Repetition Count Test and the Adaptive Proportion Test.

The Repetition Count Test is designed to quickly detect a catastrophic failure 
that causes the noise source to become “stuck” on a single output value for a long 
time. For this test, it is assumed that a given noise source is assessed to have a given 
min-entropy value of H. The entropy is expressed as the amount of  entropy per sam-
ple, where a sample could be a single bit or some block of bits of length n. With an 
assessed value of H, it is straightforward to calculate the probability that a sequence 
of C consecutive samples will yield identical sample values. For example, a noise 
source with one bit of min-entropy per sample has no more than a 1/2  probability 
of repeating some sample value twice in a row, no more than 1/4 probability of 
repeating some sample value three times in a row, and in general, no more than 
(1/2)C - 1 probability of repeating some sample value C times in a row. To generalize, 
for a noise source with H bits of min-entropy per sample, we have:

 Pr[C identical samples in a row] … (2-H)(C - 1) 

The Repetition Count Test involves looking for consecutive identical samples. 
If the count reaches some cutoff value C, then an error condition is raised. To deter-
mine the value of C used in the test, the test must be configured with a parame-
ter W, which is the acceptable false-positive probability associated with an alarm 
triggered by C repeated sample values. To avoid false positives, W should be set at 
some very small number greater than 0. Given W, we can now determine the value 
of C. Specifically, we want C to be the smallest number that satisfies the  equation 
W … (2-H)(C - 1). Reworking terms, this gives us a value of:

Figure 8.13 NRBG Model
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 C = l 1 +
- log(W)

H
m  

For example, for W = 2-30, an entropy source with H = 7.3 bits per sample 

would have a cutoff value C of l 1 +
30
7.3

m = 6.

The Repetition Count Test starts by recording a sample value and then count-
ing the number of repetitions of the same value. If the counter reaches the cutoff 
value C, an error is reported. If a sample value is encountered that differs from the 
preceding sample, then the counter is reset to 1 and the algorithm starts over.

The Adaptive Proportion Test is designed to detect a large loss of entropy, such 
as might occur as a result of some physical failure or environmental change affecting 
the noise source. The test continuously measures the local frequency of  occurrence 
of some sample value in a sequence of noise source samples to  determine if the 
sample occurs too frequently.

The test starts by recording a sample value and then observes N successive 
sample values. If the initial sample value is observed at least C times, then an error 
condition is reported. SP 800-90B recommends that a probability of a false positive 
of W = 2-30 be used for the test and provides guidance on the selection of values 
for N and C.

health tests on the conditioninG fUnction SP 800-90B specifies that health 
tests should also be applied to the output of the conditioning component (point B 
in Figure 8.13), but does not indicate which tests to use. The purpose of the health 
tests on the conditioning component is to assure that the output behaves as a true 
random bit stream. Thus, it is reasonable to use the tests for randomness defined in 
SP 800-22, and described in Section 8.1.

Intel Digital Random Number Generator

As was mentioned, TRNGs have traditionally been used only for key generation and 
other applications where only a small number of random bits were required. This is 
because TRNGs have generally been inefficient, with a low bit rate of  random bit 
production.

The first commercially available TRNG that achieves bit production rates 
comparable with that of PRNGs is the Intel digital random number generator 
(DRNG) [TAYL11, MECH14], offered on new multicore chips since May 2012.4

Two notable aspects of the DRNG:

1. It is implemented entirely in hardware. This provides greater security than a 
facility that includes a software component. A hardware-only implementa-
tion should also be able to achieve greater computation speed than a software 
module.

4It is unfortunate that Intel chose the acronym DRNG for an NRBG. It confuses with DRBG, which is 
a pseudorandom number bit generator.
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2. The entire DRNG is on the same multicore chip as the processors. This elimi-
nates the I/O delays found in other hardware random number generators.

dRnG haRdwaRe aRchitectURe Figure 8.14 shows the overall structure of the 
DRNG. The first stage of the DRNG generates random numbers from thermal 
noise. The heart of the stage consists of two inverters (NOT gates), with the output 
of each inverter connected to the input of the other. Such an arrangement has two 
stable states, with one inverter having an output of logical 1 and the other having an 
output of logical 0. The circuit is then configured so that both inverters are forced 
to have the same indeterminate state (both inputs and both outputs at logical 1) by 
clock pulses. Random thermal noise within the inverters soon jostles the two invert-
ers into a mutually stable state. Additional circuitry is intended to compensate for 
any biases or correlations. This stage is capable, with current hardware, of generating 
random bits at a rate of 4 Gbps.

The output of the first stage is generated 512 bits at a time. To assure that 
the bit stream does not have skew or bias, a conditioner randomizes its input using 
a cryptographic function. In this case, the function is referred to as CBC-MAC or 

Figure 8.14 Intel Processor Chip with Random Number Generator

Hardware
AES-CBC-
MAC based
conditioner

Digital Random Number Generator

Processor
chip

Hardware
SP 800-90A
AES-CTR

based
DRBGHardware

entropy
source

RDSEED
instructionCore 0

Core N21 RDSEED
instruction

RDRAND
instruction

RDRAND
instruction

Hardware
SP 800-
90B & C
ENRNG

M08_STAL7484_08_GE_C08.indd   278 20/04/22   12:02



8.7 / tRue Random numBeR GeneRatoRS 279

CMAC, as specified in NIST SP 800-38B. In essence, CMAC encrypts its input using 
the cipher block chaining (CBC) mode (Figure 8.4) and outputs the final block. 
We examine CMAC in detail in Chapter 12. The output of this stage is generated 
256 bits at a time and is intended to exhibit true randomness with no skew or bias.

While the hardware’s circuitry generates random numbers from thermal 
noise much more quickly than its predecessors, it is still not fast enough for some 
of today’s computing requirements. To enable the DRNG to generate random 
 numbers as quickly as a software DRBG, and also maintain the high quality of the 
random numbers, a third stage is added. This stage uses the 256-bit random  numbers 
to seed a cryptographically secure DRBG that creates 128-bit numbers. From one 
256-bit seed, the DRBG can output many pseudorandom numbers, exceeding the 
3-Gbps rate of the entropy source. An upper bound of 511 128-bit samples can 
be generated per seed. The algorithm used for this stage is CTR_DRBG, described 
in Section 8.3.

The output of the PRNG stage is available to each of the cores on the chip via 
the RDRAND instruction. RDRAND retrieves a 16-, 32-, or 64-bit random value 
and makes it available in a software-accessible register.

Preliminary data from a pre-production sample on a system with a third 
generation Intel® Core™ family processor produced the following performance 
[INTE12]: up to 70 million RDRAND invocations per second, and a random data 
production rate of over 4 Gbps.

The output of the conditioner is also made available to another module, 
known as an enhanced nondeterministic random number generator (ENRNG) that 
provides random numbers that can be used as seeds for various cryptographic algo-
rithms. The ENRNG is compliant with specifications in SP 800-90B and 900-90C. 
The output of the ENRNG stage is available to each of the cores on the chip via 
the RDSEED instruction. RDSEED retrieves a hardware-generated random seed 
value from the ENRNG and stores it in the destination register given as an argu-
ment to the instruction.

dRnG loGical stRUctURe Figure 8.15 provides a simplified view of the logical 
flow of the Intel DRBG. As was described, the heart of the hardware entropy source 
is a pair of inverters that feed each other. Two transistors, driven by the same clock, 
force the inputs and outputs of both inverters to the logical 1 state. Because this is 
an unstable state, thermal noise will cause the configuration to settle randomly into 
a stable state with either Node A at logical 1 and Node B at logical 0, or the reverse. 
Thus the module generates random bits at the clock rate.

The output of the entropy source is collected 512 bits at a time and used to 
feed to two CBC hardware implementations using AES encryption. Each imple-
mentation takes two blocks of 128 bits of “plaintext” and encrypts using the CBC 
mode. The output of the second encryption is retained. For both CBC modules, an 
all-zeros key is used initially. Subsequently, the output of the PRNG stage is fed 
back to become the key for the conditioner stage.

The output of the conditioner stage consists of 256 bits. This block is provided 
as input to the update function of the DRGB stage. The update function is initialized 
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Figure 8.15 Intel DRNG Logical Structure
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with the all-zeros key and the counter value 0. The function is iterated twice to pro-
duce a 256-block, which is then XORed with the input from the conditioner stage. 
The results are used as the 128-bit key and the 128-bit seed for the generate func-
tion. The generate function produces pseudorandom bits in 128-bit blocks.
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 8.8 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms 

backward unpredictability
deskewing algorithm
entropy source
forward unpredictability
keystream

pseudorandom function (PRF)
pseudorandom number 

 generator (PRNG)
seed
skew

stream cipher
true random number 

 generator (TRNG)
unpredictability

Review Questions 

 8.1 List two criteria to validate the randomness of a sequence of numbers.
 8.2 What is ANSI X9.17 PRNG?
 8.3 What is the recommended key length for a stream cipher to guard against brute force attacks?
 8.4 What is the difference between a one-time pad and a stream cipher?
 8.5 The 802.11 standard protocol used RC4 for its agility and simplicity for encryption 

and decryption. There are a few simple steps in RC4 including the initialization of S to 
a number from 0 to 255, followed by permutation. Explain the stream generation, and 
main benefits and drawbacks of RC4.

 8.6 List a few applications of stream ciphers and block ciphers.

Problems 

 8.1 If we take the linear congruential algorithm with an additive component of 0,

 Xn + 1 = (aXn) mod m 

  Then it can be shown that if m is prime and if a given value of a produces the maxi-
mum period of m - 1, then ak will also produce the maximum period, provided that 
k is less than m and that k and m - 1 are relatively prime. Demonstrate this by using 
X0 = 1 and m = 31 and producing the sequences for ak = 3, 32, 33, and 34.

 8.2 a. What is the maximum period obtainable from the following generator?

 Xn + 1 = (aXn) mod 24

b. What should be the value of a?
c. What restrictions are required on the seed?

 8.3 You may wonder why the modulus m = 231 - 1 was chosen for the linear congruen-
tial method instead of simply 231, because this latter number can be represented with 
no additional bits and the mod operation should be easier to perform. In general, the 
modulus 2k - 1 is preferable to 2k. Why is this so?

 8.4 With the linear congruential algorithm, a choice of parameters that provides a full 
period does not necessarily provide a good randomization. For example, consider the 
following two generators:

 Xn + 1 = (11Xn) mod 13

 Xn + 1 = (2Xn) mod 13

  Write out the two sequences to show that both are full periods. Which one appears 
more random to you?
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 8.5 In any use of pseudorandom numbers, whether for encryption, simulation, or statisti-
cal design, it is dangerous to trust blindly the random number generator that happens 
to be available in your computer’s system library. [PARK88] found that many con-
temporary textbooks and programming packages make use of flawed algorithms for 
pseudorandom number generation. This exercise will enable you to test your system.

The test is based on a theorem attributed to Ernesto Cesaro (see [KNUT98] for 
a proof), which states the following: Given two randomly chosen integers, x and y, the 
probability that gcd(x, y) = 1 is 6/p2. Use this theorem in a program to determine 
statistically the value of p. The main program should call three subprograms: the ran-
dom number generator from the system library to generate the random integers; a 
subprogram to calculate the greatest common divisor of two integers using Euclid’s 
Algorithm; and a subprogram that calculates square roots. If these latter two pro-
grams are not available, you will have to write them as well. The main program should 
loop through a large number of random numbers to give an estimate of the afore-
mentioned probability. From this, it is a simple matter to solve for your estimate of p.

If the result is close to 3.14, congratulations! If not, then the result is probably low, 
usually a value of around 2.7. Why would such an inferior result be obtained?

 8.6 What RC4 key value will leave S unchanged during initialization? That is, after the 
initial permutation of S, the entries of S will be equal to the values from 0 through 255 
in ascending order.

 8.7 RC4 has a secret internal state which is a permutation of all the possible values of the 
vector S and the two indices i and j.
a. Using a straightforward scheme to store the internal state, how many bits are used?
b. Suppose we think of it from the point of view of how much information is repre-

sented by the state. In that case, we need to determine how may different states 
there are, then take the log to base 2 to find out how many bits of information this 
represents. Using this approach, how many bits would be needed to represent the 
state?

 8.8 Alice and Bob agree to communicate privately via email using a scheme based on 
RC4, but they want to avoid using a new secret key for each transmission. Alice and 
Bob privately agree on a 128-bit key k. To encrypt a message m, consisting of a string 
of bits, the following procedure is used.
1. Choose a random 64-bit value v
2. Generate the ciphertext c = RC4(v }k) ∙ m
3. Send the bit string (v } c)

a. Suppose Alice uses this procedure to send a message m to Bob. Describe how 
Bob can recover the message m from (v } c) using k.

b. If an adversary observes several values (v1 } c1), (v2 } c2), c transmitted 
between Alice and Bob, how can he/she determine when the same key stream 
has been used to encrypt two messages?

c. Approximately how many messages can Alice expect to send before the same 
key stream will be used twice? Use the result from the birthday paradox 
described in Appendix E.

d. What does this imply about the lifetime of the key k (i.e., the number of mes-
sages that can be encrypted using k)?

 8.9 Show that the polynomial P(X) = 1 + X + X4 is a primitive generator polynomial 
for the circuit of Figure 8.9a by calculating 1/P(X ) and showing that the coefficients 
of the resulting polynomial repeat the output pattern in Figure 8.9b.

 8.10 This problem demonstrates that different LFSRs can be used to generate an 
m-sequence.
a. Assume an initial state of 10000 in the LFSR of Figure 8.16a. In a manner similar 

to Figure 8.9b, show the generation of an m-sequence.
b. Now assume the configuration of Figure 8.16b, with the same initial state, and re-

peat part (a). Show that this configuration also produces an m-sequence, but that 
it is a different sequence from that produced by the first LFSR.
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 8.11 Suppose you have a true random bit generator where each bit in the generated stream 
has the same probability of being a 0 or 1 as any other bit in the stream and that the 
bits are not correlated; that is the bits are generated from identical independent dis-
tribution. However, the bit stream is biased. The probability of a 1 is 0.5 + 0 and the 
probability of a 0 is 0.5 - 0, where 0 6 0 6 0.5. A simple conditioning algorithm is 
as follows: Examine the bit stream as a sequence of nonoverlapping pairs. Discard all 
00 and 11 pairs. Replace each 01 pair with 0 and each 10 pair with 1.
a. What is the probability of occurrence of each pair in the original sequence?
b. What is the probability of occurrence of 0 and 1 in the modified sequence?
c. What is the expected number of input bits to produce x output bits?
d. Suppose that the algorithm uses overlapping successive bit pairs instead of non-

overlapping successive bit pairs. That is, the first output bit is based on input bits 1 
and 2, the second output bit is based on input bits 2 and 3, and so on. What can you 
say about the output bit stream?

 8.12 Another approach to conditioning is to consider the bit stream as a sequence of non-
overlapping groups of n bits each and output the parity of each group. That is, if a 
group contains an odd number of ones, the output is 1; otherwise the output is 0.
a. Express this operation in terms of a basic Boolean function.
b. Assume, as in the preceding problem, that the probability of a 1 is 0.5 + 0. If each 

group consists of 2 bits, what is the probability of an output of 1?
c. If each group consists of 4 bits, what is the probability of an output of 1?
d. Generalize the result to find the probability of an output of 1 for input groups of 

n bits.
 8.13 It is important to note that the Repetition Count Test described in Section 8.6 is not a 

very powerful health test. It is able to detect only catastrophic failures of an entropy 
source. For example, a noise source evaluated at 8 bits of min-entropy per sample 
has a cutoff value of 5 repetitions to ensure a false-positive rate of approximately 
once per four billion samples generated. If that noise source somehow failed to the 
point that it was providing only 6 bits of min-entropy per sample, how many samples 
would be expected to be needed before the Repetition Count Test would notice the 
problem?

Figure 8.16 Two Different Configurations of LFSRs of Length 5

(a)

B1 B0 OutputB2B4 B3

(b)

B1 B0 OutputB2B4 B3
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The development of public-key, or asymmetric, cryptography is the greatest and per-
haps the only true revolution in the entire history of cryptography. From its earliest 
beginnings to modern times, virtually all cryptographic systems have been based on 
the elementary tools of substitution and permutation. After millennia of working with 
algorithms that could be calculated by hand, a major advance in symmetric cryptogra-
phy occurred with the development of the rotor encryption/decryption machine. The 
electromechanical rotor enabled the development of fiendishly complex cipher sys-
tems. With the availability of computers, even more complex systems were devised, the 
most prominent of which was the Lucifer effort at IBM that culminated in the Data 
Encryption Standard (DES). But both rotor machines and DES, although represent-
ing significant advances, still relied on the bread-and-butter tools of substitution and 
permutation.

Public-key cryptography provides a radical departure from all that has gone be-
fore. For one thing, public-key algorithms are based on mathematical functions rather 
than on substitution and permutation. More important, public-key cryptography is 
asymmetric, involving the use of two separate keys, in contrast to symmetric encryp-
tion, which uses only one key. The use of two keys has profound consequences in the 
areas of confidentiality, key distribution, and authentication, as we shall see.

Before proceeding, we should mention several common misconceptions con-
cerning public-key encryption. One such misconception is that public-key encryption 
is more secure from cryptanalysis than is symmetric encryption. In fact, the security of 
any encryption scheme depends on the length of the key and the computational work 
involved in breaking a cipher. There is nothing in principle about either symmetric or 
public-key encryption that makes one superior to another from the point of view of 
resisting cryptanalysis.

A second misconception is that public-key encryption is a general-purpose tech-
nique that has made symmetric encryption obsolete. On the contrary, because of the 
computational overhead of current public-key encryption schemes, there seems no 
foreseeable likelihood that symmetric encryption will be abandoned. As one of the 
inventors of public-key encryption has put it [DIFF88], “the restriction of public-key 
cryptography to key management and signature applications is almost universally 
accepted.”

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

◆◆ Present an overview of the basic principles of public-key cryptosystems.

◆◆ Explain the two distinct uses of public-key cryptosystems.

◆◆ List and explain the requirements for a public-key cryptosystem.

◆◆ Present an overview of the RSA algorithm.

◆◆ Understand the timing attack.

◆◆ Summarize the relevant issues related to the complexity of algorithms.
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Finally, there is a feeling that key distribution is trivial when using public-key 
encryption, compared to the rather cumbersome handshaking involved with key dis-
tribution centers for symmetric encryption. In fact, some form of protocol is needed, 
generally involving a central agent, and the procedures involved are not simpler nor 
any more efficient than those required for symmetric encryption (e.g., see analysis in 
[NEED78]).

This chapter and the next provide an overview of public-key cryptography. First, 
we look at its conceptual framework. Interestingly, the concept for this technique was 
developed and published before it was shown to be practical to adopt it. Next, we ex-
amine the RSA algorithm, which is the most important encryption/decryption algo-
rithm that has been shown to be feasible for public-key encryption. Other important 
public-key cryptographic algorithms are covered in Chapter 10.

Much of the theory of public-key cryptosystems is based on number theory. If 
one is prepared to accept the results given in this chapter, an understanding of  number 
theory is not strictly necessary. However, to gain a full appreciation of public-key 
 algorithms, some understanding of number theory is required. Chapter 2 provides the 
necessary background in number theory.

Table 9.1 defines some key terms.

 9.1 PRINCIPLES OF PUBLIC-KEY CRYPTOSYSTEMS

The concept of public-key cryptography evolved from an attempt to attack two of 
the most difficult problems associated with symmetric encryption. The first problem 
is that of key distribution, which is examined in some detail in Chapter 14.

As Chapter 14 discusses, key distribution under symmetric encryption 
requires either (1) that two communicants already share a key, which some-
how has been distributed to them; or (2) the use of a key distribution center. 

Asymmetric Keys
Two related keys, a public key and a private key, that are used to perform complementary operations, such as 
encryption and decryption or signature generation and signature verification.

Public Key Certificate
A digital document issued and digitally signed by the private key of a Certification Authority that binds the 
name of a subscriber to a public key. The certificate indicates that the subscriber identified in the certificate 
has sole control and access to the corresponding private key.

Public Key (Asymmetric) Cryptographic Algorithm
A cryptographic algorithm that uses two related keys, a public key and a private key. The two keys have the 
property that deriving the private key from the public key is computationally infeasible.

Public Key Infrastructure (PKI)
A set of policies, processes, server platforms, software and workstations used for the purpose of administer-
ing certificates and public-private key pairs, including the ability to issue, maintain, and revoke public key 
 certificates.

Table 9.1 Terminology Related to Asymmetric Encryption

Source: Glossary of Key Information Security Terms, NISTIR 7298.
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Whitfield Diffie, one of the discoverers of public-key encryption (along with 
Martin Hellman, both at Stanford University at the time), reasoned that this sec-
ond requirement negated the very essence of cryptography: the ability to main-
tain total secrecy over your own communication. As Diffie put it [DIFF88], “what 
good would it do after all to develop impenetrable cryptosystems, if their users 
were forced to share their keys with a KDC that could be compromised by either 
burglary or subpoena?”

The second problem that Diffie pondered, and one that was apparently 
unrelated to the first, was that of digital signatures. If the use of cryptography 
was to become widespread, not just in military situations but for commercial 
and private purposes, then electronic messages and documents would need the 
equivalent of signatures used in paper documents. That is, could a method be 
devised that would stipulate, to the satisfaction of all parties, that a digital mes-
sage had been sent by a particular person? This is a somewhat broader require-
ment than that of authentication, and its characteristics and ramifications are 
explored in Chapter 13.

Diffie and Hellman achieved an astounding breakthrough in 1976 [DIFF76 
a, b] by coming up with a method that addressed both problems and was radi-
cally different from all previous approaches to cryptography, going back over four 
millennia.

In the next subsection, we look at the overall framework for public-key cryp-
tography. Then we examine the requirements for the encryption/decryption algo-
rithm that is at the heart of the scheme.

Public-Key Cryptosystems

Asymmetric algorithms rely on one key for encryption and a different but 
related key for decryption. These algorithms have the following important 
characteristic.

◆■ It is computationally infeasible to determine the decryption key given only 
knowledge of the cryptographic algorithm and the encryption key.

In addition, some algorithms, such as RSA, also exhibit the following characteristic.

◆■ Either of the two related keys can be used for encryption, with the other used 
for decryption.

A public-key encryption scheme has six ingredients (Figure 9.1a; compare 
with Figure 3.1).

◆■ Plaintext: This is the readable message or data that is fed into the algorithm 
as input.

◆■ Encryption algorithm: The encryption algorithm performs various transfor-
mations on the plaintext.

◆■ Public and private keys: This is a pair of keys that have been selected so that if 
one is used for encryption, the other is used for decryption. The exact transfor-
mations performed by the algorithm depend on the public or private key that 
is provided as input.
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◆■ Ciphertext: This is the encrypted message produced as output. It depends on 
the plaintext and the key. For a given message, two different keys will produce 
two different ciphertexts.

◆■ Decryption algorithm: This algorithm accepts the ciphertext and the matching 
key and produces the original plaintext.

Figure 9.1 Public-Key Cryptography
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The essential steps are the following.

1. Each user generates a pair of keys to be used for the encryption and decryp-
tion of messages.

2. Each user places one of the two keys in a public register or other acces-
sible file. This is the public key. The companion key is kept private. As  
Figure 9.1a suggests, each user maintains a collection of public keys obtained 
from others.

3. If Bob wishes to send a confidential message to Alice, Bob encrypts the mes-
sage using Alice’s public key.

4. When Alice receives the message, she decrypts it using her private key. No 
other recipient can decrypt the message because only Alice knows Alice’s pri-
vate key.

With this approach, all participants have access to public keys, and private keys 
are generated locally by each participant and therefore need never be distributed. 
As long as a user’s private key remains protected and secret, incoming communica-
tion is secure. At any time, a system can change its private key and publish the com-
panion public key to replace its old public key.

Table 9.2 summarizes some of the important aspects of symmetric and public-
key encryption. To discriminate between the two, we refer to the key used in sym-
metric encryption as a secret key. The two keys used for asymmetric encryption are 
referred to as the public key and the private key.1 Invariably, the private key is kept 
secret, but it is referred to as a private key rather than a secret key to avoid confu-
sion with symmetric encryption.

Let us take a closer look at the essential elements of a public-key encryp-
tion scheme, using Figure 9.2 (compare with Figure 3.2). There is some source 
A that produces a message in plaintext, X = [X1, X2, c , XM]. The M elements 
of X are letters in some finite alphabet. The message is intended for destina-
tion B. B generates a related pair of keys: a public key, PUb, and a private key, 
PRb. PRb is known only to B, whereas PUb is publicly available and therefore 
accessible by A.

With the message X and the encryption key PUb as input, A forms the cipher-
text Y = [Y1, Y2, c , YN]:

 Y = E(PUb, X) 

The intended receiver, in possession of the matching private key, is able to invert the 
transformation:

 X = D(PRb,Y) 

1The following notation is used consistently throughout. A secret key is represented by Km, where m is 
some modifier; for example, Ka is a secret key owned by user A. A public key is represented by PUa, for 
user A, and the corresponding private key is PRa. Encryption of plaintext X can be performed with a 
secret key, a public key, or a private key, denoted by E(Ka, X), E(PUa, X), and E(PRa, X), respectively. 
Similarly, decryption of ciphertext Y can be performed with a secret key, a public key, or a private key, 
denoted by D(Ka, Y), D(PUa, Y), and D(PRa, Y), respectively.
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An adversary, observing Y and having access to PUb, but not having access to PRb 
or X, must attempt to recover X and/or PRb. It is assumed that the adversary does 
have knowledge of the encryption (E) and decryption (D) algorithms. If the adver-
sary is interested only in this particular message, then the focus of effort is to recover 
X by generating a plaintext estimate Xn . Often, however, the adversary is interested 
in being able to read future messages as well, in which case an attempt is made to 
recover PRb by generating an estimate PRnb.

Conventional Encryption Public-Key Encryption

Needed to Work:

1. The same algorithm with the same key is 
used for encryption and decryption.

2. The sender and receiver must share the 
algorithm and the key.

Needed for Security:

1. The key must be kept secret.

2. It must be impossible or at least impractical 
to decipher a message if the key is kept 
secret.

3. Knowledge of the algorithm plus samples of 
ciphertext must be insufficient to determine 
the key.

Needed to Work:

1. One algorithm is used for encryption and a related 
algorithm for decryption with a pair of keys, one for 
encryption and one for decryption.

2. The sender and receiver must each have one of the 
matched pair of keys (not the same one).

Needed for Security:

1. One of the two keys must be kept secret.

2. It must be impossible or at least impractical to 
decipher a message if one of the keys is kept secret.

3. Knowledge of the algorithm plus one of the keys 
plus samples of ciphertext must be insufficient to 
determine the other key.

Table 9.2 Conventional and Public-Key Encryption

Figure 9.2 Public-Key Cryptosystem: Confidentiality
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Figure 9.3 Public-Key Cryptosystem: Authentication
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We mentioned earlier that either of the two related keys can be used for 
encryption, with the other being used for decryption. This enables a rather differ-
ent cryptographic scheme to be implemented. Whereas the scheme illustrated in  
Figure 9.2 provides confidentiality, Figures 9.1b and 9.3 show the use of public-key 
encryption to provide authentication:

 Y = E(PRa,X)

 X = D(PUa,Y)

In this case, A prepares a message to B and encrypts it using A’s private key 
before transmitting it. B can decrypt the message using A’s public key. Because the 
message was encrypted using A’s private key, only A could have prepared the mes-
sage. Therefore, the entire encrypted message serves as a digital  signature. In addi-
tion, it is impossible to alter the message without access to A’s private key, so the 
message is authenticated both in terms of source and in terms of data integrity.

In the preceding scheme, the entire message is encrypted, which, although vali-
dating both author and contents, requires a great deal of storage. Each document 
must be kept in plaintext to be used for practical purposes. A copy also must be 
stored in ciphertext so that the origin and contents can be verified in case of a dis-
pute. A more efficient way of achieving the same results is to encrypt a small block 
of bits that is a function of the document. Such a block, called an authenticator, must 
have the property that it is infeasible to change the document without changing 
the authenticator. If the authenticator is encrypted with the sender’s private key, it 
serves as a signature that verifies origin, content, and sequencing. Chapter 13 exam-
ines this technique in detail.

M09_STAL7484_08_GE_C09.indd   292 20/04/22   12:18



9.1 / PRinCiPlES of PubliC-KEy CRyPToSySTEmS 293

It is important to emphasize that the encryption process depicted in Figures 9.1b  
and 9.3 does not provide confidentiality. That is, the message being sent is safe from 
alteration but not from eavesdropping. This is obvious in the case of a signature 
based on a portion of the message, because the rest of the message is transmitted in 
the clear. Even in the case of complete encryption, as shown in Figure 9.3, there is no 
protection of confidentiality because any observer can decrypt the message by using 
the sender’s public key.

It is, however, possible to provide both the authentication function and confi-
dentiality by a double use of the public-key scheme (Figure 9.4):

 Z = E(PUb, E(PRa,X))

 X = D(PUa, D(PRb,Z))

In this case, we begin as before by encrypting a message, using the sender’s private 
key. This provides the digital signature. Next, we encrypt again, using the receiver’s 
public key. The final ciphertext can be decrypted only by the intended receiver, who 
alone has the matching private key. Thus, confidentiality is provided. The disadvan-
tage of this approach is that the public-key algorithm, which is complex, must be 
exercised four times rather than two in each communication.

Applications for Public-Key Cryptosystems

Before proceeding, we need to clarify one aspect of public-key cryptosystems that 
is otherwise likely to lead to confusion. Public-key systems are characterized by the 
use of a cryptographic algorithm with two keys, one held private and one available 
publicly. Depending on the application, the sender uses either the sender’s private 
key or the receiver’s public key, or both, to perform some type of cryptographic 

Figure 9.4 Public-Key Cryptosystem: Authentication and Secrecy

Message
source

Message
dest.

X Encryption
algorithm

Key pair
source

PUb PRb

Source A Destination B

Key pair
source

PRa PUa

Y Encryption
algorithm

Z Decryption
algorithm

Y Decryption
algorithm

X

M09_STAL7484_08_GE_C09.indd   293 20/04/22   12:18



294  CHAPTER 9 / PubliC-KEy CRyPTogRAPHy And RSA

function. In broad terms, we can classify the use of public-key cryptosystems into 
three categories

◆■ Encryption/decryption: The sender encrypts a message with the recipient’s 
public key, and the recipient decrypts the message with the recipient’s private 
key.

◆■ Digital signature: The sender “signs” a message with its private key. Signing 
is achieved by a cryptographic algorithm applied to the message or to a small 
block of data that is a function of the message.

◆■ Key exchange: Two sides cooperate to exchange a session key, which is a secret 
key for symmetric encryption generated for use for a particular transaction (or 
session) and valid for a short period of time. Several different approaches are 
possible, involving the private key(s) of one or both parties; this is discussed in 
Chapter 10.

Some algorithms are suitable for all three applications, whereas others can be 
used only for one or two of these applications. Table 9.3 indicates the applications 
supported by the algorithms discussed in this book.

Requirements for Public-Key Cryptography

The cryptosystem illustrated in Figures 9.2 through 9.4 depends on a cryptographic 
algorithm based on two related keys. Diffie and Hellman postulated this system 
without demonstrating that such algorithms exist. However, they did lay out the 
conditions that such algorithms must fulfill [DIFF76b].

1. It is computationally easy for a party B to generate a key pair (public key PUb, 
private key PRb).

2. It is computationally easy for a sender A, knowing the public key and the mes-
sage to be encrypted, M, to generate the corresponding ciphertext:

C = E(PUb, M)

3. It is computationally easy for the receiver B to decrypt the resulting ciphertext 
using the private key to recover the original message:

M = D(PRb, C) = D[PRb, E(PUb, M)]

4. It is computationally infeasible for an adversary, knowing the public key, PUb, 
to determine the private key, PRb.

Algorithm Encryption/Decryption Digital Signature Key Exchange

RSA Yes Yes Yes

Elliptic Curve Yes Yes Yes

Diffie–Hellman No No Yes

DSS No Yes No

Table 9.3 Applications for Public-Key Cryptosystems
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5. It is computationally infeasible for an adversary, knowing the public key, PUb, 
and a ciphertext, C, to recover the original message, M.

We can add a sixth requirement that, although useful, is not necessary for all 
public-key applications:

6. The two keys can be applied in either order:

M = D[PUb, E(PRb, M)] = D[PRb, E(PUb, M)]

These are formidable requirements, as evidenced by the fact that only a few 
algorithms (RSA, elliptic curve cryptography, Diffie–Hellman, DSS) have received 
widespread acceptance in the several decades since the concept of public-key cryp-
tography was proposed.

Before elaborating on why the requirements are so formidable, let us first 
recast them. The requirements boil down to the need for a trap-door one-way func-
tion. A one-way function2 is one that maps a domain into a range such that every 
function value has a unique inverse, with the condition that the calculation of the 
function is easy, whereas the calculation of the inverse is infeasible:

 Y = f(X)     easy

 X = f -1(Y) infeasible

Generally, easy is defined to mean a problem that can be solved in polynomial 
time as a function of input length. Thus, if the length of the input is n bits, then the 
time to compute the function is proportional to na, where a is a fixed constant. Such 
algorithms are said to belong to the class P. The term infeasible is a much fuzzier 
concept. In general, we can say a problem is infeasible if the effort to solve it grows 
faster than polynomial time as a function of input size. For example, if the length 
of the input is n bits and the time to compute the function is proportional to 2n, 
the problem is considered infeasible. Unfortunately, it is difficult to determine if a 
particular algorithm exhibits this complexity. Furthermore, traditional notions of 
computational complexity focus on the worst-case or average-case complexity of 
an algorithm. These measures are inadequate for cryptography, which requires that 
it be infeasible to invert a function for virtually all inputs, not for the worst case or 
even average case. [LAI18] provides an excellent introduction to complexity.

We now turn to the definition of a trap-door one-way function, which is easy 
to calculate in one direction and infeasible to calculate in the other direction unless 
certain additional information is known. With the additional information the inverse 
can be calculated in polynomial time. We can summarize as follows: A trap-door 
one-way function is a family of invertible functions fk, such that

 Y = fk(X)   easy, if k and X are known

 X = fk
-1(Y) easy, if k and Y are known

 X = fk
-1(Y) infeasible, if Y is known but k is not known

2Not to be confused with a one-way hash function, which takes an arbitrarily large data field as its 
 argument and maps it to a fixed output. Such functions are used for authentication (see Chapter 11).
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Thus, the development of a practical public-key scheme depends on discovery of a 
suitable trap-door one-way function.

Public-Key Cryptanalysis

As with symmetric encryption, a public-key encryption scheme is vulnerable to a 
brute-force attack. The countermeasure is the same: Use large keys. However, there 
is a tradeoff to be considered. Public-key systems depend on the use of some sort of 
invertible mathematical function. The complexity of calculating these functions may 
not scale linearly with the number of bits in the key but grow more rapidly than that. 
Thus, the key size must be large enough to make brute-force attack impractical but 
small enough for practical encryption and decryption. In practice, the key sizes that 
have been proposed do make brute-force attack impractical but result in encryp-
tion/decryption speeds that are too slow for general-purpose use. Instead, as was 
mentioned earlier, public-key encryption is currently confined to key management 
and signature applications.

Another form of attack is to find some way to compute the private key given 
the public key. To date, it has not been mathematically proven that this form of 
attack is infeasible for a particular public-key algorithm. Thus, any given algorithm, 
including the widely used RSA algorithm, is suspect. The history of cryptanalysis 
shows that a problem that seems insoluble from one perspective can be found to 
have a solution if looked at in an entirely different way.

Finally, there is a form of attack that is peculiar to public-key systems. This 
is, in essence, a probable-message attack. Suppose, for example, that a message 
were to be sent that consisted solely of a 56-bit DES key. An adversary could 
encrypt all possible 56-bit DES keys using the public key and could discover the 
encrypted key by matching the transmitted ciphertext. Thus, no matter how large 
the key size of the public-key scheme, the attack is reduced to a brute-force attack 
on a 56-bit key. This attack can be thwarted by appending some random bits to 
such simple messages.

 9.2 THE RSA ALGORITHM

The pioneering paper by Diffie and Hellman [DIFF76b] introduced a new approach 
to cryptography and, in effect, challenged cryptologists to come up with a crypto-
graphic algorithm that met the requirements for public-key systems. One of the 
first successful responses to the challenge was developed in 1977 by Ron Rivest, 
Adi Shamir, and Len Adleman at MIT and first published in 1978 [RIVE78]. The 
Rivest-Shamir-Adleman (RSA) scheme has since that time reigned supreme as the 
most widely accepted and implemented general-purpose approach to public-key 
encryption.

The RSA scheme is a cipher in which the plaintext and ciphertext are integers 
between 0 and n - 1 for some n. A typical size for n is 1024 bits, or 309 decimal 
digits. That is, n is less than 21024. We examine RSA in this section in some detail, 
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beginning with an explanation of the algorithm. Then we examine some of the com-
putational and cryptanalytical implications of RSA.

Description of the Algorithm

RSA makes use of an expression with exponentials. Plaintext is encrypted in blocks, 
with each block having a binary value less than some number n. That is, the block 
size must be less than or equal to log2(n) + 1; in practice, the block size is i bits, 
where 2i 6 n … 2i + 1. Encryption and decryption are of the following form, for 
some plaintext block M and ciphertext block C.

 C = Me mod n

 M = Cd mod n = (Me)d mod n = Med mod n

Both sender and receiver must know the value of n. The sender knows the value 
of e, and only the receiver knows the value of d. Thus, this is a public-key encryption 
algorithm with a public key of PU = {e, n} and a private key of PR = {d, n}. For 
this algorithm to be satisfactory for public-key encryption, the following require-
ments must be met.

1. It is possible to find values of e, d, and n such that Med mod n = M for all M 6 n.

2. It is relatively easy to calculate Me mod n and Cd mod n for all values of M 6 n.

3. It is infeasible to determine d given e and n.

For now, we focus on the first requirement and consider the other questions 
later. We need to find a relationship of the form

 Med mod n = M 

The preceding relationship holds if e and d are multiplicative inverses modulo f(n), 
where f(n) is the Euler totient function. It is shown in Chapter 2 that for p, q prime, 
f(pq) = (p - 1)(q - 1). The relationship between e and d can be expressed as

 ed mod f(n) = 1   (9.1)

This is equivalent to saying

 ed K 1 mod f(n)

 d K e-1 mod f(n)

That is, e and d are multiplicative inverses mod f(n). Note that, according to the 
rules of modular arithmetic, this is true only if d (and therefore e) is relatively prime 
to f(n). Equivalently, gcd(f(n), d) = 1. A proof that Equation (9.1) satisfies the 
requirement for RSA can be found in the original RSA paper [RIVE78].

We are now ready to state the RSA scheme. The ingredients are the following:
p, q, two prime numbers (private, chosen)
n = pq (public, calculated)
e, with gcd(f(n), e) = 1; 1 6 e 6 f(n) (public, chosen)

d K e-1 (mod f(n)) (private, calculated)
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The private key consists of {d, n} and the public key consists of {e, n}. Suppose 
that user A has published its public key and that user B wishes to send the message 
M to A. Then B calculates C = Me mod n and transmits C. On receipt of this cipher-
text, user A decrypts by calculating M = Cd mod n.

Figure 9.5 summarizes the RSA algorithm. It corresponds to Figure 9.1a: Alice 
generates a public/private key pair; Bob encrypts using Alice’s public key; and Alice 
decrypts using her private key. An example from [SING99] is shown in Figure 9.6. 
For this example, the keys were generated as follows.

1. Select two prime numbers, p = 17 and q = 11.

2. Calculate n = pq = 17 * 11 = 187.

3. Calculate f(n) = (p - 1)(q - 1) = 16 * 10 = 160.

4. Select e such that e is relatively prime to f(n) = 160 and less than f(n); we 
choose e = 7.

5. Determine d such that de K 1 (mod 160) and d 6 160. The correct value is 
d = 23, because 23 * 7 = 161 = (1 * 160) + 1; d can be calculated using 
the extended Euclid’s algorithm (Chapter 2).

The resulting keys are public key PU = {7, 187} and private key PR = {23, 187}. 
The example shows the use of these keys for a plaintext input of M = 88. For 
 encryption, we need to calculate C = 887 mod 187. Exploiting the properties of mod-
ular arithmetic, we can do this as follows.

 887 mod 187 = [(884 mod 187) * (882 mod 187)
        * (881 mod 187)] mod 187

 881 mod 187 = 88

 882 mod 187 = 7744 mod 187 = 77

 884 mod 187 = 59,969,536 mod 187 = 132

 887 mod 187 = (88 * 77 * 132) mod 187 = 894,432 mod 187 = 11

For decryption, we calculate M = 1123 mod 187:

 1123 mod 187 = [(111 mod 187) * (112 mod 187) * (114 mod 187)
        * (118 mod 187) * (118 mod 187)] mod 187

 111 mod 187 = 11

 112 mod 187 = 121

 114 mod 187 = 14,641 mod 187 = 55

 118 mod 187 = 214,358,881 mod 187 = 33

 1123 mod 187 = (11 * 121 * 55 * 33 * 33) mod 187
       = 79,720,245 mod 187 = 88

We now look at an example from [HELL79], which shows the use of RSA to 
process multiple blocks of data. In this simple example, the plaintext is an alpha-
numeric string. Each plaintext symbol is assigned a unique code of two decimal 
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digits (e.g., a = 00, A = 26).3 A plaintext block consists of four decimal digits, or 
two alphanumeric characters. Figure 9.7a illustrates the sequence of events for the 
encryption of multiple blocks, and Figure 9.7b gives a specific example. The circled 
numbers indicate the order in which operations are performed.

Computational Aspects

We now turn to the issue of the complexity of the computation required to use RSA. 
There are actually two issues to consider: encryption/decryption and key  generation. 
Let us look first at the process of encryption and decryption and then consider key 
generation.

3The complete mapping of alphanumeric characters to decimal digits is at box.com/Crypto8e in the docu-
ment RSAexample.pdf.

Figure 9.6 Example of RSA Algorithm

Encryption

Plaintext
88

Plaintext
88

Ciphertext
1188  mod 187 5 11

PU 5 7, 187

Decryption

7 11    mod 187 5 88

PR 5 23, 187

23

Figure 9.5 The RSA Algorithm

Key Generation by Alice

Select p, q p and q both prime, p q

Calculate n 5 p 3 q 

Calculate f(n)5(p 2 1)(q 2 1)  

Select integer e gcd (f(n), e) 5 1; 1 6 e 6 f(n)

Calculate d d K e-1 (mod f(n))

Public key PU 5 {e, n}

Private key  PR 5 {d, n}

Encryption by Bob with Alice’s Public Key

Plaintext: M 6 n

Ciphertext: C 5 Me mod n

Decryption by Alice with Alice’s Private Key

Ciphertext: C

Plaintext: M 5 Cd mod n
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ExponEntiation in Modular arithMEtic Both encryption and decryption in RSA 
involve raising an integer to an integer power, mod n. If the exponentiation is done 
over the integers and then reduced modulo n, the intermediate values would be gar-
gantuan. Fortunately, as the preceding example shows, we can make use of a prop-
erty of modular arithmetic:

 [(a mod n) * (b mod n)] mod n = (a * b) mod n 

Thus, we can reduce intermediate results modulo n. This makes the calculation 
practical.

Another consideration is the efficiency of exponentiation, because with 
RSA, we are dealing with potentially large exponents. To see how efficiency might 
be increased, consider that we wish to compute x16. A straightforward approach 
requires 15 multiplications:

x16 = x * x * x * x * x * x * x * x * x * x * x * x * x * x * x * x

Figure 9.7 RSA Processing of Multiple Blocks

Plaintext P

Decimal string

Sender

Receiver

(a) General approach (b) Example

Blocks of numbers
P1, P2,

P1 5 C1
d mod n

P2 5 C2
d mod n

Ciphertext C

C1 5 P1
e mod n

C2 5 P2
e mod n

Recovered
decimal text

n 5 pq

Random number
generator

e, p, q

Private key
d, n

Public key
e, n

How_are_you?

33 14 22 62 00 17 04 62 24 14 20 66

Sender

Receiver

P1 5 3314 P2 = 2262 P3 5 0017
P4 5 0462 P5 = 2414 P6 5 2066

C1 5 331411 mod 11023 5 10260
C2 5 226211 mod 11023 5 9489
C3 5 1711 mod 11023 5 1782
C4 5 46211 mod 11023 5 727
C5 5 241411 mod 11023 5 10032
C6 5 206611 mod 11023 5 2253

P1 5 102605891 mod 11023 5 3314
P2 5 94895891 mod 11023 5 2262
P3 5 17825891 mod 11023 5 0017
P4 5 7275891 mod 11023 5 0462
P5 5 100325891 mod 11023 5 2414
P6 522535891 mod 11023 5 2066

11023 5 73   151

5891 5 11–1 mod 10800
10800 5 (73 – 1)(151 – 1)
11023 5 73   51

Random number
generator

e 5 11
 n 5 11023

d 5 5891
 n 5 11023

e 5 11
 p 5 73, q 5 151

1

2

6

3

4

5

7

1

2

6

3

4

5

7

d 5 e–1 mod f(n)
  f(n) 5 (p – 1)(q – 1)

n 5 pq

3

3

Transmit Transmit
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However, we can achieve the same final result with only four multiplications if we 
 repeatedly take the square of each partial result, successively forming (x2, x4, x8, x16). 
As another example, suppose we wish to calculate x11 mod n for some integers x  
and n. Observe that x11 = x1 + 2 + 8 = (x)(x2)(x8). In this case, we compute x mod n,
x2 mod n, x4 mod n, and x8 mod n and then calculate [(x mod n) * (x2 mod n) *
(x8 mod n)] mod n.

More generally, suppose we wish to find the value ab mod n with a, b, and m 
positive integers. If we express b as a binary number bkbk - 1 c b0, then we have

b = a
bi ≠ 0

2i

Therefore,

ab = a
¢ Σ2i

bi ≠ 0
≤

= q
bi ≠ 0

a(2i)

ab mod n = J q
bi ≠ 0

a(2i) R  mod n = ¢ q
bi ≠ 0

Ja(2i) mod nR ≤ mod n

We can therefore develop the algorithm4 for computing ab mod n, shown in 
Figure 9.8. Table 9.4 shows an example of the execution of this algorithm. Note that 
the variable c is not needed; it is included for explanatory purposes. The final value 
of c is the value of the exponent.

EfficiEnt opEration using thE public KEy To speed up the operation of the RSA 
algorithm using the public key, a specific choice of e is usually made. The most com-
mon choice is 65537 (216 + 1); two other popular choices are 3 and 17. Each of these 
choices has only two 1 bits, so the number of multiplications required to perform 
exponentiation is minimized.

4The algorithm has a long history; this particular pseudocode expression is from [CORM09].

Figure 9.8 Algorithm for Computing ab mod n

c   0; f   1

c   2 × cdo

bi = 1

then c   c + 1

if

f   (f × f) mod n

f   (f × a) mod n

for i   k downto 0

return f

Note: The integer b is expressed as a 
binary number bkbk - 1cb0.
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However, with a very small public key, such as e = 3, RSA becomes vulner-
able to a simple attack. Suppose we have three different RSA users who all use 
the value e = 3 but have unique values of n, namely (n1, n2, n3). If user A sends 
the same encrypted message M to all three users, then the three ciphertexts are 
C1 = M3 mod n1, C2 = M3 mod n2, and C3 = M3 mod n3. It is likely that n1, n2, 
and n3 are pairwise relatively prime. Therefore, one can use the Chinese remainder 
theorem (CRT) to compute M3 mod (n1n2n3). By the rules of the RSA algorithm, 
M is less than each of the ni; therefore M3 6 n1n2n3. Accordingly, the attacker need 
only compute the cube root of M3. This attack can be countered by adding a unique 
pseudorandom bit string as padding to each instance of M to be encrypted. This 
approach is discussed subsequently.

The reader may have noted that the definition of the RSA algorithm 
(Figure 9.5) requires that during key generation the user selects a value of e that is 
relatively prime to f(n). Thus, if a value of e is selected first and the primes p and q  
are generated, it may turn out that gcd(f(n), e) ≠ 1. In that case, the user must 
reject the p, q values and generate a new p, q pair.

EfficiEnt opEration using thE privatE KEy We cannot similarly choose a 
small constant value of d for efficient operation. A small value of d is vul-
nerable to a brute-force attack and to other forms of cryptanalysis [WIEN90]. 
However, there is a way to speed up computation using the CRT. We wish to 
compute the value M = Cd mod n. Let us define the following intermediate 
results:

 Vp = Cd mod p Vq = Cd mod q 

Following the CRT using Equation (8.8), define the quantities

 Xp = q * (q-1 mod p) Xq = p * (p-1 mod q) 

The CRT then shows, using Equation (8.9), that

 M = (VpXp + VqXq) mod n 

Furthermore, we can simplify the calculation of Vp and Vq using Fermat’s 
theorem, which states that ap - 1 K 1 (mod p) if p and a are relatively prime. Some 
thought should convince you that the following are valid.

 Vp = Cd mod p = Cd mod(p - 1) mod p Vq = Cd mod q = Cd mod(q - 1) mod q 

i 9 8 7 6 5 4 3 2 1 0

bi 1 0 0 0 1 1 0 0 0 0
c 1 2 4 8 17 35 70 140 280 560
f 7 49 157 526 160 241 298 166 67 1

Table 9.4 Result of the Fast Modular Exponentiation Algorithm for ab mod n, where a = 7,
b = 560 = 1000110000, and n = 561
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The quantities d mod (p - 1) and d mod (q - 1) can be precalculated. The 
end result is that the calculation is approximately four times as fast as evaluating 
M = Cd mod n directly [BONE02].

KEy gEnEration Before the application of the public-key cryptosystem, each par-
ticipant must generate a pair of keys. This involves the following tasks.

◆■ Determining two prime numbers, p and q.

◆■ Selecting either e or d and calculating the other.

First, consider the selection of p and q. Because the value of n = pq will be 
known to any potential adversary, in order to prevent the discovery of p and q 
by exhaustive methods, these primes must be chosen from a sufficiently large set  
(i.e., p and q must be large numbers). On the other hand, the method used for find-
ing large primes must be reasonably efficient.

At present, there are no useful techniques that yield arbitrarily large primes, so 
some other means of tackling the problem is needed. The procedure that is generally 
used is to pick at random an odd number of the desired order of magnitude and test 
whether that number is prime. If not, pick successive random numbers until one is 
found that tests prime.

A variety of tests for primality have been developed (e.g., see [KNUT98] for 
a description of a number of such tests). Almost invariably, the tests are probabi-
listic. That is, the test will merely determine that a given integer is probably prime. 
Despite this lack of certainty, these tests can be run in such a way as to make the 
probability as close to 1.0 as desired. As an example, one of the more efficient and 
popular algorithms, the Miller–Rabin algorithm, is described in Chapter 2. With 
this algorithm and most such algorithms, the procedure for testing whether a given 
integer n is prime is to perform some calculation that involves n and a randomly 
chosen integer a. If n “fails” the test, then n is not prime. If n “passes” the test, 
then n may be prime or nonprime. If n passes many such tests with many different 
randomly chosen values for a, then we can have high confidence that n is, in fact, 
prime.

In summary, the procedure for picking a prime number is as follows.

1. Pick an odd integer n at random (e.g., using a pseudorandom number 
generator).

2. Pick an integer a 6 n at random.

3. Perform the probabilistic primality test, such as Miller–Rabin, with a as a 
 parameter. If n fails the test, reject the value n and go to step 1.

4. If n has passed a sufficient number of tests, accept n; otherwise, go to step 2.

This is a somewhat tedious procedure. However, remember that this process is per-
formed relatively infrequently: only when a new pair (PU, PR) is needed.

It is worth noting how many numbers are likely to be rejected before a 
prime number is found. A result from number theory, known as the prime  number 
theorem, states that the primes near N are spaced on the average one every  
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ln (N) integers. Thus, on average, one would have to test on the order of ln(N) inte-
gers before a prime is found. Actually, because all even integers can be immediately 
rejected, the correct figure is ln(N)/2. For example, if a prime on the order of magnitude 
of 2200 were sought, then about ln(2200)/2 = 70 trials would be needed to find a prime.

Having determined prime numbers p and q, the process of key generation is 
completed by selecting a value of e and calculating d or, alternatively, selecting a 
value of d and calculating e. Assuming the former, then we need to select an e such 
that gcd(f(n), e) = 1 and then calculate d K e-1 (mod f(n)). Fortunately, there is a 
single algorithm that will, at the same time, calculate the greatest common divisor of 
two integers and, if the gcd is 1, determine the inverse of one of the integers modulo 
the other. The algorithm, referred to as the extended Euclid’s algorithm, is explained 
in Chapter 2. Thus, the procedure is to generate a series of random numbers, testing 
each against f(n) until a number relatively prime to f(n) is found. Again, we can 
ask the question: How many random numbers must we test to find a usable number, 
that is, a number relatively prime to f(n)? It can be shown easily that the probabil-
ity that two random numbers are relatively prime is about 0.6; thus, very few tests 
would be needed to find a suitable integer (see Problem 2.18).

The Security of RSA

Five possible approaches to attacking the RSA algorithm are:

◆■ Brute force: This involves trying all possible private keys.

◆■ Mathematical attacks: There are several approaches, all equivalent in effort to 
factoring the product of two primes.

◆■ Timing attacks: These depend on the running time of the decryption algorithm.

◆■ Hardware fault-based attack: This involves inducing hardware faults in the 
processor that is generating digital signatures.

◆■ Chosen ciphertext attacks: This type of attack exploits properties of the RSA 
algorithm.

The defense against the brute-force approach is the same for RSA as for other 
cryptosystems, namely, to use a large key space. Thus, the larger the number of bits 
in d, the better. However, because the calculations involved, both in key generation 
and in encryption/decryption, are complex, the larger the size of the key, the slower 
the system will run.

In this subsection, we provide an overview of mathematical and timing attacks.

thE factoring problEM We can identify three approaches to attacking RSA 
mathematically.

1. Factor n into its two prime factors. This enables calculation of f(n) =
(p - 1) * (q - 1), which in turn enables determination of d K e-1 (mod f(n)).

2. Determine f(n) directly, without first determining p and q. Again, this enables 
determination of d K e-1 (mod f(n)).

3. Determine d directly, without first determining f(n).
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Most discussions of the cryptanalysis of RSA have focused on the task of 
 factoring n into its two prime factors. Determining f(n) given n is equivalent to 
factoring n [RIBE96]. With presently known algorithms, determining d given  
e and n appears to be at least as time-consuming as the factoring problem [KALI95]. 
Hence, we can use factoring performance as a benchmark against which to evaluate 
the security of RSA.

For a large n with large prime factors, factoring is a hard problem, but it is not as 
hard as it used to be. A striking illustration of this is the following. In 1977, the three 
inventors of RSA dared Scientific American readers to decode a cipher they printed 
in Martin Gardner’s “Mathematical Games” column [GARD77]. They offered a $100 
reward for the return of a plaintext sentence, an event they predicted might not occur 
for some 40 quadrillion years. In April of 1994, a group working over the Internet 
claimed the prize after only eight months of work [LEUT94]. This challenge used a 
public key size (length of n) of 129 decimal digits, or around 428 bits. In the mean-
time, just as they had done for DES, RSA Laboratories had issued challenges for the 
RSA cipher with key sizes of 100, 110, 120, and so on, digits. The latest challenge to 
be met is the RSA-768 challenge with a key length of 232 decimal digits, or 768 bits.

A striking fact about the factoring of the successive challenges concerns the 
method used. Until the mid-1990s, factoring attacks were made using an approach 
known as the quadratic sieve. The attack on RSA-130 used a newer algorithm, the 
generalized number field sieve (GNFS), and was able to factor a larger number than  
RSA-129 at only 20% of the computing effort.

The threat to larger key sizes is twofold: the continuing increase in comput-
ing power and the continuing refinement of factoring algorithms. We have seen that 
the move to a different algorithm resulted in a tremendous speedup. We can expect 
further refinements in the GNFS, and the use of an even better algorithm is also a 
possibility. In fact, a related algorithm, the special number field sieve (SNFS), can fac-
tor numbers with a specialized form considerably faster than the generalized number 
field sieve. It is reasonable to expect a breakthrough that would enable a general 
factoring performance in about the same time as SNFS, or even better [ODLY95]. 
Thus, we need to be careful in choosing a key size for RSA. The team that produced 
the 768-bit factorization [KLEI10] observed that factoring a 1024-bit RSA modulus 
would be about a thousand times harder than factoring a 768-bit modulus, and a 
768-bit RSA modulus is several thousands times harder to factor than a 512-bit one. 
Based on the amount of time between the 512-bit and 768-bit factorization successes, 
the team felt it to be reasonable to expect that the 1024-bit RSA moduli could be 
factored well within the next decade by a similar academic effort. Thus, they recom-
mended phasing out usage of 1024-bit RSA within the next few years (from 2010).

A number of government agencies have issued recommendations for RSA  
key size:

◆■ NIST SP 800-131A (Transitions: Recommendation for Transitioning the Use of 
Cryptographic Algorithms and Key Lengths, November 2015) recommends a 
key length of 2048 bits or longer.

◆■ The European Union Agency for Network and Information Security, in 
Algorithms, Key Size and Parameters Report – 2014 recommends a key length 
of 3072 bits or longer for all new development.
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◆■ The government of Canada’s Communications Security Establishment, in 
Cryptographic Algorithms for UNCLASSIFIED, PROTECTED A, and 
PROTECTED B Information (August 2016) recommends a length of at least 
2048 bits, extended to at least 3072 bits by 2030.

In addition to specifying the size of n, a number of other constraints have been 
suggested by researchers. To avoid values of n that may be factored more easily, the 
algorithm’s inventors suggest the following constraints on p and q.

1. p and q should differ in length by only a few digits. Thus, for a 1024-bit key 
(309 decimal digits), both p and q should be on the order of magnitude of 
1075 to 10100.

2. Both (p - 1) and (q - 1) should contain a large prime factor.

3. gcd(p - 1, q - 1) should be small.

In addition, it has been demonstrated that if e 6 n and d 6 n1/4, then d can be  easily 
determined [WIEN90].

tiMing attacKs If one needed yet another lesson about how difficult it is to  assess 
the security of a cryptographic algorithm, the appearance of timing attacks  provides 
a stunning one. Paul Kocher, a cryptographic consultant, demonstrated that a 
snooper can determine a private key by keeping track of how long a computer takes 
to decipher messages [KOCH96, KALI96b]. Timing attacks are applicable not just 
to RSA, but to other public-key cryptography systems. This attack is alarming for 
two reasons: It comes from a completely unexpected direction, and it is a ciphertext-
only attack.

A timing attack is somewhat analogous to a burglar guessing the combi-
nation of a safe by observing how long it takes for someone to turn the dial 
from number to number. We can explain the attack using the modular expo-
nentiation algorithm of Figure 9.8, but the attack can be adapted to work with 
any implementation that does not run in fixed time. In this algorithm, modular 
exponentiation is accomplished bit by bit, with one modular multiplication per-
formed at each iteration and an additional modular multiplication performed 
for each 1 bit.

As Kocher points out in his paper, the attack is simplest to understand in an 
extreme case. Suppose the target system uses a modular multiplication function that is 
very fast in almost all cases but in a few cases takes much more time than an entire aver-
age modular exponentiation. The attack proceeds bit-by-bit starting with the leftmost 
bit, bk. Suppose that the first j bits are known (to obtain the entire exponent, start with 
j = 0 and repeat the attack until the entire exponent is known). For a given ciphertext, 
the attacker can complete the first j iterations of the for loop. The operation of the 
subsequent step depends on the unknown exponent bit. If the bit is set, d d (d * a) 
mod n will be executed. For a few values of a and d, the modular multiplication will be 
extremely slow, and the attacker knows which these are. Therefore, if the observed time 
to execute the decryption algorithm is always slow when this particular iteration is slow 
with a 1 bit, then this bit is assumed to be 1. If a number of observed execution times for 
the entire algorithm are fast, then this bit is assumed to be 0.
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In practice, modular exponentiation implementations do not have such extreme 
timing variations, in which the execution time of a single iteration can exceed the 
mean execution time of the entire algorithm. Nevertheless, there is enough variation 
to make this attack practical. For details, see [KOCH96].

Although the timing attack is a serious threat, there are simple countermea-
sures that can be used, including the following.

◆■ Constant exponentiation time: Ensure that all exponentiations take the same 
amount of time before returning a result. This is a simple fix but does degrade 
performance.

◆■ Random delay: Better performance could be achieved by adding a random 
delay to the exponentiation algorithm to confuse the timing attack. Kocher 
points out that if defenders don’t add enough noise, attackers could still suc-
ceed by collecting additional measurements to compensate for the random 
delays.

◆■ Blinding: Multiply the ciphertext by a random number before performing 
exponentiation. This process prevents the attacker from knowing what cipher-
text bits are being processed inside the computer and therefore prevents the 
bit-by-bit analysis essential to the timing attack.

RSA Data Security incorporates a blinding feature into some of its products. 
The private-key operation M = Cd mod n is implemented as follows.

1. Generate a secret random number r between 0 and n - 1.

2. Compute C′ = C(re) mod n, where e is the public exponent.

3. Compute M′ = (C′)d mod n with the ordinary RSA implementation.

4. Compute M = M′r-1 mod n. In this equation, r-1 is the multiplicative inverse 
of r mod n; see Chapter 2 for a discussion of this concept. It can be demon-
strated that this is the correct result by observing that red mod n = r mod n.

RSA Data Security reports a 2 to 10% performance penalty for blinding.

fault-basEd attacK Still another unorthodox approach to attacking RSA is re-
ported in [PELL10]. The approach is an attack on a processor that is generating 
RSA digital signatures. The attack induces faults in the signature computation by 
reducing the power to the processor. The faults cause the software to produce in-
valid signatures, which can then be analyzed by the attacker to recover the private 
key. The authors show how such an analysis can be done and then demonstrate it by 
extracting a 1024-bit private RSA key in approximately 100 hours, using a commer-
cially available microprocessor.

The attack algorithm involves inducing single-bit errors and observing the 
results. The details are provided in [PELL10], which also references other proposed 
hardware fault-based attacks against RSA.

This attack, while worthy of consideration, does not appear to be a seri-
ous threat to RSA. It requires that the attacker have physical access to the target 
machine and that the attacker is able to directly control the input power to the 
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processor. Controlling the input power would for most hardware require more than 
simply controlling the AC power, but would also involve the power supply control 
hardware on the chip.

chosEn ciphErtExt attacK and optiMal asyMMEtric Encryption padding The 
basic RSA algorithm is vulnerable to a chosen ciphertext attack (CCA). CCA is 
defined as an attack in which the adversary chooses a number of ciphertexts and 
is then given the corresponding plaintexts, decrypted with the target’s private key. 
Thus, the adversary could select a plaintext, encrypt it with the target’s public key, 
and then be able to get the plaintext back by having it decrypted with the private 
key. Clearly, this provides the adversary with no new information. Instead, the ad-
versary exploits properties of RSA and selects blocks of data that, when processed 
using the target’s private key, yield information needed for cryptanalysis.

A simple example of a CCA against RSA takes advantage of the following 
property of RSA:

 E(PU, M1) * E(PU, M2) = E(PU, [M1 * M2])   (9.2)

We can decrypt C = Me mod n using a CCA as follows.

1. Compute X = (C * 2e) mod n.

2. Submit X as a chosen ciphertext and receive back Y = Xd mod n.

But now note that

 X = (C mod n) * (2e mod n)

 = (Me mod n) * (2e mod n)

 = (2M)e mod n

Therefore, Y = (2M) mod n. From this, we can deduce M. To overcome this 
simple attack, practical RSA-based cryptosystems randomly pad the plaintext prior 
to encryption. This randomizes the ciphertext so that Equation (9.2) no longer 
holds. However, more sophisticated CCAs are possible, and a simple padding with 
a random value has been shown to be insufficient to provide the desired security. To 
counter such attacks, RSA Security Inc., a leading RSA vendor and former holder 
of the RSA patent, recommends modifying the plaintext using a procedure known 
as optimal asymmetric encryption padding (OAEP). A full discussion of the threats 
and OAEP are beyond our scope; see [POIN02] for an introduction and [BELL94a] 
for a thorough analysis. Here, we simply summarize the OAEP procedure.

Figure 9.9 depicts OAEP encryption. As a first step, the message M to be 
encrypted is padded. A set of optional parameters, P, is passed through a hash func-
tion, H.5 The output is then padded with zeros to get the desired length in the over-
all data block (DB). Next, a random seed is generated and passed through another 
hash function, called the mask generating function (MGF). The resulting hash value 
is bit-by-bit XORed with DB to produce a maskedDB. The maskedDB is in turn 
passed through the MGF to form a hash that is XORed with the seed to produce 

5A hash function maps a variable-length data block or message into a fixed-length value called a hash 
code. Hash functions are discussed in depth in Chapter 11.
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Figure 9.9  Encryption Using Optimal Asymmetric Encryption 
Padding (OAEP)
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P 5 encoding parameters
M 5 message to be encoded
H 5 hash function

DB 5 data block
MGF 5 mask generating function
EM 5 encoded message

the maskedseed. The concatenation of the maskedseed and the maskedDB forms the 
encoded message EM. Note that the EM includes the padded message, masked by the 
seed, and the seed, masked by the maskedDB. The EM is then encrypted using RSA.

 9.3 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms 

digital signature
key exchange
one-way function

optimal asymmetric  encryption 
padding (OAEP)

private key
public key

public-key encryption
RSA
secret key
timing attack
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Review Questions 

 9.1 What is a public key certificate?
 9.2 What are the roles of the public and private key?
 9.3 What are three broad categories of applications of public-key cryptosystems?
 9.4 What requirements must a public-key cryptosystems fulfill to be a secure algorithm?
 9.5 How can a probable-message attack be used for public-key cryptanalysis?
 9.6 List the different approaches to attack the RSA algorithm.
 9.7 Describe the countermeasures to be used against the timing attack.

Problems 

 9.1 Prior to the discovery of any specific public-key schemes, such as RSA, an existence proof 
was developed whose purpose was to demonstrate that public-key encryption is possible 
in theory. Consider the functions f1(x1) = z1; f2(x2, y2) = z2; f3(x3, y3) = z3, where all 
values are integers with 1 … xi, yi, zi … N. Function f1 can be represented by a vector M1 
of length N, in which the kth entry is the value of f1(k). Similarly, f2 and f3 can be repre-
sented by N * N matrices M2 and M3. The intent is to represent the encryption/decryp-
tion process by table lookups for tables with very large values of N. Such tables would be 
impractically huge but could be constructed in principle. The scheme works as follows: 
Construct M1 with a random permutation of all integers between 1 and N; that is, each 
integer appears exactly once in M1. Construct M2 so that each row contains a random 
permutation of the first N integers. Finally, fill in M3 to satisfy the following condition:

f3(f2(f1(k), p), k) = p    for all k, p with 1 … k, p … N

To summarize,
1. M1 takes an input k and produces an output x.
2. M2 takes inputs x and p giving output z.
3. M3 takes inputs z and k and produces p.
The three tables, once constructed, are made public.
a. It should be clear that it is possible to construct M3 to satisfy the preceding condi-

tion. As an example, fill in M3 for the following simple case:

4 3 5 2 4 1

3 4 2 5 3 1

M1 = 2 M2 = 5 4 3 1 2 M3 =

5 1 3 2 5 4

1 2 1 4 3 5

Convention: The ith element of M1 corresponds to k = i. The ith row of M2 cor-
responds to x = i; the jth column of M2 corresponds to p = j. The ith row of M3 
corresponds to z = i; the jth column of M3 corresponds to k = j.

b. Describe the use of this set of tables to perform encryption and decryption 
 between two users.

c. Argue that this is a secure scheme.
 9.2 Perform encryption and decryption using the RSA algorithm, as in Figure 9.5, for the 

following:
a. p = 3; q = 7, e = 5; M = 10
b. p = 5; q = 13, e = 5; M = 8
c. p = 7; q = 17, e = 11; M = 11
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d. p = 7; q = 13, e = 11; M = 2
e. p = 17; q = 23, e = 9; M = 7
Hint: Decryption is not as hard as you think; use some finesse.

 9.3 In a public-key system using RSA, you intercept the ciphertext C = 20 sent to a user 
whose public key is e = 13, n = 77. What is the plaintext M?

 9.4 In an RSA system, the public key of a given user is e = 65, n = 2881. What is the pri-
vate key of this user? Hint: First use trial and error to determine p and q; then use the 
extended Euclidean algorithm to find the multiplicative inverse of 31 modulo f(n).

 9.5 In using the RSA algorithm, if a small number of repeated encodings give back the 
plaintext, what is the likely cause?

 9.6 Public-key cryptography has its norms and requirements that make cryptanalysis rela-
tively simple to understand and explain. In a scenario where party A sends a message 
to party B using public-key cryptography, how difficult will it be for party B to deci-
pher the message? What is the formula to decrypt the message?

 9.7 In RSA, the algorithm encrypts a message and transforms it into a ciphertext equal to 
the message itself with exponentiation modulo n or C = Me mod n.  In this case, what 
happens if the receiver has the value of n in advance?

 9.8 Suppose Bob uses the RSA cryptosystem with a very large modulus n for which the 
factorization cannot be found in a reasonable amount of time. Suppose Alice sends 
a message to Bob by representing each alphabetic character as an integer between 
0 and 25 (A S 0, c , Z S 25) and then encrypting each number separately using 
RSA with large e and large n. Is this method secure? If not, describe the most efficient 
attack against this encryption method.

 9.9 Using a spreadsheet (such as Excel) or a calculator, perform the operations described 
below. Document results of all intermediate modular multiplications. Determine a 
number of modular multiplications per each major transformation (such as encryp-
tion, decryption, primality testing, etc.). 
a. Test all odd numbers in the range from 215 to 223 for primality using the Miller–

Rabin test with base 2.
b. Encrypt the message block M = 2 using RSA with the following parameters: 

e = 23 and n = 233 * 241.
c. Compute a private key (d, p, q) corresponding to the public key (e, n) given above.
d. Perform the decryption of the obtained ciphertext

1. without using the Chinese Remainder Theorem, and
2. using the Chinese Remainder Theorem.

 9.10 The security of the RSA algorithm has been impacted due to advances in technology 
and the available choices of values. This can make it vulnerable to brute force attacks 
and timing attacks. In asymmetric algorithms, public keys are made public and private 
keys should be kept private. Suppose a very small public parameter, like e = 3, is gener-
ated to encrypt a secret message, would it affect the security of the algorithm at all?

 9.11 “I want to tell you, Holmes,” Dr. Watson’s voice was enthusiastic, “that your recent 
activities in network security have increased my interest in cryptography. And just 
yesterday I found a way to make one-time pad encryption practical.”

“Oh, really?” Holmes’ face lost its sleepy look.
“Yes, Holmes. The idea is quite simple. For a given one-way function F, I generate 

a long pseudorandom sequence of elements by applying F to some standard sequence 
of arguments. The cryptanalyst is assumed to know F and the general nature of the 
sequence, which may be as simple as S, S + 1, S + 2, c , but not secret S. And due 
to the one-way nature of F, no one is able to extract S given F(S + i) for some i, thus 
even if he somehow obtains a certain segment of the sequence, he will not be able to 
determine the rest.”
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“I am afraid, Watson, that your proposal isn’t without flaws and at least it needs 
some additional conditions to be satisfied by F. Let’s consider, for instance, the RSA 
encryption function, that is F(M) = MK mod N, K is secret. This function is believed 
to be one-way, but I wouldn’t recommend its use, for example, on the sequence 
M = 2, 3, 4, 5, 6, . . . ”

“But why, Holmes?” Dr. Watson apparently didn’t understand. “Why do you think 
that the resulting sequence 2K mod N, 3K mod N, 4K mod N, . . . is not appropriate for 
one-time pad encryption if K is kept secret?”

“Because it is—at least partially—predictable, dear Watson, even if K is kept se-
cret. You have said that the cryptanalyst is assumed to know F and the general nature 
of the sequence. Now let’s assume that he will obtain somehow a short segment of the 
output sequence. In crypto circles, this assumption is generally considered to be a vi-
able one. And for this output sequence, knowledge of just the first two elements will 
allow him to predict quite a lot of the next elements of the sequence, even if not all of 
them, thus this sequence can’t be considered to be cryptographically strong. And with 
the knowledge of a longer segment he could predict even more of the next elements 
of the sequence. Look, knowing the general nature of the sequence and its first two 
elements 2K mod N and 3K mod N, you can easily compute its following elements.”

Show how this can be done.
 9.12 Show how RSA can be represented by matrices M1, M2, and M3 of Problem 9.1.
 9.13 To understand the initial steps of RSA calculations for generating the public key, 

 consider the following scheme to determine PU = {e,n}. Suppose you have two prime 
numbers p and q, where p = 20 and q = 14.
a. Calculate n = pq
b. Calculate f(n) = (p - 1) (q - 1)
c. Select a value of e such that it is relatively prime to f(n).
What needs to be determined to complete the key generation process? Show your 
calculations based on your answers to parts a to c.

 9.14 Consider the following scheme by which B encrypts a message for A.

1. A chooses two large primes P and Q that are also relatively prime to (P - 1) 
and (Q - 1).

2. A publishes N = PQ as its public key.
3. A calculates P= and Q= such that PP= K 1 (mod Q - 1) and QQ= K 1 (mod P - 1).
4. B encrypts message M as C = MN mod N.
5. A finds M by solving M K CP=

 (mod Q) and M K CQ=
 (mod P).

a. Explain how this scheme works.
b. How does it differ from RSA?
c. Is there any particular advantage to RSA compared to this scheme?
d. Show how this scheme can be represented by matrices M1, M2, and M3 of 

Problem 9.1.

 9.15 “This is a very interesting case, Watson,” Holmes said. “The young man loves a girl, 
and she loves him too. However, her father is a strange fellow who insists that his 
would-be son-in-law must design a simple and secure protocol for an appropriate 
public-key cryptosystem he could use in his company’s computer network. The young 
man came up with the following protocol for communication between two parties. 
For example, user A wishing to send message M to user B: (messages exchanged are 
in the format sender’s name, text, receiver’s name)”
1. A sends B the following block: (A, E(PUb, [M, A]), B).
2. B acknowledges receipt by sending to A the following block: (B, E(PUa, [M, B]), A).
“You can see that the protocol is really simple. But the girl’s father claims that the 
young man has not satisfied his call for a simple protocol, because the proposal con-
tains a certain redundancy and can be further simplified to the following:”
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1. A sends B the block: (A, E(PUb, M), B).
2. B acknowledges receipt by sending to A the block: (B, E(PUa, M), A).
“On the basis of that, the girl’s father refuses to allow his daughter to marry the young 
man, thus making them both unhappy. The young man was just here to ask me for help.”

“Hmm, I don’t see how you can help him.” Watson was visibly unhappy with the 
idea that the sympathetic young man has to lose his love.

“Well, I think I could help. You know, Watson, redundancy is sometimes good to en-
sure the security of protocol. Thus, the simplification the girl’s father has proposed could 
make the new protocol vulnerable to an attack the original protocol was able to resist,” 
mused Holmes. “Yes, it is so, Watson. Look, all an adversary needs is to be one of the users 
of the network and to be able to intercept messages exchanged between A and B. Being a 
user of the network, he has his own public encryption key and is able to send his own mes-
sages to A or to B and to receive theirs. With the help of the simplified protocol, he could 
then obtain message M user A has previously sent to B using the following procedure:”

Complete the description.
 9.16 Use the fast exponentiation algorithm of Figure 9.8 to determine 6472 mod 3415. Show 

the steps involved in the computation.
 9.17 Here is another realization of the fast exponentiation algorithm. Demonstrate that it 

is equivalent to the one in Figure 9.8.
1. f d  1; T d  a; E d  b
2. if odd(E) then f d  f : T
3. E d  : E/2 ;
4. T d  T : T
5. if E + 0 then goto 2
6. output f

 9.18 This problem illustrates a simple application of the chosen ciphertext attack. Bob 
intercepts a ciphertext C intended for Alice and encrypted with Alice’s public key e.  
Bob wants to obtain the original message M = Cd mod n. Bob chooses a random 
value r less than n and computes

 Z = re mod n

 X = ZC mod n

 t = r-1 mod n
Next, Bob gets Alice to authenticate (sign) X with her private key (as in Figure 9.3), 
thereby decrypting X. Alice returns Y = Xd mod n. Show how Bob can use the infor-
mation now available to him to determine M.

 9.19 Show the OAEP decoding operation used for decryption that corresponds to the en-
coding operation of Figure 9.9.
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This chapter begins with a description of one of the earliest and simplest PKCS:   
Diffie–Hellman key exchange. The chapter then looks at another important scheme, 
the ElGamal PKCS. Next, we look at the increasingly important PKCS known as 
 elliptic curve cryptography.

 10.1 DIFFIE–HELLMAN KEY EXCHANGE

The first published public-key algorithm appeared in the seminal paper by Diffie 
and Hellman that defined public-key cryptography [DIFF76b] and is generally re-
ferred to as Diffie–Hellman key exchange. A number of commercial products em-
ploy this key exchange technique.

The purpose of the algorithm is to enable two users to securely exchange a key 
that can then be used for subsequent symmetric encryption of messages. The algo-
rithm itself is limited to the exchange of secret values.

The Diffie–Hellman algorithm depends for its effectiveness on the difficulty of 
computing discrete logarithms. Briefly, we can define the discrete logarithm in the 
following way. Recall from Chapter 2 that a primitive root of a prime number p is 
one whose powers modulo p generate all the integers from 1 to p - 1. That is, if a is 
a primitive root of the prime number p, then the numbers

 a mod p, a2 mod p, c , ap - 1 mod p 

are distinct and consist of the integers from 1 through p - 1 in some permutation.
For any integer b and a primitive root a of prime number p, we can find a 

unique exponent i such that

 b K ai (mod p)  where 0 … i … (p - 1) 

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

◆◆ Define Diffie–Hellman key exchange.

◆◆ Understand the man-in-the-middle attack.

◆◆ Present an overview of the ElGamal cryptographic system.

◆◆ Understand elliptic curve arithmetic.

◆◆ Present an overview of elliptic curve cryptography.

◆◆ Present two techniques for generating pseudorandom numbers using an 
asymmetric cipher.

M10_STAL7484_08_GE_C10.indd   315 20/04/22   12:50



316  CHaPTeR 10 / OTHeR PubliC-Key CRyPTOsysTems

The exponent i is referred to as the discrete logarithm of b for the base a, mod p. We 
express this value as dloga,p(b). See Chapter 2 for an extended discussion of discrete 
logarithms.

The Algorithm

Figure 10.1 summarizes the Diffie–Hellman key exchange algorithm. For this 
scheme, there are two publicly known numbers: a prime number q and an integer 
a that is a primitive root of q. Suppose the users Alice and Bob wish to create a 
shared key.

Alice selects a random integer XA 6 q and computes YA = aXA mod q. 
Similarly, Bob independently selects a random integer XB 6 q and computes 
YB = aXB mod q. Each side keeps the X value private and makes the Y value avail-
able publicly to the other side. Thus, XA is Alice’s private key and YA is Alice’s cor-
responding public key, and similarly for Bob. Alice computes the key as K = (YB)XA 
mod q and Bob computes the key as K = (YA)XB mod q. These two calculations 
produce identical results:

Figure 10.1 The Diffie–Hellman Key Exchange

Alice Bob

Alice and Bob share a
prime number q and an
integer A, such that A * q and
A is a primitive root of q

Alice generates a private
key XA such that XA * q

Alice calculates a public
key YA 5 AXA mod q

Alice receives Bob’s
public key YB in plaintext

Alice calculates shared
secret key K 5 (YB)XA mod q

Bob calculates shared
secret key K 5 (YA)XB mod q

Bob receives Alice’s
public key YA in plaintext

Bob calculates a public
key YB 5 AXB mod q

Bob generates a private
key XB such that XB * q

Alice and Bob share a
prime number q and an
integer A, such that A * q and
A is a primitive root of q

YA YB
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 K = (YB)XA mod q

 = (aXB mod q)XA mod q

 = (aXB)XA mod q       by the rules of modular arithmetic

 = aXBXA mod q

 = (aXA)XB mod q

 = (aXA mod q)XB mod q

 = (YA)XB mod q

The result is that the two sides have exchanged a secret value. Typically, this 
secret value is used as shared symmetric secret key. Now consider an adversary who 
can observe the key exchange and wishes to determine the secret key K. Because XA 
and XB are private, an adversary only has the following ingredients to work with: q, 
a, YA, and YB. Thus, the adversary is forced to take a discrete logarithm to determine 
the key. For example, to determine Bob’s private key, an adversary must compute

 XB = dloga,q(YB) 

The adversary can then calculate the key K in the same manner as Bob calculates it. 
That is, the adversary can calculate K as

 K = (YA)XB mod q 

The security of the Diffie–Hellman key exchange lies in the fact that, while 
it is relatively easy to calculate exponentials modulo a prime, it is very difficult 
to calculate discrete logarithms. For large primes, the latter task is considered 
infeasible.

Here is an example. Key exchange is based on the use of the prime number 
q = 353 and a primitive root of 353, in this case a = 3. Alice and Bob select private 
keys XA = 97 and XB = 233, respectively. Each computes its public key:

Alice computes YA = 397 mod 353 = 40.
Bob computes YB = 3233 mod 353 = 248.

After they exchange public keys, each can compute the common secret key:

Alice computes K = (YB)XA mod 353 = 24897 mod 353 = 160.
Bob computes K = (YA)XB mod 353 = 40233 mod 353 = 160.

We assume an attacker would have available the following information:

 q = 353; a = 3; YA = 40; YB = 248 

In this simple example, it would be possible by brute force to determine the secret 
key 160. In particular, an attacker E can determine the common key by discovering 
a solution to the equation 3a mod 353 = 40 or the equation 3b mod 353 = 248. The 
brute-force approach is to calculate powers of 3 modulo 353, stopping when the re-
sult equals either 40 or 248. The desired answer is reached with the exponent value 
of 97, which provides 397 mod 353 = 40.

With larger numbers, the problem becomes impractical.
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Key Exchange Protocols

Figure 10.1 shows a simple protocol that makes use of the Diffie–Hellman calculation. 
Suppose that user A wishes to set up a connection with user B and use a secret key to 
encrypt messages on that connection. User A can generate a one-time private key XA, 
calculate YA, and send that to user B. User B responds by generating a private value 
XB, calculating YB, and sending YB to user A. Both users can now calculate the key. The 
necessary public values q and a would need to be known ahead of time. Alternatively, 
user A could pick values for q and a and include those in the first message.

As an example of another use of the Diffie–Hellman algorithm, suppose that a 
group of users (e.g., all users on a LAN) each generate a long-lasting private value Xi 
(for user i) and calculate a public value Yi. These public values, together with global 
public values for q and a, are stored in some central directory. At any time, user j can 
access user i’s public value, calculate a secret key, and use that to send an encrypted 
message to user A. If the central directory is trusted, then this form of communi-
cation provides both confidentiality and a degree of authentication. Because only 
i and j can determine the key, no other user can read the message (confidential-
ity). Recipient i knows that only user j could have created a message using this key 
(authentication). However, the technique does not protect against replay attacks.

Man-in-the-Middle Attack

The protocol depicted in Figure 10.1 is insecure against a man-in-the-middle attack. 
Suppose Alice and Bob wish to exchange keys, and Darth is the adversary. The at-
tack proceeds as follows (Figure 10.2).

1. Darth prepares for the attack by generating two random private keys XD1 and 
XD2 and then computing the corresponding public keys YD1 and YD2.

2. Alice transmits YA to Bob.

3. Darth intercepts YA and transmits YD1 to Bob. Darth also calculates 
K2 = (YA)XD2 mod q.

4. Bob receives YD1 and calculates K1 = (YD1)
XB mod q.

5. Bob transmits YB to Alice.

6. Darth intercepts YB and transmits YD2 to Alice. Darth calculates  
K1 = (YB)XD1 mod q.

7. Alice receives YD2 and calculates K2 = (YD2)
XA mod q.

At this point, Bob and Alice think that they share a secret key, but instead Bob 
and Darth share secret key K1 and Alice and Darth share secret key K2. All future 
communication between Bob and Alice is compromised in the following way.

1. Alice sends an encrypted message M: E(K2, M).

2. Darth intercepts the encrypted message and decrypts it to recover M.

3. Darth sends Bob E(K1, M) or E(K1, M=), where M= is any message. In the first 
case, Darth simply wants to eavesdrop on the communication without altering 
it. In the second case, Darth wants to modify the message going to Bob.
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The key exchange protocol is vulnerable to such an attack because it does 
not authenticate the participants. This vulnerability can be overcome with the 
use of digital signatures and public-key certificates; these topics are explored in  
Chapters 13 and 14.

 10.2 ELGAMAL CRYPTOGRAPHIC SYSTEM

In 1984, T. ElGamal announced a public-key scheme based on discrete  logarithms, 
closely related to the Diffie–Hellman technique [ELGA84, ELGA85]. The ElGamal 
cryptosystem is used in some form in a number of standards including the digital 
signature standard (DSS), which is covered in Chapter 13, and the S/MIME email 
standard (Chapter 21).

Figure 10.2 Man-in-the-Middle Attack

Alice Darth Bob
Private key XA
Public key
YA 5 AXA mod q 

Private key XB
Public key
YB 5 AXB mod q 

Private keys XD1, XD2
Public keys
YD1 5 AXD1 mod q
YD2 5 AXD2 mod q

YA 

Secret key
K2 5 (YA)XD2 mod q

Secret key
K1 5 (YB)XD1 mod q

Secret key
K1 5 (YD1)XB mod q

Secret key
K2 5 (YD2)XA mod q

Alice and Darth
share K2

Bob and Darth
share K1

YB 

YD2   YD1 
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As with Diffie–Hellman, the global elements of ElGamal are a prime number q 
and a, which is a primitive root of q. User A generates a private/public key pair as follows:

1. Generate a random integer XA, such that 1 6 XA 6 q - 1.

2. Compute YA = aXA mod q.

3. A’s private key is XA and A’s public key is {q, a, YA}.

Any user B that has access to A’s public key can encrypt a message as follows:

1. Represent the message as an integer M in the range 0 … M … q - 1. Longer 
messages are sent as a sequence of blocks, with each block being an integer 
less than q.

2. Choose a random integer k such that 1 … k … q - 1.

3. Compute a one-time key K = (YA)k mod q.

4. Encrypt M as the pair of integers (C1, C2) where

C1 = ak mod q; C2 = KM mod q

User A recovers the plaintext as follows:

1. Recover the key by computing K = (C1)
XA mod q.

2. Compute M = (C2K
-1) mod q.

These steps are summarized in Figure 10.3. It corresponds to Figure 9.1a: Alice 
generates a public/private key pair; Bob encrypts using Alice’s public key; and Alice 
decrypts using her private key.

Let us demonstrate why the ElGamal scheme works. First, we show how K is 
recovered by the decryption process:

 

K = (YA)k mod q   K is defined during the encryption process
K = (aXA mod q)k mod q   substitute using YA = aXA mod q
K = akXA mod q   by the rules of modular arithmetic
K = (C1)

XA mod q   substitute using C1 = ak mod q

 

Next, using K, we recover the plaintext as

C2 = KM mod q

(C2K
-1) mod q = KMK-1 mod q = M mod q = M

We can restate the ElGamal process as follows, using Figure 10.3.

1. Bob generates a random integer k.

2. Bob generates a one-time key K using Alice’s public-key components YA, q, 
and k.

3. Bob encrypts k using the public-key component a, yielding C1. C1 provides 
sufficient information for Alice to recover K.

4. Bob encrypts the plaintext message M using K.

5. Alice recovers K from C1 using her private key.

6. Alice uses K-1 to recover the plaintext message from C2.
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Thus, K functions as a one-time key, used to encrypt and decrypt the message.
For example, let us start with the prime field GF(19); that is, q = 19. It has 

primitive roots {2, 3, 10, 13, 14, 15}, as shown in Table 2.7. We choose a = 10.
Alice generates a key pair as follows:

1. Alice chooses XA = 5.

2. Then YA = aXA mod q = a5 mod 19 = 3 (see Table 2.7).

3. Alice’s private key is 5 and Alice’s public key is {q, a, YA} = {19, 10, 3}.

Suppose Bob wants to send the message with the value M = 17. Then:

Figure 10.3 The ElGamal Cryptosystem

Global Public Elements

q prime number

a a 6 q and a a primitive root of q

Key Generation by Alice

Select private XA XA 6 q - 1

Calculate YA YA = aXA mod q

Public key {q, a, YA}

Private key XA

Encryption by Bob with Alice’s Public Key

Plaintext: M 6 q

Select random integer k k 6 q

Calculate K K = (YA)k mod q

Calculate C1 C1 = ak mod q

Calculate C2 C2 = KM mod q

Ciphertext: (C1, C2)

Decryption by Alice with Alice’s Private Key

Ciphertext: (C1, C2)

Calculate K K = (C1)
XA mod q

Plaintext: M = (C2K
-1) mod q
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1. Bob chooses k = 6.

2. Then K = (YA)k mod q = 36 mod 19 = 729 mod 19 = 7.

3. So

C1 = ak mod q = a6 mod 19 = 11

C2 = KM mod q = 7 * 17 mod 19 = 119 mod 19 = 5

4. Bob sends the ciphertext (11, 5).

For decryption:

1. Alice calculates K = (C1)
XA mod q = 115 mod 19 = 161051 mod 19 = 7.

2. Then K-1 in GF(19) is 7-1 mod 19 = 11.

3. Finally, M = (C2K
-1) mod q = 5 * 11 mod 19 = 55 mod 19 = 17.

If a message must be broken up into blocks and sent as a sequence of  encrypted 
blocks, a unique value of k should be used for each block. If k is used for more than 
one block, knowledge of one block M1 of the message enables the user to compute 
other blocks as follows. Let

 C1,1 = ak mod q; C2,1 = KM1 mod q

 C1,2 = ak mod q; C2,2 = KM2 mod q

Then,

 
C2,1

C2,2
=

KM1 mod q
KM2 mod q

=
M1 mod q
M2 mod q

 

If M1 is known, then M2 is easily computed as

 M2 = (C2,1)
-1 C2,2 M1 mod q 

The security of ElGamal is based on the difficulty of computing discrete 
logarithms. To recover A’s private key, an adversary would have to compute 
XA = dloga,q(YA). Alternatively, to recover the one-time key K, an adversary would 
have to determine the random number k, and this would require computing the 
discrete logarithm k = dloga,q(C1). [STIN06] points out that these calculations are 
regarded as infeasible if p is at least 300 decimal digits and q - 1 has at least one 
“large” prime factor.

 10.3 ELLIPTIC CURVE ARITHMETIC

Most of the products and standards that use public-key cryptography for encryption 
and digital signatures use RSA. As we have seen, the key length for secure RSA use 
has increased over recent years, and this has put a heavier processing load on ap-
plications using RSA. This burden has ramifications, especially for electronic com-
merce sites that conduct large numbers of secure transactions. A competing system 
challenges RSA: elliptic curve cryptography (ECC). ECC is showing up in standard-
ization efforts, including the IEEE P1363 Standard for Public-Key Cryptography.
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The principal attraction of ECC, compared to RSA, is that it appears to offer 
equal security for a far smaller key size, thereby reducing processing overhead.

ECC is fundamentally more difficult to explain than either RSA or Diffie–
Hellman, and a full mathematical description is beyond the scope of this book. This 
section and the next give some background on elliptic curves and ECC. We begin 
with a brief review of the concept of abelian group. Next, we examine the concept 
of elliptic curves defined over the real numbers. This is followed by a look at ellip-
tic curves defined over finite fields. Finally, we are able to examine elliptic curve 
ciphers.

The reader may wish to review the material on finite fields in Chapter 5 before 
proceeding.

Abelian Groups

Recall from Chapter 5 that an abelian group G, sometimes denoted by {G, # }, is a 
set of elements with a binary operation, denoted by # , that associates to each or-
dered pair (a, b) of elements in G an element (a # b) in G, such that the following axi-
oms are obeyed:1

(A1) Closure: If a and b belong to G, then a # b is also in G.

(A2) Associative: a # (b # c) = (a # b) # c for all a, b, c in G.

(A3) Identity element: There is an element e in G such that a # e = e # a = a 
for all a in G.

(A4) Inverse element: For each a in G there is an element a′ in G such that 
a # a′ = a′ # a = e.

(A5) Commutative: a # b = b # a for all a, b in G.

A number of public-key ciphers are based on the use of an abelian group. 
For example, Diffie–Hellman key exchange involves multiplying pairs of nonzero 
integers modulo a prime number q. Keys are generated by exponentiation over 
the group, with exponentiation defined as repeated multiplication. For example, 
ak mod q = (a * a * c * a) mod q. To attack Diffie–Hellman, the attacker must 

k times
determine k given a and ak; this is the discrete logarithm problem.

For elliptic curve cryptography, an operation over elliptic curves, called addi-
tion, is used. Multiplication is defined by repeated addition. For example,

a * k = (a + a + c + a)

k times
where the addition is performed over an elliptic curve. Cryptanalysis involves deter-
mining k given a and (a * k).

1The operator # is generic and can refer to addition, multiplication, or some other mathematical  
operation.

v
v
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An elliptic curve is defined by an equation in two variables with coefficients. 
For cryptography, the variables and coefficients are restricted to elements in a finite 
field, which results in the definition of a finite abelian group. Before looking at this, 
we first look at elliptic curves in which the variables and coefficients are real num-
bers. This case is perhaps easier to visualize.

Elliptic Curves over Real Numbers

Elliptic curves are not ellipses. They are so named because they are described by 
cubic equations, similar to those used for calculating the circumference of an ellipse. 
In general, cubic equations for elliptic curves take the following form, known as a 
Weierstrass equation:

 y2 + axy + by = x3 + cx2 + dx + e 

where a, b, c, d, e are real numbers and x and y take on values in the real numbers.2 
For our purpose, it is sufficient to limit ourselves to equations of the form

  y2 = x3 + ax + b   (10.1)

Such equations are said to be cubic, or of degree 3, because the highest expo-
nent they contain is a 3. Also included in the definition of an elliptic curve is a single 
element denoted O and called the point at infinity or the zero point, which we dis-
cuss subsequently. To plot such a curve, we need to compute

 y = 2x3 + ax + b 

For given values of a and b, the plot consists of positive and negative values of y for 
each value of x. Thus, each curve is symmetric about y = 0. Figure 10.4 shows two 
examples of elliptic curves. As you can see, the formula sometimes produces weird-
looking curves.

Now, consider the set of points E(a, b) consisting of all of the points (x, y) that 
satisfy Equation (10.1) together with the element O. Using a different value of the 
pair (a, b) results in a different set E(a, b). Using this terminology, the two curves in 
Figure 10.4 depict the sets E(-1, 0) and E(1, 1), respectively.

Geometric Description of ADDition It can be shown that a group can be defined 
based on the set E(a, b) for specific values of a and b in Equation (10.1), provided 
the following condition is met:

  4a3 + 27b2 ≠ 0   (10.2)

To define the group, we must define an operation, called addition and denoted by 
+ , for the set E(a, b), where a and b satisfy Equation (10.2). In geometric terms, the 
rules for addition can be stated as follows: If three points on an elliptic curve lie on a 
straight line, their sum is O. From this definition, we can define the rules of addition 
over an elliptic curve.

2Note that x and y are true variables, which take on values. This is in contrast to our discussion of polyno-
mial rings and fields in Chapter 5, where was treated as an indeterminate.
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1. O serves as the additive identity. Thus O = -O; for any point P on the elliptic 
curve, P + O = P. In what follows, we assume P ≠ O and Q ≠ O.

2. The negative of a point P is the point with the same x coordinate but the nega-
tive of the y coordinate; that is, if P = (x, y), then -P = (x, -y). Note that these 
two points can be joined by a vertical line. Note that P + (-P) = P - P = O.

3. To add two points P and Q with different x coordinates, draw a straight line 
between them and find the third point of intersection R. It is easily seen that 
there is a unique point R that is the point of intersection (unless the line is 
tangent to the curve at either P or Q, in which case we take R = P or R = Q, 
respectively). To form a group structure, we need to define addition on these 
three points: P + Q = -R. That is, we define P + Q to be the mirror image 

Figure 10.4 Example of Elliptic Curves
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(with respect to the x axis) of the third point of intersection. Figure 10.4 illus-
trates this construction.

4. The geometric interpretation of the preceding item also applies to two points, 
P and -P, with the same x coordinate. The points are joined by a vertical line, 
which can be viewed as also intersecting the curve at the infinity point. We 
therefore have P + (-P) = O, which is consistent with item (2).

5. To double a point Q, draw the tangent line and find the other point of intersec-
tion S. Then Q + Q = 2Q = -S.

With the preceding list of rules, it can be shown that the set E(a, b) is an abe-
lian group.

AlGebrAic Description of ADDition In this subsection, we present some results 
that enable calculation of additions over elliptic curves.3 For two distinct points, 
P = (xP, yP) and Q = (xQ, yQ), that are not negatives of each other, the slope of the 
line l that joins them is ∆ = (yQ - yP)/(xQ - xP). There is exactly one other point 
where l intersects the elliptic curve, and that is the negative of the sum of P and Q. 
After some algebraic manipulation, we can express the sum R = P + Q as

 xR = ∆2 - xP - xQ

  yR = -yP + ∆(xP - xR)  
(10.3)

We also need to be able to add a point to itself: P + P = 2P = R. When 
yP ≠ 0, the expressions are

 xR = ¢ 3xP
2 + a

2yP
≤2

- 2xP

  yR = ¢ 3xP
2 + a

2yP
≤(xP - xR) - yP   

(10.4)

Elliptic Curves over Zp

Elliptic curve cryptography makes use of elliptic curves in which the variables and 
coefficients are all restricted to elements of a finite field. Two families of elliptic 
curves are used in cryptographic applications: prime curves over Zp and binary 
curves over GF(2m). For a prime curve over Zp, we use a cubic equation in which 
the variables and coefficients all take on values in the set of integers from 0 through 
p - 1 and in which calculations are performed modulo p. For a binary curve defined 
over GF(2m), the variables and coefficients all take on values in GF(2m) and in cal-
culations are performed over GF(2m). [FERN99] points out that prime curves are 
best for software applications, because the extended bit-fiddling operations needed 
by binary curves are not required; and that binary curves are best for hardware ap-
plications, where it takes remarkably few logic gates to create a powerful, fast cryp-
tosystem. We examine these two families in this section and the next.

3For derivations of these results, see [KOBL94] or other mathematical treatments of elliptic curves.
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There is no obvious geometric interpretation of elliptic curve arithmetic over 
finite fields. The algebraic interpretation used for elliptic curve arithmetic over real 
numbers does readily carry over, and this is the approach we take.

For elliptic curves over Zp, as with real numbers, we limit ourselves to equa-
tions of the form of Equation (10.1), but in this case with coefficients and variables 
limited to Zp:

  y2 mod p = (x3 + ax + b) mod p   (10.5)

For example, Equation (10.5) is satisfied for a = 1, b = 1, x = 9, y = 7, p = 23:

 72 mod 23 = (93 + 9 + 1) mod 23

 49 mod 23 = 739 mod 23

 3 = 3

Now consider the set Ep(a, b) consisting of all pairs of integers (x, y) that sat-
isfy Equation (10.5), together with a point at infinity O. The coefficients a and b and 
the variables x and y are all elements of Zp.

For example, let p = 23 and consider the elliptic curve y2 = x3 + x + 1. In 
this case, a = b = 1. Note that this equation is the same as that of Figure 10.4b. The 
figure shows a continuous curve with all of the real points that satisfy the equation. 
For the set E23(1, 1), we are only interested in the nonnegative integers in the quad-
rant from (0, 0) through (p - 1, p - 1) that satisfy the equation mod p. Table 10.1 
lists the points (other than O) that are part of E23(1, 1). Figure 10.5 plots the points 
of E23(1, 1); note that the points, with one exception, are symmetric about y = 11.5.

It can be shown that a finite abelian group can be defined based on the set 
Ep(a, b) provided that (x3 + ax + b) mod p has no repeated factors. This is equiva-
lent to the condition

  (4a3 + 27b2) mod p ≠ 0 mod p   (10.6)

Note that Equation (10.6) has the same form as Equation (10.2).
The rules for addition over Ep(a, b), correspond to the algebraic technique 

described for elliptic curves defined over real numbers. For all points P, Q ∈ Ep(a, b):

(0, 1) (6, 4) (12, 19)

(0, 22) (6, 19) (13, 7)

(1, 7) (7, 11) (13, 16)

(1, 16) (7, 12) (17, 3)

(3, 10) (9, 7) (17, 20)

(3, 13) (9, 16) (18, 3)

(4, 0) (11, 3) (18, 20)

(5, 4) (11, 20) (19, 5)

(5, 19) (12, 4) (19, 18)

Table 10.1  Points (other than O) on the 
Elliptic Curve E23(1, 1)
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1. P + O = P.

2. If P = (xP, yP), then P + (xP, -yP) = O. The point (xP, -yP) is the nega-
tive of P, denoted as -P. For example, in E23(1, 1), for P = (13, 7), we have 
-P = (13, -7). But -7 mod 23 = 16. Therefore, -P = (13, 16), which is also 
in E23(1, 1).

3. If P = (xp, yp) and Q = (xQ, yQ) with P ≠ -Q, then R = P + Q = (xR, yR) 
is determined by the following rules:

 xR = (l2 - xP - xQ) mod p

 yR = (l(xP - xR) - yP) mod p

where

l = e a
yQ - yP

xQ - xP
b  mod p if P ≠ Q

a
3xP

2 + a

2yP

b  mod p if P = Q

Figure 10.5 The Elliptic Curve E23(1, 1)
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4. Multiplication is defined as repeated addition; for example, 4P =  
P + P + P + P.

For example, let P = (3, 10) and Q = (9, 7) in E23(1, 1). Then

 l = a7 - 10
9 - 3

b  mod 23 = a -3
6

b  mod 23 = a -1
2

b  mod 23 = 11

 xR = (112 - 3 - 9) mod 23 = 109 mod 23 = 17

 yR = (11(3 - 17) - 10) mod 23 =  -164 mod 23 = 20

So P + Q = (17, 20). To find 2P,

 l = ¢ 3(32) + 1

2 * 10
≤ mod 23 = a 5

20
b  mod 23 = a1

4
b  mod 23 = 6 

The last step in the preceding equation involves taking the multiplicative 
inverse of 4 in Z23. This can be done using the extended Euclidean algorithm defined 
in Section 2.2. To confirm, note that (6 * 4) mod 23 = 24 mod 23 = 1.

 xR = (62 - 3 - 3) mod 23 = 30 mod 23 = 7

 yR = (6(3 - 7) - 10) mod 23 = (-34) mod 23 = 12

and 2P = (7, 12).
For determining the security of various elliptic curve ciphers, it is of some inter-

est to know the number of points in a finite abelian group defined over an elliptic 
curve. In the case of the finite group EP(a, b), the number of points N is bounded by

 p + 1 - 22p … N … p + 1 + 22p 

Note that the number of points in Ep(a, b) is approximately equal to the number of 
elements in Zp, namely p elements.

Elliptic Curves over GF(2m)

Recall from Chapter 5 that a finite field GF(2m) consists of 2m elements, together 
with addition and multiplication operations that can be defined over polynomials. 
For elliptic curves over GF(2m), we use a cubic equation in which the variables and 
coefficients all take on values in GF(2m) for some number m and in which calcula-
tions are performed using the rules of arithmetic in GF(2m).

(0, 1) (g5, g3) (g9, g13)

(1, g6) (g5, g11) (g10, g)

(1, g13) (g6, g8) (g10, g8)

(g3, g8) (g6, g14) (g12, 0)

(g3, g13) (g9, g10) (g12, g12)

Table 10.2  Points (other than O) on the 
Elliptic Curve E24(g4, 1)
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It turns out that the form of cubic equation appropriate for cryptographic 
 applications for elliptic curves is somewhat different for GF(2m) than for Zp. The 
form is

  y2 + xy = x3 + ax2 + b   (10.7)

where it is understood that the variables x and y and the coefficients a and b are ele-
ments of GF(2m) and that calculations are performed in GF(2m).

Now consider the set E2m(a, b) consisting of all pairs of integers (x, y) that sat-
isfy Equation (10.7), together with a point at infinity O.

For example, let us use the finite field GF(24) with the irreducible polynomial 
f(x) = x4 + x + 1. This yields a generator g that satisfies f(g) = 0 with a value of 
g4 = g + 1, or in binary, g = 0010. We can develop the powers of g as follows.

g0 = 0001 g4 = 0011 g8 = 0101 g12 = 1111

g1 = 0010 g5 = 0110 g9 = 1010 g13 = 1101

g2 = 0100 g6 = 1100 g10 = 0111 g14 = 1001

g3 = 1000 g7 = 1011 g11 = 1110 g15 = 0001

For example, g5 = (g4)(g) = (g + 1)(g) = g2 + g = 0110.
Now consider the elliptic curve y2 + xy = x3 + g4x2 + 1. In this case, a = g4 

and b = g0 = 1. One point that satisfies this equation is (g5, g3):

(g3)2 + (g5)(g3) = (g5)3 + (g4)(g5)2 + 1

g6 + g8 = g15 + g14 + 1

1100 + 0101 = 0001 + 1001 + 0001

1001 = 1001

Table 10.2 lists the points (other than O) that are part of E24(g4, 1). Figure 10.6 plots 
the points of E24(g4, 1).

It can be shown that a finite abelian group can be defined based on the set 
E2m(a, b), provided that b ≠ 0. The rules for addition can be stated as follows. For 
all points P, Q ∈ E2m(a, b):

1. P + O = P.

2. If P = (xP, yP), then P + (xP, xP + yP) = O. The point (xP, xP + yP) is the 
negative of P, which is denoted as -P.

3. If P = (xP, yP) and Q = (xQ, yQ) with P ≠ -Q and P ≠ Q, then 
R = P + Q = (xR, yR) is determined by the following rules:

 xR = l2 + l + xP + xQ + a

 yR = l(xP + xR) + xR + yP

where

l =
yQ + yP

xQ + xP
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4. If P = (xP, yP) then R = 2P = (xR, yR) is determined by the following rules:

 xR = l2 + l + a

 yR = xP
2 + (l + 1)xR

where

l = xP +
yP

xP

 10.4 ELLIPTIC CURVE CRYPTOGRAPHY

The addition operation in ECC is the counterpart of modular multiplication in RSA, 
and multiple addition is the counterpart of modular exponentiation. To form a cryp-
tographic system using elliptic curves, we need to find a “hard problem” correspond-
ing to factoring the product of two primes or taking the discrete logarithm.

Consider the equation Q = kP where Q, P ∈ EP(a, b) and k 6 p. It is rela-
tively easy to calculate Q given k and P, but it is hard to determine k given Q and P. 
This is called the discrete logarithm problem for elliptic curves.

We give an example taken from the Certicom Web site (www.certicom.
com). Consider the group E23(9,17). This is the group defined by the equation 
y2 mod 23 = (x3 + 9x + 17) mod 23. What is the discrete logarithm k of Q = (4, 5) 
to the base P = (16, 5)? The brute-force method is to compute multiples of P until 
Q is found. Thus,

 P = (16,5); 2P = (20, 20); 3P = (14, 14); 4P = (19, 20); 5P = (13, 10);

 6P = (7, 3); 7P = (8, 7); 8P = (12, 17); 9P = (4, 5)

Figure 10.6 The Elliptic Curve E24(g4, 1)
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Because 9P = (4, 5) = Q, the discrete logarithm Q = (4, 5) to the base 
P = (16, 5) is k = 9. In a real application, k would be so large as to make the brute-
force approach infeasible.

In the remainder of this section, we show two approaches to ECC that give the 
flavor of this technique.

Analog of Diffie–Hellman Key Exchange

Key exchange using elliptic curves can be done in the following manner. First pick 
a large integer q, which is either a prime number p or an integer of the form 2m, 
and elliptic curve parameters a and b for Equation (10.5) or Equation (10.7). This 
defines the elliptic group of points Eq(a, b). Next, pick a base point G = (x1, y1) in 
Ep(a, b) whose order is a very large value n. The order n of a point G on an elliptic 
curve is the smallest positive integer n such that nG = 0 and G are parameters of 
the cryptosystem known to all participants.

A key exchange between users A and B can be accomplished as follows 
(Figure 10.7).

1. A selects an integer nA less than n. This is A’s private key. A then generates a 
public key PA = nA * G; the public key is a point in Eq(a, b).

2. B similarly selects a private key nB and computes a public key PB.

3. A generates the secret key k = nA * PB. B generates the secret key 
k = nB * PA.

The two calculations in step 3 produce the same result because

 nA * PB = nA * (nB * G) = nB * (nA * G) = nB * PA 

To break this scheme, an attacker would need to be able to compute k given G 
and kG, which is assumed to be hard.

As an example,4 take p = 211; Ep(0, -4), which is equivalent to the curve 
y2 = x3 - 4; and G = (2, 2). One can calculate that 240G = O. A’s private 
key is nA = 121, so A’s public key is PA = 121(2, 2) = (115, 48). B’s private key 
is nB = 203, so B’s public key is 203(2, 3) = (130, 203). The shared secret key is 
121(130, 203) = 203(115, 48) = (161, 69).

Note that the secret key is a pair of numbers. If this key is to be used as a ses-
sion key for conventional encryption, then a single number must be generated. We 
could simply use the x coordinates or some simple function of the x coordinate.

Elliptic Curve Encryption/Decryption

Several approaches to encryption/decryption using elliptic curves have been ana-
lyzed in the literature. In this subsection, we look at perhaps the simplest. The 
first task in this system is to encode the plaintext message m to be sent as an (x, y) 
point Pm. It is the point Pm that will be encrypted as a ciphertext and subsequently 
decrypted. Note that we cannot simply encode the message as the x or y coordi-
nate of a point, because not all such coordinates are in Eq(a, b); for example, see  

4Provided by Ed Schaefer of Santa Clara University.
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Table 10.1. Again, there are several approaches to this encoding, which we will not 
address here, but suffice it to say that there are relatively straightforward tech-
niques that can be used.

As with the key exchange system, an encryption/decryption system requires a 
point G and an elliptic group Eq(a, b) as parameters. Each user A selects a private 
key nA and generates a public key PA = nA * G.

To encrypt and send a message Pm to B, A chooses a random positive integer k 
and produces the ciphertext Cm consisting of the pair of points:

 Cm = {kG, Pm + kPB} 

Note that A has used B’s public key PB. To decrypt the ciphertext, B multiplies the 
first point in the pair by B’s private key and subtracts the result from the second 
point:

 Pm + kPB - nB(kG) = Pm + k(nBG) - nB(kG) = Pm 

A has masked the message Pm by adding kPB to it. Nobody but A knows the 
value of k, so even though Pb is a public key, nobody can remove the mask kPB. 

Figure 10.7 ECC Diffie–Hellman Key Exchange

 Global Public Elements

Eq(a, b) elliptic curve with parameters a, b, and q, where q is a  
 prime or an integer of the form 2m

G point on elliptic curve whose order is large value n

User A Key Generation

Select private nA nA 6 n

Calculate public PA PA = nA * G

User B Key Generation

Select private nB nB 6 n

Calculate public PB PB = nB * G

Calculation of Secret Key by User A

K = nA * PB

Calculation of Secret Key by User B

K = nB * PA
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However, A also includes a “clue,” which is enough to remove the mask if one knows 
the private key nB. For an attacker to recover the message, the attacker would have 
to compute k given G and kG, which is assumed to be hard.

Let us consider a simple example. The global public elements are 
q = 257; Eq(a, b) = E257(0, -4), which is equivalent to the curve y2 = x3 - 4;  
and G =  (2, 2). Bob’s private key is nB = 101, and his public key is PB = nBG =  
101(2, 2) =  (197, 167). Alice wishes to send a message to Bob that is encoded in 
the elliptic point Pm = (112, 26). Alice chooses random integer k = 41 and com-
putes kG = 41(2, 2) = (136, 128), kPB = 41(197, 167) = (68, 84) and Pm + kPB = 
(112, 26) +  (68, 84) = (246, 174). Alice sends the ciphertext Cm = (C1, C2) =  
{(136, 128), (246, 174)} to Bob. Bob receives the ciphertext and computes 
C2 - nBC1 =   (246, 174) - 101(136, 128) = (246, 174) - (68, 84) = (112, 26).

Security of Elliptic Curve Cryptography

The security of ECC depends on how difficult it is to determine k given kP and P. 
This is referred to as the elliptic curve logarithm problem. The fastest known tech-
nique for taking the elliptic curve logarithm is known as the Pollard rho method. 
Table 10.3, from NIST SP 800-57 (Recommendation for Key Management—Part 1: 
General, September 2015), compares various algorithms by showing comparable 
key sizes in terms of computational effort for cryptanalysis. As can be seen, a consid-
erably smaller key size can be used for ECC compared to RSA.

Based on this analysis, SP 800-57 recommends that at least through 2030, 
acceptable key lengths are from 3072 to 14,360 bits for RSA and 256 to 512 bits for 
ECC. Similarly, the European Union Agency for Network and Information Security 
(ENISA) recommends in their 2014 report (Algorithms, Key Size and Parameters 
report—2014, November 2014) minimum key lengths for future system of 3072 bits 
and 256 bits for RSA and ECC, respectively.

Analysis indicates that for equal key lengths, the computational effort required 
for ECC and RSA is comparable [JURI97]. Thus, there is a computational advan-
tage to using ECC with a shorter key length than a comparably secure RSA.

Symmetric Key 
Algorithms

Diffie–Hellman, Digital 
Signature Algorithm

RSA  
(size of n in bits)

ECC  
(modulus size in bits)

80
L = 1024
N = 160

1024 160–223

112
L = 2048
N = 224

2048 224–255

128
L = 3072
N = 256

3072 256–383

192
L = 7680
N = 384

7680 384–511

256
L = 15,360
N = 512

15,360 512+

Table 10.3 Comparable Key Sizes in Terms of Computational  
Effort for Cryptanalysis (NIST SP-800-57)

Note: L = size of public key, N = size of private key.
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 10.5 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms 

discrete logarithm
elliptic curve

elliptic curve cryptography
finite field

man-in-the-middle attack
primitive root

Review Questions 

 10.1 What is the relation between the security of the Diffie–Hellman key exchange and 
the difficulty of computing discrete logarithms?

 10.2 Explain the security of the elliptic curve cryptography (ECC) and how it compares to 
the security of RSA.

 10.3 What is the zero point of an elliptic curve?
 10.4 What is the sum of three points on an elliptic curve that lie on a straight line?

Problems 

 10.1 Alice and Bob use the Diffie–Hellman key exchange technique with a common prime 
q = 157 and a primitive root a = 5.
a. If Alice has a private key XA = 15, find her public key YA.
b. If Bob has a private key XB = 27, find his public key YB.
c. What is the shared secret key between Alice and Bob?

 10.2 Alice and Bob use the Diffie–Hellman key exchange technique with a common prime 
q = 23 and a primitive root a = 5.
a. If Bob has a public key YB = 10, what is Bob’s private key XB?
b. If Alice has a public key YA = 8, what is the shared key K with Bob?
c. Show that 5 is a primitive root of 23.

 10.3 In the Diffie–Hellman protocol, each participant selects a secret number x and sends 
the other participant ax mod q for some public number a. What would happen if the 
participants sent each other xa for some public number a instead? Give at least one 
method Alice and Bob could use to agree on a key. Can Darth break your system 
without finding the secret numbers? Can Darth find the secret numbers?

 10.4 This problem illustrates the point that the Diffie–Hellman protocol is not secure with-
out the step where you take the modulus; i.e. the “Indiscrete Log Problem” is not a 
hard problem! You are Darth and have captured Alice and Bob and imprisoned them. 
You overhear the following dialog.

Bob: Oh, let’s not bother with the prime in the Diffie–Hellman protocol, it will 
make things easier.

Alice: Okay, but we still need a base a to raise things to. How about a = 3?

Bob: All right, then my result is 27.

Alice: And mine is 243.

What is Bob’s private key XB and Alice’s private key XA? What is their secret com-
bined key? (Don’t forget to show your work.)

 10.5 Section 10.1 describes a man-in-the-middle attack on the Diffie–Hellman key 
 exchange protocol in which the adversary generates two public–private key pairs for 
the attack. Could the same attack be accomplished with one pair? Explain.

M10_STAL7484_08_GE_C10.indd   335 20/04/22   12:50



336  CHaPTeR 10 / OTHeR PubliC-Key CRyPTOsysTems

 10.6 Suppose Alice and Bob use an Elgamal scheme with a common prime q = 157 and a 
primitive root a = 5.
a. If Bob has public key YB = 10 and Alice chose the random integer k = 3, what is 

the ciphertext of M = 9?
b. If Alice now chooses a different value of k so that the encoding of M = 9 is 

C = (25, C2), what is the integer C2?
 10.7 Rule (5) for doing arithmetic in elliptic curves over real numbers states that to double 

a point Q2, draw the tangent line and find the other point of intersection S. Then 
Q + Q = 2Q = -S. If the tangent line is not vertical, there will be exactly one point 
of intersection. However, suppose the tangent line is vertical? In that case, what is the 
value 2Q? What is the value 3Q?

 10.8 Demonstrate that the two elliptic curves of Figure 10.4 each satisfy the conditions for 
a group over the real numbers.

 10.9 Is (5, 12) a point on the elliptic curve y2 = x3 + 4x - 1 over real numbers?

 10.10 On the elliptic curve over the real numbers y2 = x3 -
17
12

x + 1, let P = (0, 1) and 
Q = (1.5, 1.5). Find P + Q and 2P.

 10.11 Does the elliptic curve equation y2 = x3 + x + 2 define a group over Z7?
 10.12 Consider the elliptic curve E7(2, 1); that is, the curve is defined by y2 = x3 + 2x + 1 

with a modulus of p = 7. Determine all of the points in E7(2, 1). Hint: Start by calcu-
lating the right-hand side of the equation for all values of x.

 10.13 What are the negatives of the following elliptic curve points over Z7? P = (3, 5);
Q = (2, 5); and R = (5, 0).

 10.14 For E11(1, 7), consider the point G = (3, 2). Compute the multiple of G from 2G 
through 13G.

 10.15 This problem performs elliptic curve encryption/decryption using the scheme out-
lined in Section 10.4. The cryptosystem parameters are E11(1, 7) and G = (3, 2). B’s 
private key is nB = 7.
a. Find B’s public key PB.
b. A wishes to encrypt the message Pm = (10, 7) and chooses the random value 

k = 5. Determine the ciphertext Cm.
c. Show the calculation by which B recovers Pm from Cm.

 10.16 The following is a first attempt at an elliptic curve signature scheme. We have a global 
elliptic curve, prime p, and “generator” G. Alice picks a private signing key XA and 
forms the public verifying key YA = XAG. To sign a message M:

◆■ Alice picks a value k.
◆■ Alice sends Bob M, k, and the signature S = M - kXAG.
◆■ Bob verifies that M = S + kYA.

a. Show that this scheme works. That is, show that the verification process produces 
an equality if the signature is valid.

b. Show that the scheme is unacceptable by describing a simple technique for forging 
a user’s signature on an arbitrary message.

 10.17 Here is an improved version of the scheme given in the previous problem. As before, 
we have a global elliptic curve, prime p, and “generator” G. Alice picks a private sign-
ing key XA and forms the public verifying key YA = XAG. To sign a message M:

◆■ Bob picks a value k.
◆■ Bob sends Alice C1 = kG.
◆■ Alice sends Bob M and the signature S = M - XAC1.
◆■ Bob verifies that M = S + kYA.

a. Show that this scheme works. That is, show that the verification process produces 
an equality if the signature is valid.

b. Show that forging a message in this scheme is as hard as breaking (ElGamal) 
 elliptic curve cryptography. (Or find an easier way to forge a message?)

c. This scheme has an extra “pass” compared to other cryptosystems and signature 
schemes we have looked at. What are some drawbacks to this?
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A hash function H accepts a variable-length block of data M as input and produces 
a fixed-size result h = H(M), referred to as a hash value or a hash code. A “good” 
hash function has the property that the results of applying the function to a large set 
of inputs will produce outputs that are evenly distributed and apparently random. In 
general terms, the principal object of a hash function is data integrity. A change to any 
bit or bits in M results, with high probability, in a change to the hash value.

The kind of hash function needed for security applications is referred to 
as a cryptographic hash function. A cryptographic hash function is an algo-
rithm for which it is computationally infeasible (because no attack is signifi-
cantly more efficient than brute force) to find either (a) a data object that maps 
to a pre-specified hash result (the one-way property) or (b) two data objects 
that map to the same hash result (the collision-free property). Because of these 
characteristics, hash functions are often used to determine whether or not data 
has changed.

Figure 11.1 depicts the general operation of a cryptographic hash func-
tion. Typically, the input is padded out to an integer multiple of some fixed length 
(e.g., 1024 bits), and the padding includes the value of the length of the original 
message in bits. The length field is a security measure to increase the difficulty for an 
 attacker to produce an alternative message with the same hash value, as explained 
subsequently.

This chapter begins with a discussion of the wide variety of applications for 
cryptographic hash functions. Next, we look at the security requirements for such 
functions. Then we look at the use of cipher block chaining to implement a crypto-
graphic hash function. The remainder of the chapter is devoted to the most important 
and widely used family of cryptographic hash functions, the Secure Hash Algorithm 
(SHA) family.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

◆◆ Summarize the applications of cryptographic hash functions.

◆◆ Explain why a hash function used for message authentication needs to be 
secured.

◆◆ Understand the differences among preimage resistant, second preimage 
resistant, and collision resistant properties.

◆◆ Present an overview of the basic structure of cryptographic hash functions.

◆◆ Describe how cipher block chaining can be used to construct a hash function.

◆◆ Understand the operation of SHA-512.
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 11.1 APPLICATIONS OF CRYPTOGRAPHIC HASH FUNCTIONS

Perhaps the most versatile cryptographic algorithm is the cryptographic hash func-
tion. It is used in a wide variety of security applications and Internet protocols. 
To better understand some of the requirements and security implications for cryp-
tographic hash functions, it is useful to look at the range of applications in which it 
is employed.

Message Authentication

Message authentication is a mechanism or service used to verify the integrity of 
a message. Message authentication assures that data received are exactly as sent 
(i.e., there is no modification, insertion, deletion, or replay). In many cases, there is a 
requirement that the authentication mechanism assures that the purported identity 
of the sender is valid. When a hash function is used to provide message authentica-
tion, the hash function value is often referred to as a message digest.1

The essence of the use of a hash function for message integrity is as follows. 
The sender computes a hash value as a function of the bits in the message and trans-
mits both the hash value and the message. The receiver performs the same hash cal-
culation on the message bits and compares this value with the incoming hash value. 

Figure 11.1 Cryptographic Hash Function; h = H(M)

Message or data block M (variable length) P, L

P, L 5 padding plus length field

L bits

Hash value h
(fixed length)

H

1The topic of this section is invariably referred to as message authentication. However, the concepts and 
techniques apply equally to data at rest. For example, authentication techniques can be applied to a file 
in storage to assure that the file is not tampered with.
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If there is a mismatch, the receiver knows that the message (or possibly the hash 
value) has been altered (Figure 11.2a).

The hash value must be transmitted in a secure fashion. That is, the hash value 
must be protected so that if an adversary alters or replaces the message, it is not 
feasible for adversary to also alter the hash value to fool the receiver. This type 
of attack is shown in Figure 11.2b. In this example, Alice transmits a data block 
and  attaches a hash value. Darth intercepts the message, alters or replaces the data 
block, and calculates and attaches a new hash value. Bob receives the altered data 
with the new hash value and does not detect the change. To prevent this attack, the 
hash value generated by Alice must be protected.

Figure 11.2 Attack Against Hash Function

(b) Man-in-the-middle attack
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BobAlice

COMPARE
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data
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(a) Use of hash function to check data integrity
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H
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Figure 11.3 illustrates a variety of ways in which a hash code can be used to 
provide message authentication, as follows.

a. The message plus concatenated hash code is encrypted using symmetric 
encryption. Because only A and B share the secret key, the message must have 
come from A and has not been altered. The hash code provides the structure or 
redundancy required to achieve authentication. Because encryption is applied 
to the entire message plus hash code, confidentiality is also provided.

b. Only the hash code is encrypted, using symmetric encryption. This reduces the 
processing burden for those applications that do not require confidentiality.

Figure 11.3 Simplified Examples of the Use of a Hash Function for Message Authentication
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c. It is possible to use a hash function but no encryption for message authentica-
tion. The technique assumes that the two communicating parties share a common 
secret value S. A computes the hash value over the concatenation of M and S and 
appends the resulting hash value to M. Because B possesses S, it can recompute 
the hash value to verify. Because the secret value itself is not sent, an opponent 
cannot modify an intercepted message and cannot generate a false message.

d. Confidentiality can be added to the approach of method (c) by encrypting the 
entire message plus the hash code.

When confidentiality is not required, method (b) has an advantage over meth-
ods (a) and (d), which encrypts the entire message, in that less computation is required. 
Nevertheless, there has been growing interest in techniques that avoid encryption 
(Figure 11.3c). Several reasons for this interest are pointed out in [TSUD92].

◆■ Encryption software is relatively slow. Even though the amount of data to be 
encrypted per message is small, there may be a steady stream of messages into 
and out of a system.

◆■ Encryption hardware costs are not negligible. Low-cost chip implementations 
of DES are available, but the cost adds up if all nodes in a network must have 
this capability.

◆■ Encryption hardware is optimized toward large data sizes. For small blocks of 
data, a high proportion of the time is spent in initialization/invocation overhead.

◆■ Encryption algorithms may be covered by patents, and there is a cost associ-
ated with licensing their use.

More commonly, message authentication is achieved using a message 
 authentication code (MAC), also known as a keyed hash function. Typically, MACs 
are used between two parties that share a secret key to authenticate information 
 exchanged between those parties. A MAC function takes as input a secret key and a 
data block and produces a hash value, referred to as the MAC, which is associated with 
the protected message. If the integrity of the message needs to be checked, the MAC 
function can be applied to the message and the result compared with the  associated 
MAC value. An attacker who alters the message will be unable to alter the associated 
MAC value without knowledge of the secret key. Note that the verifying party also 
knows who the sending party is because no one else knows the secret key.

Note that the combination of hashing and encryption results in an overall 
function that is, in fact, a MAC (Figure 11.3b). That is, E(K, H(M)) is a function of 
a variable-length message M and a secret key K, and it produces a fixed-size out-
put that is secure against an opponent who does not know the secret key. In prac-
tice, specific MAC algorithms are designed that are generally more efficient than an 
 encryption algorithm.

We discuss MACs in Chapter 12.

Digital Signatures

Another important application, which is similar to the message authentication 
 application, is the digital signature. The operation of the digital signature is similar 
to that of the MAC. In the case of the digital signature, the hash value of a message 
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is encrypted with a user’s private key. Anyone who knows the user’s public key can 
verify the integrity of the message that is associated with the digital signature. In 
this case, an attacker who wishes to alter the message would need to know the user’s 
private key. As we shall see in Chapter 14, the implications of digital signatures go 
beyond just message authentication.

Figure 11.4 illustrates, in a simplified fashion, how a hash code is used to 
 provide a digital signature.

a. The hash code is encrypted, using public-key encryption with the sender’s 
 private key. As with Figure 11.3b, this provides authentication. It also provides 
a digital signature, because only the sender could have produced the encrypted 
hash code. In fact, this is the essence of the digital signature technique.

b. If confidentiality as well as a digital signature is desired, then the message 
plus the private-key-encrypted hash code can be encrypted using a symmetric 
 secret key. This is a common technique.

Other Applications

Hash functions are commonly used to create a one-way password file. Chapter 24 
explains a scheme in which a hash of a password is stored by an operating system 
rather than the password itself. Thus, the actual password is not retrievable by a 
hacker who gains access to the password file. In simple terms, when a user enters a 
password, the hash of that password is compared to the stored hash value for veri-
fication. This approach to password protection is used by most operating systems.

Figure 11.4 Simplified Examples of Digital Signatures
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Hash functions can be used for intrusion detection and virus detection. Store 
H(F) for each file on a system and secure the hash values (e.g., on a CD-R that is 
kept secure). One can later determine if a file has been modified by recomputing 
H(F). An intruder would need to change F without changing H(F).

A cryptographic hash function can be used to construct a pseudorandom 
 function (PRF) or a pseudorandom number generator (PRNG). A common 
 application for a hash-based PRF is for the generation of symmetric keys. We  discuss 
this  application in Chapter 12.

 11.2 TWO SIMPLE HASH FUNCTIONS

To get some feel for the security considerations involved in cryptographic hash func-
tions, we present two simple, insecure hash functions in this section. All hash func-
tions operate using the following general principles. The input (message, file, etc.) is 
viewed as a sequence of n -bit blocks. The input is processed one block at a time in 
an iterative fashion to produce an n-bit hash function.

One of the simplest hash functions is the bit-by-bit exclusive-OR (XOR) of 
every block. This can be expressed as

 Ci = bi1 ⊕ bi2 ⊕ g ⊕ bim 

where

Ci = ith bit of the hash code, 1 … i … n

m = number of n@bit blocks in the input

bij = ith bit in jth block
⊕ = XOR operation

This operation produces a simple parity bit for each bit position and is known 
as a longitudinal redundancy check. It is reasonably effective for random data as a 
data integrity check. Each n-bit hash value is equally likely. Thus, the probability 
that a data error will result in an unchanged hash value is 2-n. With more predict-
ably formatted data, the function is less effective. For example, in most normal text 
files, the high-order bit of each octet is always zero. So if a 128-bit hash value is used, 
instead of an effectiveness of 2-128, the hash function on this type of data has an 
effectiveness of 2-112.

A simple way to improve matters is to perform a one-bit circular shift, or 
 rotation, on the hash value after each block is processed. The procedure can be sum-
marized as follows.

1. Initially set the n-bit hash value to zero.

2. Process each successive n-bit block of data as follows:

a. Rotate the current hash value to the left by one bit.
b. XOR the block into the hash value.

This has the effect of “randomizing” the input more completely and overcoming any 
regularities that appear in the input. Figure 11.5 illustrates these two types of hash 
functions for 16-bit hash values.
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Although the second procedure provides a good measure of data integrity, it 
is virtually useless for data security when an encrypted hash code is used with a 
plaintext message, as in Figures 11.3b and 11.4a. Given a message, it is an easy  matter 
to produce a new message that yields that hash code: Simply prepare the  desired 
alternate message and then append an n-bit block that forces the new  message plus 
block to yield the desired hash code.

Although a simple XOR or rotated XOR (RXOR) is insufficient if only the 
hash code is encrypted, you may still feel that such a simple function could be 
 useful when the message together with the hash code is encrypted (Figure 11.3a). 
But you must be careful. A technique originally proposed by the National Bureau 
of Standards used the simple XOR applied to 64-bit blocks of the message and 
then an encryption of the entire message that used the cipher block chaining 
(CBC) mode. We can define the scheme as follows: Given a message M consisting 
of a sequence of 64-bit blocks X1, X2, c , XN, define the hash code h = H(M) 

Figure 11.5 Two Simple Hash Functions

XOR of every 16-bit blockXOR with 1-bit rotation to the right

16 bits
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as the block-by-block XOR of all blocks and append the hash code as the final 
block:

 h = XN + 1 = X1 ⊕ X2 ⊕ c ⊕ XN 

Next, encrypt the entire message plus hash code using CBC mode to produce the 
encrypted message Y1, Y2, c , YN + 1. [JUEN85] points out several ways in which 
the ciphertext of this message can be manipulated in such a way that it is not detect-
able by the hash code. For example, by the definition of CBC (Figure 6.4), we have

 X1 = IV ⊕ D(K,Y1)

 Xi = Yi- 1 ⊕ D(K, Yi)

 XN + 1 = YN ⊕ D(K, YN + 1)

But XN + 1 is the hash code:

 XN + 1 = X1 ⊕ X2 ⊕ c ⊕ XN

 = [IV ⊕ D(K, Y1)] ⊕ [Y1 ⊕ D(K, Y2)] ⊕ c ⊕ [YN - 1 ⊕ D(K, YN)]

Because the terms in the preceding equation can be XORed in any order, it follows 
that the hash code would not change if the ciphertext blocks were permuted.

 11.3 REQUIREMENTS AND SECURITY

Before proceeding, we need to define two terms. For a hash value h = H(x), we 
say that x is the preimage of h. That is, x is a data block whose hash value, using the 
function H, is h. Because H is a many-to-one mapping, for any given hash value h, 
there will in general be multiple preimages. A collision occurs if we have x ≠ y and 
H(x) = H(y). Because we are using hash functions for data integrity, collisions are 
clearly undesirable.

Let us consider how many preimages are there for a given hash value, which is 
a measure of the number of potential collisions for a given hash value. Suppose the 
length of the hash code is n bits, and the function H takes as input messages or data 
blocks of length b bits with b 7 n. Then, the total number of possible messages is 
2b and the total number of possible hash values is 2n. On average, each hash value 
corresponds to 2b - n preimages. If H tends to uniformly distribute hash values then, 
in fact, each hash value will have close to 2b - n preimages. If we now allow inputs of 
arbitrary length, not just a fixed length of some number of bits, then the number 
of preimages per hash value is arbitrarily large. However, the security risks in the 
use of a hash function are not as severe as they might appear from this analysis. 
To  understand better the security implications of cryptographic hash functions, we 
need to precisely define their security requirements.

Security Requirements for Cryptographic Hash Functions

Table 11.1 lists the generally accepted requirements for a cryptographic hash func-
tion. The first three properties are requirements for the practical application of a 
hash function.
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The fourth property, preimage resistant, is the one-way property: it is easy to 
generate a code given a message, but virtually impossible to generate a message 
given a code. This property is important if the authentication technique involves 
the use of a secret value (Figure 11.3c). The secret value itself is not sent. However, 
if the hash function is not one way, an attacker can easily discover the secret value: 
If the attacker can observe or intercept a transmission, the attacker obtains the 
 message M, and the hash code h = H(S }M). The attacker then inverts the hash 
function to obtain S }M = H-1(MDM). Because the attacker now has both M and 
S }M, it is a trivial matter to recover S.

The fifth property, second preimage resistant, guarantees that it is infeasible to 
find an alternative message with the same hash value as a given message. This pre-
vents forgery when an encrypted hash code is used (Figures 11.3b and 11.4a). If this 
property were not true, an attacker would be capable of the following  sequence: 
First, observe or intercept a message plus its encrypted hash code; second, generate 
an unencrypted hash code from the message; third, generate an alternate message 
with the same hash code.

A hash function that satisfies the first five properties in Table 11.1 is referred 
to as a weak hash function. If the sixth property, collision resistant, is also satis-
fied, then it is referred to as a strong hash function. A strong hash function protects 
against an attack in which one party generates a message for another party to sign. 
For example, suppose Bob writes an IOU message, sends it to Alice, and she signs 
it. Bob finds two messages with the same hash, one of which requires Alice to pay a 
small amount and one that requires a large payment. Alice signs the first message, 
and Bob is then able to claim that the second message is authentic.

Figure 11.6 shows the relationships among the three resistant properties. 
A function that is collision resistant is also second preimage resistant, but the  reverse 
is not necessarily true. A function can be collision resistant but not preimage resis-
tant and vice versa. A function can be preimage resistant but not second preimage 
resistant and vice versa. See [MENE97] for a discussion.

Requirement Description

Variable input size H can be applied to a block of data of any size.

Fixed output size H produces a fixed-length output.

Efficiency H(x) is relatively easy to compute for any 
given x, making both hardware and software 
implementations practical.

Preimage resistant (one-way property) For any given hash value h, it is computationally 
infeasible to find y such that H(y) = h.

Second preimage resistant (weak collision 
 resistant)

For any given block x, it is computationally 
 infeasible to find y ≠ x with H(y) = H(x).

Collision resistant (strong collision resistant) It is computationally infeasible to find any pair 
(x, y) with x ≠ y, such that H(x) = H(y).

Pseudorandomness Output of H meets standard tests for 
 pseudorandomness.

Table 11.1 Requirements for a Cryptographic Hash Function H

M11_STAL7484_08_GE_C11.indd   347 20/04/22   13:46



348  CHAPTER 11 / CRyPTogRAPHiC HAsH FunCTions

Table 11.2 shows the resistant properties required for various hash function 
applications.

The final requirement in Table 11.1, pseudorandomness, has not tradition-
ally been listed as a requirement of cryptographic hash functions but is more or 
less  implied. [JOHN05] points out that cryptographic hash functions are commonly 
used for key derivation and pseudorandom number generation, and that in message 
 integrity applications, the three resistant properties depend on the output of the 
hash function appearing to be random. Thus, it makes sense to verify that in fact a 
given hash function produces pseudorandom output.

Brute-Force Attacks

As with encryption algorithms, there are two categories of attacks on hash functions: 
brute-force attacks and cryptanalysis. A brute-force attack does not depend on the 
specific algorithm but depends only on bit length. In the case of a hash function, a 
brute-force attack depends only on the bit length of the hash value. A cryptanalysis, 
in contrast, is an attack based on weaknesses in a particular cryptographic algo-
rithm. We look first at brute-force attacks.

Figure 11.6 Relationship Among Hash Function Properties

Second
preimage resistant

Preimage
resistant

Collision
resistant

Preimage Resistant
Second Preimage 

Resistant Collision Resistant

Hash + digital signature yes yes yes*

Intrusion detection and virus 
 detection

yes

Hash + symmetric encryption

One-way password file yes

MAC yes yes yes*

Table 11.2 Hash Function Resistance Properties Required for Various Data Integrity Applications

*Resistance required if attacker is able to mount a chosen message attack
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Preimage and Second Preimage attackS For a preimage or second preimage 
 attack, an adversary wishes to find a value y such that H(y) is equal to a given hash 
value h. The brute-force method is to pick values of y at random and try each value 
until a collision occurs. For an m-bit hash value, the level of effort is proportional 
to 2m. Specifically, the adversary would have to try, on average, 2m - 1 values of y to 
find one that generates a given hash value h. This result is derived in Appendix E 
[Equation (E.1)].

colliSion reSiStant attackS For a collision resistant attack, an adversary wishes 
to find two messages or data blocks, x and y, that yield the same hash function: 
H(x) = H(y). This turns out to require considerably less effort than a preimage or 
second preimage attack. The effort required is explained by a mathematical result 
referred to as the birthday paradox. In essence, if we choose random variables from 
a uniform distribution in the range 0 through N - 1, then the probability that a re-
peated element is encountered exceeds 0.5 after 2N choices have been made. Thus, 
for an m-bit hash value, if we pick data blocks at random, we can expect to find two 
data blocks with the same hash value within 22m = 2m/2 attempts. The mathemati-
cal derivation of this result is found in Appendix E.

Yuval proposed the following strategy to exploit the birthday paradox in a 
 collision resistant attack [YUVA79].

1. The source, A, is prepared to sign a legitimate message x by appending the 
 appropriate m-bit hash code and encrypting that hash code with A’s private 
key (Figure 11.4a).

2. The opponent generates 2m/2 variations x′ of x, all of which convey essentially 
the same meaning, and stores the messages and their hash values.

3. The opponent prepares a fraudulent message y for which A’s signature is 
desired.

4. The opponent generates minor variations y′ of y, all of which convey essen-
tially the same meaning. For each y′, the opponent computes H(y′), checks 
for matches with any of the H(x′) values, and continues until a match is found. 
That is, the process continues until a y′ is generated with a hash value equal to 
the hash value of one of the x′ values.

5. The opponent offers the valid variation to A for signature. This signature can 
then be attached to the fraudulent variation for transmission to the intended 
recipient. Because the two variations have the same hash code, they will pro-
duce the same signature; the opponent is assured of success even though the 
encryption key is not known.

Thus, if a 64-bit hash code is used, the level of effort required is only on the 
order of 232 [see Appendix E, Equation (E.7)].

The generation of many variations that convey the same meaning is not difficult. 
For example, the opponent could insert a number of “space-space- backspace” char-
acter pairs between words throughout the document. Variations could then be gen-
erated by substituting “space-backspace-space” in selected  instances. Alternatively, 
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the opponent could simply reword the message but retain the  meaning. Figure 11.7 
provides an example.

To summarize, for a hash code of length m, the level of effort required, as we 
have seen, is proportional to the following.

Preimage resistant 2m

Second preimage resistant 2m

Collision resistant 2m/2

Figure 11.7 A Letter in 238 Variations
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If collision resistance is required (and this is desirable for a general-purpose 
 secure hash code), then the value 2m/2 determines the strength of the hash code 
against brute-force attacks. Van Oorschot and Wiener [VANO94] presented a  design 
for a $10 million collision search machine for MD5, which has a 128-bit hash length, 
that could find a collision in 24 days. Thus, a 128-bit code may be viewed as inad-
equate. The next step up, if a hash code is treated as a sequence of 32 bits, is a 160-bit 
hash length. With a hash length of 160 bits, the same search machine would require 
over four thousand years to find a collision. With today’s technology, the time would 
be much shorter, so that 160 bits now appears suspect.

Cryptanalysis

As with encryption algorithms, cryptanalytic attacks on hash functions seek to 
 exploit some property of the algorithm to perform some attack other than an 
 exhaustive search. The way to measure the resistance of a hash algorithm to crypt-
analysis is to compare its strength to the effort required for a brute-force attack. 
That is, an ideal hash algorithm will require a cryptanalytic effort greater than or 
equal to the brute-force effort.

In recent years, there has been considerable effort, and some successes, in 
developing cryptanalytic attacks on hash functions. To understand these, we need 
to look at the overall structure of a typical secure hash function, indicated in 
Figure 11.8. This structure, referred to as an iterated hash function, was proposed 
by Merkle [MERK79, MERK89] and is the structure of most hash functions in 
use today, including SHA, which is discussed later in this chapter. The hash func-
tion takes an input message and partitions it into L fixed-sized blocks of b bits 
each. If necessary, the final block is padded to b bits. The final block also includes 
the value of the total length of the input to the hash function. The inclusion of the 
length makes the job of the opponent more difficult. Either the opponent must 
find two messages of equal length that hash to the same value or two messages of 
differing lengths that, together with their length values, hash to the same value.

The hash algorithm involves repeated use of a compression function, f, that 
takes two inputs (an n-bit input from the previous step, called the chaining  variable, 

Figure 11.8 General Structure of Secure Hash Code
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and a b-bit block) and produces an n-bit output. At the start of hashing, the chaining 
variable has an initial value that is specified as part of the algorithm. The final value 
of the chaining variable is the hash value. Often, b 7 n; hence the term  compression. 
The hash function can be summarized as

 CV0 = IV = initial n@bit value

 CVi = f(CVi- 1, Yi- 1) 1 … i … L

 H(M) = CVL

where the input to the hash function is a message M consisting of the blocks 
Y0, Y1, c , YL - 1.

The motivation for this iterative structure stems from the observation by Merkle 
[MERK89] and Damgard [DAMG89] that if the length field is included in the input, 
and if the compression function is collision resistant, then so is the resul tant iterated 
hash function.2 Therefore, the structure can be used to  produce a  secure hash func-
tion to operate on a message of any length. The problem of  designing a secure hash 
function reduces to that of designing a collision-resistant compression function that 
operates on inputs of some fixed size.

Cryptanalysis of hash functions focuses on the internal structure of f and is 
based on attempts to find efficient techniques for producing collisions for a single 
execution of f. Once that is done, the attack must take into account the fixed value 
of IV. The attack on f depends on exploiting its internal structure. Typically, as with 
symmetric block ciphers, f consists of a series of rounds of processing, so that the 
attack involves analysis of the pattern of bit changes from round to round.

Keep in mind that for any hash function there must exist collisions, because 
we are mapping a message of length at least equal to twice the block size b (because 
we must append a length field) into a hash code of length n, where b Ú n. What is 
required is that it is computationally infeasible to find collisions.

The attacks that have been mounted on hash functions are rather complex and 
beyond our scope here. For the interested reader, useful surveys of cryptanalysis of 
hash functions include [PREN10], [ROGA04b], and [LUCK04].

 11.4 SECURE HASH ALGORITHM (SHA)

In recent years, the most widely used hash function has been the Secure Hash 
Algorithm (SHA). Indeed, because virtually every other widely used hash function 
had been found to have substantial cryptanalytic weaknesses, SHA was more or 
less the last remaining standardized hash algorithm by 2005. SHA was developed 
by the National Institute of Standards and Technology (NIST) and published as a 
federal information processing standard (FIPS 180) in 1993. When weaknesses were 
discovered in SHA, now known as SHA-0, a revised version was issued as FIPS 
180-1 in 1995 and is referred to as SHA-1. The actual standards document is entitled 
“Secure Hash Standard.” SHA is based on the hash function MD4, and its design 
closely models MD4.

2The converse is not necessarily true.
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SHA-1 produces a hash value of 160 bits. A simple brute-force technique for 
“breaking” SHA-1, that is, on being able to produce two different messages that pro-
duce the same hash function, would require on average 280 SHA-1 compressions. This 
appears prohibitive with current and foreseeable computational capacity. However, 
due to concern that cryptanalytic techniques might soon make SHA-1 vulnerable, 
NIST published a revised version of the standard in 2002, FIPS 180-2, that defined 
three new versions of SHA, with hash value lengths of 256, 384, and 512 bits, known 
as SHA-256, SHA-384, and SHA-512, respectively. Collectively, these hash algorithms 
are known as SHA-2. These new versions have the same underlying structure and 
use the same types of modular arithmetic and logical binary operations as SHA-1. A 
revised document was issued as FIP PUB 180-3 in 2008, which added a 224-bit ver-
sion (Table 11.3). SHA-1 and SHA-2 are also specified in RFC 6234, which essentially 
duplicates the material in FIPS 180-3 but adds a C code implementation.

In 2005, NIST announced the intention to phase out approval of SHA-1 and move 
to a reliance on SHA-2 by 2010. Despite this, SHA-1 continued to be used for digital 
signature and other applications by numerous applications, such as web browsers. The 
reluctance to go through the expense and effort of transitioning to SHA-2 has been over-
come by a breakthrough announced by a research team in 2017 [STEV17, CONS17]. The 
team demonstrated that SHA-1 collision attacks have finally become practical by pro-
viding the first known instance of a collision. In total, the computational effort spent is 
equivalent to 263.1 SHA-1 compressions and took approximately 6500 CPU years and 
100 GPU years. As a result, Microsoft, Google, Apple, and Mozilla have all announced 
that their respective browsers have stopped accepting SHA-1 SSL certificates in 2017.

In this section, we provide a description of SHA-512. The other versions are 
quite similar. [SMIT15] provides a good description of SHA-256.

SHA-512 Logic

The algorithm takes as input a message with a maximum length of less than 2128 bits 
and produces as output a 512-bit message digest. The input is processed in 1024-bit 
blocks. Figure 11.9 depicts the overall processing of a message to produce a digest. 
This follows the general structure depicted in Figure 11.8. The processing consists of 
the following steps.

Algorithm Message Size Block Size Word Size
Message 

Digest Size

SHA-1 6  264 512 32 160

SHA-224 6  264 512 32 224

SHA-256 6  264 512 32 256

SHA-384 6  2128 1024 64 384

SHA-512 6  2128 1024 64 512

SHA-512/224 6  2128 1024 64 224

SHA-512/256 6  2128 1024 64 256

Table 11.3 Comparison of SHA Parameters

Note: All sizes are measured in bits.
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Step 1 Append padding bits. The message is padded so that its length is congruent 
to 896 modulo 1024 [length K 896(mod 1024)]. Padding is always added, 
even if the message is already of the desired length. Thus, the number of 
padding bits is in the range of 1 to 1024. The padding consists of a single 1 bit 
followed by the necessary number of 0 bits.

Step 2 Append length. A block of 128 bits is appended to the message. This block 
is treated as an unsigned 128-bit integer (most significant byte first) and 
contains the length of the original message in bits (before the padding).

The outcome of the first two steps yields a message that is an integer 
multiple of 1024 bits in length. In Figure 11.9, the expanded message is rep-
resented as the sequence of 1024-bit blocks M1, M2, c , MN, so that the 
total length of the expanded message is N * 1024 bits.

Step 3 Initialize hash buffer. A 512-bit buffer is used to hold intermediate and final 
results of the hash function. The buffer can be represented as eight 64-bit 
registers (a, b, c, d, e, f, g, h). These registers are initialized to the following 
64-bit integers (hexadecimal values):

a = 6A09E667F3BCC908 e = 510E527FADE682D1

b = BB67AE8584CAA73B f = 9B05688C2B3E6C1F

c = 3C6EF372FE94F82B g = 1F83D9ABFB41BD6B

d = A54FF53A5F1D36F1 h = 5BE0CD19137E2179

Figure 11.9 Message Digest Generation Using SHA-512
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These words were obtained by taking the first sixty-four bits of the frac-
tional parts of the square roots of the first eight prime numbers. The val-
ues are stored in big-endian format, which is the most significant byte of a 
word in the low-address (leftmost) byte position. In contrast, in little-endian  
format, the least significant byte is stored in the lowest address.

Step 4 Process message in 1024-bit (128-byte) blocks. The heart of the algorithm is 
a module that consists of 80 rounds; this module is labeled F in Figure 11.9. 
The logic is illustrated in Figure 11.10.

Each round takes as input the 512-bit buffer value, abcdefgh, and 
updates the contents of the buffer. At input to the first round, the buffer 
has the value of the intermediate hash value, Hi- 1. Each round t makes 
use of a 64-bit value Wt, derived from the current 1024-bit block being pro-
cessed (Mi). These values are derived using a message schedule described 
subsequently. Each round also makes use of an additive constant Kt, where 
0 … t … 79 indicates one of the 80 rounds. These words represent the first 
64 bits of the fractional parts of the cube roots of the first 80 prime numbers. 
The constants provide a “randomized” set of 64-bit patterns, which should 
eliminate any regularities in the input data. Table 11.4 shows these constants 
in hexadecimal format (from left to right).

Figure 11.10 SHA-512 Processing of a Single 1024-Bit Block
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The output of the eightieth round is added to the input to the first 
round (Hi- 1) to produce Hi. The addition is done independently for each of 
the eight words in the buffer with each of the corresponding words in Hi- 1, 
using addition modulo 264.

Step 5 Output. After all N 1024-bit blocks have been processed, the output from 
the Nth stage is the 512-bit message digest.

We can summarize the behavior of SHA-512 as follows:

 H0 = IV

 Hi = SUM64(Hi- 1, abcdefghi)

 MD = HN

where

IV            = initial value of the abcdefgh buffer, defined in step 3

abcdefghi =  the output of the last round of processing of the ith message block

N              =  the number of blocks in the message (including padding and 
length fields)

SUM64      =  addition modulo 264 performed separately on each word of the 
pair of inputs

MD         = final message digest value

428a2f98d728ae22 7137449123ef65cd b5c0fbcfec4d3b2f e9b5dba58189dbbc

3956c25bf348b538 59f111f1b605d019 923f82a4af194f9b ab1c5ed5da6d8118

d807aa98a3030242 12835b0145706fbe 243185be4ee4b28c 550c7dc3d5ffb4e2

72be5d74f27b896f 80deb1fe3b1696b1 9bdc06a725c71235 c19bf174cf692694

e49b69c19ef14ad2 efbe4786384f25e3 0fc19dc68b8cd5b5 240ca1cc77ac9c65

2de92c6f592b0275 4a7484aa6ea6e483 5cb0a9dcbd41fbd4 76f988da831153b5

983e5152ee66dfab a831c66d2db43210 b00327c898fb213f bf597fc7beef0ee4

c6e00bf33da88fc2 d5a79147930aa725 06ca6351e003826f 142929670a0e6e70

27b70a8546d22ffc 2e1b21385c26c926 4d2c6dfc5ac42aed 53380d139d95b3df

650a73548baf63de 766a0abb3c77b2a8 81c2c92e47edaee6 92722c851482353b

a2bfe8a14cf10364 a81a664bbc423001 c24b8b70d0f89791 c76c51a30654be30

d192e819d6ef5218 d69906245565a910 f40e35855771202a 106aa07032bbd1b8

19a4c116b8d2d0c8 1e376c085141ab53 2748774cdf8eeb99 34b0bcb5e19b48a8

391c0cb3c5c95a63 4ed8aa4ae3418acb 5b9cca4f7763e373 682e6ff3d6b2b8a3

748f82ee5defb2fc 78a5636f43172f60 84c87814a1f0ab72 8cc702081a6439ec

90befffa23631e28 a4506cebde82bde9 bef9a3f7b2c67915 c67178f2e372532b

ca273eceea26619c d186b8c721c0c207 eada7dd6cde0eb1e f57d4f7fee6ed178

06f067aa72176fba 0a637dc5a2c898a6 113f9804bef90dae 1b710b35131c471b

28db77f523047d84 32caab7b40c72493 3c9ebe0a15c9bebc 431d67c49c100d4c

4cc5d4becb3e42b6 597f299cfc657e2a 5fcb6fab3ad6faec 6c44198c4a475817

Table 11.4 SHA-512 Constants
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SHA-512 Round Function

Let us look in more detail at the logic in each of the 80 steps of the processing of one 
512-bit block (Figure 11.11). Each round is defined by the following set of equations:

 T1 = h + Ch(e, f, g) + (a 512
1 e) + Wt + Kt

 T2 = (a 512
0 a) + Maj(a, b, c)

 h = g

 g = f

 f = e

 e = d + T1

 d = c

 c = b

 b = a

 a = T1 + T2

where

t                   = step number; 0 … t … 79

Ch(e, f, g)   = (e AND f) ⊕ (NOT e AND g) 
  the conditional function: If e then f else g

Maj(a, b, c) = (a AND b) ⊕ (a AND c) ⊕ (b AND c) 
   the function is true only of the majority (two or three) of the 

 arguments are true

(Σ512
0 a)        = ROTR28(a) ⊕ ROTR34(a) ⊕ ROTR39(a)

(Σ512
1 e)        = ROTR14(e) ⊕ ROTR18(e) ⊕ ROTR41(e)

ROTRn(x) = circular right shift (rotation) of the 64-bit argument x by n bits

Figure 11.11 Elementary SHA-512 Operation (single round)
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Wt = a 64-bit word derived from the current 1024-bit input block

Kt = a 64-bit additive constant
+ = addition modulo 264

Two observations can be made about the round function.

1. Six of the eight words of the output of the round function involve simply per-
mutation (b, c, d, f, g, h) by means of rotation. This is indicated by shading in 
Figure 11.11.

2. Only two of the output words (a, e) are generated by substitution. Word e is a 
function of input variables (d, e, f, g, h), as well as the round word Wt and the 
constant Kt. Word a is a function of all of the input variables except d, as well 
as the round word Wt and the constant Kt.

It remains to indicate how the 64-bit word values Wt are derived from the  
1024-bit message. Figure 11.12 illustrates the mapping. The first 16 values of Wt are 
taken directly from the 16 words of the current block. The remaining values are 
defined as

 Wt = s1
512(Wt- 2) + Wt- 7 + s0

512(Wt- 15) + Wt- 16 

where

 s0
512(x) = ROTR1(x) ⊕ ROTR8(x) ⊕ SHR7(x)

 s1
512(x) = ROTR19(x) ⊕ ROTR61(x) ⊕ SHR6(x)

ROTRn(x) = circular right shift (rotation) of the 64-bit argument x by n bits

SHRn(x) = right shift of the 64-bit argument x by n bits with padding by zeros on 
the left

+ = addition modulo 264

Thus, in the first 16 steps of processing, the value of Wt is equal to the cor-
responding word in the message block. For the remaining 64 steps, the value of 
Wt  consists of the circular left shift by one bit of the XOR of four of the preced-
ing values of Wt, with two of those values subjected to shift and rotate operations. 

Figure 11.12 Creation of 80-word Input Sequence for SHA-512 Processing of Single Block
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This introduces a great deal of redundancy and interdependence into the  message 
blocks that are compressed, which complicates the task of finding a different  message 
block that maps to the same compression function output. Figure 11.13 summarizes 
the SHA-512 logic.

The SHA-512 algorithm has the property that every bit of the hash code is a 
function of every bit of the input. The complex repetition of the basic function F 
produces results that are well mixed; that is, it is unlikely that two messages chosen 
at random, even if they exhibit similar regularities, will have the same hash code. 
Unless there is some undisclosed weakness in SHA-512 the difficulty of coming up 
with two messages having the same message  digest is on the order of 2256 operations, 
while the difficulty of finding a message with a given digest is on the order of 2512 
operations.

Example

We include here an example based on one in FIPS 180. We wish to hash a  one-block 
message consisting of three ASCII characters: “abc,” which is equivalent to the 
 following 24-bit binary string:

01100001 01100010 01100011

Recall from step 1 of the SHA algorithm, that the message is padded to a 
length congruent to 896 modulo 1024. In this case of a single block, the padding 
consists of 896 - 24 = 872 bits, consisting of a “1” bit followed by 871 “0” bits. Then 
a 128-bit length value is appended to the message, which contains the length of the 
original message in bits (before the padding). The original length is 24 bits, or a 
hexadecimal value of 18. Putting this all together, the 1024-bit message block, in 
hexadecimal, is

6162638000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000018

This block is assigned to the words W0, .  .  .  , W15 of the message schedule, 
which appears as follows.

 

W0 = 6162638000000000 W8 = 0000000000000000
W1 = 0000000000000000 W9 = 0000000000000000
W2 = 0000000000000000 W10 = 0000000000000000
W3 = 0000000000000000 W11 = 0000000000000000
W4 = 0000000000000000 W12 = 0000000000000000
W5 = 0000000000000000 W13 = 0000000000000000
W6 = 0000000000000000 W14 = 0000000000000000
W7 = 0000000000000000 W15 = 0000000000000018
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The padded message consists blocks M1, M2, c , MN. Each message 
block Mi consists of 16 64-bit words Mi,0, Mi,1, c , Mi,15. All addition 
is performed modulo 264.

H0,0 = 6A09E667F3BCC908 H0,4 = 510E527FADE682D1
H0,1 = BB67AE8584CAA73B H0,5 = 9B05688C2B3E6C1F
H0,2 = 3C6EF372FE94F82B H0,6 = 1F83D9ABFB41BD6B
H0,3 = A54FF53A5F1D36F1 H0,7 = 5BE0CD19137E2179

for i = 1 to N

1. Prepare the message schedule W
 for t = 0 to 15

 Wt = Mi,t

 for t = 16 to 79
 Wt = s1

512(Wt- 2) + Wt- 7 + s0
512(Wt- 15) + Wt- 16

2. Initialize the working variables

a = Hi- 1, 0 e = Hi- 1, 4

b = Hi- 1, 1 f = Hi- 1, 5

c = Hi- 1, 2 g = Hi- 1, 6

d = Hi- 1, 3 h = Hi- 1, 7

 

3. Perform the main hash computation
 for t = 0 to 79

 T1 = h + Ch(e, f, g) + ¢Σ512
1 e≤ + Wt + Kt

 T2 = ¢Σ512
0 a≤ + Maj(a, b, c)

 h = g
 g = f
 f = e
 e = d + T1

 d = c
 c = b
 b = a
 a = T1 + T2

4. Compute the intermediate hash value

Hi, 0 = a + Hi- 1, 0 Hi, 4 = e + Hi- 1,4

Hi, 1 = b + Hi- 1, 1 Hi, 5 = f + Hi- 1, 5

Hi, 2 = c + Hi- 1, 2 Hi, 6 = g + Hi- 1, 6

Hi, 3 = d + Hi- 1, 3 Hi, 7 = h + Hi- 1, 7

return {HN, 0 }HN, 1 }HN, 2 }HN, 3 }HN, 4 }HN, 5 }HN, 6 }HN, 7} 

Figure 11.13 SHA-512 Logic
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As indicated in Figure 11.13, the eight 64-bit variables, a through h, are 
 initialized to values H0,0 through H0,7. The following table shows the initial values of 
these variables and their values after each of the first two rounds.

a 6a09e667f3bcc908 f6afceb8bcfcddf5 1320f8c9fb872cc0

b bb67ae8584caa73b 6a09e667f3bcc908 f6afceb8bcfcddf5

c 3c6ef372fe94f82b bb67ae8584caa73b 6a09e667f3bcc908

d a54ff53a5f1d36f1 3c6ef372fe94f82b bb67ae8584caa73b

e 510e527fade682d1 58cb02347ab51f91 c3d4ebfd48650ffa

f 9b05688c2b3e6c1f 510e527fade682d1 58cb02347ab51f91

g 1f83d9abfb41bd6b 9b05688c2b3e6c1f 510e527fade682d1

h 5be0cd19137e2179 1f83d9abfb41bd6b 9b05688c2b3e6c1f

Note that in each of the rounds, six of the variables are copied directly from 
variables from the preceding round.

The process continues through 80 rounds. The output of the final round is

73a54f399fa4b1b2 10d9c4c4295599f6 d67806db8b148677 654ef9abec389ca9
d08446aa79693ed7 9bb4d39778c07f9e 25c96a7768fb2aa3 ceb9fc3691ce8326

The hash value is then calculated as

 H1,0 = 6a09e667f3bcc908 + 73a54f399fa4b1b2 = ddaf35a193617aba
 H1,1 = bb67ae8584caa73b + 10d9c4c4295599f6 = cc417349ae204131
 H1,2 = 3c6ef372fe94f82b + d67806db8b148677 = 12e6fa4e89a97ea2
 H1,3 = a54ff53a5f1d36f1 + 654ef9abec389ca9 = 0a9eeee64b55d39a
 H1,4 = 510e527fade682d1 + d08446aa79693ed7 = 2192992a274fc1a8
 H1,5 = 9b05688c2b3e6c1f + 9bb4d39778c07f9e = 36ba3c23a3feebbd
 H1,6 = 1f83d9abfb41bd6b + 25c96a7768fb2aa3 = 454d4423643ce80e
 H1,7 = 5be0cd19137e2179 + ceb9fc3691ce8326 = 2a9ac94fa54ca49f

The resulting 512-bit message digest is

ddaf35a193617aba cc417349ae204131 12e6fa4e89a97ea2 0a9eeee64b55d39a
2192992a274fc1a8 36ba3c23a3feebbd 454d4423643ce80e 2a9ac94fa54ca49f

Suppose now that we change the input message by one bit, from “abc” to “cbc.” 
Then, the 1024-bit message block is

6362638000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000018

And the resulting 512-bit message digest is

531668966ee79b70 0b8e593261101354 4273f7ef7b31f279 2a7ef68d53f93264
319c165ad96d9187 55e6a204c2607e27 6e05cdf993a64c85 ef9e1e125c0f925f

The number of bit positions that differ between the two hash values is 253, almost 
exactly half the bit positions, indicating that SHA-512 has a good avalanche effect.
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 11.5 SHA-3

As of this writing, the Secure Hash Algorithm (SHA-1) has not yet been “broken.” 
That is, no one has demonstrated a technique for producing collisions in a practical 
amount of time. However, because SHA-1 is very similar, in structure and in the 
basic mathematical operations used, to MD5 and SHA-0, both of which have been 
broken, SHA-1 is considered insecure and has been phased out for SHA-2.

SHA-2, particularly the 512-bit version, would appear to provide unassailable 
security. However, SHA-2 shares the same structure and mathematical operations 
as its predecessors, and this is a cause for concern. Because it will take years to find 
a suitable replacement for SHA-2, should it become vulnerable, NIST decided to 
begin the process of developing a new hash standard.

Accordingly, NIST announced in 2007 a competition to produce the next gen-
eration NIST hash function, to be called SHA-3. The winning design for SHA-3 
was announced by NIST in October 2012 and published as FIP 102 in August 2015. 
SHA-3 is a cryptographic hash function that is intended to complement SHA-2 as 
the approved standard for a wide range of applications.

NISTIR 7896 (Third-Round Report of the SHA-3 Cryptographic Hash 
Algorithm Competition) summarizes the evaluation criteria used by NIST to select 
from among the candidates for SHA-3, plus the rationale for picking Keccak, which 
was the winning candidate. This material is useful in understanding not just the SHA-3 
design but also the criteria by which to judge any cryptographic hash algorithm.

The Sponge Construction

The underlying structure of SHA-3 is a scheme referred to by its designers as a 
sponge construction [BERT07, BERT11]. The sponge construction has the same 
general structure as other iterated hash functions (Figure 11.8). The sponge func-
tion takes an input message and partitions it into fixed-size blocks. Each block is 
processed in turn with the output of each iteration fed into the next iteration, finally 
producing an output block.

The sponge function is defined by three parameters:

f = the internal function used to process each input block3

r = the size in bits of the input blocks, called the bitrate
pad = the padding algorithm

A sponge function allows both variable length input and output, making it a 
flexible structure that can be used for a hash function (fixed-length output), a pseu-
dorandom number generator (fixed-length input), and other cryptographic func-
tions. Figure 11.14 illustrates this point. An input message of n bits is  partitioned 
into k fixed-size blocks of r bits each. The message is padded to achieve a length 
that is an integer multiple of r bits. The resulting partition is the sequence of blocks 
P0, P1, c , Pk - 1, with length k * r. For uniformity, padding is always added, so 

3The Keccak documentation refers to f as a permutation. As we shall see, it involves both permutations 
and substitutions. We refer to f as the iteration function, because it is the function that is executed once 
for each iteration, that is, once for each block of the message that is processed.
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that if n mod r = 0, a padding block of r bits is added. The actual padding algo-
rithm is a parameter of the function. The sponge specification proposes two padding 
schemes, The following definitions are based on [BERT11]

◆■ Simple padding (pad10*): The minimum padding is added so that the block 
length divides the padded message length. The padding is all zeros except the 
first padding bit is a binary one.

◆■ Multirate padding (pad10*1): The minimum padding is added so that the block 
length divides the padded message length. The padding is all zeros except the 
first and last padding bit are binary ones. Unlike simple padding, multirate 
padding is secure even if the rate r is changed for a given f. FIPS 202 uses mul-
tirate padding.

After processing all of the blocks, the sponge function generates a sequence 
of output blocks Z0, Z1, c , Zj- 1. The number of output blocks generated is 
 determined by the number of output bits desired. If the desired output is / bits, then 
j blocks are produced, such that (j - 1) * r 6 / … j * r.

Figure 11.15 shows the iterated structure of the sponge function. The sponge 
construction operates on a state variable s of b = r + c bits, which is initialized to 
all zeros and modified at each iteration. The value r is called the bitrate. This value 
is the block size used to partition the input message. The term bitrate reflects the 
fact that r is the number of bits processed at each iteration: the larger the value of r, 
the greater the rate at which message bits are processed by the sponge construction. 

Figure 11.14 Sponge Function Input and Output
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The value c is referred to as the capacity. A discussion of the security implications 
of the capacity is beyond our scope. In essence, the capacity is a measure of the 
achievable complexity of the sponge construction and therefore the achievable 
level of security. A given implementation can increase claimed security and reduce 
speed by increasing the capacity c and decreasing the bitrate r accordingly, or vice 
versa. The default values for Keccak are c = 1024 bits, r = 576 bits, and therefore 
b = 1600 bits.

The sponge construction consists of two phases. The absorbing phase proceeds 
as follows: For each iteration, the input block to be processed is padded with zeroes 
to extend its length from r bits to b bits. Then, the bitwise XOR of the extended 

Figure 11.15 Sponge Construction
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message block and s is formed to create a b-bit input to the iteration function f. The 
output of f is the value of s for the next iteration.

If the desired output length / satisfies / … b, then at the completion of the 
absorbing phase, the first r bits of s are returned and the sponge construction termi-
nates. Otherwise, the sponge construction enters the squeezing phase. To begin, the 
first r bits of s are retained as block Z0. Then, the value of s is updated with repeated 
executions of f, and at each iteration, the first r bits of s are retained as block Zi 
and concatenated with previously generated blocks. The process continues through 
(j - 1) iterations until we have (j - 1) * r 6 / … j * r. At this point the first / 
bits of the concatenated block Z are returned.

Note that the absorbing phase has the structure of a typical hash function. 
A common case will be one in which the desired hash length is less than or equal 
to the input block length; that is, / … r. In that case, the sponge construction ter-
minates after the absorbing phase. If a longer output than b bits is required, then 
the squeezing phase is employed. Thus the sponge construction is quite flexible. For 
example, a short message with a length r could be used as a seed and the sponge 
construction would function as a pseudorandom number generator.

To summarize, the sponge construction is a simple iterated construction for 
building a function F with variable-length input and arbitrary output length based 
on a fixed-length transformation or permutation f operating on a fixed number b of 
bits. The sponge construction is defined formally in [BERT11] as follows:

Algorithm The sponge construction SPONGE[f, pad, r]
Require: r < b

 Interface: Z = sponge(M,/) with M ∈ Z2*, integer / > 0 and Z ∈ Z2
/

 P  =  M }pad[r](|M|)
 s  =  0b

 for i  =  0 to |P|r − 1 do
   s  =  s ⊕ (Pi }0b − r)

   s  =  f(s)
 end for
 Z  =:s;r
 while |Z|r r < / do
  s  =  f (s)
  Z  =  Z } :s;r
 end while
 return :Z; ℓ

In the algorithm definition, the following notation is used: � M �  is the length 
in bits of a bit string M. A bit string M can be considered as a sequence of blocks 
of some fixed length x, where the last block may be shorter. The number of blocks 
of M is denoted by � M � x. The blocks of M are denoted by Mi and the index ranges 
from 0 to � M � x - 1. The expression :M; / denotes the truncation of M to its first 
/ bits.
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SHA-3 makes use of the iteration function f, labeled Keccak-f, which is 
 described in the next section. The overall SHA-3 function is a sponge function 
 expressed as Keccak[r, c] to reflect that SHA-3 has two operational parameters, r, 
the message block size, and c, the capacity, with the default of r + c = 1600 bits. 
Table 11.5 shows the supported values of r and c. As Table 11.5 shows, the hash 
function security associated with the sponge construction is a function of the 
 capacity c.

In terms of the sponge algorithm defined above, Keccak[r, c] is defined as

 Keccak [r, c]∆ SPONGE [Keccak@f [r + c], pad 10*1, r] 

We now turn to a discussion of the iteration function Keccak-f.

The SHA-3 Iteration Function f

We now examine the iteration function Keccak-f used to process each successive 
block of the input message. Recall that f takes as input a 1600-bit variable s consist-
ing of r bits, corresponding to the message block size followed by c bits,  referred to 
as the capacity. For internal processing within f, the input state variable s is orga-
nized as a 5 * 5 * 64 array a. The 64-bit units are referred to as lanes. For our 
 purposes, we generally use the notation a[x, y, z] to refer to an individual bit with 
in the state array. When we are more concerned with operations that affect entire 
lanes, we designate the 5 * 5 matrix as L[x, y], where each entry in L is a 64-bit lane. 
The use of indices within this matrix is shown in Figure 11.16.4 Thus, the columns 
are labeled x = 0 through x = 4, the rows are labeled y = 0 through y = 4, and 
the  individual bits within a lane are labeled z = 0 through z = 63. The  mapping 
between the bits of s and those of a is

 s[64(5y + x) + z] = a[x, y, z] 

4Note that the first index (x) designates a column and the second index (y) designates a row. This is 
in conflict with the convention used in most mathematics sources, where the first index designates a 
row and the second index designates a column (e.g., Knuth, D. The Art of Computing Programming, 
Volume 1, Fundamental Algorithms; and Korn, G., and Korn, T. Mathematical Handbook for Scientists 
and Engineers).

Message Digest Size 224 256 384 512

Message Size no maximum no maximum no maximum no maximum

Block Size (bitrate r) 1152 1088 832 576

Word Size 64 64 64 64

Number of Rounds 24 24 24 24

Capacity c 448 512 768 1024

Collision Resistance 2112 2128 2192 2256

Second Preimage Resistance 2224 2256 2384 2512

Table 11.5 SHA-3 Parameters

Note: All sizes and security levels—are measured in bits.
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We can visualize this with respect to the matrix in Figure 11.16. When treat-
ing the state as a matrix of lanes, the first lane in the lower left corner, L[0, 0], cor-
responds to the first 64 bits of s. The lane in the second column, lowest row, L[1, 
0], corresponds to the next 64 bits of s. Thus, the array a is filled with the bits of s 
 starting with row y = 0 and proceeding row by row.

Structure of f The function f is executed once for each input block of the message 
to be hashed. The function takes as input the 1600-bit state variable and converts 
it into a 5 * 5 matrix of 64-bit lanes. This matrix then passes through 24 rounds of 
processing. Each round consists of five steps, and each step updates the state matrix 
by permutation or substitution operations. As shown in Figure 11.17, the rounds are 
identical with the exception of the final step in each round, which is modified by a 
round constant that differs for each round.

The application of the five steps can be expressed as the composition5 of 
functions:

 R = i o x o p o r o u 

Table 11.6 summarizes the operation of the five steps. The steps have a sim-
ple description leading to a specification that is compact and in which no trapdoor 
can be hidden. The operations on lanes in the specification are limited to bitwise 
Boolean operations (XOR, AND, NOT) and rotations. There is no need for table 
lookups, arithmetic operations, or data-dependent rotations. Thus, SHA-3 is easily 
and efficiently implemented in either hardware or software.

We examine each of the step functions in turn.

Figure 11.16 SHA-3 State Matrix

L[0, 4]

x 5 0 x 5 1 x 5 2 x 5 3 x 5 4

L[0, 3]

L[0, 2]

L[0, 1]

L[0, 0]

a[x, y, 0] a[x, y, 1] a[x, y, 2]

y 5 1

y 5 0

y 5 2

y 5 3

y 5 4 L[1, 4]

L[1, 3]

L[1, 2]

L[1, 1]

L[1, 0]

L[2, 4]

L[2, 3]

L[2, 2]

L[2, 1]

L[2, 0]

(a) State variable as 5    5 matrix A of 64-bit words

(b) Bit labeling of 64-bit words

L[3, 4]

L[3, 3]

L[3, 2]

L[4, 1]

L[3, 0]

L[4, 4]

L[4, 3]

L[4, 2]

L[4, 1]

L[4, 0]

a[x, y, 63]a[x, y, 62]a[x, y, z]

3

 5If f and g are two functions, then the function F with the equation y = F(x) = g[f(x)] is called the 
 composition of f and g and is denoted as F = g o f.
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Figure 11.17 SHA-3 Iteration Function f

theta (u) step 

s

s

rho (r) step

pi (p) step

chi (x) step

R
ou
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iota (i) step RC[0]

rot(x, y)

theta (u) step

rho (r ) step

pi (p) step

chi (x) step

R
ou

nd
 2

3

iota (i) step RC[23]

rot(x, y)

Function Type Description

u Substitution New value of each bit in each word depends on its current 
value and on one bit in each word of preceding column 
and one bit of each word in succeeding column.

r Permutation The bits of each word are permuted using a circular bit 
shift. W[0, 0] is not affected.

p Permutation Words are permuted in the 5 * 5 matrix. W[0, 0] is not 
affected.

x Substitution New value of each bit in each word depends on its current 
value and on one bit in next word in the same row and one 
bit in the second next word in the same row.

i Substitution W[0, 0] is updated by XOR with a round constant.

Table 11.6 Step Functions in SHA-3

theta SteP function The Keccak reference defines the u function as follows. For 
bit z in column x, row y,

 u: a[x, y, z] d a[x, y, z] ⊕ a
4

y== 0
a[(x - 1), y=, z] ⊕ a

4

y== 0
a[(x + 1), y=, (z - 1)]   (11.1)
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where the summations are XOR operations. We can see more clearly what this 
 operation accomplishes with reference to Figure 11.18a. First, define the bitwise 
XOR of the lanes in column x as

 C[x] = L[x, 0] ⊕ L[x, 1] ⊕ L[x, 2] ⊕ L[x, 3] ⊕ L[x, 4] 

Consider lane L[x, y] in column x, row y. The first summation in Equation 11.1 
performs a bitwise XOR of the lanes in column (x - 1) mod 4 to form the 64-bit 
lane C[x - 1]. The second summation performs a bitwise XOR of the lanes in 
 column (x + 1) mod 4, and then rotates the bits within the 64-bit lane so that the 
bit in position z is mapped into position z + 1 mod 64. This forms the lane ROT 
(C[x + 1], 1). These two lanes and L[x, y] are combined by bitwise XOR to form the 
updated value of L[x, y]. This can be expressed as

 L[x, y] d L[x, y] ⊕ C[x - 1] ⊕ ROT(C[x + 1], 1) 

Figure 11.18.a illustrates the operation on L[3, 2]. The same operation is 
 performed on all of the other lanes in the matrix.

Figure 11.18 Theta and Chi Step Functions

(a) u step function

L[2, 3]L[2, 3] ROT(C[3], 1)C[1]

L[0, 4]

x 5  0 x 5 1 x 5 2 x 5 3 x 5 4

L[0, 3]

L[0, 2]

L[0, 1]

L[0, 0]

y 5 1

y 5 0

y 5 2

y 5 3

y 5 4 L[1, 4]

L[1, 3]

L[1, 2]

L[1, 1]

L[1, 0]

L[2, 4]

L[2, 3]

L[2, 2]

L[2, 1]

L[2, 0]

L[3, 4]

L[3, 3]

L[3, 2]

L[4, 1]

L[3, 0]

L[4, 4]

L[4, 3]

L[4, 2]

L[4, 1]

L[4, 0]

(b) x step function

L[2, 3]L[2, 3] L[3, 3] AND L[4, 3]

L[0, 4]

x 5 0 x 5 1 x 5 2 x 5 3 x 5 4

L[0, 3]

L[0, 2]

L[0, 1]

L[0, 0]

y 5 1

y 5 0

y 5 2

y 5 3

y 5 4 L[1, 4]

L[1, 3]

L[1, 2]

L[1, 1]

L[1, 0]

L[2, 4]

L[2, 3]

L[2, 2]

L[2, 1]

L[2, 0]

L[3, 4]

L[3, 3]

L[3, 2]

L[4, 1]

L[3, 0]

L[4, 4]

L[4, 3]

L[4, 2]

L[4, 1]

L[4, 0]

1 1

1
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Several observations are in order. Each bit in a lane is updated using the bit 
itself and one bit in the same bit position from each lane in the preceding column and 
one bit in the adjacent bit position from each lane in the succeeding column. Thus the 
updated value of each bit depends on 11 bits. This provides good mixing. Also, the 
theta step provides good diffusion, as that term was defined in Chapter 4. The design-
ers of Keccak state that the theta step provides a high level of diffusion on average and 
that without theta, the round function would not provide diffusion of any significance.

rho SteP function The r function is defined as follows:

 r: a[x, y, z] d a[x, y, z] if x = y = 0 

otherwise,

  r: a[x, y, z] d aJx, y, az -
(t + 1)(t + 2)

2
b R    (11.2)

with t satisfying 0 … t 6 24 and ¢0 1
2 3

≤t¢1
0
≤ = ¢x

y
≤ in GF(5)2 * 2

It is not immediately obvious what this step performs, so let us look at the 
process in detail.

1. The lane in position (x, y) = (0, 0), that is L[0, 0], is unaffected. For all other 
words, a circular bit shift within the lane is performed.

2. The variable t, with 0 … t 6 24, is used to determine both the amount of the 
circular bit shift and which lane is assigned which shift value.

3. The 24 individual bit shifts that are performed have the respective values 

(t + 1)(t + 2)

2
 mod 64.

4. The shift determined by the value of t is performed on the lane in position 
(x, y) in the 5 * 5 matrix of lanes. Specifically, for each value of t, the corre-

sponding matrix position is defined by ¢x
y
≤ = ¢0 1

2 3
≤t¢1

0
≤. For example, for 

t = 3, we have

 ¢x
y
≤ = ¢0 1

2 3
≤3¢1

0
≤ mod 5

 = ¢0 1
2 3

≤ ¢0 1
2 3

≤ ¢0 1
2 3

≤ ¢1
0
≤ mod 5

 = ¢0 1
2 3

≤ ¢0 1
2 3

≤ ¢0
2
≤ mod 5

 = ¢0 1
2 3

≤ ¢2
6
≤ mod 5 = ¢0 1

2 3
≤ ¢2

1
≤ mod 5

 = ¢1
7
≤ mod 5 = ¢1

2
≤
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Table 11.7 shows the calculations that are performed to determine the amount 
of the bit shift and the location of each bit shift value. Note that all of the rotation 
amounts are different.

The r function thus consists of a simple permutation (circular shift) within 
each lane. The intent is to provide diffusion within each lane. Without this function, 
diffusion between lanes would be very slow.

Pi SteP function The p function is defined as follows:

  p: a[x, y] d a[x=, y=], with¢x
y
≤ = ¢0 1

2 3
≤ ¢x=

y=≤   (11.3)

This can be rewritten as (x, y) * (y, (2x + 3y)). Thus, the lanes within the 
5 * 5 matrix are moved so that the new x position equals the old y position and 

Table 11.7 Rotation Values Used in SHA-3

t g(t) g (t) mod 64 x, y

0 1 1 1, 0

1 3 3 0, 2

2 6 6 2, 1

3 10 10 1, 2

4 15 15 2, 3

5 21 21 3, 3

6 28 28 3, 0

7 36 36 0, 1

8 45 45 1, 3

9 55 55 3, 1

10 66 2 1, 4

11 78 14 4, 4

(b) Rotation values by word position in matrix

x = 0 x = 1 x = 2 x = 3 x = 4

y = 4 18 2 61 56 14

y = 3 41 45 15 21 8

y = 2 3 10 43 25 39

y = 1 36 44 6 55 20

y = 0 0 1 62 28 27

t g(t) g (t) mod 64 x, y

12 91 27 4, 0

13 105 41 0, 3

14 120 56 3, 4

15 136 8 4, 3

16 153 25 3, 2

17 171 43 2, 2

18 190 62 2, 0

19 210 18 0, 4

20 231 39 4, 2

21 253 61 2, 4

22 276 20 4, 1

23 300 44 1, 1

(a) Calculation of values and positions

Note:  g(t) = (t + 1)(t + 2)/2

      ¢x
y
≤ = ¢0 1

2 3
≤t¢1

0
≤ mod 5
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Figure 11.19 Pi Step Function

Z[0, 4]

x 5 0 x 5 1 x 5 2

(a) Lane position at start of step

(b) Lane position after permutation

x 5 3 x 5 4

Z[0, 3]

Z[0, 2]

Z[0, 1]

Z[0, 0]

y 5 1

y 5 0

y 5 2

y 5 3

y 5 4 Z[1, 4]

Z[1, 3]

Z[1, 2]

Z[1, 1]

Z[1, 0]

Z[2, 4]

Z[2, 3]

Z[2, 2]

Z[2, 1]

Z[2, 0]

Z[3, 4]

Z[3, 3]

Z[3, 2]

Z[3, 1]

Z[3, 0]

Z[4, 4]

row 0row 3
row 1

row 4
row 2

row 2

row 4

row 1

row 3

Z[4, 3]

Z[4, 2]

Z[4, 1]

Z[4, 0]

Z[2, 0]

x 5 0 x 5 1 x 5 2 x 5 3 x 5 4

Z[4, 0]

Z[1, 0]

Z[3, 0]

Z[0, 0]

y 5 1

y 5 0

y 5 2

y 5 3

y 5 4 Z[3, 1]

Z[0, 1]

Z[2, 1]

Z[4, 1]

Z[1, 1]

Z[4, 2]

Z[1, 2]

Z[3, 2]

Z[0, 2]

Z[2, 2]

Z[0, 3]

Z[2, 3]

Z[4, 3]

Z[1, 3]

Z[3, 3]

Z[1, 4]

Z[3, 4]

Z[0, 4]

Z[2, 4]

Z[4, 4]

the new y position is determined by (2x + 3y) mod 5. Figure 11.19 helps in visual-
izing this permutation. Lanes that are along the same diagonal (increasing in y value, 
going from left to right) prior to p are arranged on the same row in the matrix after 
p is executed. Note that the position of L[0, 0] is unchanged.

Thus the p step is a permutation of lanes: The lanes move position within the 
5 * 5 matrix. The r step is a permutation of bits: Bits within a lane are rotated. Note 
that the p step matrix positions are calculated in the same way that, for the r step, 
the one-dimensional sequence of rotation constants is mapped to the lanes of the 
matrix.

chi SteP function The x function is defined as follows:

  x: a[x] d a[x] ⊕ ((a[x + 1] ⊕ 1) AND a[x + 2])   (11.4)

This function operates to update each bit based on its current value and the 
value of the corresponding bit position in the next two lanes in the same row. The 
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Round
Constant 

 (hexadecimal)
Number 
of 1 bits

0 0000000000000001 1

1 0000000000008082 3

2 800000000000808A 5

3 8000000080008000 3

4 000000000000808B 5

5 0000000080000001 2

6 8000000080008081 5

7 8000000000008009 4

8 000000000000008A 3

9 0000000000000088 2

10 0000000080008009 4

11 000000008000000A 3

Table 11.8 Round Constants in SHA-3

Round
Constant 

 (hexadecimal)
Number 
of 1 bits

12 000000008000808B 6

13 800000000000008B 5

14 8000000000008089 5

15 8000000000008003 4

16 8000000000008002 3

17 8000000000000080 2

18 000000000000800A 3

19 800000008000000A 4

20 8000000080008081 5

21 8000000000008080 3

22 0000000080000001 2

23 8000000080008008 4

operation is more clearly seen if we consider a single bit a[x, y, z] and write out the 
Boolean expression:

 a[x, y, z] d a[x, y, z] ⊕ (NOT(a[x + 1, y, z])) AND (a[x + 2, y, z]) 

Figure 11.18b illustrates the operation of the x function on the bits of the lane 
L[3, 2]. This is the only one of the step functions that is a nonlinear mapping. Without 
it, the SHA-3 round function would be linear.

iota SteP function The i function is defined as follows:

  i: a d a ⊕ RC[ir]   (11.5)

This function combines an array element with a round constant that differs for 
each round. It breaks up any symmetry induced by the other four step functions. In 
fact, Equation 11.5 is somewhat misleading. The round constant is applied only to 
the first lane of the internal state array. We express this is as follows:

 L[0, 0] d L[0, 0] ⊕ RC[ir] 0 … ir … 23 

Table 11.8 lists the 24 64-bit round constants. Note that the Hamming weight, 
or number of 1 bits, in the round constants ranges from 1 to 6. Most of the bit posi-
tions are zero and thus do not change the corresponding bits in L[0, 0]. If we take 
the cumulative OR of all 24 round constants, we get

 RC[0] OR RC[1] OR c OR RC[23] = 800000008000808B 

Thus, only 7 bit positions are active and can affect the value of L[0, 0]. 
Of course, from round to round, the permutations and substitutions propagate the 
effects of the i function to all of the lanes and all of the bit positions in the matrix. 
It is easily seen that the disruption diffuses through u and x to all lanes of the state 
after a single round.
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 11.6 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

big endian
compression function
cryptographic hash  

function

hash code
hash function
hash value
little endian

message authentication code 
(MAC)

message digest

Key Terms 

Review Questions 
 11.1 What characteristics are needed in a secure hash function?
 11.2 Alice sends Bob a message with an attached hash value. If the message digest is sent 

in a secure fashion, then how would Bob know if there was a possible man-in-the-
middle attack?

 11.3 What is the role of a compression function in a hash function?
 11.4 How safe is it to use a hash function without encryption in terms of integrity?
 11.5 What basic arithmetical and logical functions are used in SHA?
 11.6 Define a collision and explain how to deal with collision attacks.
 11.7 Define the term sponge construction.
 11.8 Summarise the five main steps of SHA-512 and its main functions.
 11.9 List and briefly describe the step functions that comprise the iteration function f.

Problems 
 11.1 The high-speed transport protocol XTP (Xpress Transfer Protocol) uses a 32-bit  checksum 

function defined as the concatenation of two 16-bit functions: XOR and RXOR, defined 
in Section 11.4 as “two simple hash functions” and illustrated in Figure 11.5.
a. Will this checksum detect all errors caused by an odd number of error bits?  Explain.
b. Will this checksum detect all errors caused by an even number of error bits? If not, 

characterize the error patterns that will cause the checksum to fail.
c. Comment on the effectiveness of this function for use as a hash function for 

 authentication.
 11.2 a. A number of proposals have been made for hash functions based on using a cipher 

block chaining technique but without using the secret key. One example, proposed 
in [DAVI89], is as follows. Divide a message M into fixed-size blocks M1, M2, . . ., MN 
and use a symmetric encryption system such as DES to compute the hash code H as

  H0 = initial value

  Hi = Hi- 1 ⊕ E(Mi, Hi- 1)

  H = HN

Assume that DES is used as the encryption algorithm. Recall the  complementarity 
property of DES (Problem 4.14): If Y = E(K, X), then Y′ = E(K′, X′). Use this 
property to show how a message consisting of blocks M1, M2, c , MN can be 
altered without altering its hash code.
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b. A variation of the scheme above is proposed in [MEYE88], with the following 
formula:

 Hi = Mi ⊕ E(Hi- 1, Mi) 

Show that a similar attack that of Problem 11.2a will succeed against this scheme.

 11.3 a. Consider the following hash function. Messages are in the form of a sequence of 

numbers in Zn, M = (a1, a2, c  at). The hash value h is calculated as ¢at

i = 1
ai≤ for 

some predefined value n. Does this hash function satisfy any of the requirements 
for a hash function listed in Table 11.1? Explain your answer.

b. Repeat part (a) for the hash function h = ¢at

i = 1
(ai)

2≤ mod n.

c. Calculate the hash function of part (b) for M = (189, 632, 900, 722, 349) and 
n = 989.

 11.4 For a message digest where hash functions are used to provide message authentica-
tion and integrity, what is the most appropriate way to protect the hash values?

 11.5 Encryption assists in providing confidentiality to the data being sent from party A to 
party B. However, in recent years, there is an interest in avoiding encryption depend-
ing on the application. Why?

 11.6 Suppose H(m) is a collision-resistant hash function that maps a message of arbitrary 
bit length into an n-bit hash value. Is it true that, for all messages x, x′ with x ≠ x′, 
we have H(x) ≠ H(x′) Explain your answer.

 11.7 Given the rotation values used in SHA-3 in Table 11.7, if x = 3 and y = 2, how many 
bit shifts are necessary for a rotation and how random can this operation be?

 11.8 For SHA-512, show the equations for the values of W16, W18, W23, and W31.
 11.9 State the value of the padding field in SHA-512 if the length of the message is

a. 2942 bits.
b. 2943 bits.
c. 2944 bits.

 11.10 State the value of the length field in SHA-512 if the length of the message is
a. 2942 bits.
b. 2943 bits.
c. 2944 bits.

 11.11 Suppose a1a2a3a4 are the 4 bytes in a 32-bit word. Each ai can be viewed as an integer 
in the range 0 to 255, represented in binary. In a big-endian  architecture, this word rep-
resents the integer

 a12
24 + a22

16 + a32
8 + a4 

In a little-endian architecture, this word represents the integer

 a42
24 + a32

16 + a22
8 + a1 

a. Some hash functions, such as MD5, assume a little-endian architecture. It is impor-
tant that the message digest be independent of the underlying architecture. There-
fore, to perform the modulo 2 addition operation of MD5 or RIPEMD-160 on 
a big-endian architecture, an adjustment must be made. Suppose X = x1 x2 x3 x4 
and Y = y1 y2 y3 y4. Show how the MD5 addition operation (X + Y) would be 
carried out on a big-endian machine.

b. SHA assumes a big-endian architecture. Show how the operation (X + Y) for 
SHA would be carried out on a little-endian machine.
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 11.12 This problem introduces a hash function similar in spirit to SHA that operates on let-
ters instead of binary data. It is called the toy tetragraph hash (tth).6 Given a message 
consisting of a sequence of letters, tth produces a hash value consisting of four letters. 
First, tth divides the message into blocks of 16 letters, ignoring spaces, punctuation, 
and capitalization. If the message length is not divisible by 16, it is padded out with 
nulls. A four-number running total is maintained that starts out with the value (0, 
0, 0, 0); this is input to the compression function for processing the first block. The 
compression function consists of two rounds.

Round 1  Get the next block of text and arrange it as a row-wise 4 * 4 block of text, 
and  convert it to numbers (A = 0, B = 1, etc.). For example, for the block 
ABCDEFGHIJKLMNOP, we have

A B C D

E F G H

I J K L

M N O P

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Then, add each column mod 26 and add the result to the running total, mod 26. In this 
example, the running total is (24, 2, 6, 10).

Round 2  Using the matrix from round 1, rotate the first row left by 1, second row left by 2, 
third row left by 3, and reverse the order of the fourth row. In our example:

B C D A

G H E F

L I J K

P O N M

1 2 3 0

6 7 4 5

11 8 9 10

15 14 13 12

Now, add each column mod 26 and add the result to the running total. The new 
running total is (5, 7, 9, 11). This running total is now the input into the first round 
of the compression function for the next block of text. After the final block is pro-
cessed, convert the final running total to letters. For example, if the message is 
 ABCDEFGHIJKLMNOP, then the hash is FHJL.
a. Draw figures comparable to Figures 11.9 and 11.10 to depict the overall tth logic 

and the compression function logic.
b. Calculate the hash function for the 22-letter message “Practice makes us perfect.”
c. To demonstrate the weakness of tth, find a message of length 32-letter that  produces 

the same hash.
 11.13 For each of the possible capacity values of SHA-3 (Table 11.5), which lanes in the 

internal 55 state matrix start out as lanes of all zeros?
 11.14 During the permutation phase in SHA-3, if a new position is determined by 12x + 3y2  

mod 5, how big is the matrix in the permutation of lanes? Illustrate your answer with 
the aid of a diagram.

6I thank William K. Mason, of the magazine staff of The Cryptogram, for providing this example.
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 11.15 Consider the state matrix as illustrated in Figure 11.16a. Now rearrange the rows and 
columns of the matrix so that L[0, 0] is in the center. Specifically, arrange the columns 
in the left-to-right order (x = 3, x = 4, x = 0, x = 1, x = 2) and arrange the rows in 
the top-to-bottom order (y = 2, y = 1, y = 0, y = 4, y = 6). This should give you 
some insight into the permutation algorithm used for the function and for permuting 
the rotation constants in the function. Using this rearranged matrix, describe the per-
mutation algorithm.

 11.16 The function only affects L[0, 0]. Section 11.6 states that the changes to L[0, 0] diffuse 
through u and to all lanes of the state after a single round.
a. Show that this is so.
b. How long before all of the bit positions in the matrix are affected by the changes 

to L[0, 0]?
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One of the most fascinating and complex areas of cryptography is that of message 
authentication and the related area of digital signatures. It would be impossible, in 
anything less than book length, to exhaust all the cryptographic functions and proto-
cols that have been proposed or implemented for message authentication and digital 
signatures. Instead, the purpose of this chapter and the next is to provide a broad 
overview of the subject and to develop a systematic means of describing the various 
approaches.

This chapter begins with an introduction to the requirements for authentica-
tion and digital signature and the types of attacks to be countered. Then the basic 
approaches are surveyed. The remainder of the chapter deals with the fundamen-
tal approach to message authentication known as the message  authentication 
code (MAC). Following an overview of this topic, the chapter looks at  security 
 considerations for MACs. This is followed by a discussion of specific MACs in two 
categories: those built from cryptographic hash functions and those built using 
a block cipher mode of  operation. Next, we look at a relatively recent approach 
known as authenticated encryption. Finally, we look at the use of cryptographic hash 
functions and MACs for pseudorandom number generation.

 12.1 MESSAGE AUTHENTICATION REQUIREMENTS

In the context of communications across a network, the following attacks can be 
identified.

1. Disclosure: Release of message contents to any person or process not possess-
ing the appropriate cryptographic key.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

◆◆ List and explain the possible attacks that are relevant to message 
 authentication.

◆◆ Define the term message authentication code.

◆◆ List and explain the requirements for a message authentication code.

◆◆ Present an overview of HMAC.

◆◆ Present an overview of CMAC.

◆◆ Explain the concept of authenticated encryption.

◆◆ Present an overview of CCM.

◆◆ Present an overview of GCM.

◆◆ Discuss the concept of key wrapping and explain its use.

◆◆ Understand how a hash function or a message authentication code can be 
used for pseudorandom number generation.
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2. Traffic analysis: Discovery of the pattern of traffic between parties. In a 
connection-oriented application, the frequency and duration of connec-
tions could be determined. In either a connection-oriented or connectionless 
 environment, the number and length of messages between parties could be 
determined.

3. Masquerade: Insertion of messages into the network from a fraudulent source. 
This includes the creation of messages by an opponent that are purported to 
come from an authorized entity. Also included are fraudulent acknowledg-
ments of message receipt or nonreceipt by someone other than the message 
recipient.

4. Content modification: Changes to the contents of a message, including inser-
tion, deletion, transposition, and modification.

5. Sequence modification: Any modification to a sequence of messages between 
parties, including insertion, deletion, and reordering.

6. Timing modification: Delay or replay of messages. In a connection-oriented 
application, an entire session or sequence of messages could be a replay of 
some previous valid session, or individual messages in the sequence could be 
delayed or replayed. In a connectionless application, an individual message 
(e.g., datagram) could be delayed or replayed.

7. Source repudiation: Denial of transmission of message by source.

8. Destination repudiation: Denial of receipt of message by destination.

Measures to deal with the first two attacks are in the realm of message 
confidentiality and are dealt with in Part One. Measures to deal with items 
(3) through (6) in the foregoing list are generally regarded as message authentica-
tion. Mechanisms for dealing specifically with item (7) come under the heading of 
digital signatures. Generally, a digital signature technique will also counter some 
or all of the attacks listed under items (3) through (6). Dealing with item (8) may 
require a combination of the use of digital signatures and a protocol designed to 
counter this attack.

In summary, message authentication is a procedure to verify that received 
messages come from the alleged source and have not been altered. Message 
authentication may also verify sequencing and timeliness. A digital signature is an 
authentication technique that also includes measures to counter repudiation by the 
source.

 12.2 MESSAGE AUTHENTICATION FUNCTIONS

Any message authentication or digital signature mechanism has two levels of func-
tionality. At the lower level, there must be some sort of function that produces an 
authenticator: a value to be used to authenticate a message. This lower-level func-
tion is then used as a primitive in a higher-level authentication protocol that enables 
a receiver to verify the authenticity of a message.

This section is concerned with the types of functions that may be used to pro-
duce an authenticator. These may be grouped into three classes.
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◆■ Hash function: A function that maps a message of any length into a  fixed-length 
hash value, which serves as the authenticator

◆■ Message encryption: The ciphertext of the entire message serves as its 
authenticator

◆■ Message authentication code (MAC): A function of the message and a secret 
key that produces a fixed-length value that serves as the authenticator

Hash functions, and how they may serve for message authentication, are dis-
cussed in Chapter 11. The remainder of this section briefly examines the remaining 
two topics. The remainder of the chapter elaborates on the topic of MACs.

Message Encryption

Message encryption by itself can provide a measure of authentication. The analysis 
differs for symmetric and public-key encryption schemes.

Symmetric encryption Consider the straightforward use of symmetric encryption 
(Figure 12.1a). A message M transmitted from source A to destination B is encrypted 
using a secret key K shared by A and B. If no other party knows the key, then confi-
dentiality is provided: No other party can recover the plaintext of the message.

Figure 12.1 Basic Uses of Message Encryption

Destination BSource A

M

K K

E

(a) Symmetric encryption: confidentiality and authentication

D M

PUb

(b) Public-key encryption: confidentiality

E(K, M)

M E D M

E(PUb, M)

E(PRa, M) E(PRa, M)E(PUb, E(PRa, M))

M E D M

(c) Public-key encryption: authentication and signature

(d) Public-key encryption: confidentiality, authentication, and signature

E D

PRb

PRa

M E D M

E(PRa, M)

PRa

PUa

PUaPUb PRb
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In addition, B is assured that the message was generated by A. Why? The mes-
sage must have come from A, because A is the only other party that possesses K and 
therefore the only other party with the information necessary to construct cipher-
text that can be decrypted with K. Furthermore, if M is recovered, B knows that 
none of the bits of M have been altered, because an opponent that does not know K 
would not know how to alter bits in the ciphertext to produce the desired changes 
in the plaintext.

So we may say that symmetric encryption provides authentication as well as 
confidentiality. However, this flat statement needs to be qualified. Consider exactly 
what is happening at B. Given a decryption function D and a secret key K, the 
destination will accept any input X and produce output Y = D(K, X). If X is the 
 ciphertext of a legitimate message M produced by the corresponding encryption 
function, then Y is some plaintext message M. Otherwise, Y will likely be a meaning-
less sequence of bits. There may need to be some automated means of determining 
at B whether Y is legitimate plaintext and therefore must have come from A.

The implications of the line of reasoning in the preceding paragraph are pro-
found from the point of view of authentication. Suppose the message M can be any 
arbitrary bit pattern. In that case, there is no way to determine automatically, at the 
destination, whether an incoming message is the ciphertext of a legitimate message. 
This conclusion is incontrovertible: If M can be any bit pattern, then regardless of 
the value of X, the value Y = D(K, X) is some bit pattern and therefore must be 
accepted as authentic plaintext.

Thus, in general, we require that only a small subset of all possible bit patterns 
be considered legitimate plaintext. In that case, any spurious ciphertext is unlikely to 
produce legitimate plaintext. For example, suppose that only one bit pattern in 106 
is legitimate plaintext. Then the probability that any randomly chosen bit pattern, 
treated as ciphertext, will produce a legitimate plaintext message is only 10-6.

For a number of applications and encryption schemes, the desired conditions 
prevail as a matter of course. For example, suppose that we are transmitting English-
language messages using a Caesar cipher with a shift of one (K = 1). A sends the 
following legitimate ciphertext:

nbsftfbupbutboeepftfbupbutboemjuumfmbnctfbujwz

B decrypts to produce the following plaintext:

mareseatoatsanddoeseatoatsandlittlelambseativy

A simple frequency analysis confirms that this message has the profile of ordinary 
English. On the other hand, if an opponent generates the following random se-
quence of letters:

zuvrsoevgqxlzwigamdvnmhpmccxiuureosfbcebtqxsxq

this decrypts to

ytuqrndufpwkyvhfzlcumlgolbbwhttqdnreabdaspwrwp

which does not fit the profile of ordinary English.
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It may be difficult to determine automatically if incoming ciphertext decrypts 
to intelligible plaintext. If the plaintext is, say, a binary object file or digitized 
X-rays, determination of properly formed and therefore authentic plaintext may 
be difficult. Thus, an opponent could achieve a certain level of disruption simply by 
issuing messages with random content purporting to come from a legitimate user.

One solution to this problem is to force the plaintext to have some struc-
ture that is easily recognized but that cannot be replicated without recourse to the 
encryption function. We could, for example, append an error-detecting code, also 
known as a frame check sequence (FCS) or checksum, to each message before 
encryption, as illustrated in Figure 12.2a. A prepares a plaintext message M and then 
provides this as input to a function F that produces an FCS. The FCS is appended to 
M and the entire block is then encrypted. At the destination, B decrypts the incom-
ing block and treats the results as a message with an appended FCS. B applies the 
same function F to attempt to reproduce the FCS. If the calculated FCS is equal to 
the incoming FCS, then the message is considered authentic. It is unlikely that any 
random sequence of bits would exhibit the desired relationship.

Note that the order in which the FCS and encryption functions are per-
formed is critical. The sequence illustrated in Figure 12.2a is referred to in [DIFF79] 
as  internal error control, which the authors contrast with external error control 
(Figure 12.2b). With internal error control, authentication is provided because an 
opponent would have difficulty generating ciphertext that, when decrypted, would 
have valid error control bits. If instead the FCS is the outer code, an opponent can 
construct messages with valid error-control codes. Although the opponent cannot 
know what the decrypted plaintext will be, he or she can still hope to create confu-
sion and disrupt operations.

Figure 12.2 Internal and External Error Control

(b) External error control

Destination BSource A

K K

M | |

F

(a) Internal error control

MD
F

Compare

EM

F(M) F(M)
E(K, [M || F(M)])

M | |E
D

K

F

Compare

K

F

E(K, M)

F(E(K, M))

E(K, M)

M

M12_STAL7484_08_GE_C12.indd   383 20/04/22   13:55



384  ChAPteR 12 / MessAge AuthentiCAtion Codes

An error-control code is just one example; in fact, any sort of structuring 
added to the transmitted message serves to strengthen the authentication capability. 
Such structure is provided by the use of a communications architecture consisting 
of layered protocols. As an example, consider the structure of messages transmit-
ted using the TCP/IP protocol architecture. Figure 12.3 shows the format of a TCP 
segment, illustrating the TCP header. Now suppose that each pair of hosts shared a 
unique secret key, so that all exchanges between a pair of hosts used the same key, 
regardless of application. Then we could simply encrypt all of the datagram except 
the IP header. Again, if an opponent substituted some arbitrary bit pattern for the 
encrypted TCP segment, the resulting plaintext would not include a meaningful 
header. In this case, the header includes not only a checksum (which covers the 
header) but also other useful information, such as the sequence number. Because 
successive TCP segments on a given connection are numbered sequentially, encryp-
tion assures that an opponent does not delay, misorder, or delete any segments.

public-Key encryption The straightforward use of public-key encryption 
(Figure 12.1b) provides confidentiality but not authentication. The source (A) uses 
the public key PUb of the destination (B) to encrypt M. Because only B has the cor-
responding private key PRb, only B can decrypt the message. This scheme provides 
no authentication, because any opponent could also use B’s public key to encrypt a 
message and claim to be A.

To provide authentication, A uses its private key to encrypt the message, and B 
uses A’s public key to decrypt (Figure 12.1c). This provides authentication using the 
same type of reasoning as in the symmetric encryption case: The message must have 
come from A because A is the only party that possesses PRa and therefore the only 
party with the information necessary to construct ciphertext that can be decrypted 
with PUa. Again, the same reasoning as before applies: There must be some internal 
structure to the plaintext so that the receiver can distinguish between well-formed 
plaintext and random bits.

Figure 12.3 TCP Segment
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Assuming there is such structure, then the scheme of Figure 12.1c does pro-
vide authentication. It also provides what is known as digital signature.1 Only A 
could have constructed the ciphertext because only A possesses PRa. Not even B, 
the recipient, could have constructed the ciphertext. Therefore, if B is in possession 
of the ciphertext, B has the means to prove that the message must have come from 
A. In effect, A has “signed” the message by using its private key to encrypt. Note 
that this scheme does not provide confidentiality. Anyone in possession of A’s public 
key can decrypt the ciphertext.

To provide both confidentiality and authentication, A can encrypt M first using 
its private key, which provides the digital signature, and then using B’s public key, 
which provides confidentiality (Figure 12.1d). The disadvantage of this approach is 
that the public-key algorithm, which is complex, must be exercised four times rather 
than two in each communication.

Message Authentication Code

An alternative authentication technique involves the use of a secret key to generate 
a small fixed-size block of data, known as a cryptographic checksum or MAC, that is 
appended to the message. This technique assumes that two communicating parties, 
say A and B, share a common secret key K. When A has a message to send to B, it 
calculates the MAC as a function of the message and the key:

MAC = C(K, M)

where

 M    = input message
 C     = MAC function
 K    = shared secret key
 MAC = message authentication code

The message plus MAC are transmitted to the intended recipient. The recipient 
performs the same calculation on the received message, using the same secret key, 
to generate a new MAC. The received MAC is compared to the calculated MAC 
(Figure 12.4a). If we assume that only the receiver and the sender know the identity 
of the secret key, and if the received MAC matches the calculated MAC, then

1. The receiver is assured that the message has not been altered. If an attacker al-
ters the message but does not alter the MAC, then the receiver’s calculation of 
the MAC will differ from the received MAC. Because the attacker is assumed 
not to know the secret key, the attacker cannot alter the MAC to correspond 
to the alterations in the message.

2. The receiver is assured that the message is from the alleged sender. Because 
no one else knows the secret key, no one else could prepare a message with a 
proper MAC.

1This is not the way in which digital signatures are constructed, as we shall see, but the principle is the 
same.
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3. If the message includes a sequence number (such as is used with HDLC, X.25, 
and TCP), then the receiver can be assured of the proper sequence because an 
attacker cannot successfully alter the sequence number.

A MAC function is similar to encryption. One difference is that the MAC 
algorithm need not be reversible, as it must be for decryption. In general, the MAC 
function is a many-to-one function. The domain of the function consists of messages 
of some arbitrary length, whereas the range consists of all possible MACs and all 
possible keys. If an n-bit MAC is used, then there are 2n possible MACs, whereas 
there are N possible messages with N W 2n. Furthermore, with a k-bit key, there are 
2k possible keys.

For example, suppose that we are using 100-bit messages and a 10-bit MAC. 
Then, there are a total of 2100 different messages but only 210 different MACs. So, on 
average, each MAC value is generated by a total of 2100/210 = 290 different messages. 
If a 5-bit key is used, then there are 25 = 32 different mappings from the set of mes-
sages to the set of MAC values.

It turns out that, because of the mathematical properties of the authentication 
function, it is less vulnerable to being broken than encryption.

The process depicted in Figure 12.4a provides authentication but not confiden-
tiality, because the message as a whole is transmitted in the clear. Confidentiality can 
be provided by performing message encryption either after (Figure 12.4b) or before 
(Figure 12.4c) the MAC algorithm. In both these cases, two separate keys are needed, 

Figure 12.4 Basic Uses of Message Authentication code (MAC)
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each of which is shared by the sender and the receiver. In the first case, the MAC is 
calculated with the message as input and is then concatenated to the message. The 
entire block is then encrypted. In the second case, the message is encrypted first. 
Then the MAC is calculated using the resulting ciphertext and is concatenated to the 
ciphertext to form the transmitted block. Typically, it is preferable to tie the authenti-
cation directly to the plaintext, so the method of Figure 12.4b is used.

Because symmetric encryption will provide authentication and because it is 
widely used with readily available products, why not simply use this instead of a 
separate message authentication code? [DAVI89] suggests three situations in which 
a message authentication code is used.

1. There are a number of applications in which the same message is broadcast to 
a number of destinations. Examples are notification to users that the network 
is now unavailable or an alarm signal in a military control center. It is cheaper 
and more reliable to have only one destination responsible for monitoring au-
thenticity. Thus, the message must be broadcast in plaintext with an associated 
message authentication code. The responsible system has the secret key and 
performs authentication. If a violation occurs, the other destination systems 
are alerted by a general alarm.

2. Another possible scenario is an exchange in which one side has a heavy load 
and cannot afford the time to decrypt all incoming messages. Authentication is 
carried out on a selective basis, messages being chosen at random for checking.

3. Authentication of a computer program in plaintext is an attractive service. 
The computer program can be executed without having to decrypt it every 
time, which would be wasteful of processor resources. However, if a message 
authentication code were attached to the program, it could be checked when-
ever assurance was required of the integrity of the program.

Three other rationales may be added.

4. For some applications, it may not be of concern to keep messages secret, but 
it is important to authenticate messages. An example is the Simple Network 
Management Protocol Version 3 (SNMPv3), which separates the functions of 
confidentiality and authentication. For this application, it is usually important 
for a managed system to authenticate incoming SNMP messages, particularly 
if the message contains a command to change parameters at the managed sys-
tem. On the other hand, it may not be necessary to conceal the SNMP traffic.

5. Separation of authentication and confidentiality functions affords architec-
tural flexibility. For example, it may be desired to perform authentication at 
the application level but to provide confidentiality at a lower level, such as the 
transport layer.

6. A user may wish to prolong the period of protection beyond the time of recep-
tion and yet allow processing of message contents. With message encryption, the 
protection is lost when the message is decrypted, so the message is protected 
against fraudulent modifications only in transit but not within the target system.

Finally, note that the MAC does not provide a digital signature, because both 
sender and receiver share the same key.
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 12.3 REQUIREMENTS FOR MESSAGE AUTHENTICATION CODES

A MAC, also known as a cryptographic checksum, is generated by a function MAC 
of the form

T = MAC(K, M)

where M is a variable-length message, K is a secret key shared only by sender and re-
ceiver, and MAC(K, M) is the fixed-length authenticator, sometimes called a tag. The 
tag is appended to the message at the source at a time when the message is assumed or 
known to be correct. The receiver authenticates that message by recomputing the tag.

When an entire message is encrypted for confidentiality, using either symmet-
ric or asymmetric encryption, the security of the scheme generally depends on the 
bit length of the key. Barring some weakness in the algorithm, the opponent must 
resort to a brute-force attack using all possible keys. On average, such an attack will 
require 2(k - 1) attempts for a k-bit key. In particular, for a ciphertext-only attack, the 
opponent, given ciphertext C, performs Pi = D(Ki, C) for all possible key values Ki 
until a Pi is produced that matches the form of acceptable plaintext.

In the case of a MAC, the considerations are entirely different. In general, 
the MAC function is a many-to-one function, due to the many-to-one nature of the 
function. Using brute-force methods, how would an opponent attempt to discover 
a key? If confidentiality is not employed, the opponent has access to plaintext mes-
sages and their associated MACs. Suppose k 7 n; that is, suppose that the key size is 
greater than the MAC size. Then, given a known M1 and T1, with T1 = MAC(K, M1), 
the cryptanalyst can perform Ti = MAC(Ki, M1) for all possible key values ki. At 
least one key is guaranteed to produce a match of Ti = T1. Note that a total of 2k 
tags will be produced, but there are only 2n 6 2k different tag values. Thus, a number 
of keys will produce the correct tag and the opponent has no way of knowing which 
is the correct key. On average, a total of 2k/2n = 2(k - n) keys will produce a match. 
Thus, the opponent must iterate the attack.

◆■ Round 1

Given: M1, T1 = MAC(K, M1)

Compute Ti = MAC(Ki, M1) for all 2k keys

Number of matches  L  2(k - n)

◆■ Round 2

Given: M2, T2 = MAC(K, M2)

Compute Ti = MAC(Ki, M2) for the 2(k - n) keys resulting from Round 1

Number of matches  L  2(k - 2 * n)

And so on. On average, a rounds will be needed k = a * n. For example, if an 80-
bit key is used and the tag is 32 bits, then the first round will produce about 248 pos-
sible keys. The second round will narrow the possible keys to about 216 possibilities. 
The third round should produce only a single key, which must be the one used by 
the sender.

M12_STAL7484_08_GE_C12.indd   388 20/04/22   13:55



12.3 / RequiReMents FoR MessAge AuthentiCAtion Codes 389

If the key length is less than or equal to the tag length, then it is likely that a 
first round will produce a single match. It is possible that more than one key will 
produce such a match, in which case the opponent would need to perform the same 
test on a new (message, tag) pair.

Thus, a brute-force attempt to discover the authentication key is no less effort 
and may be more effort than that required to discover a decryption key of the same 
length. However, other attacks that do not require the discovery of the key are 
possible.

Consider the following MAC algorithm. Let M = (X1 }X2 } c }Xm) be a 
message that is treated as a concatenation of 64-bit blocks Xi. Then define

∆(M) = X1 ⊕ X2 ⊕ c ⊕ Xm

MAC(K, M) = E(K, ∆(M))

where ⊕  is the exclusive-OR (XOR) operation and the encryption algorithm is 
DES in electronic codebook mode. Thus, the key length is 56 bits, and the tag length 
is 64 bits. If an opponent observes {M }MAC(K, M)}, a brute-force attempt to de-
termine K will require at least 256 encryptions. But the opponent can attack the sys-
tem by replacing X1 through Xm - 1 with any desired values Y1 through Ym - 1 and 
replacing Xm with Ym, where Ym is calculated as

Ym = Y1 ⊕ Y2 ⊕ g ⊕ Ym - 1 ⊕ ∆(M)

The opponent can now concatenate the new message, which consists of Y1 
through Ym, using the original tag to form a message that will be accepted as authen-
tic by the receiver. With this tactic, any message of length 64 * (m - 1) bits can be 
fraudulently inserted.

Thus, in assessing the security of a MAC function, we need to consider the 
types of attacks that may be mounted against it. With that in mind, let us state 
the requirements for the function. Assume that an opponent knows the MAC 
 function but does not know K. Then the MAC function should satisfy the following 
requirements.

1. If an opponent observes M and MAC(K, M), it should be computationally 
infeasible for the opponent to construct a message M′ such that

MAC(K, M′) = MAC(K, M)

2. MAC(K, M) should be uniformly distributed in the sense that for randomly 
chosen messages, M and M′, the probability that MAC(K, M) = MAC(K, M′) 
is 2-n, where n is the number of bits in the tag.

3. Let M′ be equal to some known transformation on M. That is, M′ = f(M). For 
example, f may involve inverting one or more specific bits. In that case,

Pr [MAC(K, M) = MAC(K, M′)] = 2-n

The first requirement speaks to the earlier example, in which an opponent is 
able to construct a new message to match a given tag, even though the opponent 
does not know and does not learn the key. The second requirement deals with the 
need to thwart a brute-force attack based on chosen plaintext. That is, if we assume 
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that the opponent does not know K but does have access to the MAC function and 
can present messages for MAC generation, then the opponent could try various 
messages until finding one that matches a given tag. If the MAC function exhibits 
uniform distribution, then a brute-force method would require, on average, 2(n - 1) 
attempts before finding a message that fits a given tag.

The final requirement dictates that the authentication algorithm should not be 
weaker with respect to certain parts or bits of the message than others. If this were 
not the case, then an opponent who had M and MAC(K, M) could attempt varia-
tions on M at the known “weak spots” with a likelihood of early success at produc-
ing a new message that matched the old tags.

 12.4 SECURITY OF MACs

Just as with encryption algorithms and hash functions, we can group attacks on 
MACs into two categories: brute-force attacks and cryptanalysis.

Brute-Force Attacks

A brute-force attack on a MAC is a more difficult undertaking than a brute-force at-
tack on a hash function because it requires known message-tag pairs. Let us see why 
this is so. To attack a hash code, we can proceed in the following way. Given a fixed 
message x with n-bit hash code h = H(x), a brute-force method of finding a colli-
sion is to pick a random bit string y and check if H(y) = H(x). The attacker can do 
this repeatedly off line. Whether an off-line attack can be used on a MAC algorithm 
depends on the relative size of the key and the tag.

To proceed, we need to state the desired security property of a MAC algo-
rithm, which can be expressed as follows.

◆■ Computation resistance: Given one or more text-MAC pairs [xi, MAC(K, xi)], 
it is computationally infeasible to compute any text-MAC pair [x, MAC(K, x)] 
for any new input x ≠ xi.

In other words, the attacker would like to come up with the valid MAC code for a 
given message x. There are two lines of attack possible: attack the key space and at-
tack the MAC value. We examine each of these in turn.

If an attacker can determine the MAC key, then it is possible to generate a 
valid MAC value for any input x. Suppose the key size is k bits and that the attacker 
has one known text-tag pair. Then the attacker can compute the n-bit tag on the 
known text for all possible keys. At least one key is guaranteed to produce the cor-
rect tag, namely, the valid key that was initially used to produce the known text-tag 
pair. This phase of the attack takes a level of effort proportional to 2k (that is, one 
operation for each of the 2k possible key values). However, as was described earlier, 
because the MAC is a many-to-one mapping, there may be other keys that produce 
the correct value. Thus, if more than one key is found to produce the correct value, 
additional text-tag pairs must be tested. It can be shown that the level of effort drops 
off rapidly with each additional text-MAC pair and that the overall level of effort is 
roughly 2k [MENE97].
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An attacker can also work on the tag without attempting to recover the 
key. Here, the objective is to generate a valid tag for a given message or to find 
a  message that matches a given tag. In either case, the level of effort is compa-
rable to that for attacking the one-way or weak collision-resistant property of a 
hash code, or 2n. In the case of the MAC, the attack cannot be conducted off line 
 without further input; the attacker will require chosen text-tag pairs or knowledge 
of the key.

To summarize, the level of effort for brute-force attack on a MAC algorithm 
can be expressed as min(2k, 2n). The assessment of strength is similar to that for 
symmetric encryption algorithms. It would appear reasonable to require that the 
key length and tag length satisfy a relationship such as min(k, n) Ú N, where N is 
perhaps in the range of 128 bits.

Cryptanalysis

There is much more variety in the structure of MACs than in hash functions, so it 
is difficult to generalize about the cryptanalysis of MACs. As with encryption algo-
rithms and hash functions, cryptanalytic attacks on MAC algorithms seek to exploit 
some property of the algorithm to perform some attack other than an exhaustive 
search. The way to measure the resistance of a MAC algorithm to cryptanalysis is to 
compare its strength to the effort required for a brute-force attack. That is, an ideal 
MAC algorithm will require a cryptanalytic effort greater than or equal to the brute-
force effort.

 12.5 MACs BASED ON HASH FUNCTIONS: HMAC

Later in this chapter, we look at examples of a MAC based on the use of a 
 symmetric block cipher. This has traditionally been the most common approach to 
constructing a MAC. In recent years, there has been increased interest in develop-
ing a MAC derived from a cryptographic hash function. The motivations for this 
interest are

1. Cryptographic hash functions such as MD5 and SHA generally execute faster 
in software than symmetric block ciphers such as DES.

2. Library code for cryptographic hash functions is widely available.

With the development of AES and the more widespread availability of code 
for encryption algorithms, these considerations are less significant, but hash-based 
MACs continue to be widely used.

A hash function such as SHA was not designed for use as a MAC and can-
not be used directly for that purpose, because it does not rely on a secret key. 
There have been a number of proposals for the incorporation of a secret key into 
an existing hash algorithm. The approach that has received the most support is 
HMAC [BELL96a, BELL96b]. HMAC has been issued as RFC 2104, has been 
chosen as the mandatory-to-implement MAC for IP security, and is used in other 
Internet protocols, such as SSL. HMAC has also been issued as a NIST standard 
(FIPS 198).
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HMAC Design Objectives

RFC 2104 lists the following design objectives for HMAC.

◆■ To use, without modifications, available hash functions. In particular, to use 
hash functions that perform well in software and for which code is freely and 
widely available.

◆■ To allow for easy replaceability of the embedded hash function in case faster 
or more secure hash functions are found or required.

◆■ To preserve the original performance of the hash function without incurring a 
significant degradation.

◆■ To use and handle keys in a simple way.

◆■ To have a well understood cryptographic analysis of the strength of the authen-
tication mechanism based on reasonable assumptions about the embedded 
hash function.

The first two objectives are important to the acceptability of HMAC. HMAC 
treats the hash function as a “black box.” This has two benefits. First, an existing imple-
mentation of a hash function can be used as a module in implementing HMAC. In 
this way, the bulk of the HMAC code is prepackaged and ready to use without modi-
fication. Second, if it is ever desired to replace a given hash function in an HMAC 
implementation, all that is required is to remove the existing hash function module 
and drop in the new module. This could be done if a faster hash function were desired. 
More important, if the security of the embedded hash function were compromised, the 
security of HMAC could be retained simply by replacing the embedded hash function 
with a more secure one (e.g., replacing SHA-2 with SHA-3).

The last design objective in the preceding list is, in fact, the main advantage 
of HMAC over other proposed hash-based schemes. HMAC can be proven secure 
provided that the embedded hash function has some reasonable cryptographic 
strengths. We return to this point later in this section, but first we examine the struc-
ture of HMAC.

HMAC Algorithm

Figure 12.5 illustrates the overall operation of HMAC. Define the following terms.

H = embedded hash function (e.g., MD5, SHA-1, RIPEMD-160)
IV = initial value input to hash function
M = message input to HMAC (including the padding specified in the embedded 

hash function)
Yi = i th block of M, 0 … i … (L - 1)
L = number of blocks in M
b = number of bits in a block
n = length of hash code produced by embedded hash function
K = secret key; recommended length is Ú n; if key length is greater than b, the 

key is input to the hash function to produce an n-bit key
K+ = K padded with zeros on the right so that the result is b bits in length
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ipad  = 00110110 (36 in hexadecimal) repeated b/8 times
opad = 01011100 (5C in hexadecimal) repeated b/8 times

Then HMAC can be expressed as

 HMAC(K, M) = H[(K+ ⊕ opad) }H[(K+ ⊕ ipad) }M]] 

We can describe the algorithm as follows.

1. Append zeros to the left end of K to create a b-bit string K+ (e.g., if K is of 
length 160 bits and b = 512, then K will be appended with 44 zeroes).

2. XOR (bitwise exclusive-OR) K+ with ipad to produce the b-bit block Si.

3. Append M to Si.

4. Apply H to the stream generated in step 3.

5. XOR K+ with opad to produce the b-bit block So.

6. Append the hash result from step 4 to So.

7. Apply H to the stream generated in step 6 and output the result.

Note that the XOR with ipad results in flipping one-half of the bits of K. 
Similarly, the XOR with opad results in flipping one-half of the bits of K, using a 

Figure 12.5 HMAC Structure
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different set of bits. In effect, by passing Si and So through the compression function 
of the hash algorithm, we have pseudorandomly generated two keys from K.

HMAC should execute in approximately the same time as the embedded hash 
function for long messages. HMAC adds three executions of the hash compression 
function (for Si, So, and the block produced from the inner hash).

A more efficient implementation is possible, as shown in Figure 12.6. Two 
quantities are precomputed:

f(IV, (K+ ⊕ ipad))

f(IV, (K+ ⊕ opad))

where f(cv, block) is the compression function for the hash function, which takes as 
arguments a chaining variable of n bits and a block of b bits and produces a chaining 
variable of n bits. These quantities only need to be computed initially and every time 
the key changes. In effect, the precomputed quantities substitute for the initial value 
(IV) in the hash function. With this implementation, only one additional instance of 
the compression function is added to the processing normally produced by the hash 

Figure 12.6 Efficient Implementation of HMAC
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function. This more efficient implementation is especially worthwhile if most of the 
messages for which a MAC is computed are short.

Security of HMAC

The security of any MAC function based on an embedded hash function depends 
in some way on the cryptographic strength of the underlying hash function. The 
appeal of HMAC is that its designers have been able to prove an exact relation-
ship between the strength of the embedded hash function and the strength of 
HMAC.

The security of a MAC function is generally expressed in terms of the prob-
ability of successful forgery with a given amount of time spent by the forger and 
a given number of message-tag pairs created with the same key. In essence, it is 
proved in [BELL96a] that for a given level of effort (time, message–tag pairs) on 
messages generated by a legitimate user and seen by the attacker, the probability 
of successful attack on HMAC is equivalent to one of the following attacks on the 
embedded hash function.

1. The attacker is able to compute an output of the compression function even 
with an IV that is random, secret, and unknown to the attacker.

2. The attacker finds collisions in the hash function even when the IV is random 
and secret.

In the first attack, we can view the compression function as equivalent to the 
hash function applied to a message consisting of a single b-bit block. For this attack, 
the IV of the hash function is replaced by a secret, random value of n bits. An attack 
on this hash function requires either a brute-force attack on the key, which is a level 
of effort on the order of 2n, or a birthday attack, which is a special case of the second 
attack, discussed next.

In the second attack, the attacker is looking for two messages M and M′ that 
produce the same hash: H(M) = H(M′). This is the birthday attack discussed in 
Chapter 11. We have shown that this requires a level of effort of 2n/2 for a hash 
length of n. On this basis, the security of MD5 is called into question, because a 
level of effort of 264 looks feasible with today’s technology. Does this mean that 
a 128-bit hash function such as MD5 is unsuitable for HMAC? The answer is no, 
because of the following argument. To attack MD5, the attacker can choose any set 
of messages and work on these off line on a dedicated computing facility to find 
a collision. Because the attacker knows the hash algorithm and the default IV, the 
attacker can generate the hash code for each of the messages that the attacker gen-
erates. However, when attacking HMAC, the attacker cannot generate message/
code pairs off line because the attacker does not know K. Therefore, the attacker 
must observe a sequence of messages generated by HMAC under the same key and 
perform the attack on these known messages. For a hash code length of 128 bits, this 
requires 264 observed blocks (272 bits) generated using the same key. On a 1-Gbps 
link, one would need to observe a continuous stream of messages with no change 
in key for about 250,000 years in order to succeed. Thus, if speed is a concern, it is 
fully acceptable to use MD5 rather than SHA-1 as the embedded hash function for 
HMAC.
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 12.6 MACs BASED ON BLOCK CIPHERS: DAA AND CMAC

In this section, we look at two MACs that are based on the use of a block cipher 
mode of operation. We begin with an older algorithm, the Data Authentication 
Algorithm (DAA), which is now obsolete. Then we examine CMAC, which is de-
signed to overcome the deficiencies of DAA.

Data Authentication Algorithm

The Data Authentication Algorithm (DAA), based on DES, has been one of the 
most widely used MACs for a number of years. The algorithm is both a FIPS pub-
lication (FIPS PUB 113) and an ANSI standard (X9.17). However, as we discuss 
subsequently, security weaknesses in this algorithm have been discovered, and it is 
being replaced by newer and stronger algorithms.

The algorithm can be defined as using the cipher block chaining (CBC) mode 
of operation of DES (Figure 6.4) with an initialization vector of zero. The data (e.g., 
message, record, file, or program) to be authenticated are grouped into contiguous 
64-bit blocks: D1, D2, c , DN. If necessary, the final block is padded on the right with 
zeroes to form a full 64-bit block. Using the DES encryption algorithm E and a secret 
key K, a data authentication code (DAC) is calculated as follows (Figure 12.7).

O1  

=  E(K, D)
O2  

=  E(K, [D2 ⊕ O1])
O3  =  E(K, [D3 ⊕ O2])#
#
#
ON = E(K, [DN ⊕ ON - 1])

Figure 12.7 Data Authentication Algorithm (FIPS PUB 113)
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The DAC consists of either the entire block ON or the leftmost M bits of the 
block, with 16 … M … 64.

Cipher-Based Message Authentication Code (CMAC)

As was mentioned, DAA has been widely adopted in government and industry. 
[BELL00] demonstrated that this MAC is secure under a reasonable set of security 
criteria, with the following restriction. Only messages of one fixed length of mn bits 
are processed, where n is the cipher block size and m is a fixed positive integer. As 
a simple example, notice that given the CBC MAC of a one-block message X, say 
T = MAC(K, X), the adversary immediately knows the CBC MAC for the two-
block message X } (X ⊕ T) since this is once again T.

Black and Rogaway [BLAC00] demonstrated that this limitation could 
be overcome using three keys: one key K of length k to be used at each step of 
the cipher block chaining and two keys of length b, where b is the cipher block 
length. This proposed construction was refined by Iwata and Kurosawa so that the 
two n-bit keys could be derived from the encryption key, rather than being pro-
vided  separately [IWAT03]. This refinement, adopted by NIST, is the Cipher-based 
Message Authentication Code (CMAC) mode of operation for use with AES and 
triple DES. It is specified in NIST Special Publication 800-38B.

First, let us define the operation of CMAC when the message is an integer mul-
tiple n of the cipher block length b. For AES, b = 128, and for triple DES, b = 64. 
The message is divided into n blocks (M1, M2, c , Mn). The algorithm makes use 
of a k-bit encryption key K and a b-bit constant, K1. For AES, the key size k is 128, 
192, or 256 bits; for triple DES, the key size is 112 or 168 bits. CMAC is calculated as 
follows (Figure 12.8).

 C1 

= E(K, M1)

 C2 

= E(K, [M2 ⊕ C1])

 C3 

= E(K, [M3 ⊕ C2])#
#
#

 Cn = E(K, [Mn ⊕ Cn - 1 ⊕ K1])

 T = MSBTlen(Cn)

where

 T    = message authentication code, also referred to as the tag

 Tlen   = bit length of T

 MSBs(X) = the s leftmost bits of the bit string X

If the message is not an integer multiple of the cipher block length, then the 
final block is padded to the right (least significant bits) with a 1 and as many 0s as 
necessary so that the final block is also of length b. The CMAC operation then pro-
ceeds as before, except that a different b-bit key K2 is used instead of K1.
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The two b-bit keys are derived from the k-bit encryption key as follows.

 L  = E(K, 0b)

 K1 = L # x

 K2 = L # x2 = (L # x) # x

where multiplication ( # ) is done in the finite field GF(2b) and x and x2 are first- and 
second-order polynomials that are elements of GF(2b). Thus, the binary represen-
tation of x consists of b - 2 zeros followed by 10; the binary representation of x2 
consists of b - 3 zeros followed by 100. The finite field is defined with respect to 
an irreducible polynomial that is lexicographically first among all such polynomials 
with the minimum possible number of nonzero terms. For the two approved block 
sizes, the polynomials are x64 + x4 + x3 + x + 1 and x128 + x7 + x2 + x + 1.

To generate K1 and K2, the block cipher is applied to the block that consists 
entirely of 0 bits. The first subkey is derived from the resulting ciphertext by a 
left shift of one bit and, conditionally, by XORing a constant that depends on the 
block size. The second subkey is derived in the same manner from the first subkey. 
This property of finite fields of the form GF(2b) was explained in the discussion of 
MixColumns in Chapter 6.

Figure 12.8 Cipher-based Message Authentication Code (CMAC)
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 12.7 AUTHENTICATED ENCRYPTION: CCM AND GCM

Authenticated encryption (AE) is a term used to describe encryption systems that 
simultaneously protect confidentiality and authenticity (integrity) of communica-
tions. Many applications and protocols require both forms of security, but until re-
cently the two services have been designed separately.

There are four common approaches to providing both confidentiality and 
encryption for a message M.

◆■ Hashing followed by encryption (H S E): First compute the cryptographic 
hash function over M as h = H(M). Then encrypt the message plus hash func-
tion: E(K, (M }h)).

◆■ Authentication followed by encryption (A S E): Use two keys. First authen-
ticate the plaintext by computing the MAC value as T = MAC(K1, M). Then 
encrypt the message plus tag: E(K2, [M }T ]). This approach is taken by the 
SSL/TLS protocols (Chapter 19).

◆■ Encryption followed by authentication (E S A): Use two keys. First encrypt 
the message to yield the ciphertext C = E(K2, M). Then authenticate the 
 ciphertext with T = MAC(K1, C) to yield the pair (C, T). This approach is 
used in the IPSec protocol (Chapter 22).

◆■ Independently encrypt and authenticate (E + A). Use two keys. Encrypt 
the message to yield the ciphertext C = E(K2, M). Authenticate the plain-
text with T = MAC(K1, M) to yield the pair (C, T). These operations can 
be  performed in either order. This approach is used by the SSH protocol 
(Chapter 19).

Both decryption and verification are straightforward for each approach. For 
H S E, A S E, and E + A, decrypt first, then verify. For E S A, verify first, then 
decrypt. There are security vulnerabilities with all of these approaches. The H S E 
approach is used in the Wired Equivalent Privacy (WEP) protocol to protect WiFi 
networks. This approach had fundamental weaknesses and led to the replacement of 
the WEP protocol. [BLAC05] and [BELL00] point out that there are security con-
cerns in each of the three encryption/MAC approaches listed above. Nevertheless, 
with proper design, any of these approaches can provide a high level of security. This 
is the goal of the two approaches discussed in this section, both of which have been 
standardized by NIST.

Counter with Cipher Block Chaining-Message 
Authentication Code

The CCM mode of operation was standardized by NIST specifically to sup-
port the security requirements of IEEE 802.11 WiFi wireless local area networks 
(Chapter 20), but can be used in any networking application requiring authenticated 
encryption. CCM is a variation of the encrypt-and-MAC approach to authenticated 
encryption. It is defined in NIST SP 800-38C.

The key algorithmic ingredients of CCM are the AES encryption algorithm 
(Chapter 6), the CTR mode of operation (Chapter 7), and the CMAC authentication 
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algorithm (Section 12.6). A single key K is used for both encryption and MAC algo-
rithms. The input to the CCM encryption process consists of three elements.

1. Data that will be both authenticated and encrypted. This is the plaintext mes-
sage P of data block.

2. Associated data A that will be authenticated but not encrypted. An example 
is a protocol header that must be transmitted in the clear for proper protocol 
operation but which needs to be authenticated.

3. A nonce N that is assigned to the payload and the associated data. This is a 
unique value that is different for every instance during the lifetime of a pro-
tocol association and is intended to prevent replay attacks and certain other 
types of attacks.

Figure 12.9 illustrates the operation of CCM. For authentication, the input 
includes the nonce, the associated data, and the plaintext. This input is formatted 
as a sequence of blocks B0 through Br. The first block contains the nonce plus some 
formatting bits that indicate the lengths of the N, A, and P elements. This is followed 
by zero or more blocks that contain A, followed by zero of more blocks that contain 
P. The resulting sequence of blocks serves as input to the CMAC algorithm, which 
produces a MAC value with length Tlen, which is less than or equal to the block 
length (Figure 12.9a).

For encryption, a sequence of counters is generated that must be independent 
of the nonce. The authentication tag is encrypted in CTR mode using the single 
counter Ctr0. The Tlen most significant bits of the output are XORed with the tag 
to produce an encrypted tag. The remaining counters are used for the CTR mode 
encryption of the plaintext (Figure 7.7). The encrypted plaintext is concatenated 
with the encrypted tag to form the ciphertext output (Figure 12.9b).

SP 800-38C defines the authentication/encryption process as follows.

1. Apply the formatting function to (N, A, P) to produce the blocks B0, B1, c , Br.

2. Set Y0 = E(K, B0).
3. For i = 1 to r, do Yi = E(K, (Bi ⊕ Yi- 1)).
4. Set T = MSBTlen(Yr).
5. Apply the counter generation function to generate the counter blocks 

Ctr0, Ctr1, c , Ctrm, where m = <Plen/128= .
6. For j = 0 to m, do Sj = E(K, Ctrj).
7. Set S = S1 }S2 } g }Sm.
8. Return C = (P ⊕ MSBPlen(S)) } (T ⊕ MSBTlen(S0)).

For decryption and verification, the recipient requires the following input: the 
ciphertext C, the nonce N, the associated data A, the key K, and the initial counter 
Ctr0. The steps are as follows.

1. If Clen … Tlen, then return INVALID.

2. Apply the counter generation function to generate the counter blocks 
Ctr0, Ctr1, c , Ctrm, where m = <Clen/128= .

3. For j = 0 to m, do Sj = E(K, Ctrj).
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4. Set S = S1 }S2 } g }Sm.

5. Set P = MSBClen - Tlen(C) ⊕ MSBClen - Tlen(S).

6. Set T = LSBTlen(C) ⊕ MSBTlen(S0).

7. Apply the formatting function to N, A, P) to produce the blocks B0, B1, c , Br.

8. Set Y0 = E(K, B0).

9. For i = 1 to r do Yi = E(K, (Bi ⊕ Yi- 1)).

10. If T ≠ MSBTlen(Yr), then return INVALID, else return P.

Figure 12.9 Counter with Cipher Block Chaining-Message Authentication Code (CCM)

(a) Authentication

(b) Encryption
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B1 B2 Br

Tag
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K CMAC
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CCM is a relatively complex algorithm. Note that it requires two complete 
passes through the plaintext, once to generate the MAC value, and once for encryp-
tion. Further, the details of the specification require a tradeoff between the length 
of the nonce and the length of the tag, which is an unnecessary restriction. Also note 
that the encryption key is used twice with the CTR encryption mode: once to gener-
ate the tag and once to encrypt the plaintext plus tag. Whether these complexities 
add to the security of the algorithm is not clear. In any case, two analyses of the 
algorithm ([JONS02] and [ROGA03]) conclude that CCM provides a high level of 
security.

Galois/Counter Mode

The GCM mode of operation, standardized by NIST in NIST SP 800-38D, is de-
signed to be parallelizable so that it can provide high throughput with low cost and 
low latency. In essence, the message is encrypted in variant of CTR mode. The re-
sulting ciphertext is multiplied with key material and message length information 
over GF(2128) to generate the authenticator tag. The standard also specifies a mode 
of operation that supplies the MAC only, known as GMAC.

The GCM mode makes use of two functions: GHASH, which is a keyed hash 
function, and GCTR, which is essentially the CTR mode with the counters deter-
mined by a simple increment by one operation.

GHASHH(X) takes a input the hash key H and a bit string X such that 
len(X) = 128m bits for some positive integer m and produces a 128-bit MAC value. 
The function may be specified as follows (Figure 12.10a).

1. Let X1, X2, c , Xm - 1, Xm denote the unique sequence of blocks such that 
X = X1 }X2 } g }Xm - 1 }Xm.

2. Let Y0 be a block of 128 zeros, designated as 0128.

3. For i = 1, c , m, let Yi = (Yi- 1 ⊕ Xi) # H, where #  designates multiplication 
in GF(2128).

4. Return Ym.

The GHASHH(X) function can be expressed as

 (X1
# Hm) ⊕ (X2

# Hm - 1) ⊕ g ⊕ (Xm - 1
# H2) ⊕ (Xm

# H) 

This formulation has desirable performance implications. If the same hash key 
is to be used to authenticate multiple messages, then the values H2, H3, c  can 
be precalculated one time for use with each message to be authenticated. Then, the 
blocks of the data to be authenticated (X1, X2, c , Xm) can be processed in paral-
lel, because the computations are independent of one another.

GCTRK(ICB, X) takes a input a secret key K and a bit string X arbitrary 
length and returns a ciphertext Y of bit length (X). The function may be specified as 
follows (Figure 12.10b).

1. If X is the empty string, then return the empty string as Y.

2. Let n = <(len(X)/128)= . That is, n is the smallest integer greater than or equal 
to (X)/128.
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3. Let X1, X2, c , Xn - 1, Xn
* denote the unique sequence of bit strings such that

X = X1 }X2 } g }Xn - 1 }Xn
*;

X1, X2, c , Xn - 1 are complete 128@bit blocks.

4. Let CB1 = ICB.

5. For, i = 2 to n let CBi = inc32(CBi- 1), where the inc32(S) function increments 
the rightmost 32 bits of S by 1 mod 232, and the remaining bits are unchanged.

6. For i = 1 to n - 1, do Yi = Xi ⊕ E(K, CBi).

7. Let Y n
* = Xn

* ⊕ MSBlen(Xn
*)(E(K, CBn)).

8. Let Y = Y1 }Y2 } c }Yn - 1 }Y n
*

9. Return Y.

Note that the counter values can be quickly generated and that the encryption 
operations can be performed in parallel.

Figure 12.10 GCM Authentication and Encryption Functions
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We can now define the overall authenticated encryption function (Figure 12.11). 
The input consists of a secret key K, an initialization vector IV, a plaintext P, and 
additional authenticated data A. The notation [x]s means the s-bit binary represen-
tation of the nonnegative integer x. The steps are as follows.

1. Let H = E(K, 0128).

2. Define a block, J0, as

If len(IV) = 96, then let J0 = IV }031 }1.

If len (IV) ≠ 96, then let s = 128<len(IV)/128= - len(IV), and let 

J0 = GHASHH(IV }0s + 64 } [len(IV)]64).

3. Let C = GCTRK(inc32(J0), P).

4. Let u = 128<len(C)/128= - len(C) and let v = 128<len(A)/128= - len(A).

5. Define a block, S, as

S = GHASHH(A }0v }C }0u } [len(A)]64 } [len(C)]64)

6. Let T = MSBt(GCTRK(J0, S)), where t is the supported tag length.

7. Return (C, T).

Figure 12.11 Galois Counter—Message Authentication Code (GCM)
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In step 1, the hash key is generated by encrypting a block of all zeros with 
the secret key K. In step 2, the pre-counter block (J0) is generated from the IV. 
In particular, when the length of the IV is 96 bits, then the padding string 031 }1 is 
appended to the IV to form the pre-counter block. Otherwise, the IV is  padded 
with the minimum number of 0 bits, possibly none, so that the length of the result-
ing string is a multiple of 128 bits (the block size); this string in turn is appended 
with 64 additional 0 bits, followed by the 64-bit representation of the length of 
the IV, and the GHASH function is applied to the resulting string to form the 
pre-counter block.

Thus, GCM is based on the CTR mode of operation and adds a MAC that 
authenticates both the message and additional data that requires only authen-
tication. The function that computes the hash uses only multiplication in a  
Galois field. This choice was made because the operation of multiplication is 
easy to perform within a Galois field and is easily implemented in hardware 
[MCGR03].

[MCGR04] examines the available block cipher modes of operation and shows 
that a CTR-based authenticated encryption approach is the most efficient mode 
of operation for high-speed packet networks. The paper further demonstrates that 
GCM meets a high level of security requirements.

 12.8 KEY WRAPPING

Background

The most recent block cipher mode of operation defined by NIST is the Key Wrap 
(KW) mode of operation (SP 800-38F), which uses AES or triple DEA as the un-
derlying encryption algorithm. The AES version is also documented in RFC 3394.

The purpose of key wrapping is to securely exchange a symmetric key to be 
shared by two parties, using a symmetric key already shared by those parties. The 
latter key is called a key encryption key (KEK).

Two questions need to be addressed at this point. First, why do we need to use 
a symmetric key already known to two parties to encrypt a new symmetric key? 
Such a requirement is found in a number of protocols described in this book, such 
as the key management portion of IEEE 802.11 and IPsec. This question is explored 
in Chapter 14.

The second question is, why do we need a new mode? The intent of the new 
mode is to operate on keys whose length is greater than the block size of the encryp-
tion algorithm. For example, AES uses a block size of 128 bits but can use a key size 
of 128, 192, or 256 bits. In the latter two cases, encryption of the key involves mul-
tiple blocks. We consider the value of key data to be greater than the value of other 
data, because the key will be used multiple times, and compromise of the key com-
promises all of the data encrypted with the key. Therefore, NIST desired a robust 
encryption mode. KW is robust in the sense that each bit of output can be expected 

M12_STAL7484_08_GE_C12.indd   405 20/04/22   13:55



406  ChAPteR 12 / MessAge AuthentiCAtion Codes

to depend in a nontrivial fashion on each bit of input. This is not the case for any 
of the other modes of operation that we have described. For example, in all of the 
modes so far described, the last block of plaintext only influences the last block of 
ciphertext. Similarly, the first block of ciphertext is derived only from the first block 
of plaintext.

To achieve this robust operation, KW achieves a considerably lower through-
put than the other modes, but the tradeoff may be appropriate for some key 
 management applications. Also, KW is only used for small amounts of plaintext 
compared to, say, the encryption of a message or a file.

The Key Wrapping Algorithm

The key wrapping algorithm operates on blocks of 64 bits. The input to the algo-
rithm consists of a 64-bit constant, discussed subsequently, and a plaintext key that is 
divided into blocks of 64 bits. We use the following notation:

MSB64(W) most significant 64 bits of W

LSB64(W) least significant 64 bits of W

W temporary value; output of encryption function

bitwise exclusive-OR

} concatenation

K key encryption key

n number of 64-bit key data blocks

s number of stages in the wrapping process; s = 6n

Pi ith plaintext key data block; 1 … i … n

Ci ith ciphertext data block; 0 … i … n

A(t) 64-bit integrity check register after encryption stage t; 1 … t … s

A(0) initial integrity check value (ICV); in hexadecimal:  
A6A6A6A6A6A6A6A6

R(t, i) 64-bit register i after encryption stage t; 1 … t … s; 1 … i … n

We now describe the key wrapping algorithm:

Inputs: Plaintext, n 64-bit values (P1, P2, c , Pn)

Key encryption key, K

Outputs: Ciphertext, (n + 1) 64-bit values (C0, C1, c , Cn)

1. Initialize variables.

A(0) = A6A6A6A6A6A6A6A6

 for i = 1 to n

  R(0, i) = Pi

⊕
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2. Calculate intermediate values.

for t = 1 to s

W = E(K, [A(t−1) } R(t−1, 1)])
A(t) = t ⊕ MSB64(W)

R(t, n) = LSB64(W)

for i = 1 to n−1

  R(t, i) = R(t−1, i+1)

3. Output results.

C0 = A(s)

for i = 1 to n

Ci = R(s, i)

Note that the ciphertext is one block longer than the plaintext key, to accom-
modate the ICV. Upon unwrapping (decryption), both the 64-bit ICV and the 
 plaintext key are recovered. If the recovered ICV differs from the input value of 
hexadecimal A6A6A6A6A6A6A6A6, then an error or alteration has been detected 
and the plaintext key is rejected. Thus, the key wrap algorithm provides not only 
confidentiality but also data integrity.

Figure 12.12 illustrated the key wrapping algorithm for encrypting a 256-bit 
key. Each box represents one encryption stage (one value of t). Note that the A 
output is fed as input to the next stage (t + 1), whereas the R output skips forward 
n stages (t + n), which in this example is n = 4. This arrangement further increases 
the avalanche effect and the mixing of bits. To achieve this skipping of stages, a slid-
ing buffer is used, so that the R output from stage t is shifted in the buffer one posi-
tion for each stage, until it becomes the input for stage t + n. This might be clearer 
if we expand the inner for loop for a 256-bit key (n = 4). Then the assignments are 
as follows:

 R(t, 1) = R(t - 1, 2)

 R(t, 2) = R(t - 1, 3)

 R(t, 3) = R(t - 1, 4)

For example, consider that at stage 5, the R output has a value of R(5, 4) = x.  
At stage 6, we execute R(6, 3) = R(5, 4) = x. At stage 7, we execute R(7, 2) = R 
(6, 3) = x. At stage 8, we execute R(8, 1) = R(7, 2) = x. So, at stage 9, the input 
value of R(t - 1, 1) is R(8, 1) = x.

Figure 12.13 depicts the operation of stage t for a 256-bit key. The dashed feed-
back lines indicate the assignment of new values to the stage variables.

Key Unwrapping

The key unwrapping algorithm can be defined as follows:

Inputs: Ciphertext, (n + 1) 64-bit values (C0, C1, c , Cn)
Key encryption key, K

Outputs: Plaintext, n 64-bit values (P1, P2, c , Pn), ICV
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1. Initialize variables.

A(s) = C0

for i = 1 to n

R(s, i) = Ci

2. Calculate intermediate values.

for t = s to 1

W = D(K, [(A(t) ⊕  t) } R(t, n)])

Figure 12.12 Key Wrapping Operation for 256-Bit Key
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A(t–1) = MSB64(W)

R(t–1, 1) = LSB64(W)

for i = 2 to n

   R(t–1, i) = R(t, i–1)

3. Output results.

if A(0) = A6A6A6A6A6A6A6A6

then

 for i = 1 to n

  P(i) = R(0, i)

else

 return error

Note that the decryption function is used in the unwrapping algorithm.
We now demonstrate that the unwrap function is the inverse of the wrap func-

tion, that is, that the unwrap function recovers the plaintext key and the ICV. First, 
note that because the index variable t is counted down from s to 1 for unwrapping, 
stage t of the unwrap algorithm corresponds to stage t of the wrap algorithm. The 
input variables to stage t of the wrap algorithm are indexed at t - 1 and the output 
variables of stage t of the unwrap algorithm are indexed at t - 1. Thus, to demon-
strate that the two algorithms are inverses of each other, we need only demonstrate 
that the output variables of stage t of the unwrap algorithm are equal to the input 
variables to stage t of the wrap algorithm.

This demonstration is in two parts. First we demonstrate that the calculation 
of A and R variables prior to the for loop are inverses. To do this, let us simplify the 
notation a bit. Define the 128-bit value T to be the 64-bit value t followed by 64 
zeros. Then, the first three lines of step 2 of the wrap algorithm can be written as the 
following single line:

  A(t) }R(t, n) = T ⊕ E(K, [A(t - 1) }R(t - 1, 1)])   (12.1)

The first three lines of step 2 of the unwrap algorithm can be written as:

  A(t - 1) }R(t - 1, 1) = D(K, ([A(t) }R(t, n)] ⊕ T))   (12.2)

Figure 12.13 Key Wrapping Operation for 256-Bit Key: Stage t
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Expanding the right-hand side by substituting from Equation 12.1,

 D(K, ([A(t) }R(t, n)] ⊕ T)) = D(K, ([T ⊕ E(K, [A(t - 1) }R(t - 1, 1)])] ⊕ T)) 

Now we recognize that T ⊕ T = 0 and that for any x, x ⊕ 0 = x. So,

 D(K, ([A(t) }R(t, n)] ⊕ T)) = D(K, ([E(K, [A(t - 1) }R(t - 1, 1)]))

 = A(t - 1) }R(t - 1, 1)

The second part of the demonstration is to show that the for loops in step 2 
of the wrap and unwrap algorithms are inverses. For stage k of the wrap algorithm, 
the variables R(t - 1, 1) through R(t - 1, n) are input. R(t - 1, 1) is used in the 
encryption calculation. R(t - 1, 2) through R(t - 1, n) are mapped, respectively 
into R(t, 1) through R(t, n - 1), and R(t, n) is output from the encryption function. 
For stage k of the unwrap algorithm, the variables R(t, 1) through R(t, n) are input. 
R(t, n) is input to the decryption function to produce R(t - 1, 1). The remaining 
variables R(t - 1, 2) through R(t - 1, n) are generated by the for loop, such that 
they are mapped, respectively, from R(t, 1) through R(t, n - 1).

Thus, we have shown that the output variables of stage k of the unwrap algo-
rithm equal the input variables of stage k of the wrap algorithm.

 12.9 PSEUDORANDOM NUMBER GENERATION USING HASH 
FUNCTIONS AND MACs

The essential elements of any pseudorandom number generator (PRNG) are a seed 
value and a deterministic algorithm for generating a stream of pseudorandom bits. 
If the algorithm is used as a pseudorandom function (PRF) to produce a required 
value, such as a session key, then the seed should only be known to the user of the 
PRF. If the algorithm is used to produce a stream encryption function, then the seed 
has the role of a secret key that must be known to the sender and the receiver.

We noted in Chapters 8 and 10 that, because an encryption algorithm produces 
an apparently random output, it can serve as the basis of a (PRNG). Similarly, a hash 
function or MAC produces apparently random output and can be used to build a 
PRNG. Both ISO standard 18031 (Random Bit Generation) and NIST SP 800-90 
(Recommendation for Random Number Generation Using Deterministic Random 
Bit Generators) define an approach for random number generation using a crypto-
graphic hash function. SP 800-90 also defines a random number generator based on 
HMAC. We look at these two approaches in turn.

PRNG Based on Hash Function

Figure 12.14a shows the basic strategy for a hash-based PRNG specified in SP 800-
90 and ISO 18031. The algorithm takes as input:

 V = seed

seedlen = bit length of V Ú K + 64, where k is a desired security level  
       expressed in bits

 n = desired number of output bits
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The algorithm uses the cryptographic hash function H with an hash value out-
put of outlen bits. The basic operation of the algorithm is

m = <n/outlen=
data = V

W = the null string

For i = 1 to m

wi = H (data)

W = } wi
data = (data + 1) mod 2seedlen

Return leftmost n bits of W

Thus, the pseudorandom bit stream is w1 }w2 } c }wm with the final block 
truncated if required.

The SP 800-90 specification also provides for periodically updating V to 
enhance security. The specification also indicates that there are no known or sus-
pected weaknesses in the hash-based approach for a strong cryptographic hash algo-
rithm, such as SHA-2.

Figure 12.14 Basic Structure of Hash-Based PRNGs (SP 800-90)

(a) PRNG using cryptographic hash function

(b) PRNG using HMAC
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PRNG Based on MAC Function

Although there are no known or suspected weaknesses in the use of a cryptographic 
hash function for a PRNG in the manner of Figure 12.14a, a higher degree of confi-
dence can be achieved by using a MAC. Almost invariably, HMAC is used for con-
structing a MAC-based PRNG. This is because HMAC is a widely used standard-
ized MAC function and is implemented in many protocols and applications. As SP 
800-90 points out, the disadvantage of this approach compared to the hash-based 
approach is that the execution time is twice as long, because HMAC involves two 
executions of the underlying hash function for each output block. The advantage of 
the HMAC approach is that it provides a greater degree of confidence in its security, 
compared to a pure hash-based approach.

For the MAC-based approach, there are two inputs: a key K and a seed V. In 
effect, the combination of K and V form the overall seed for the PRNG specified 
in SP 800-90. Figure 12.14b shows the basic structure of the PRNG mechanism, and 
the leftmost column of Figure 12.15 shows the logic. Note that the key remains the 
same for each block of output, and the data input for each block is equal to the tag 
output of the previous block. The SP 800-90 specification also provides for periodi-
cally updating K and V to enhance security.

It is instructive to compare the SP 800-90 recommendation with the use of 
HMAC for a PRNG in some applications, and this is shown in Figure 12.15. For the 
IEEE 802.11i wireless LAN security standard (Chapter 20), the data input consists 
of the seed concatenated with a counter. The counter is incremented for each block 
wi of output. This approach would seem to offer enhanced security compared to the 
SP 800-90 approach. Consider that for SP 800-90, the data input for output block wi 
is just the output wi- 1 of the previous execution of HMAC. Thus, an opponent who 
is able to observe the pseudorandom output knows both the input and output of 
HMAC. Even so, with the assumption that HMAC is secure, knowledge of the input 
and output should not be sufficient to recover K and hence not sufficient to predict 
future pseudorandom bits.

The approach taken by the Transport Layer Security protocol (Chapter 19) 
and the Wireless Transport Layer Security Protocol (Chapter 20) involves invoking 
HMAC twice for each block of output wi. As with IEEE 802.11, this is done in such 
a way that the output does not yield direct information about the input. The double 
use of HMAC doubles the execution burden and would seem to be security overkill.

Figure 12.15 Three PRNGs Based on HMAC

m = <n/outlen=
w0 = V
W = the null string
For i = 1 to m

wi = MAC(K, wi- 1)
W = W }wi

Return leftmost n bits of W

m = <n/outlen=
W = the null string
For i = 1 to m

wi = MAC(K, (V } i))
W = W }wi

Return leftmost n bits of W

m = <n/outlen=
A(0) = V
W = the null string
For i = 1 to m
A(i) = MAC(K, A(i - 1))
wi = MAC(K, (A(i) }V)
W = W }wi

Return leftmost n bits of W

NIST SP 800-90 IEEE 802.11i TLS/WTLS
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 12.10 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms 

authenticator
cryptographic checksum

cryptographic hash  
function

key wrapping

message authentication
message authentication code 

(MAC)

Review Questions 

 12.1 What types of attacks are addressed by message authentication?
 12.2 In general, a MAC function is a many-to-one function. Justify this statement. State 

one point of difference between a MAC function and encryption.
 12.3 What are some approaches to producing message authentication?
 12.4 When sending a message to B, A can use A’s private key and B’s public key to achieve 

both secrecy and authentication. Which key is used to achieve which goal?
 12.5 What is a message authentication code?
 12.6 What is the difference between a message authentication code and a one-way hash 

function?
 12.7 In what ways can a hash value be secured so as to provide message authentication?
 12.8 Is it necessary to recover the secret key in order to attack a MAC algorithm?
 12.9 What is the advantage and disadvantage of the HMAC approach used for PRNG, 

compared to a pure hash-based approach?

Problems 

 12.1 An error-detection function can be used to compute a frame check sequence (FCS) 
or checksum (Figure 12.2). The FCS can provide error-detection capability to detect 
whether any bit of the transmitted message is altered. We could append the FCS to 
each message before encryption (Figure 12.2a), which is referred to as internal error 
control. Alternatively, we could append the FCS to each message after encryption 
(Figure 12.2b), which is referred to as external error control. With internal error con-
trol, authentication is provided because an opponent would have difficulty gener-
ating ciphertext that would have valid error control bits when it is decrypted. Will the 
FCS still provide authentication to the message if external error control is used?

 12.2 The data authentication algorithm (DAA) based on DES with an initialization 
 vector IV of zero (Figure 12.7) has been discovered to have security weaknesses. It is 
being replaced by newer and stronger algorithms. Show that the DAA cannot be 
trusted.

 12.3 Section 12.6 mentions that a refined CMAC using two additional b-bit keys, K1 and K2, 
is derived from the k-bit encryption key. Describe how you would generate K1 and K2.
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 12.4 In this problem, we demonstrate that for CMAC, a variant that XORs the second 
key after applying the final encryption doesn’t work. Let us consider this for the 
case of the message being an integer multiple of the block size. Then, the variant 
can be expressed as VMAC(K, M) = CBC(K, M) ⊕ K1. Now suppose an adver-
sary is able to ask for the MACs of three messages: the message 0 = 0n, where n is 
the cipher block size; the message 1 = 1n; and the message 1 } 0. As a result of these 
three queries, the adversary gets T0 = CBC(K, 0) ⊕ K1; T1 = CBC(K, 1) ⊕ K1 and 
T2 = CBC(K, [CBC(K, 1)]) ⊕ K1. Show that the adversary can compute the correct 
MAC for the (unqueried) message 0 } (T0 ⊕ T1).

 12.5 In the discussion of subkey generation in CMAC, it states that the block cipher is ap-
plied to the block that consists entirely of 0 bits. The first subkey is derived from the 
resulting string by a left shift of one bit and, conditionally, by XORing a constant that 
depends on the block size. The second subkey is derived in the same manner from the 
first subkey.
a. What constants are needed for block sizes of 192 bits and 256 bits?
b. Explain how the left shift and XOR accomplishes the desired result.

 12.6 Section 12.7 listed four general approaches to provide confidentiality and message 
encryption: H S E, A S E, E S A, and E + A.
a. Which of the above performs decryption before verification?
b. Which of the above performs verification before decryption?

 12.7 Show that the GHASH function calculates

 (X1
# Hm) ⊕ (X2

# Hm - 1) ⊕ g ⊕ (Xm - 1
# H2) ⊕ (Xm

# H) 

 12.8 Draw a figure similar to Figure 12.11 that shows authenticated decryption.
 12.9 Alice wants to send a single bit of information (a yes or a no) to Bob by means of a 

word of length 2. Alice and Bob have four possible keys available to perform mes-
sage authentication. The following matrix shows the 2-bit word sent for each message 
under each key:

Message

Key 0 1

1 00 11

2 01 10

3 10 01

4 11 00

a. The preceding matrix is in a useful form for Alice. Construct a matrix with the 
same information that would be more useful for Bob.

b. What is the probability that someone else can successfully impersonate Alice?
c. What is the probability that someone can replace an intercepted message with 

another message successfully?
 12.10 Draw figures similar to Figures 12.12 and 12.13 for the unwrap algorithm.
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 12.11 Consider the following key wrapping algorithm:

 1. Initialize variables.
A = A6A6A6A6A6A6A6A6
for i = 1 to n
  R(i) = Pi

 2. Calculate intermediate values.
for j = 0 to 5
  for i = 1 to n
   B = E(K, [A } R(i)])
   t = (n × j) + i
   A = t ⊕ MSB64(B)
   R(i) = LSB64(B)

 3. Output results.
C0 = A
for i = 1 to n
  Ci = R(i)

 a. Compare this algorithm, functionally, with the algorithm specified in SP  800-38F 
and described in Section 12.8.

 b. Write the corresponding unwrap algorithm.
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The most important development from the work on public-key cryptography is the 
digital signature. The digital signature provides a set of security capabilities that would 
be difficult to implement in any other way.

Figure 13.1 is a generic model of the process of constructing and using digital 
signatures. All of the digital signature schemes discussed in this chapter have this 
 structure. Suppose that Bob wants to send a message to Alice. Although it is not 
important that the message be kept secret, he wants Alice to be certain that the mes-
sage is indeed from him. For this purpose, Bob uses a secure hash function, such as 
SHA-512, to generate a hash value for the message. That hash value, together with 
Bob’s private key serves as input to a digital signature generation algorithm, which 
produces a short block that functions as a digital signature. Bob sends the message 
with the signature  attached. When Alice receives the message plus signature, she (1) 
calculates a hash value for the message; (2) provides the hash value and Bob’s public 
key as inputs to a digital signature verification algorithm. If the algorithm returns 
the result that the signature is valid, Alice is assured that the message must have 
been signed by Bob. No one else has Bob’s private key and therefore no one else 
could have created a signature that could be verified for this message with Bob’s 
public key. In addition, it is impossible to alter the message without access to Bob’s 
private key, so the message is authenticated both in terms of source and in terms of 
data integrity.

We begin this chapter with an overview of digital signatures. We then present the 
ElGamal and Schnorr digital signature schemes, understanding of which makes it eas-
ier to understand the NIST Digital Signature Algorithm (DSA). The chapter then cov-
ers the two other important standardized digital signature schemes: the Elliptic Curve 
Digital Signature Algorithm (ECDSA) and the RSA Probabilistic Signature Scheme 
(RSA-PSS).

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

◆◆ Present an overview of the digital signature process.

◆◆ Understand the ElGamal digital signature scheme.

◆◆ Understand the Schnorr digital signature scheme.

◆◆ Understand the NIST digital signature scheme.

◆◆ Compare and contrast the NIST digital signature scheme with the  
ElGamal and Schnorr digital signature schemes.

◆◆ Understand the elliptic curve digital signature scheme.

◆◆ Understand the RSA-PSS digital signature scheme.
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 13.1 DIGITAL SIGNATURES

Properties

Message authentication protects two parties who exchange messages from any third 
party. However, it does not protect the two parties against each other. Several forms 
of dispute between the two parties are possible.

Figure 13.1 Simplified Depiction of Essential Elements of Digital Signature Process
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For example, suppose that John sends an authenticated message to Mary,  
using one of the schemes of Figure 12.1. Consider the following disputes that 
could arise.

1. Mary may forge a different message and claim that it came from John. Mary 
would simply have to create a message and append an authentication code 
using the key that John and Mary share.

2. John can deny sending the message. Because it is possible for Mary to forge 
a message, there is no way to prove that John did in fact send the message.

Both scenarios are of legitimate concern. Here is an example of the first 
scenario: An electronic funds transfer takes place, and the receiver increases the 
amount of funds transferred and claims that the larger amount had arrived from 
the sender. An example of the second scenario is that an electronic mail message 
contains instructions to a stockbroker for a transaction that subsequently turns out 
badly. The sender pretends that the message was never sent.

In situations where there is not complete trust between sender and receiver, 
something more than authentication is needed. The most attractive solution to 
this problem is the digital signature. The digital signature must have the following 
properties:

◆■ It must verify the author and the date and time of the signature.

◆■ It must authenticate the contents at the time of the signature.

◆■ It must be verifiable by third parties, to resolve disputes.

Thus, the digital signature function includes the authentication function.

Attacks and Forgeries

[GOLD88] lists the following types of attacks, in order of increasing severity. Here 
A denotes the user whose signature method is being attacked, and C denotes the 
attacker.

◆■ Key-only attack: C only knows A’s public key.

◆■ Known message attack: C is given access to a set of messages and their 
signatures.

◆■ Generic chosen message attack: C chooses a list of messages before attempt-
ing to breaks A’s signature scheme, independent of A’s public key. C then 
 obtains from A valid signatures for the chosen messages. The attack is generic, 
because it does not depend on A’s public key; the same attack is used against 
everyone.

◆■ Directed chosen message attack: Similar to the generic attack, except that the 
list of messages to be signed is chosen after C knows A’s public key but before 
any signatures are seen.

◆■ Adaptive chosen message attack: C is allowed to use A as an “oracle.” This 
means that C may request from A signatures of messages that depend on 
 previously obtained message-signature pairs.
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[GOLD88] then defines success at breaking a signature scheme as an outcome 
in which C can do any of the following with a non-negligible probability:

◆■ Total break: C determines A’s private key.

◆■ Universal forgery: C finds an efficient signing algorithm that provides an 
equivalent way of constructing signatures on arbitrary messages.

◆■ Selective forgery: C forges a signature for a particular message chosen by C.

◆■ Existential forgery: C forges a signature for at least one message. C has 
no  control over the message. Consequently, this forgery may only be a minor 
nuisance to A.

Digital Signature Requirements

On the basis of the properties and attacks just discussed, we can formulate the 
 following requirements for a digital signature.

◆■ The signature must be a bit pattern that depends on the message being signed.

◆■ The signature must use some information only known to the sender to prevent 
both forgery and denial.

◆■ It must be relatively easy to produce the digital signature.

◆■ It must be relatively easy to recognize and verify the digital signature.

◆■ It must be computationally infeasible to forge a digital signature, either by 
constructing a new message for an existing digital signature or by constructing 
a fraudulent digital signature for a given message.

◆■ It must be practical to retain a copy of the digital signature in storage.

A secure hash function, embedded in a scheme such as that of Figure 13.1, provides 
a basis for satisfying these requirements. However, care must be taken in the design 
of the details of the scheme.

Direct Digital Signature

The term direct digital signature refers to a digital signature scheme that involves 
only the communicating parties (source, destination). It is assumed that the destina-
tion knows the public key of the source.

Confidentiality can be provided by encrypting the entire message plus 
 signature with a shared secret key (symmetric encryption). Note that it is important 
to perform the signature function first and then an outer confidentiality function. 
In case of dispute, some third party must view the message and its signature. If the 
signature is calculated on an encrypted message, then the third party also needs 
a ccess to the decryption key to read the original message. However, if the signature 
is the inner operation, then the recipient can store the plaintext message and its 
 signature for later use in dispute resolution.

The validity of the scheme just described depends on the security of the send-
er’s private key. If a sender later wishes to deny sending a particular message, the 
sender can claim that the private key was lost or stolen and that someone else forged 
his or her signature. Administrative controls relating to the security of private keys 
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can be employed to thwart or at least weaken this ploy, but the threat is still there, 
at least to some degree. One example is to require every signed message to include 
a timestamp (date and time) and to require prompt reporting of compromised keys 
to a central authority.

Another threat is that a private key might actually be stolen from X at time T. 
The opponent can then send a message signed with X’s signature and stamped with 
a time before or equal to T.

The universally accepted technique for dealing with these threats is the use 
of a digital certificate and certificate authorities. We defer a discussion of this topic 
until Chapter 14, and focus in this chapter on digital signature algorithms.

 13.2 ELGAMAL DIGITAL SIGNATURE SCHEME

Before examining the NIST Digital Signature Algorithm, it will be helpful to under-
stand the ElGamal and Schnorr signature schemes. Recall from Chapter 10, that the 
ElGamal encryption scheme is designed to enable encryption by a user’s public key 
with decryption by the user’s private key. The ElGamal signature scheme involves 
the use of the private key for digital signature generation and the public key for 
digital signature verification [ELGA84, ELGA85].

Before proceeding, we need a result from number theory. Recall from Chapter 2 
that for a prime number q, if a is a primitive root of q, then

 a, a2, c , aq - 1 

are distinct (mod q). It can be shown that, if a is a primitive root of q, then

1. For any integer m, am K 1 (mod q) if and only if m K 0 (mod q - 1).

2. For any integers, i, j, ai K aj (mod q) if and only if i K j (mod q - 1).

As with ElGamal encryption, the global elements of ElGamal digital  signature 
are a prime number q and a, which is a primitive root of q. User A generates 
a  private/public key pair as follows.

1. Generate a random integer XA, such that 1 6 XA 6 q - 1.

2. Compute YA = aXA mod q.

3. A’s private key is XA; A’s pubic key is {q, a, YA}.

To sign a message M, user A first computes the hash m = H(M), such that m is 
an integer in the range 0 … m … q - 1. A then forms a digital signature as follows.

1. Choose a random integer K such that 1 … K … q - 1 and gcd(K, q - 1) = 1. 
That is, K is relatively prime to q - 1.

2. Compute S1 = aK mod q. Note that this is the same as the computation of C1 
for ElGamal encryption.

3. Compute K-1 mod (q - 1). That is, compute the inverse of K modulo q - 1.

4. Compute S2 = K-1(m - XAS1) mod (q - 1).

5. The signature consists of the pair (S1, S2).
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Any user B can verify the signature as follows.

1. Compute V1 = am mod q.

2. Compute V2 = (YA)S1(S1)
S2 mod q.

The signature is valid if V1 = V2. Let us demonstrate that this is so. Assume 
that the equality is true. Then we have

am mod q = (YA)S1(S1)
S2 mod q assume V1 = V2

am mod q = aXAS1aKS2 mod q substituting for YA and S1

am - XAS1 mod q = aKS2 mod q rearranging terms
m - XAS1 K KS2 mod (q - 1) property of primitive roots
m - XAS1 K KK-1 (m - XAS1) mod (q - 1) substituting for S2

For example, let us start with the prime field GF(19); that is, q = 19. It has 
primitive roots {2, 3, 10, 13, 14, 15}, as shown in Table 2.7. We choose a = 10.

Alice generates a key pair as follows:

1. Alice chooses XA = 16.

2. Then YA = aXA mod q = a16 mod 19 = 4.

3. Alice’s private key is 16; Alice’s pubic key is {q, a, YA} = {19, 10, 4}.

Suppose Alice wants to sign a message with hash value m = 14.

1. Alice chooses K = 5, which is relatively prime to q - 1 = 18.

2. S1 = aK mod q = 105 mod 19 = 3 (see Table 2.7).

3. K-1 mod (q - 1) = 5-1 mod 18 = 11.

4. S2 = K-1 (m - XAS1) mod (q - 1) = 11 (14 - (16)(3)) mod 18 = -374
mod 18 = 4.

Bob can verify the signature as follows.

1. V1 = am mod q = 1014 mod 19 = 16.

2. V2 = (YA)S1(S1)
S2 mod q = (43)(34) mod 19 = 5184 mod 19 = 16.

Thus, the signature is valid because V1 = V2.

 13.3 SCHNORR DIGITAL SIGNATURE SCHEME

As with the ElGamal digital signature scheme, the Schnorr signature scheme is 
based on discrete logarithms [SCHN89, SCHN91]. The Schnorr scheme minimizes 
the message-dependent amount of computation required to generate a signature. 
The main work for signature generation does not depend on the message and can 
be done during the idle time of the processor. The message-dependent part of the 
signature generation requires multiplying a 2n-bit integer with an n-bit integer.

The scheme is based on using a prime modulus p, with p - 1 having a prime 
factor q of appropriate size; that is, p - 1 K 0 (mod q). Typically, we use p ≈ 21024 
and q ≈ 2160. Thus, p is a 1024-bit number, and q is a 160-bit number, which is also 
the length of the SHA-1 hash value.
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The first part of this scheme is the generation of a private/public key pair, 
which consists of the following steps.

1. Choose primes p and q, such that q is a prime factor of p - 1.

2. Choose an integer a, such that aq K 1 mod p. The values a, p, and q comprise a 
global public key that can be common to a group of users.

3. Choose a random integer s with 0 6 s 6 q. This is the user’s private key.

4. Calculate v = a-s mod p. This is the user’s public key.

A user with private key s and public key v generates a signature as follows.

1. Choose a random integer r with 0 6 r 6 q and compute x = ar mod p. This 
computation is a preprocessing stage independent of the message M to be 
signed.

2. Concatenate the message with x and hash the result to compute the value e:

e = H(M }x)

3. Compute y = (r + se) mod q. The signature consists of the pair (e, y).

Any other user can verify the signature as follows.

1. Compute x′ = ayve mod p.

2. Verify that e = H (M }x′).

To see that the verification works, observe that

 x′ K ayve K aya-se K ay - se K ar K x (mod p) 

Hence, H (M }x′) = H (M }x).

 13.4 NIST DIGITAL SIGNATURE ALGORITHM

The National Institute of Standards and Technology (NIST) has published Federal 
Information Processing Standard FIPS 186, known as the Digital Signature 
Algorithm (DSA). The DSA makes use of the Secure Hash Algorithm (SHA) 
 described in Chapter 12. The DSA was originally proposed in 1991 and revised 
in 1993 in response to public feedback concerning the security of the scheme. 
There was a further minor revision in 1996. In 2000, an expanded version of the 
standard was issued as FIPS 186-2, subsequently updated to FIPS 186-3 in 2009, 
and FIPS 186-4 in 2013. This latest version also incorporates digital signature al-
gorithms based on RSA and on elliptic curve cryptography. In this section, we 
discuss DSA.

The DSA Approach

The DSA uses an algorithm that is designed to provide only the digital signature func-
tion. Unlike RSA, it cannot be used for encryption or key exchange. Nevertheless, it 
is a public-key technique.
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Figure 13.2 contrasts the DSA approach for generating digital signatures to 
that used with RSA. In the RSA approach, the message to be signed is input to a 
hash function that produces a secure hash code of fixed length. This hash code is 
then encrypted using the sender’s private key to form the signature. Both the mes-
sage and the signature are then transmitted. The recipient takes the message and 
produces a hash code. The recipient also decrypts the signature using the sender’s 
public key. If the calculated hash code matches the decrypted signature, the signa-
ture is accepted as valid. Because only the sender knows the private key, only the 
sender could have produced a valid signature.

The DSA approach also makes use of a hash function. The hash code is pro-
vided as input to a signature function along with a random number k generated for 
this particular signature. The signature function also depends on the sender’s  private 
key (PRa) and a set of parameters known to a group of communicating principals. 
We can consider this set to constitute a global public key (PUG).1 The result is a 
signature consisting of two components, labeled s and r.

At the receiving end, the hash code of the incoming message is generated. The 
hash code and the signature are inputs to a verification function. The verification 
function also depends on the global public key as well as the sender’s public key 
(PUa), which is paired with the sender’s private key. The output of the verification 
function is a value that is equal to the signature component r if the signature is valid. 
The signature function is such that only the sender, with knowledge of the private 
key, could have produced the valid signature.

We turn now to the details of the algorithm.

1It is also possible to allow these additional parameters to vary with each user so that they are a part of 
a user’s public key. In practice, it is more likely that a global public key will be used that is separate from 
each user’s public key.

Figure 13.2 Two Approaches to Digital Signatures
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The Digital Signature Algorithm

DSA is based on the difficulty of computing discrete logarithms (see Chapter 2) 
and is based on schemes originally presented by ElGamal [ELGA85] and Schnorr 
[SCHN91].

Figure 13.3 summarizes the algorithm. There are three parameters that are 
public and can be common to a group of users. An N-bit prime number q is chosen. 
Next, a prime number p is selected with a length between 512 and 1024 bits such that 
q divides (p - 1). Finally, g is chosen to be of the form h(p - 1)/q mod p, where h is an 
integer between 1 and (p - 1) with the restriction that g must be greater than 1.2 
Thus, the global public-key components of DSA are the same as in the Schnorr sig-
nature scheme.

With these parameters in hand, each user selects a private key and generates 
a public key. The private key x must be a number from 1 to (q - 1) and should 
be  chosen randomly or pseudorandomly. The public key is calculated from the 
 private key as y = gx mod p. The calculation of y given x is relatively straight-
forward. However, given the public key y, it is believed to be computationally 
 infeasible to  determine x, which is the discrete logarithm of y to the base g, mod p 
(see Chapter 2).

2In number-theoretic terms, g is of order q mod p; see Chapter 2.

Global Public-Key Components

p prime number where 2L - 1 6 p 6 2L 
for 512 … L … 1024 and L a multiple of 64; 
i.e., bit length L between 512 and 1024 bits 
in increments of 64 bits

q prime divisor of (p - 1), where 2N - 1 6 q 6 2N 
i.e., bit length of N bits

g  = h(p - 1)/q is an exponent mod p, 
where h is any integer with 1 6 h 6 (p - 1) 
such that h(p - 1)/q mod p 7 1

User’s Private Key

x random or pseudorandom integer with 0 6 x 6 q

User’s Public Key

y  = g x  mod p

User’s Per-Message Secret Number

k random or pseudorandom integer with 0 6 k 6 q

Signing

r =  (gk mod p) mod q

s =  [k-1 (H(M) + xr)] mod q

Signature = (r, s )

Verifying

w = (s′)-1 mod q

u1 = [H(M′)w] mod q

u2 = (r′)w mod q

v = [(gu1yu2) mod p] mod q

TEST: v = r′

M   = message to be signed

H(M)   = hash of M using SHA-1

M′, r′, s′ = received versions of M, r, s

Figure 13.3 The Digital Signature Algorithm (DSA)
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The signature of a message M consists of the pair of numbers r and s, which are 
functions of the public key components (p, q, g), the user’s private key (x), the hash 
code of the message H(M), and an additional integer k that should be generated 
randomly or pseudorandomly and be unique for each signing.

Let M, r′, and s′ be the received versions of M, r, and s, respectively. Verification 
is performed using the formulas shown in Figure 13.3. The receiver generates a 
quantity v that is a function of the public key components, the sender’s public key, 
the hash code of the incoming message, and the received versions of r and s. If this 
quantity matches the r component of the signature, then the signature is validated.

Figure 13.4 depicts the functions of signing and verifying.

Figure 13.4 DSA Signing and Verifying
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The structure of the algorithm, as revealed in Figure 13.4, is quite interesting. 
Note that the test at the end is on the value r, which does not depend on the message 
at all. Instead, r is a function of k and the three global public-key components. The 
multiplicative inverse of k (mod q) is passed to a function that also has as inputs the 
message hash code and the user’s private key. The structure of this function is such 
that the receiver can recover r using the incoming message and signature, the public 
key of the user, and the global public key. It is certainly not obvious from Figure 13.3 
or Figure 13.4 that such a scheme would work. A proof is provided in FIPS 186-4.

Given the difficulty of taking discrete logarithms, it is infeasible for an 
 opponent to recover k from r or to recover x from s.

Another point worth noting is that the only computationally demanding task 
in signature generation is the exponential calculation gk mod p. Because this value 
does not depend on the message to be signed, it can be computed ahead of time. 
Indeed, a user could precalculate a number of values of r to be used to sign docu-
ments as needed. The only other somewhat demanding task is the determination of 
a multiplicative inverse, k-1. Again, a number of these values can be precalculated.

 13.5 ELLIPTIC CURVE DIGITAL SIGNATURE ALGORITHM

As was mentioned, the 2009 version of FIPS 186 includes a new digital signature 
technique based on elliptic curve cryptography, known as the Elliptic Curve Digital 
Signature Algorithm (ECDSA). ECDSA is enjoying increasing acceptance due 
to the efficiency advantage of elliptic curve cryptography, which yields security com-
parable to that of other schemes with a smaller key bit length.

First we give a brief overview of the process involved in ECDSA. In essence, 
four elements are involved.

1. All those participating in the digital signature scheme use the same global  domain 
parameters, which define an elliptic curve and a point of origin on the curve.

2. A signer must first generate a public, private key pair. For the private key, the 
signer selects a random or pseudorandom number. Using that random number 
and the point of origin, the signer computes another point on the elliptic curve. 
This is the signer’s public key.

3. A hash value is generated for the message to be signed. Using the private 
key, the domain parameters, and the hash value, a signature is generated. The 
signature consists of two integers, r and s.

4. To verify the signature, the verifier uses as input the signer’s public key, the 
domain parameters, and the integer s. The output is a value v that is compared 
to r. The signature is verified if v = r.

Let us examine each of these four elements in turn.
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Global Domain Parameters

Recall from Chapter 10 that two families of elliptic curves are used in cryptographic 
applications: prime curves over Zp and binary curves over GF(2m). For ECDSA, 
prime curves are used. The global domain parameters for ECDSA are the following:

q a prime number

a, b integers that specify the elliptic curve equation defined over Zq with the 
 equation y2 = x3 + ax + b

G a base point represented by G = (xg, yg) on the elliptic curve equation

n order of point G; that is, n is the smallest positive integer such that 
nG = O. This is also the number of points on the curve.

Key Generation

Each signer must generate a pair of keys, one private and one public. The signer, 
let us call him Bob, generates the two keys using the following steps:

1. Select a random integer d, d ∈ [1, n - 1]

2. Compute Q = dG. This is a point in Eq(a, b)

3. Bob’s public key is Q and private key is d.

Digital Signature Generation and Authentication

With the public domain parameters and a private key in hand, Bob generates 
a  digital signature of 320 bits for message m using the following steps:

1. Select a random or pseudorandom integer k, k ∈ [1, n - 1]

2. Compute point P = (x, y) = kG and r = x mod n. If r = 0 then go to step 1

3. Compute t = k-1 mod n

4. Compute e = H(m), where H is one of the SHA-2 or SHA-3 hash functions

5. Compute s = k-1(e + dr) mod n. If s = O then go to step 1

6. The signature of message m is the pair (r, s).

Alice knows the public domain parameters and Bob’s public key. Alice is 
 presented with Bob’s message and digital signature and verifies the signature using 
the following steps:

1. Verify that r and s are integers in the range 1 through n - 1

2. Using SHA, compute the 160-bit hash value e = H(m)

3. Compute w = s-1 mod n

4. Compute u1 = ew and u2 = rw

5. Compute the point X = (x1, y1) = u1G + u2Q

6. If X = O, reject the signature else compute v = x1 mod n

7. Accept Bob’s signature if and only if v = r
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Figure 13.5 illustrates the signature authentication process. We can verify that 
this process is valid as follows. If the message received by Alice is in fact signed by 
Bob, then

 s = k-1(e + dr) mod n 

Then

 k = s-1(e + dr) mod n

 k = (s-1e + s-1dr) mod n

 k = (we + wdr) mod n

 k = (u1 + u2d) mod n

Now consider that

 u1G + u2Q = u1G + u2dG = (u1 + u2d)G = kG 

Figure 13.5 ECDSA Signing and Verifying
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In step 6 of the verification process, we have v = x1 mod n, where point 
X = (x1, y1) = u1G + u2Q. Thus we see that v = r since r = x mod n and x is the x 
coordinate of the point kG and we have already seen that u1G + u2Q = kG.

 13.6 RSA-PSS DIGITAL SIGNATURE ALGORITHM

In addition to the NIST Digital Signature Algorithm and ECDSA, the 2009 version 
of FIPS 186 also includes several techniques based on RSA, all of which were devel-
oped by RSA Laboratories and are in wide use. A worked-out example, using RSA, 
is available at this book’s Web site.

In this section, we discuss the RSA Probabilistic Signature Scheme (RSA-PSS), 
which is the latest of the RSA schemes and the one that RSA Laboratories recom-
mends as the most secure of the RSA schemes.

Because the RSA-based schemes are widely deployed in many applications, 
including financial applications, there has been great interest in demonstrating that 
such schemes are secure. The three main RSA signature schemes differ mainly in 
the padding format the signature generation operation employs to embed the hash 
value into a message representative, and in how the signature verification opera-
tion determines that the hash value and the message representative are consistent. 
For all of the schemes developed prior to PSS, it has not been possible to develop 
a mathematical proof that the signature scheme is as secure as the underlying RSA 
encryption/decryption primitive [KALI01]. The PSS approach was first proposed by 
Bellare and Rogaway [BELL96c, BELL98]. This approach, unlike the other RSA-
based schemes, introduces a randomization process that enables the security of the 
method to be shown to be closely related to the security of the RSA algorithm itself. 
This makes RSA-PSS more desirable as the choice for RSA-based digital signature 
applications.

Mask Generation Function

Before explaining the RSA-PSS operation, we need to describe the mask generation 
function (MGF) used as a building block. MGF(X, maskLen) is a pseudorandom 
function that has as input parameters a bit string X of any length and the desired 
length L in octets of the output. MGFs are typically based on a secure crypto-
graphic hash function such as SHA-1. An MGF based on a hash function is intended 
to be a cryptographically secure way of generating a message digest, or hash, of 
variable length based on an underlying cryptographic hash function that produces 
a  fixed-length output.

The MGF function used in the current specification for RSA-PSS is MGF1, 
with the following parameters:

Options Hash hash function with output hLen octets

Input X octet string to be masked

maskLen length in octets of the mask

Output mask an octet string of length maskLen
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MGF1 is defined as follows:

1. Initialize variables.

T = empty string

k = <maskLen/hLen= - 1
2. Calculate intermediate values.

for counter = 0 to k

Represent counter as a 32-bit string C

T = T } Hash(X } C)
3. Output results.

mask = the leading maskLen octets of T

In essence, MGF1 does the following. If the length of the desired output is 
equal to the length of the hash value (maskLen = hLen), then the output is the 
hash of the input value X concatenated with a 32-bit counter value of 0. If maskLen 
is greater than hLen, the MGF1 keeps iterating by hashing X concatenated with the 
counter and appending that to the current string T. So that the output is

 Hash (X }0) }Hash(X }1) } c }Hash(X }k) 

This is repeated until the length of T is greater than or equal to maskLen, at which 
point the output is the first maskLen octets of T.

The Signing Operation

Message encoding The first stage in generating an RSA-PSS signature of a  message 
M is to generate from M a fixed-length message digest, called an  encoded message 
(EM). Figure 13.6 illustrates this process. We define the following  parameters and 
functions:

Options Hash hash function with output hLen octets. The current 
preferred alternative is SHA-1, which produces a 20-octet 
hash value.

MGF mask generation function. The current specification calls 
for MGF1.

sLen length in octets of a pseudorandom number referred to 
as the salt. Typically sLen = hLen, which for the current 
version is 20 octets.

Input M message to be encoded for signing.

emBits This value is one less than the length in bits of the RSA 
modulus n.

Output EM encoded message. This is the message digest that will be 
encrypted to form the digital signature.

Parameters emLen length of EM in octets = <emBits/8= .

padding1 hexadecimal string 00 00 00 00 00 00 00 00; that is, a string 
of 64 zero bits.
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padding2 hexadecimal string of 00 octets with a length 
(emLen - sLen - hLen - 2) octets, followed by the 
hexadecimal octet with value 01.

salt a pseudorandom number.

bc the hexadecimal value BC.

The encoding process consists of the following steps.

1. Generate the hash value of M: mHash = Hash(M)

2. Generate a pseudorandom octet string salt and form block M′ = padding1 }
mHash } salt

3. Generate the hash value of M′: H = Hash(M′)
4. Form data block DB = padding2 } salt

5. Calculate the MGF value of H: dbMask = MGF(H, emLen - hLen - 1)

6. Calculate maskedDB = DB ⊕ dbMsk

7. Set the leftmost 8emLen - emBits bits of the leftmost octet in maskedDB to 0

8. EM = maskedDB }H }0xbc

We make several comments about the complex nature of this message 
 digest algorithm. All of the RSA-based standardized digital signature schemes 
 involve  appending one or more constants (e.g., padding1 and padding2) in the 
process of forming the message digest. The objective is to make it more difficult 
for an  adversary to find another message that maps to the same message digest 

Figure 13.6 RSA-PSS Encoding
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as a given message or to find two messages that map to the same message digest.  
RSA-PSS also incorporates a pseudorandom number, namely the salt. Because the 
salt changes with every use, signing the same message twice using the same private 
key will yield two different signatures. This is an added measure of security.

ForMing the signature We now show how the signature is formed by a signer with 
private key {d, n} and public key {e, n} (see Figure 9.5). Treat the octet string EM as 
an unsigned, nonnegative binary integer m. The signature s is formed by  encrypting 
m as follows:

 s = md mod n 

Let k be the length in octets of the RSA modulus n. For example if the key size 
for RSA is 2048 bits, then k = 2048/8 = 256. Then convert the signature value s into 
the octet string S of length k octets.

Signature Verification

decryption For signature verification, treat the signature S as an unsigned, 
 nonnegative binary integer s. The message digest m is recovered by decrypting s as 
follows:

 m = se mod n 

Then, convert the message representative m to an encoded message EM of 
length emLen = <(modBits - 1)/8=  octets, where modBits is the length in bits of 
the RSA modulus n.

eM VeriFication EM verification can be described as follows:

Options Hash hash function with output hLen octets.

MGF mask generation function.

sLen length in octets of the salt.

Input M message to be verified.

EM the octet string representing the decrypted signature, 
with length emLen = <emBits/8= .

emBits This value is one less than the length in bits of the RSA 
modulus n.

Parameters padding1 hexadecimal string 00 00 00 00 00 00 00 00; that is, 
a string of 64 zero bits.

padding2 hexadecimal string of 00 octets with a length 
(emLen - sLen - hLen - 2) octets, followed by the 
 hexadecimal octet with value 01.

1. Generate the hash value of M: mHash = Hash(M)

2. If emLen 6 hLen + sLen + 2, output “inconsistent” and stop

3. If the rightmost octet of EM does not have hexadecimal value BC, output 
“ inconsistent” and stop
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4. Let maskedDB be the leftmost emLen - hLen - 1 octets of EM, and let H be 
the next hLen octets

5. If the leftmost 8emLen - emBits bits of the leftmost octet in maskedDB are 
not all equal to zero, output “inconsistent” and stop

6. Calculate dbMask = MGF (H, emLen - hLen - 1)

7. Calculate DB = maskedDB ⊕ dbMsk

8. Set the leftmost 8emLen - emBits bits of the leftmost octet in DB to zero

9. If the leftmost (emLen - hLen - sLen - 1) octets of DB are not equal to 
padding2, output “inconsistent” and stop

10. Let salt be the last sLen octets of DB

11. Form block M′ = padding1 }mHash } salt

12. Generate the hash value of M′: H′ = Hash(M′)
13. If H = H′, output “consistent.” Otherwise, output “inconsistent”

Figure 13.7 illustrates the process. The shaded boxes labeled H and H′ corre-
spond, respectively, to the value contained in the decrypted signature and the value 
generated from the message M associated with the signature. The remaining three 
shaded areas contain values generated from the decrypted signature and compared 
to known constants. We can now see more clearly the different roles played by 
the constants and the pseudorandom value salt, all of which are embedded in the 

Figure 13.7 RSA-PSS EM Verification
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EM generated by the signer. The constants are known to the verifier, so that the 
 computed constants can be compared to the known constants as an additional check 
that the signature is valid (in addition to comparing H and H′). The salt results in a 
different signature every time a given message is signed with the same private key. 
The verifier does not know the value of the salt and does not attempt a comparison. 
Thus, the salt plays a similar role to the pseudorandom variable k in the NIST DSA 
and in ECDSA. In both of those schemes, k is a pseudorandom number generated by 
the signer, resulting in different signatures from multiple signings of the same mes-
sage with the same private key. A verifier does not and need not know the value of k.

 13.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms 

digital signature
Digital Signature Algorithm 

(DSA)
direct digital signature

ElGamal digital signature
Elliptic Curve Digital 

Signature Algorithm 
(ECDSA)

timestamp

Review Questions
 13.1 List two disputes that can arise in the context of message authentication.
 13.2 What are the properties a digital signature should have?
 13.3 What requirements should a digital signature scheme satisfy?
 13.4 What is the difference between direct and arbitrated digital signature?
 13.5 In what order should the signature function and the confidentiality function be 

 applied to a message, and why?
 13.6 What are some threats associated with a direct digital signature scheme?

Problems 
 13.1 Dr. Watson patiently waited until Sherlock Holmes finished. “Some interesting prob-

lem to solve, Holmes?” he asked when Holmes finally logged out.
“Oh, not exactly. I merely checked my email and then made a couple of  network 

experiments instead of my usual chemical ones. I have only one client now and I have 
already solved his problem. If I remember correctly, you once mentioned cryptology 
among your other hobbies, so it may interest you.”

“Well, I am only an amateur cryptologist, Holmes. But of course I am  interested 
in the problem. What is it about?”

“My client is Mr. Hosgrave, director of a small but progressive bank. The bank 
is fully computerized and of course uses network communications extensively. The 
bank already uses RSA to protect its data and to digitally sign documents that are 
communicated. Now the bank wants to introduce some changes in its procedures; in 
particular, it needs to digitally sign some documents by two signatories.

1. The first signatory prepares the document, forms its signature, and passes the 
 document to the second signatory.
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2. The second signatory as a first step must verify that the document was really signed 
by the first signatory. She then incorporates her signature into the document’s sig-
nature so that the recipient, as well as any member of the public, may verify that the 
document was indeed signed by both signatories. In addition, only the second signa-
tory has to be able to verify the document’s signature after the first step; that is, the 
recipient (or any member of the public) should be able to verify only the complete 
document with signatures of both signatories, but not the document in its intermedi-
ate form where only one signatory has signed it. Moreover, the bank would like to 
make use of its existing modules that support RSA-style digital signatures.”

“Hm, I understand how RSA can be used to digitally sign documents by one signatory, 
Holmes. I guess you have solved the problem of Mr. Hosgrave by appropriate gener-
alization of RSA digital signatures.”

“Exactly, Watson,” nodded Sherlock Holmes. “Originally, the RSA digital sig-
nature was formed by encrypting the document by the signatory’s private decryption 
key ‘d’, and the signature could be verified by anyone through its decryption using 
publicly known encryption key ‘e’. One can verify that the signature S was formed by 
the person who knows d, which is supposed to be the only signatory. Now the problem 
of Mr. Hosgrave can be solved in the same way by slight generalization of the process, 
that is …”

Finish the explanation.
 13.2 DSA specifies that if the signature generation process results in a value of s = 0, 

a new value of k should be generated and the signature should be recalculated. Why?
 13.3 What happens if a k value used in creating a DSA signature is compromised?
 13.4 The DSA document includes a recommended algorithm for testing a number for 

primality.
1. [Choose w] Let w be a random odd integer. Then (w - 1) is even and can be 

expressed in the form 2am with m odd. That is, 2a is the largest power of 2 that 
divides (w - 1).

2. [Generate b] Let b be a random integer in the range 1 6 b 6 w.
3. [Exponentiate] Set j = 0 and z = bm mod w.
4. [Done?] If j = 0 and z = 1, or if z = w - 1, then w passes the test and may be 

prime; go to step 8.
5. [Terminate?] If j 7 0 and z = 1, then w is not prime; terminate algorithm for this w.
6. [Increase j] Set j = j + 1. If j 6 a, set z = z2 mod w and go to step 4.
7. [Terminate] w is not prime; terminate algorithm for this w.
8. [Test again?] If enough random values of b have been tested, then accept w as 

prime and terminate algorithm; otherwise, go to step 2.
a. Explain how the algorithm works.
b. Show that it is equivalent to the Miller–Rabin test described in Chapter 2.

 13.5 With DSA, because the value of k is generated for each signature, even if the same 
message is signed twice on different occasions, the signatures will differ. This is not 
true of RSA signatures. What is the practical implication of this difference?

 13.6 Consider the problem of creating domain parameters for DSA. Suppose we have al-
ready found primes p and q such that q � (p - 1). Now we need to find g ∈ Zp with g 
of order q mod p. Consider the following two algorithms:

Algorithm 1 Algorithm 2

repeat repeat
 select g ∈ Zp  select h ∈ Zp

 h d gq mod p  g d h(p - 1)/q mod p
until (h = 1 and g ≠ 1) until (g ≠ 1)
return g return g
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a. What happens in Algorithm 1 if ord(g) = q is chosen?
b. What happens in Algorithm 2 if ord(g) = q is chosen?
c. Suppose p = 64891 and q = 421. How many loop iterations do you expect 

 Algorithm 1 to make before it finds a generator?
d. If p is 512 bits and q is 128 bits, would you recommend using Algorithm 1 to find g? 

Explain.
e. Suppose p = 64891 and q = 421. What is the probability that  Algorithm 2 com-

putes a generator in its very first loop iteration? (If it is helpful, you may use the 

fact that a
(d�n)

 c(d) = n when answering this question.)

 13.7 It is tempting to try to develop a variation on Diffie–Hellman that could be used as 
a digital signature. Here is one that is simpler than DSA and that does not require a 
secret random number in addition to the private key.

Public elements: q prime number

a a 6 q and a is primitive root of q

Private key: X X 6 q

Public key: Y = aX mod q mod q

To sign a message M, compute h = H(M), which is the hash code of the message. We 
require that gcd(h, q - 1) = 1. If not, append the hash to the message and calcu-
late a new hash. Continue this process until a hash code is produced that is relatively 
prime to (q - 1). Then, calculate Z to satisfy Z K X * h mod (q - 1). The signa-
ture of the message is s = aZ. To verify the signature, a user computes t such that 
t * h = 1 mod (q - 1) and verifies Y = s t mod q.
a. Show that this scheme works. That is, show that the verification process produces 

an equality if the signature is valid.
b. Show that the scheme is unacceptable by describing a simple technique for forging 

a user’s signature on an arbitrary message.
 13.8 Assume a technique for a digital signature scheme using a cryptographic one-way 

hash function (H) as follows. To sign an n-bit message, the sender randomly generates 
in advance 2n 64-bit cryptographic keys: k1, k2, c , kn k′1, k′2, c , k′n which are kept 
private. The sender generates the following two sets of validation parameters, which 
are made public.

 v1, v2, c , vn and v′1, v′2, c , v′n

where

 vi = H(ki } 0), v′i = H(k′i } 1)

The user sends the appropriate ki or k′i  according to whether Mi is 0 or 1, respectively. 
For example, if the first 3 bits of the message are 011, then the first three keys of the 
signature are k1, k′2, and k′3.
a. How does the receiver validate the message?
b. Is the technique secure?
c. How many times can the same set of secret keys be safely used for different  messages?
d. What, if any, practical problems does this scheme present?
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LEARNING OBJECTIVES

After studying this chapter, you should be able to

◆◆ Explain the concept of embedded system.

◆◆ Explain the concept of constrained device.

◆◆ Give a presentation on the concept of lightweight cryptography and the types 
of cryptographic algorithms for which lightweight cryptography is of interest.

◆◆ Discuss the constraints that affect the design of lightweight cryptographic 
algorithms.

◆◆ Discuss the security requirements for lightweight cryptographic algorithms.

◆◆ Present an overview of approaches to lightweight cryptography for au-
thenticated encryption, hash functions, and message authentication codes.

◆◆ Explain the need for post-quantum cryptographic algorithms and which 
types of algorithms are affected.

◆◆ Present an overview of mathematical approaches to developing post-quantum 
cryptographic algorithms.

Two recent areas of strong interest in the field of cryptography are lightweight 
cryptography and post-quantum cryptography. It is likely in the coming years that 
a number of new algorithms in both areas will be widely deployed. In essence, light-
weight cryptography is focused on developing algorithms that, while secure, mini-
mize execution time, memory usage, and power consumption. Such algorithms are 
suitable for small embedded systems such as those in wide use in the Internet of 
Things (IoT). Work on lightweight cryptography is almost exclusively devoted to 
symmetric (secret key) algorithms and cryptographic hash functions.

Post-quantum cryptography is an area of study that arises from the con-
cern that quantum computers would be able to break currently used asymmetric 
cryptographic algorithms. Shor’s algorithm demonstrated a feasible way to break 
 asymmetric algorithms that rely on either integer factorization or discrete loga-
rithms. Thus, work on post-quantum cryptography is devoted to developing new 
asymmetric cryptographic algorithms.

14.1 LIGHTWEIGHT CRYPTOGRAPHY CONCEPTS

Lightweight cryptography is a subfield of cryptography concerned with the devel-
opment of cryptographic algorithms for resource-constrained devices. The term  
lightweight refers to the characteristic that a cryptographic algorithm makes minimal re-
source demands on the host system. For many existing cryptographic standards, the algo-
rithms incorporate trade-offs between security, performance, and cost requirements that 
make them unsuitable for implementation in resource-constrained devices. Lightweight 
cryptography includes attempts to develop efficient implementations of conventional 
cryptographic algorithms as well as the design of new lightweight algorithms.
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Embedded Systems

The term embedded system refers to the use of electronics and software 
within a product that has a specific function or set of functions, as opposed to a  
general-purpose computer, such as a laptop or desktop system. We can also define 
an embedded system as any device that includes a computer chip, but that is not a 
general-purpose workstation, desktop, or laptop computer. Hundreds of millions of 
computers are sold every year, including laptops, personal computers, workstations, 
servers, mainframes, and supercomputers. In contrast, tens of billions of microcon-
trollers are produced each year that are embedded within larger devices. Today, 
many, perhaps most, devices that use electric power have an embedded computing 
system. It is likely that in the near future, virtually all such devices will have embed-
ded computing systems.

Types of devices with embedded systems are almost too numerous to list. 
Examples include cell phones, digital cameras, video cameras, calculators, micro-
wave ovens, home security systems, washing machines, lighting systems, thermostats, 
printers, various automotive systems (e.g., transmission control, cruise control, fuel 
injection, anti-lock brakes, and suspension systems), tennis rackets, toothbrushes, 
and numerous types of sensors and actuators in automated systems.

Microcontrollers A microcontroller is a single chip that contains the processor, 
nonvolatile memory for the program (ROM or flash), volatile memory for input and 
output (RAM), a clock, and an I/O control unit. It is also called a “computer on a 
chip.” A microcontroller chip makes a substantially different use of the logic space 
available. The processor portion of the microcontroller has a much lower silicon 
area than other microprocessors and much higher energy efficiency.

Billions of microcontroller units are embedded each year in myriad products 
from toys to appliances to automobiles. For example, a single vehicle can use 70 or 
more microcontrollers. Typically, especially for the smaller, less expensive micro-
controllers, they are used as dedicated processors for specific tasks. For example, 
microcontrollers are heavily utilized in automation processes. By providing simple 
reactions to input, they can control machinery, turn fans on and off, open and close 
valves, and so forth. They are integral parts of modern industrial technology and are 
among the most inexpensive ways to produce machinery that can handle extremely 
complex functionalities.

Microcontrollers come in a range of physical sizes and processing power. 
Processors range from 4-bit to 32-bit architectures. Microcontrollers tend to be 
much slower than microprocessors, typically operating in the MHz range rather than 
the GHz speeds of microprocessors. Another typical feature of a microcontroller is 
that it does not provide for human interaction. The microcontroller is programmed 
for a specific task, embedded in its device, and executes as and when required.

Deeply eMbeDDeD systeMs A subset of embedded systems, and a quite numer-
ous subset, is referred to as deeply embedded systems. In general terms, a deeply 
embedded system has a processor whose behavior is difficult to observe both by the 
programmer and the user. A deeply embedded system uses a microcontroller, is not 
programmable once the program logic for the device has been burned into ROM 
(read-only memory), and has no interaction with a user.
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Deeply embedded systems are dedicated, single-purpose devices that detect 
something in the environment, perform a basic level of processing, and then do 
something with the results. Deeply embedded systems often have wireless capabil-
ity and appear in networked configurations, such as networks of sensors deployed 
over a large area (e.g., factory, agricultural field). The IoT depends heavily on deeply 
embedded systems. Typically, deeply embedded systems have extreme resource con-
straints in terms of memory, processor size, time, and power consumption.

Constrained Devices

A constrained device is a device with limited volatile and nonvolatile memory, limited 
processing power, and a low data rate transceiver. Many devices in the IoT, particularly the 
smaller, more numerous devices, are resource constrained. As pointed out in [SEGH12], 
technology improvements following Moore’s law continue to make embedded devices 
cheaper, smaller, and more energy-efficient but not necessarily more powerful. Typical 
constrained devices are equipped with 8- or 16-bit microcontrollers that possess very little 
RAM and storage capacities. Resource-constrained devices are often equipped with an 
IEEE 802.15.4 radio, which enables low-power low-data-rate wireless personal area net-
works (WPANs) with data rates of 20–250 kbps and frame sizes of up to 127 octets.

RFC 7228 (Terminology for Constrained-Node Networks) defines three 
classes of constrained devices (Table 14.1):

◆■ Class 0: These are very constrained devices, typically sensors, called motes, or 
smart dust. Motes can be implanted or scattered over a region to collect data 
and pass it on from one to another to some central collection point. For exam-
ple, a farmer, vineyard owner, or ecologist could equip motes with sensors that 
detect temperature, humidity, etc., making each mote a mini weather station. 
Scattered throughout a field, vineyard or forest, these motes would allow the 
tracking of microclimates. Class 0 devices generally cannot be secured or man-
aged comprehensively in the traditional sense. They will most likely be pre-
configured (and will be reconfigured rarely, if at all) with a very small data set.

◆■ Class 1: These are quite constrained in code space and processing capabili-
ties, such that they cannot easily talk to other Internet nodes employing a 
full  protocol stack. However, they are capable enough to use a protocol stack 
 specifically designed for constrained nodes and participate in meaningful con-
versations without the help of a gateway node.

◆■ Class 2: These are less constrained and fundamentally capable of supporting 
most of the same protocol stacks as used on notebooks or servers. However, 
they are still very constrained compared to high-end IoT devices. Thus, they 
require lightweight and energy-efficient protocols and low transmission traffic.

Table 14.1 Classes of Constrained Devices

Class Data Size (RAM) Code Size (flash, ROM)

Class 0 7 10 kB 7 100 kB

Class 1 & 10 kB & 100 kB

Class 2 & 50 kB & 250 kB
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Categories of Constraints for Lightweight Cryptography

It is useful to define the specific constraints that relate to the design of lightweight 
cryptographic algorithms. ISO 29192-1 (Lightweight Cryptography—Part 1: General, 
June 2012) lists the following as the key constraints:

◆■ Chip area: Chip area is of concern when a cryptographic algorithm is imple-
mented in hardware. Very small devices, such as small sensors, have limited avail-
able chip area to provide for security. Typically, chip area is expressed in gate 
equivalents (GEs). The GE value is derived by dividing the area of the integrated 
circuit by the area of a two-input NAND gate in the appropriate technology.

◆■ Energy consumption: Many constrained devices operate from a very small 
battery or energy derived from an incoming signal. Accordingly, algorithms 
may need to be designed to minimize energy consumption. Energy consump-
tion is a function of several factors including the processing time, the chip area 
(when implemented in hardware), the operating frequency, and the number of 
bits transmitted between entities (in wireless transmissions in particular).

◆■ Program code size and RAM size: Constrained devices typically have very 
limited space for program code (e.g., in ROM) and RAM needed for execu-
tion. Thus, cryptographic algorithms need to be compact in terms of code and 
make use of minimal RAM during execution.

◆■ Communications transmission rate: Very constrained devices, such as sensors 
and RFID tags, may be capable of very limited data rates. Thus, the amount of 
security-related data that needs to be transmitted, such as message authentica-
tion codes and key exchange material, needs to be extremely small.

◆■ Execution time: For some devices, such as contactless cards and RFID tags, 
execution time is constrained by the amount of time the device is present in 
the communication zone.

Security Considerations for Various Applications

Security requirements vary for different types of constrained devices. A useful list of appli-
cation areas is defined by the CRYPTREC1 Lightweight Cryptography Working Group 
in [CRYP17]. The following section summarizes key considerations for these devices.

raDio-Frequency iDentiFication (rFiD) RFID is a data collection technology that 
uses electronic tags attached to items to allow the items to be identified and tracked by 
a remote system. RFID technology is increasingly becoming an enabling technology for 
IoT. The main elements of an RFID system are tags and readers. RFID tags are small 
programmable devices, with an attached antenna, used for object, animal, and human 
tracking. They come in a variety of shapes, sizes, functionalities, and costs. RFID read-
ers acquire and sometimes rewrite information stored on RFID tags that come within 
operating range (a few inches up to several feet). Readers are usually connected to a 
computer system that records and formats the acquired information for further uses.

1CRYPTREC is the Cryptography Research and Evaluation Committee created by the Japanese 
Government to evaluate and recommend cryptographic techniques for government and industrial use.
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RFID devices require cryptographic algorithms that use a very small amount 
of logic and memory. Despite this, depending on the use of the RFID tag, a number 
of security mechanisms may be required. [SAAR12] lists the following as example 
uses and the corresponding security requirements:

◆■ Counterfeit goods: RFID tags can be cloned or modified in order for counter-
feit products or parts to pass as genuine. Authentication can counter this threat.

◆■ Environmental logging: Tampering with information such as temperature logs 
can pose a threat to the supply chain management of products such as fresh goods 
and medical supplies. Data and device authentication can counter this threat.

◆■ Privacy of Electronic Product Code (EPC): The EPC is designed to be stored 
on an RFID tag and it provides a universal identifier for every physical object 
anywhere in the world. This raises serious privacy issues if such tags are at-
tached to personal items. Therefore, the tag must also identify the reader as 
trusted before divulging traceable information.

◆■ Antitheft: Data may be written to the tag to indicate to an exit portal whether 
or not that item has been sold. Persistent memory write and lock operations 
must be protected to prevent theft.

◆■ Returns: When a tag is returned to a store or manufacturer, an authenti-
cated reset/write mechanism allows it to be reused. The tags maintain some 
amount of persistent memory; read, write, and lock operations to this mem-
ory must be authenticated to prevent tamper and unauthorized modification. 
Authenticated reads allow data to be visible only for the tag’s owner.

electronic HoMe appliances anD sMart tV A number of home appliances, in-
cluding air conditioners, ovens, and televisions, are now equipped with embedded 
processors that provide a range of services and may be connected to the Internet. To 
lower cost, these embedded systems are generally very constrained and are almost 
constantly under full load, leaving limited resources for security features. These de-
vices are vulnerable to unauthorized access that may tamper with the control signals 
or issue illegal commands that would lead to abnormal operations. These devices will 
also usually have updateable software. Thus, authentication methods are important.

sMart agricultural sensors Environmental sensors in agricultural settings can 
improve productivity and yield. For example, the sensors can operate with actua-
tors to control the timing and amount of watering and to automatically open and 
close greenhouse windows and to schedule pest control. Requirements for sensor 
networks include autonomously driven, small size, low power consumption, and low 
cost so that large numbers of sensors can be employed. These devices need to be 
tamper resistant to prevent sabotage.

MeDical sensors Wireless medical sensors permit health monitoring of patients 
outside of a hospital setting, capturing and transmitting a number of medical and 
health-related measures. These devices, particularly if that are implanted, are gener-
ally extremely small and use very little power.

inDustrial systeMs In factories, the transportation, processing, and assembly op-
erations have been automated to improve operational efficiency. Several machine 
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tools and robots can be connected by a network to share manufacturing informa-
tion and to manage the processes based on the data collected by sensors. Through a 
network, it is also possible to store information at a single place and to manage the 
equipment from a central location.

When connected to the Internet, these systems can be vulnerable both to the 
exposure of data and to sabotage. The risk is especially high in the case of critical 
public infrastructure, such as power distribution systems, nuclear power plants, water 
treatment, and air traffic control. The execution of unauthorized commands or the 
failure to execute authorized commands can lead to significant and even catastrophic 
damage. Thus, authentication, authorization, and availability mechanism are essential.

autoMobiles Modern automobiles provide both in-vehicle communication as well 
as wireless communication with external entities via small embedded systems. These 
onboard embedded devices are part of what are termed vehicle communications sys-
tems, which are networks in which vehicles and roadside units are the communicat-
ing nodes, providing each other with information, such as safety warnings and traffic 
information. They can be effective in avoiding accidents and traffic congestion.

Among security concerns are authentication to ensure that all the communica-
tions are accurate and can’t be spoofed, and privacy to ensure that the  communications 
can’t be used to track cars [NHTS14].

RFC 7744 provides additional examples of uses of constrained devices and 
their security requirements.

Design Trade-Offs

Figure 14.1 illustrates the trade-offs between security, cost, and performance in 
designing lightweight cryptographic algorithms. In general terms, for any given 
algorithm, the longer the key and the more rounds, the greater the security.  

PerformanceLow Cost

Security

• Longer keys
• More rounds
• Increased silicon area
• Increased power consumption
• Reduced throughput

• Shorter keys
• Fewer rounds
• Reduced silicon area
• Serial architecture
• Reduced power consumption
• Reduced throughput

• Shorter keys
• Fewer rounds
• Increased silicon area
• Parallel architecture
• Increased power consumption
• Increased throughput

Figure 14.1 Lightweight Cryptography Trade-Offs
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This implies a reduced throughput, in terms of the amount of plaintext processed per 
time unit, as well as increased power consumption. Similarly, the more complex an algo-
rithm or its implementation, the more security it can provide, but this generally requires 
increased silicon area, either for hardware implementation or software implementation.

Thus, achieving greater security can degrade either cost or performance objec-
tives, or both. As between performance and cost, there is also a trade-off in terms 
of the architecture, with a serial architecture generally providing lower cost, but a 
parallel architecture providing greater performance.

Security Requirements

ISO 29192 defines a minimum security strength for lightweight cryptography of 
80 bits. The standard defines the security strength to be the number associated with 
the amount of work (i.e., the number of operations) that is required to break a crypto-
graphic algorithm or system. A security strength of n implies that the required work-
load of breaking the cryptosystem is equivalent to 2n executions of the  cryptosystem. 
Most standards documents recommend a security strength of at least 128 bits. 
ISO 29192 indicates that there are some lightweight cryptographic applications that 
may allow lower security requirements, that is, they do not have to assume power-
ful adversaries. In cases where 80-bit keys are used, this implies that less data can be 
 encrypted safely with a single key before rekeying is required. It is therefore important 
that designers of cryptographic security systems make sure that the safe operation 
limitations of lightweight cryptographic mechanisms are not exceeded for a single key.

In 2018, NIST announced a project to solicit designs for lightweight crypto-
graphic algorithms [NIST18]. NIST is planning to develop and maintain a portfolio 
of lightweight algorithms and modes that are approved for limited use. Each al-
gorithm in the portfolio will be tied to one or more profiles, which consist of algo-
rithm goals and acceptable ranges for metrics. NISTIR 8114 (Report on Lightweight 
Cryptography, March 2017) indicates that the initial focus is the development of 
authenticated encryption with additional data (AEAD) and secure hash functions. 
NIST has issued a preliminary set of two profiles for these algorithms [NIST17], 
one for implementations in both hardware and software and one for hardware-only 
implementations (Figure 14.2). The details of these profiles are shown in Tables 14.2 
and 14.3. Note that the minimum security requirement is 112 bits.

Profile IProfile II

AEAD

AEAD 5 Authenticated Encryption with Associated Data

Hashing HashingAEAD

Lightweight cryptographic
algorithms

Hardware-oriented
designs

Software-oriented
designs

Figure 14.2 Profiles for Lightweight Cryptography
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Table 14.2 Profile 1: AEAD and Hashing for Constrained Environments

Functionality Authenticated Encryption with Associated Data  
and Hashing

Design goals — Performs significantly better in constrained environments 
 (hardware and embedded software platforms) compared to 
 current NIST standards.

— Both algorithms should be optimized to be efficient for short 
messages (e.g., as short as 8 bytes).

—Message length shall be an integer number of bytes.

Physical characteristics — Compact hardware implementations and embedded software 
implementations with low RAM and ROM usage should be 
 possible.

Performance characteristics — Performance on ASIC and FPGA should consider  various 
standard cell libraries, the flexibility to support various 
 implementation strategies (low energy, low power, low latency), 
with significant improvements over current NIST standards.

— Performance on microcontrollers should consider a wide range 
of 8-bit, 16-bit, and 32-bit microcontroller architectures.

— Preprocessing of a key (in terms of computation time and 
memory footprint) should be efficient.

Security characteristics AEAD
— A key length of 128 bits shall be supported. A longer key length 

may be supported, for example to provide security in the multi-
key setting, or security against quantum computers.

—Nonce lengths of up to 128 bits shall be supported.
—Tag lengths of up to 128 bits shall be supported.
—Plaintext lengths of up to 250-1 bytes shall be supported.
—Associated data of up to 250-1 bytes shall be supported.
—At least 250-1 bytes can be processed securely under a single key.
— Cryptanalytic attacks should require at least 2112 computations 

on a classical computer in a single-key setting.
— Lends itself to countermeasures against various side-channel 

attacks, including timing attacks, simple and differential power 
analysis (SPA/DPA), and simple and differential electromagnetic 
analysis (SEMA/DEMA).

Hashing
— Cryptanalytic attacks should require at least 2112 computations 

on a classical computer.
— Hash outputs of 256 bits must be supported, and longer hash 

values may be supported as well.
—A maximum message length of 250-1 bytes shall be supported.
— Lends itself to countermeasures against various side-channel 

attacks, including timing attacks, simple and differential power 
analysis (SPA/DPA), and simple and differential electromagnetic 
analysis (SEMA/DEMA).

siDe-cHannel attack Both ISO 29192 and NIST highlight the need for 
 resistance to side-channel attacks. A side-channel attack is an attack enabled 
by leakage of information from a physical cryptosystem [TIRI07]. An attacker 
exploits the physical environment to recover some leakage that can be used to 
break the cryptographic algorithm. Characteristics that could be exploited in a 
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Table 14.3 Profile 2: AEAD for Constrained Hardware Environments

Functionality Authenticated Encryption with Associated Data

Design goals —Performs significantly better compared to  current NIST standards.
— Performance for short messages (e.g., as short as 8 bytes) is 

important.
—Message length shall be an integer number of bytes.

Physical characteristics —Targeted toward constrained hardware platforms.
—Compact hardware implementations should be possible.

Performance characteristics — Performance on ASIC and FPGA should consider a wide range 
of standard cell libraries and vendors.

— Flexibility to support various implementation strategies (low 
energy, low power, low latency).

— Preprocessing of a key (in terms of computation time and 
memory footprint) should be efficient.

Security characteristics — A key length of 128 bits shall be supported. A longer key length 
may be supported, for example, to provide security in the 
 multi-key setting, or security against quantum computers.

—Nonce lengths of up to 128 bits shall be  supported.
—Tag lengths of up to 128 bits shall be supported.
—Plaintext lengths of up to 250 - 1 bytes shall be supported.
—Associated data of up to 250 - 1 bytes shall be supported.
—At least 250 - 1 bytes can be processed securely under a single key.
— Cryptanalytic attacks should require at least 2112 computations 

on a classical computer in a single-key setting.
— Lends itself to countermeasures against various side-channel 

attacks, including timing attacks, simple and differential 
power analysis (SPA/DPA), and simple and differential 
 electromagnetic analysis (SEMA/DEMA).

side-channel attack include running time, power consumption, and electromag-
netic and acoustic emissions.

Figure 14.3 illustrates the basic operation of a side-channel attack. The at-
tacker has access to the side-channel information emanating from the device, and 
may have either plaintext or ciphertext or both available. If operation is observable 
over an extended period of time, quite effective attacks are  possible. The analysis 
consists in guessing key bits based on differences in the side-channel information. 
For example, the processing required for a 1 bit may be more than required for a 
0 bit, and this affects processing time and power consumption. An attack on AES 
 typically estimated the leakage caused by a single key byte. The result is that the 
entire 128-bit key can be found with 16 * 28 tests [TIRI07].

Constrained devices are often particularly vulnerable to side-channel attacks 
because they are located in environments that are not physically secure.

Countermeasures to side-channel attacks seek to eliminate, or at least dimin-
ish, the correlation between bits of the key and side-channel information. Examples 
of countermeasures include adding random delay to computations, inserting instruc-
tion cycles that have no effect in such a way that every cryptographic computation 
takes the same amount of time, and adding hardware logic that results in random 
amounts of power consumption.
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14.2 LIGHTWEIGHT CRYPTOGRAPHIC ALGORITHMS

To meet the requirements of lightweight cryptography, a number of new algorithms 
have been proposed [BIRY17, CRYP17]. Typical characteristics include:

◆■ Many iterations of simple rounds

◆■ Simple operations like XORs, rotation, 4 * 4 S-boxes, and bit permutations

◆■ Smaller block sizes (e.g., 64 or 80 bits)

◆■ Smaller key sizes (e.g., 96 or 112 bits)

◆■ Simpler key schedules

◆■ Small security margins by design

◆■ Many iterations of simple rounds

◆■ Simplified key schedules that can generate sub-keys on the fly

These design choices yield smaller security margins compared to established 
algorithms such as AES and SHA-2.

Authenticated Encryption with Additional Data

arcHitecture strategies For both block and stream ciphers, the implementation 
to meet design goals makes use of one of three major hardware architecture options: 
parallel (loop unrolled), round-wise (rolled), and serial. Figure 14.4, based on one in 
[CRYP17], illustrates these options in general terms. A parallel implementation uses ad-
ditional logic so that several round operations are performed in parallel. Typically, some 
form of pipelining is used so that during a given clock cycle, multiple rounds are being 
executed. In a round-wise, or rolled implementation, each round is executed separately, 
with execution of one round completed before the next round is begun. In both rolled 
and unrolled implementations, the architecture stores the full internal state, plus the key 
state if any, and then performs one round using a circuit operating on the full state at 
once. To achieve minimum chip area, a serial implementation can be used. With serial 

Analyzer

Plaintext

Key

Side-channel
information

Ciphertext

Key estimate

Device

Figure 14.3 Side-Channel Attack
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implementation, a block is processed in fractions, so that multiple operations are needed 
to complete a single round. With serial implementation, only a fraction of the state is 
updated at a time. As Figure 14.4 illustrates, moving from unrolled to rolled to serial 
implementation reduces the chip area required at the cost of increased execution time.

block cipHers Block ciphers are employed as the basic functional unit in a mode 
of operation to achieve encryption and in some authentication modes. Thus, they 
are intended for use processing multiple blocks of data. ISO 29192-1 indicates that 
the security of most modes of operation for block ciphers (including MAC and hash 
constructions) degrades at q2>2n, where n is the block size in bits and q is the num-
ber of blocks encrypted. For example, when n = 64, encryption of 232 blocks is suf-
ficient to expose the block cipher to attack. Therefore, care has to be taken since a 
shorter block size implies that less data can be encrypted using a single key.

An example of a lightweight cryptographic block cipher is the Scalable 
Encryption Algorithm (SEA) [STAN06]. SEA uses the Feistel cipher structure 
(Figure 4.3). SEA can have an arbitrary block size n (as long as n = 6b for some b), 
word size, and number of rounds. It is based on the following operations:

◆■ Bitwise exclusive-OR: ⊕
◆■ Application of an S-box: S

◆■ Rotation of the words in a vector of words: R = rotate left: R-1 = rotate right

◆■ Bit rotation inside a word: r

◆■ Addition modulo 2b: Ä

(a) Unrolled implementation

Round Function

Round Function

State

Round Function

Round Function

State

(c) Serial implementation

P

S

(b) Rolled implementation

Round Function

Logic

Registers

Increasing latency

Increasing chip area

Figure 14.4 Basic Implementation Methods for Symmetric Ciphers
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The basic parameters are:

n: block size and key size

b: word size

nb =
n
2b

: number of words per Feistel branch

nr: number of rounds

The only constraint is that the block size must be a multiple of six times the 
word size (n is a multiple of 6b). Thus, for an 8-bit processor, the block size can be 
48, 96, 144, and so on.

Figure 14.5 illustrates the functionality of a single round. For each round, a 
block is divided into left and right halves and the round operations are:

Encryption Li + 1 = Ri

Ri + 1 = R1Li2  ⊕ r(S(Ri  Ä Ki))

Decryption Li + 1 = Ri

Ri + 1 =  R-1(Li ⊕  r(S(Ri  Ä Ki)))

Subkey generation KLi + 1 = KRi

KRi + 1 = KLi ⊕   R(r(S(KRi  Ä Ci)))

R 5 word rotation to the left  R21 5 word rotation to the right
 r 5 bit rotation  S 5 S-box substitution

5 bitwise XOR 5 addition mod 2b

(a) Encrypt/decrypt

used only on
encryption

used only on
decryption

(b) Subkey generation

R

Li Ri

KLi KRi

KLi11 KRi11Li11 Ri11

Ki

Ci
Sr

SR r

R–1

Figure 14.5 One Round of Scalable Encryption Algorithm

M14_STAL7484_08_GE_C14.indd   450 30/04/22   1:38 PM



14.2 / Lightweight CryPtograPhiC aLgorithms 451

The substitution box is defined by a 3-bit substitution table. For a 3-bit chunk x:

x 000 001 010 011 100 101 110 111

S1x2 000 101 110 111 100 011 001 010

Data can be processed in blocks of 3 words (24 bits) at a time, providing oppor-
tunity for parallel implementation of the S-box substitution to the eight 3-bit chunks.

The constant Ci is a nb@word vector in which all of the words have the value 0 
except the least significant word, which has the value i.

SEA has a number of strengths for use in a constrained device. Only a few oper-
ations need to be implemented. It is easily scalable in terms of both block and key size. 
SEA is designed to provide good nonlinearity and diffusion. The authors look at vari-
ous types of attacks to justify the design decisions in the creation of SEA [STAN06].  
A number of studies have shown that SEA provides a good balance of compact im-
plementation and performance [KUMA11a, KUMA10 CAKI10, MACE08].

streaM cipHers Stream ciphers are also a promising approach to symmetric en-
cryption for constrained environments. Chapter 8 presents one example of a stream 
cipher that is suitable for constrained devices: Grain-128.

Hash Functions

Traditional hash functions may not meet the requirements for implementation on 
constrained devices. NISTIR 8114 points out two ways in which lightweight hash 
functions differ from more traditional ones:

◆■ Smaller internal state and output sizes: Large output sizes are important for 
applications that require collision resistance of hash functions. For applications 
that do not require collision resistance, smaller internal states and output sizes 
might be used. When a collision-resistant hash function is required, it may be ac-
ceptable that this hash function has the same security against preimage, second-
preimage, and collision attacks. This may reduce the size of the internal state.

◆■ Smaller message size: Conventional hash functions are expected to support 
inputs with very large sizes (around 264 bits). In most of the target protocols for 
lightweight hash functions, typical input sizes are much smaller (e.g., at most 
256 bits). Hash functions that are optimized for short messages may therefore 
be more suitable for lightweight applications.

An example of a lightweight cryptographic hash functions is PHOTON 
[GUO11]. PHOTON is one of the hash functions specified in ISO 29192. It is also 
listed in [CRYP17].

PHOTON uses a sponge structure, similar to that used by SHA-3, as shown in 
Figure 14.6. Sponge functions have been well studied in terms of security and can be 
designed for compact implementation. The sponge function has three main elements:

◆■ An internal state of t bits consisting of a c-bit capacity and an r-bit rate 
1t = c +  r2. The rate r is the number of bits processed at each iteration, and 
the capacity c is a measure of the complexity of the construction and therefore 
its security. The hash size n is equal to c.
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r bits

c bits

absorbing

m0 m1 mi21

P P PP
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Figure 14.6 Photon Sponge Structure

◆■ A permutation function P that operates on the internal state at each iteration.

◆■ A padding function that appends sufficient bits to the data input.

The sponge structure consists of an absorbing phase that absorbs the message 
blocks into an internal state, followed by a squeezing phase that generates the hash 
blocks. For the absorbing phase, the data input, or message, is padded by appending 
a 1 bit and as many zeros as needed so that the input length is an integral multiple 
of r. The input is divided into i r-bit message blocks m0, c,  mi-1. The internal 
state is initialized to the value S0 = IV =  506t-24 � � n>4 � �r � � r′, where the three 
values are each coded in 8 bits and n is the hash size. For each of the i iterations, mi  
is XORed with the rate portion of the internal state and then the permutation P is 
applied to the t-bit state.

For the squeezing phase, the internal state is divided into r′ and c′ sections, 
which may differ in lengths from r and c. Increasing r′ reduces the time spent in 
the squeezing phase but might reduce preimage security. This phase produces a se-
quence of i r′-bit hash blocks z0, c,  zj-1, with j = <n>r′= - 1. The hash output is 
z0 � � c � �zj-1. If the hash output is not a multiple of r′, it is truncated to n bits.

Using the structure of Figure 14.6, five variants of PHOTON are defined, as 
shown in Table 14.4. The five versions provide increasing levels of security at the 
cost of increasing size and processing time. Note the small size of the internal state, 
of between 100 and 288 bits. By contrast, SHA-3 has an internal state of 1600 bits, 
and SHA-512 has an internal state of 512 bits.

The internal structure of the permutation function consists of unkeyed AES-
like primitives especially derived for hardware optimization. The advantage of 
AES-like primitives is that PHOTON takes advantage of the previous cryptanalysis 
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performed on AES and on AES-based hash functions. Figure 14.7 illustrates the per-
mutation P structure. The t-bit internal state is organized of a matrix of (d * d) s-bit 
cells. Thus, i = (d * d) + s. The permutation consists of 12 rounds of four stages:

◆■ AddConstants: Round constants are XORed to the first column of the matrix.

◆■ SubCells: An S-box is used to map each matrix entry to a new value.

◆■ ShiftRows: The position of the cells in each row is rotated, as illustrated.

◆■ MixColumnsSerial: This function linearly mixes all the columns independently.

Table 14.4 PHOTON Versions

PHOTON-n>r>r′ n (Hash Size) r (Message 
Block Size)

r′ (Hash Block Size) t (Internal 
State)

PHOTON-80/20/16 80 20 16 100

PHOTON-128/16/16 128 16 16 144

PHOTON-160/36/36 160 36 36 196

PHOTON-224/32/32 224 32 32 256

PHOTON-256/32/32 256 32 32 288

Note: All values are expressed in bits.

d cells

s bits

AddConstants

d 
ce

lls

ShiftRows

SubCells
S S S S S S S S
S S S S S S S S
S S S S S S S S
S S S S S S S S
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MixColumnsSerial

Figure 14.7 One Round of a PHOTON Permutation
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The authors claim that PHOTON is extremely lightweight, very close to the 
theoretical optimum and achieves excellent area/throughput trade-offs.

Message Authentication Codes

[CRYP17] points out that there are two approaches to developing a lightweight mes-
sage authentication code (MAC). The first approach is to use an existing MAC with 
an underlying lightweight cryptographic algorithm. The most prominent examples 
are CMAC and HMAC, both discussed in Chapter 12. Because the overheads of 
CMAC and HMAC are not high, a lightweight MAC can be implemented by con-
figuring these algorithms with an underlying lightweight cryptographic algorithm. In 
the case of CMAC, this means using a lightweight symmetric encryption algorithm. 
In the case of HMAC, this means using a lightweight hash algorithm.

The second approach is to specifically design a new lightweight MAC algo-
rithm. There has been much more work done on lightweight encryption algorithms 
and cryptographic hash codes than on lightweight MAC algorithms.

One example of a newly designed MAC is SipHash [AUMA12]. It is the only 
MAC listed in [CRYP17] and it has been widely implemented. The principal objec-
tives for the design of SipHash were:

◆■ Optimize the MAC algorithm for short messages. This is in keeping with the 
typical exchanges be constrained devices.

◆■ Build a MAC that is secure, efficient, and simple.

Two important characteristics of SipHash are that it does not require key ex-
pansion and that minimal internal state is required. SipHash has a sponge type of 
structure consisting of a compression phase, during which the message is absorbed 
and compressed, followed by a finalization phase, which provide further mixing of 
the bits. SipHash is a family of functions denoted SipHash-c-d, where c is the num-
ber of compression rounds between message blocks and d is the number of finaliza-
tion rounds. The rounds, denoted SipRound, are identical for the two phases. The 
variables used in all of the SipHash variants are as follows:

◆■ A 128-bit key k, divided into two 64-bit blocks k0 and k1.

◆■ A b-byte message m, that is divided into w = <1b +  12 >8=  64-bit blocks 
m0, c,  mw - 1, where mw - 1 includes the last (b mod 8) bytes of m followed by 
null bytes ending with a byte encoding the positive integer b mod 256.

◆■ An internal state consisting of four 64-bit words, labeled v0, v1, v1, v2.

◆■ A 64-bit tag. This is the output of the SipHash function, used for message 
authentication.

Figure 14.8a illustrates the compression state. To begin, the internal state is 
initialized as:

v0 = k0 ⊕ C0 = k0 ⊕ 736f6d6570736575

v1 = k1 ⊕ C1 = k1 ⊕ 646f72616e646f6d

v2 = k0 ⊕ C2 = k0 ⊕ 6c7967656e657261
v3 = k1 ⊕ C3 = k1 ⊕ 7465646279746573
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Thus, each half of each key is subject to two different bit flipping operations. 
Then each message word is processed as follows:

1. The internal state is modified by v3 = v3 ⊕ m0.

2. This is followed by c iterations of SipRound.

3. This is followed by (w - 1) steps consisting of

v0 = v0 ⊕ mi - 1

v3 = v3 ⊕ mi

c iterations of SipRound

(c) SipHash round
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Figure 14.8 SipHash Message Authentication Code
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4. This is followed by

v0 = v0 ⊕ mw - 1

v3 = v3 ⊕ ff

In the finalization phase (Figure 14.8b), there are d more rounds applied to the 
internal state. Then, the 64-bit tag is generated as v0 ⊕ v1 ⊕ v2 ⊕ v3.

The function SipRound transforms the internal state using the simple functions 
of addition, exclusive-OR, and bitwise left logical rotate, as shown in Figure 14.8c.

The authors believe that SipHash-2-4 provides strong security and is the rec-
ommended “fast” option. SipHash-4-8 is a conservative choice, providing higher se-
curity at about half the speed.

Asymmetric Cryptographic Algorithms

Neither NISTIR 8114 nor [CRYP17] mention developing lightweight asym-
metric cryptographic algorithms. So far, there has been little interest in this area. 
Asymmetric algorithms typically operate on only small blocks of data and are rela-
tively infrequently invoked. Thus, there is less motivation for attempting lightweight 
versions. Additionally, most asymmetric algorithms are already relatively compact.

One potential application is to use a lightweight hash function in a digital sig-
nature algorithm.

14.3 POST-QUANTUM CRYPTOGRAPHY CONCEPTS

Post-quantum cryptography is concerned with the development of cryptographic algo-
rithms that are secure against the potential development of quantum computers. Whereas 
lightweight cryptography is primarily concerned with the efficiency and compactness of 
symmetric encryption algorithms and cryptographic hash functions, post-quantum cryp-
tography is concerned with the security of asymmetric cryptographic algorithms.

We begin with a brief introduction to quantum computing and then look at the 
implications for asymmetric cryptography.

Quantum Computing

Quantum computing is based on the representation of information in a form analo-
gous to the behavior of elementary particles in quantum physics. A practical appli-
cation of this representation, in terms of performing calculations, requires producing 
a physical system that performs computation making use of quantum physical prin-
ciples. As yet, no such general-purpose computing system has been developed but in 
principle it is possible to do so.

Information in a quantum computer is represented as quantum bits, or qubits. 
A qubit can be viewed as a quantum analog of a classical bit, one that obeys the laws 
of quantum physics. In particular, qubits have two properties that are relevant to 
quantum computing:

◆■ Superposition: A qubit does not exist in a single state but in a superposition of 
different states. It is only when a measurement is taken that the qubit collapses 
into a unique state (binary 1 or 0). Prior to that it is only possible to express a 
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probability that the qubit is a 1 or a 0. The qubit can be thought of a vector of 
unit magnitude in a two-dimensional vector space.

◆■ Entanglement: Qubits can be linked to each other over the course of operations re-
flecting the physical phenomenon known as quantum entanglement. The relevant 
implication of this is that state of a multiple-qubit system is not represented by a 
linear combination of the state vectors of each qubit but rather a tensor product.

It is well beyond the scope of this brief introduction to explain the implications 
of these two properties in terms of computation. In essence, because of entangle-
ment, a set of multiple qubits has a state space that grows exponentially with the 
number of qubits. Because of the superposition of states, one operator applied to 
the set operates on all the states in parallel. This enables allowing quantum comput-
ers to look through millions of potential solutions at once, rather than sequentially. 
Thus, computational power scales exponentially.

The challenges of building a practical quantum computer are immense. The vari-
ous physical realizations of qubits that are being investigated are very fragile, with some 
requiring extremely cold temperatures. As reported in [GREE18], quantum computing 
systems will need new algorithms, software, interconnects, and a number of other yet-
to-be-invented technologies specifically designed to take advantage of system’s tremen-
dous processing power—as well as allow the computer’s results to be shared or stored.

Shor’s Factoring Algorithm

Public-key cryptography supports three critical cryptographic functionalities: 
 public-key encryption, or asymmetric encryption, digital signatures, and key exchange. 
The underlying algorithms that are primarily implemented for these functions are 
Diffie-Hellman key exchange, the RSA cryptosystem, and elliptic curve cryptosys-
tem. In turn, the security of these algorithms depends on the difficulty of solving cer-
tain number theoretic problems, mainly integer factorization or discrete logarithms.

Shor [SHOR97] has described algorithms designed for a quantum computer (op-
erate on qubits) for prime factorization and discrete logarithms that execute in poly-
nomial time. For example, the number of steps in the factorization algorithm grows 
polynomial to the number of digits of the integer to be factored. The implication of 
Shor’s work is profound for public-key systems. For example, a white paper from the 
European Telecommunications Standards Institute [ETSI14] indicates that to attack a 
3072-bit RSA key, a quantum computer must have a few thousand logical qubits. If and 
when quantum computers that can handle that number of qubits is practical, such a key 
is no longer safe. Further, using Shor’s algorithm, the number of qubits needed scales 
linearly with the bit length of the RSA or ECC key. Moving to a larger RSA key pro-
vides security only until a larger quantum computer is built. And, as [ETSI14] points 
out, doubling the size of an RSA or ECC key doubles the burden on a quantum com-
puter, but increases the running time for using the keys on a conventional computer 
by a factor of 8. This type of response to quantum computing is clearly unsustainable.

Figure 14.9 illustrates the impact for RSA. The individual diamonds indicate the 
year when a given RSA key length was demonstrated to be broken. The progress is 
due to a combination of increased computing power and more sophisticated cryptan-
alytic algorithms. Based on the trend line, a key size of 1024 bits is secure for the near 
future and a key size of 2048 bits is secure for a very long time. However, if practical 
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quantum computers are introduced, and Shor’s algorithm is used, the trend line could 
become exponential, the key length of 2018 could be broken relatively soon.

Grover’s Algorithm

Grover’s algorithm [GROV96] searches an unordered list in O12n2 time, while 
conventional algorithms require O1n2 . This is not as dramatic as the speedup 
achieved by Shor’s algorithms, but it is a significant improvement for the type of 
brute-force approach typically used for symmetric encryption and hash algorithms. 
Grover’s algorithm can reduce the cost of attacking a symmetric cryptographic algo-
rithm. For a cryptographic algorithm with a key size of n bits, Grover’s algorithm can 
theoretically reduce the security of that algorithm to one with a key size of n/2 bits. 
This is not nearly as serious as the threat to asymmetric algorithms posed by Shor’s 
algorithm. For example, a 128-bit AES key is considered secure for the foreseeable 
future. To guard against a quantum attack using Grover’s algorithm, the same level 
of security could be maintained by moving to a 256-bit key. Similarly, Grover’s algo-
rithm can theoretically reduce the security of a cryptographic hash algorithm by a 
factor of two. This can be countered by doubling the hash length.

Furthermore, it has been shown that an exponential speed up for search algo-
rithms is impossible, suggesting that existing symmetric algorithms and hash func-
tions should be secure in a quantum era [BENN97].
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Cryptoperiods

Although practical large-scale quantum computers are not likely for a number or 
years, there has been considerable interest and some urgency in developing cryp-
tographic algorithms that are secure against such computers. The following are 
examples:

◆■ In 2015, the U.S. National Security Agency (NSA) released a major policy 
statement on the need for post-quantum cryptography. Prior to this, NSA had 
defined a suite of algorithms (Suite B) that were approved for protection of 
both sensitive but unclassified (SBU) and classified information, including 
the approval of ECC. The 2015 NSA statement indicated that partners and 
vendors that had not yet implemented Suite B should not expend additional 
resources on developing ECC products because NSA planned to transition to 
post-quantum algorithms in the foreseeable future.

◆■ In 2016, NIST announced a request for submissions for public-key 
 post-quantum cryptographic algorithms. Round 2 submissions have been re-
ceived and, as of this writing, are being evaluated.

◆■ In 2014, the ETSI Quantum Safe Cryptography (QSC) Industry Specification 
Group was formed to assess and make recommendations for quantum-safe 
cryptographic primitives and protocols.

To understand the motivation for rapid progress in this area, we need to discuss 
the concept of cryptoperiod. The cryptoperiod of a cryptographic key is the time span 
during which a specific cryptographic key is authorized for use for its defined pur-
pose. This is an important consideration. A number of potential security threats make 
it advisable that any key not be used for a prolonged period of time. These threats 
include:

◆■ Brute-force attacks: As raw processing power and the ability to use numer-
ous processors in parallel increase, a given key length becomes increasingly 
vulnerable and longer key lengths are advised. Any of the shorter keys in 
use need to be retired as quickly as possible and longer key lengths em-
ployed. For example, NIST used to recommend the use of 1024-bit keys 
for certain asymmetric algorithms but now recommends 2048 bits for these 
algorithms.

◆■ Cryptanalysis: Over time, flaws may be discovered in a cryptographic algo-
rithm that make it feasible to “break” the algorithm. An example of this is the 
original NIST standard hash algorithm, SHA-1, which was used in their Digital 
Signature Algorithm. Once these weaknesses were discovered, NIST migrated 
to SHA-2 and SHA-3. Similarly, methods have been found for breaking algo-
rithms such as the RSA asymmetric algorithm at rates faster than brute force, 
which can be thwarted by using longer keys.

◆■ Other security threats: Beyond simply attacking an algorithm directly in an 
attempt to discover a key that is being used, there are a variety of other meth-
ods of attack. This includes attacks on the mechanisms and protocols associ-
ated with the keys, key modification, and achieving unauthorized disclosure.  
The longer a particular key is used for encryption and decryption, the greater 
the chance that some means of learning the key will succeed.
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Accordingly, an enterprise should have policies for the maximum cryptoperiod 
of each key type.

Figure 14.10a illustrates the two aspects of a cryptoperiod. The originator 
usage period (OUP) refers to the time during which data may be encrypted, and 
the recipient usage period (RUP) is the time during which such data may continue 
to be maintained in its encrypted form and subject to decryption. The RUP often 
starts at the beginning of the OUP, but there may be some delay before data can be 
decrypted. More significantly, the end of the RUP may extend for a considerable 
length of time beyond the end of the OUP. That is, the policy may state that a given 
key may no longer be used for encrypting new data, but the data that have already 
been encrypted may be retained in the encrypted form, available for decryption for 
a further period of time. Hence the cryptoperiod extends from the start of the OUP 
to the end of the SUP. Table 14.5 shows the cryptoperiods suggested in SP 80-57.

Quantum Safety

Equivalent to the term post-quantum cryptography is the term quantum-safe 
 cryptography. The latter term emphasizes the need for creating cryptographic 
 algorithms that are safe, or secure, against quantum computing algorithms. 
Figure 14.10b illustrates what this means in terms of times. At present, no organization 

(a) Cryptoperiod for individual key

Cryptoperiod

Recipient Usage Period (RUP)

Originator Usage Period (OUP)

(b) Quantum safety timeline

Time

IT infrastructure not quantum-safe IT infrastructure quantum-safe

Large-scale quantum computer not available Secrets divulged

Figure 14.10 Lead Time for Quantum Safety
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Table 14.5 Suggested Cryptoperiods from SP 800-57

Key Type OUP RUP

1. Private Signature Key 1 to 3 years —

2. Public Signature-Verification Key Several years (depends on key size)

3. Symmetric Authentication Key … 2 years … OUP + 3 years

4. Private Authentication Key 1 to 2 years

5. Public Authentication Key 1 to 2 years

6. Symmetric Data Encryption Keys … 2 years … OUP + 3 years

7. Symmetric Key Wrapping Key … 2 years … OUP + 3 years

8. Symmetric RBG Keys See [SP800-90] —

9. Symmetric Master Key About 1 year —

10. Private Key Transport Key … 2 years

11. Public Key Transport Key 1 to 2 years

12. Symmetric Key Agreement Key 1 to 2 years

13. Private Static Key Agreement Key 1 to 2 years

14. Public Static Key Agreement Key 1 to 2 years

15.  Private Ephemeral Key 
Agreement Key

One key-agreement transaction

16.  Public Ephemeral Key  
Agreement Key

One key-agreement transaction

17. Symmetric Authentication Key … 2 years

18. Private Authentication Key … 2 years

19. Public Authentication Key … 2 years

or IT installation is using post-quantum cryptographic algorithms and so cannot be 
considered quantum safe. This situation is satisfactory until such time as large scale-
quantum computers are available. If such computers become available prior to the 
widespread introduction of post-quantum algorithms, then there will be a period of 
time in which all IT installations are vulnerable to attack. Thus, there is some urgency 
in developing and deploying post-quantum algorithms.

The issue of timing also relates to the concept of the cryptoperiod. Any IT 
installation managing a large number of symmetric and asymmetric keys with dif-
ferent end dates for the respective cryptoperiods. The aggregate of all those keys 
and their cryptoperiods indicate how long it is after post-quantum cryptography is 
introduced before all pre-quantum keys are phased out.

As pointed out in [ETSI14], and illustrated in Figure 14.11, three levels of  
security-related entities are vulnerable to quantum attack:

◆■ Cryptosystems: A cryptosystem consists of a set of cryptographic algorithms 
together with the key management processes that support use of the algo-
rithms in some application context. Any cryptosystem that relies on the se-
curity of integer factoring or discrete logarithms is vulnerable. This includes 
RSA, DSA, DH, ECDH, ECDSA, and other variants of these ciphers.  
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Almost all public key cryptography in fielded security products and protocols 
today use these types of ciphers.

◆■ Security protocols or security components of network protocols: Any such 
protocols that derive security from the public-key algorithms listed in the pre-
ceding bullet are vulnerable.

◆■ Products: Any products or security systems that derive security from the above 
protocols are vulnerable.

Cryptosystems or portions of cryptosystems that employ symmetric ciphers 
or hash functions can be made quantum safe by increasing the size of the key or 
the hash length, respectively. It is public-key systems that are of concern. Table 14.6 
summarizes these considerations.

14.4 POST-QUANTUM CRYPTOGRAPHIC ALGORITHMS

The types of asymmetric algorithms that are vulnerable to quantum computing are 
in the following categories:

◆■ Digital signatures: Public-key signature algorithms for generating and verify-
ing digital signatures.

Table 14.6 Impact of Quantum Computing on Common Cryptographic Algorithms

Cryptographic Algorithm Type Purpose Impact from Large-
Scale Quantum 

Computer

AES Symmetric key Encryption Larger key sizes 
needed

SHA-2, SHA-3 Cryptographic hash Hash function Larger output needed

RSA Asymmetric key Signature, key  
establishment

No longer secure

ECDSA, ECDH
(elliptic curve cryptography)

Asymmetric key Signature, key 
exchange

No longer secure

DSA (finite field cryptography) Asymmetric key Signature, key 
exchange

No longer secure

PRODUCTS
that derive their
security from these
protocols and
cryptosystems

CRYPTOSYSTEMS
designed on the
presumed difficulty
of discrete log or
integer factorization

SECURITY
PROTOCOLS
that rely on
any of these 
cryptosystems

Figure 14.11 Entities Vulnerable to Quantum Computing
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◆■ Encryption: Used for encrypting symmetric keys for transport from one party 
to another. Also used in various key establishment algorithms. In general 
terms, these proceed as follows: Each party has either one or two key pairs, and 
the public keys are made known to the other party. The key pairs are used to 
compute a shared secret value, which is then used with other information to 
derive keying material using a key derivation function.

◆■ Key-Establishment Mechanisms (KEMs): Refers to schemes such as Diffie-
Hellman key exchange.

There is no single widely accepted alternative to the existing algorithms based 
on integer factorization or discrete logarithms. Of the approaches reported in the 
literature, four general types of algorithms predominate:

◆■ Lattice-based cryptography: These schemes involve the construction of primi-
tives that involve lattices.

◆■ Code-based cryptography: These schemes are based on error-correcting codes.

◆■ Multivariate polynomial cryptography: These schemes are based on the dif-
ficulty of solving systems of multivariate polynomials over finite fields.

◆■ Hash-based signatures: These are digital signatures constructed using hash 
functions.

An indication of the interest shown in these approaches is found in the submis-
sions to the NIST effort at post-quantum standardization. As reported in NISTIR 
8105 (Report on Post-Quantum Cryptography, April 2016), NIST hopes to stan-
dardize a number of algorithms that can be used to replace or complement existing 
asymmetric schemes. For the first round, NIST has received 82 submissions, broken 
down as shown in Table 14.7.

There are several reasons why NIST does not intend to settle on a single 
standard:

◆■ The requirements for public-key encryption and digital signatures are more com-
plicated than those of symmetric encryption and cryptographic hash functions.

◆■ The current scientific understanding of the power of quantum computers is far 
from comprehensive.

Table 14.7 Submissions to NIST Post-Quantum Cryptography Competition

Signatures KEM/Encryption Total

Lattice-based 4 24 28

Code-based 5 19 24

Multivariate 7 6 13

Hash-based 4 — 4

Other 3 10 13

Total 23 59 82
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◆■ Some of the candidate post-quantum cryptosystems may have completely dif-
ferent design attributes and mathematical foundations, so that a direct com-
parison of candidates would be difficult or impossible.

◆■ The various approaches exhibit different advantages and disadvantages, be-
yond considerations of security.

Although there will be significant differences within each of the four ap-
proaches listed above, the following general statements can be made:

◆■ Lattice-based cryptography: These schemes are relatively simple, efficient, and 
highly parallelizable.

◆■ Code-based cryptography: These schemes are quite fast but require very large 
key sizes.

◆■ Multivariate polynomial cryptography: For digital signatures, these schemes 
require very large key sizes.

◆■ Hash-based signatures: Many of the more efficient hash-based signature 
schemes have the drawback that the signer must keep a record of the exact 
number of previously signed messages, and any error in this record will result 
in insecurity. Another drawback is that they can produce only a limited num-
ber of signatures. The number of signatures can be increased, even to the point 
of being effectively unlimited, but this also increases the signature size.

Because of the complexity of the mathematics and the implementation of 
these types of schemes, a full description is beyond our scope. The remainder of this 
section provides a brief overview of each of the four approaches.

Lattice-Based Cryptographic Algorithms

An m-dimensional lattice of rank n is the set of vectors that can be expressed as the 
sum of integer multiples of a specific set of n vectors, collectively called the basis of 
the lattice. More formally, a lattice can be defined as:

L = e a
n

i = 1
xibi � ni ∈ ℤ,bi ∈ ℝm f

where the bis are linearly independent vectors of length m over the real numbers 
and the xi are integers. The set of vectors bi is called a lattice basis. The lattice basis 
can be represented by a matrix B, where the ith column of the matrix is bi. We refer 
to m as the dimension of the lattice, and n the rank of the lattice. A lattice can be de-
picted as n points defined by the basis in m-dimensional space; that is, each point is 
the end point of one of the basis vectors. A lattice is said to be full-rank when n = m.  
There are infinitely many lattices of the same dimension.

A basis vector bi consists of m real numbers 1bi,1, c,  bi,m2. The length of the 
vector is the real number:

}bi } =  2b2
i,1 + b2

i,2 + g+ b2
i,m 

The basis for a given lattice is not unique. The existence of multiple bases for the 
same lattice is important for the development of cryptographic algorithms, because 
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some bases are easier to handle than others. Figure 14.12, which depicts a lattice with 
n =  m =  2, illustrates the concepts just introduced. The basis b1 = 10.5, 0.52,  
b2 = (-1, 0.5), with lengths }b1 } = 0.707  and }b2 } = 1.12 , defines all of 
the points shown in the figure. For example, the point P = 11, 12 is equal to 
x1b1 + x2b2 = x110.5, 0.52 + x2(-1, 0.5), for x1 =  2, x2 = 0. The same lattice is 
also defined by the basis c1 = 13.5, 22,  c2 = 13, 1.52, with lengths } c1 } = 4.03 
and } c2 } = 3.35. For example, P = 11, 12 is equal to x1c1 + x2c2 for x1 = 2>3,   
x2 = -2>3. With either basis, any point in the space can be defined by a linear combina-
tion of its two vectors, but the basis b1, b2 is computationally more convenient.

The essence of a lattice-based cryptographic algorithms is to exploit a hard 
problem in lattices. One such problem is the Closest Vector Problem (CVP) which 
can be stated as follows: given a basis of a lattice L and a vector v ∈ ℝm, find a lattice 
vector that minimizes the distance to v. Note that, in general, v defines a point that is 
not part of the lattice. The Shortest Vector Problem (SVP) is to find the shortest non-
zero vector within a lattice. There is no known quantum algorithm for solving CVP 
or SVP for lattices of large dimension. In practice, the cryptographic algorithms that 
have been proposed assume that a relaxed variant of CVP or SVP is still hard to solve.

The most widely studied lattice-based approach is the NTRU family of crypto-
graphic algorithms. Such algorithms use a specific class of lattices that have an extra 
symmetry. In all NTRU-based schemes, the private key represents a lattice basis 
consisting of short vectors, while the public key represents a lattice basis consisting 
of longer vectors. In general terms, these algorithms work as follow. A message is 
encoded as a vector m. A random point in the lattice defined by the private key basis 
is added to m to form a vector e. The public key has been defined by multiplying the 
private key basis B by a matrix U, yielding another basis B' for the same lattice, with 
longer vectors. To decrypt the message, find the lattice point closest to the ciphertext 
vector C = eU-1, and subtract it from the ciphertext vector. The result is the origi-
nal plaintext vector. That is, B' is the public key and it is possible to find the lattice 
point X closest to C, such that C - X = m. However, given B', it is computationally 
infeasible to determine B.

Solid vectors 5 convenient basis
Dashed vectors 5 inconvenient basis

b1

P
c2

c1

b2

Figure 14.12 Two Bases for a Two-Dimensional Lattice
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The matrix U in the above scheme must be a unimodular matrix, which means 
that the determinant of U is 1 or -1. For example, the matrix

a1 2
0 1

b
is unimodular with a determinant of 1. It can be shown that the inverse U - 1 of 
unimodular matrix U is also unimodular, and that two bases B1, B2 define the same 
lattice if and only if B2 = B1U.

A number of variations on this basic scheme are currently being pursued 
[LAUT17].

Code-Based Cryptographic Algorithms

An error correction code (ECC) allows data that is being read or transmitted to be 
checked for errors and, when necessary, corrected. Figure 14.13 illustrates in general 
terms how the process is carried out. On the source end, each k-bit block of data is 
mapped into an n-bit block (n > k) called a codeword, using an ECC encoder.

The ECC is referred to as an 1n,  k2 ECC. Encoding can be described as multi-
plying a k-bit data vector m by a k * n matrix G to yield an n-bit codeword vector c:

c = mG

For each generator matrix, there is an (n - k) * k parity check matrix H whose 
rows are orthogonal to those of G; that is, GHT = 0.

The codeword, whether stored or transmitted, is subject to impairments, which 
may produce one or more bit errors in the block. At the destination, the received 
codeword may contain errors. This block is passed through an ECC decoder, with 
one of four possible outcomes:

codeword

k bits

data

ECC
encoder

Source

data

no error or
error

corrected

error
detected

but not
correctable

codeword

ECC
decoder

Destination

n bits

Figure 14.13 1n,  k2 Error Correction Code
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◆■ No errors: If there are no bit errors, the input to the ECC decoder is identical to 
the original codeword, and the decoder produces the original data block as output.

◆■ Detectable, correctable errors: For certain error patterns, it is possible for the 
decoder to detect and correct those errors. Thus, even though the incoming 
data block differs from the transmitted codeword, the decoder is able to map 
this block into the original data block.

◆■ Detectable, not correctable errors: For certain error patterns, the decoder can 
detect but not correct the errors. In this case, the decoder simply reports an 
uncorrectable error.

◆■ Undetectable errors: For certain, typically rare, error patterns, the decoder 
does not detect that the error and maps the incoming n-bit data block into a  
k-bit block that differs from the original k-bit block.

How is it possible for the decoder to correct bit errors? In essence, error correction 
works by adding sufficient redundancy to the data block. The redundancy makes it 
possible for the receiver to deduce what the original block was, even in the face of a 
certain level of error rate.

Error detection and correction can be expressed as follows. The received code-
word c′ is multiplied by the transpose of H, that is c′HT. If the result is a zero vector, 
then no error is detected. If the result is nonzero, then the resulting vector, known 
as the syndrome, can be used to correct errors. The exact process for correction de-
pends on the nature of the ECC.

An example of efficient error correcting codes are Goppa codes, which can be 
turned into a secure coding scheme by keeping the encoding and decoding functions 
a secret, and only publicly revealing a disguised encoding function that allows the 
mapping of a plaintext message to a scrambled set of code words. Only someone in 
possession of the secret decoding function can recover the plaintext. This technique 
is computationally hard to reverse using either a conventional or quantum computer.

An 1n, k2 Goppa code can correct any number of bit errors t = (n - k)>log21n2 
bits. The first scheme based on this code is by McEliece [MCEL78]. The private key 
consists of three matrices. A specific Goppa code is chosen, and represented by an 
k * n matrix G. Also chosen are an n * n permutation matrix P and an arbitrary 
k * k invertible binary matrix S. The public key is the matrix G′ = SGP, plus the 
value t; the private key consists of the three matrices that are multiplied together.

Suppose G′ is the public key of entity A, and entity B wishes to encrypt a  
k-bit message x with G′. B sends x′ = xG′ + e, where e is a random n-bit error vec-
tor with exactly t ones. After the A receives x′, to decrypt the message, A computes 
x′P-1 =  (xG′ + e)P-1 = xSG + eP-1. By using the decoding algorithm of the code, 
A can remove the error term and is left with xS. Because S is invertible, A can recover x.

A number of refinements of this scheme have been developed to reduce key 
size [SEND18].

Multivariate-Based Cryptographic Algorithms

Multivariate schemes are based on the difficulty of solving systems of multivariate 
quadratic polynomials over finite fields. The term multivariate polynomial refers to 
a polynomial in more than one variable, and the term quadratic polynomial refers 
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to a polynomial of degree 2. In general, these schemes can be described as follows. 
The public key consists of a set of m polynomials:

P1x1, c,  xn2 = 1p11x1, c,  xn2, p21x1, c,  xn2, c,  pm1x1, c,  xn22
which can be expanded to the following:

p11x1, g, xn2 = a
n

i=1
a
n

j=1
p1,ijxixj + a

n

i=1
p1,ixi + p1,0

p21x1, g, xn2 = a
n

i=1
a
n

j=1
p2,ijxixj + a

n

i=1
p2,ixi + p2,0

pm1x1, g, xn2 = a
n

i=1
a
n

j=1
pm,ijxixj + a

n

i=1
pm,ixi + pm,0

with m equal to the number of equations and n equal to the number of  
variables.

In general terms, encryption using the public key is performed as follows: 
Given a plaintext m = 1y1, c, yn2 , the ciphertext is:

P1m2 = 1p11y1, c, yn2, p21y1, c, yn2, c,  pm1y1, c, yn22 = 1c1, c, cm2
The private key is the inverse mapping P - 1 and provides the plaintext:

1y1, c , yn2 = P-11c1, c , cm2
The assumption is that given P it is difficult to find P-1, but not vice versa. More 
specifically, the security of the scheme depends of the difficulty of the follow-
ing problem. For a given P1x1, c , xn2 , find a vector 1z1, c , zn2  such that 
P1z1, c , zn2 = 0.

The digital signature is formed in a similar way. A hash of message m is 
 computed that can be expressed as H1m2 = 1h1, c, hn2. Given a signature 
1s1, c, sn2 for m, the signature can be verified by testing if H1m2 is equal to 
P1s1, c,  sn2.

We give two simple examples for multivariate polynomials over the finite field 
GF1222. The only irreducible polynomial of degree 2 for this field is x2 + x +  1. 
Table 14.8 shows addition and multiplication mod 1x2 + x +  12. The polynomi-
als in the field are symbolically represented by the integers. Suppose the public key  
consists of:

p11x1, x2, x32 = 1 + x3 + 2x1x2 + x2
3

p21x1, x2, x32 = 2 + x1 + 2x2x3 + x2

p31x1, x2, x32 = 1 +  x2 + x1x3 + x2
1

Given a 6-bit message 010000001 represented as 1x1,x2, x32 = 12, 0, 12 ,  
encryption of the message with the public key is performed as follows:

p112, 0, 12 = 1 + 1 + 12 * 2 * 02 + 11 * 12 = 1

p212, 0, 12 = 2 + 2 + 12 * 0 * 12 + 0 = 0

p312, 0, 12 = 1 + 1 + 12 * 12 + 12 * 22 = 1

The ciphertext is (1, 0, 1).
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Table 14.8 Arithmetic in GF1222
Polynomial 0 1 X x + 1

Binary representation 00 01 10 11

Integer representation 0 1 2 3

(a) Polynomial Representation

+ 0 1 2 3 × 0 1 2 3

0 0 1 2 3 0 0 0 0 0

1 1 0 3 2 1 0 1 2 3

2 2 3 0 1 2 0 2 3 1

3 3 2 1 0 3 0 3 1 2

       (b) Addition                   (c) Multiplication

Now consider the public key:

 p11x1, x2, x32 = 1 + x2 + 2x0x2 + 3x2
1 + 3x1x2 + x2

2

 p21x1, x2, x32 =  1 + 3x0 + 2x1 + x2 +  x2
0 + x0x1 + 3x0x2 + x2

1

 p31x1, x2, x32 = 3x2 + x2
0 + 3x2

1 + x1x2 + 3x2
2

Suppose a message m with hash value H1m2 = 11, 2, 32. The owner of the private 
key matching the above public key generates the signature (0, 0, 1). The signature 
can be verified by a recipient by generating H1m2 and encrypting the result with the 
public key. In this case, the calculation yields:

 p111, 2, 32 = 1 + 3 + 12 * 1 * 32 + 13 * 2 * 22 + 13 * 2 * 32 + 13 * 32 = 0

 p211, 2, 32 = 1 + 13 * 12 + 12 * 22 + 3 + 11 * 12 + 11 * 22 + 13 * 1 * 32 + 12 * 22 = 0

 p311, 2, 32 = 13 * 32 + 11 * 12 + 13 * 2 * 22 + 12 * 32 + 13 * 3 * 32 = 1

which verifies the public key.
The public-private key construction can be described in a way that is similar 

to that of code-based schemes. The process starts with an easily invertible quadratic 
map F: Kn S Km. For the public key, the structure of this mapping is hidden by com-
bining F with two invertible maps S: Km S Km and T: Kn S Kn. The public key P is 
the composed map S ~  F ~  T:Kn S Km. The private key consists of the three maps.

A number of variations on this basic scheme are currently being pursued 
[DING17].

Hash-Based Digital Signature Algorithms

To get an idea of how a hash-based signature algorithm works, we first consider a 
scheme proposed by Lamport [LAMP79]. Assume a hash function that produces a  
b-bit hash value. Thus, for SHA-256, b =  256. In Lamport’s scheme, a public/private 
key pair is used only once for a given message m. The steps involved are as follows:

1. Compute the b-bit hash value H1m2.

2. Generate 2b secrets bit strings, two for each bit location k in H1m2, S0,k and 
S1,k. The set of secret values constitutes the private key.
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3. The public key consists of the hash values of each secret value: H1S0,k2, 
H1S1,k2, k =  1, c, b.

4. The digital signature consists of half of the hash values calculated in step 3. For 
the block m, the signature is generated as follows. If the kth bit of H1m2 is 0, then 
the kth element of the signature is S0,k; if the kth bit of H1m2 is 1, then the kth 
element of the signature is S1,k. Thus, the signature reveals half of the private key.

5. Signature verification involves the following: The verifier calculates H1m2. 
Then the bits of H1m2 are used to pick out the corresponding elements of the 
public key. So, if the kth bit is 1, select H1S1,k2. Then the b hashes in the signa-
ture are compared to the b hashes selected from the public key. If all match, 
the signature is verified.

There are a number of drawbacks to this scheme. The signing of a message 
reveals half of the private key. This is not enough to allow an attacker to sign addi-
tional messages with different digests, but it would not be secure to use this key pair 
more than once. Further, both the public and private keys are of considerable length.

Merkle [MERK79] proposed a technique that builds on the Lamport scheme, 
using the concept of a hash tree. It allows a signer to precompute a number of public-
private key pars that can be used to generate signatures that can all be verified with the 
same public key. And the long-term public key need only be the size of a hash value. 
For this scheme, a tree of hash values is constructed. The scheme allows the signing of 
a number of messages N = 2n, where n is an integer. The signer generates N private 
keys Xi with 0 … i …  2n - 1, and computes the corresponding public keys Yi. Each 
public key is the concatenation of the 2b hash values described in step 3 of the Lamport 
scheme. Then a hash tree is formed. Each node of the tree is labeled hi,j, where i denotes 
the level of the node and corresponds to the distance of the node from a leaf. Thus, a 
leaf of the tree is level 0 and the root of the tree is level n. Figure 14.14a shows a tree 
for n = 3.

The tree is constructed in pairs, starting with the leaves. Each leaf consists of 
the hash of one of the public keys. For higher levels, each pair of values at one level 
is concatenated to form a double block, and the hash of that block is computed. 
This process continues until a single value results, known as the Merkle root. The 
Merkle root becomes the single public key, to be used to verify up to N signatures. 
This has two advantages: the public key is quite small, and it can be used for multiple 
signatures.

The process for signing a message mi is as follows. First the Lamport digital sig-
nature LSi is generated from H1mi2, as before, consisting of the set of b secret strings 
Sj,k for j =  0 or 1, k = 1, c, b . The value LSi forms part of overall digital signature 
for the message, which is available for verification. However, in this scheme, the veri-
fier does not have possession of the Lamport public key Yi, so this must be supplied 
as part of the signature. Further, the verifier must be able to authenticate that this 
public key Yi is valid. To do this, the verifier needs to trace a path from the leaf to the 
root and confirm the root value. For this calculation, the verifier needs every node on 
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(a) Merkle tree with eight leaves

h00 5
H(Y0)

Y0

h10 5
H(h00 || h01)

h20 5
H(h10 || h11)

h30 5
H(h20 || h21)

h11 5
H(h02 || h03)

h12 5
H(h04 || h05)

h21 5
H(h12 || h13)

h13 5
H(h06 || h07)

h01 5
H(Y1)

h02 5
H(Y2)

h03 5
H(Y4)

h04 5
H(Y4)

h05 5
H(Y5)

h06 5
H(Y6)

h07 5
H(Y7)

Y1 Y2 Y3 Y4 Y5 Y6 Y7

(b) Merkle tree with authentication path

h00

Y0

h10

h20 h21

h30

h11 h12 h13

h01 h02 h03 h04 h05 h06 h07

Y1 Y2 Y3 Y4 Y5 Y6 Y7

Figure 14.14 Example of Merkle Hash Tree

the path, plus the value of the brother node at each level; these are also provided in 
the signature. Putting this all together, the signature Si for mi consists of the following:

Si =  (LSi, Yi, h0,x, h1,x, c,  hn-1,x)  

where x equals either l + 1 or l - 1 at each level l of the tree.
An example should make this process clear. Figure 14.14b shows the Merkle 

tree with eight leaves and the path to the root from Y4. To authenticate the public 
key, the verifier computes

H1H1H1H1Y42 }h052 }h132 }h202
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If this value equals the public key h30, then Y4 is authenticated. Once Y4 is authenti-
cated, it can be used to verify the signature Y4.

An important drawback of Merkle-related schemes is that the signer must keep 
track of which onetime signature keys have already been used. This can be difficult in 
large-scale environments. Stateless variants are a matter of current research [BUTI17].

Review Questions

 14.1 Define embedded system.
 14.2 Define constrained device.
 14.3 List and briefly explain three classes of constrained devices.
 14.4 What are the chief design constraints for lightweight cryptographic algorithms?
 14.5 What are the typical characteristics of lightweight cryptographic algorithms?
 14.6 What are the main types of cryptographic algorithms for which lightweight cryptogra-

phy is relevant?
 14.7 Briefly explain the rationale for post-quantum cryptography.
 14.8 What are the main types of cryptographic algorithms for which post-quantum cryp-

tography is relevant?
 14.9 List the four main mathematical approaches being studied for post-quantum 

 cryptography.

Key Terms

constrained device
cryptoperiod
cryptosystem
deeply embedded system
embedded system

lightweight cryptographic 
algorithm

lightweight  
cryptography

microcontroller

post-quantum cryptographic 
algorithm

post-quantum cryptography
quantum computing
quantum safety

14.5 KEY TERMS AND REVIEW QUESTIONS
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15.1 Symmetric Key Distribution Using Symmetric Encryption

Key Distribution Options
Third-Party Key Distribution Options
Key Hierarchy

15.2 Symmetric Key Distribution Using Asymmetric Encryption

Simple Secret Key Distribution
Secret Key Distribution with Confidentiality and Authentication

15.3 Distribution of Public Keys

Public Announcement of Public Keys
Publicly Available Directory
Public-Key Authority
Public-Key Certificates

15.4 X.509 Certificates

Certificates
X.509 Version 3

15.5 Public-Key Infrastructure

15.6 Key Terms, Review Questions, and Problems

Part Five:  Mutual trust

CHAPTER

Cryptographic Key Management 
and Distribution
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M15_STAL7484_08_GE_C15.indd   473 20/04/22   07:02



474 CHAPTER 15 / CRyPTogRAPHiC KEy MAnAgEMEnT AnD DisTRibuTion

The secure use of cryptographic key algorithms depends on the protection of the 
cryptographic keys. All keys need to be protected against modification, and se-
cret and private keys need to be protected against disclosure. Cryptographic key 
management is the process of administering or managing cryptographic keys for a 
 cryptographic system. It involves the generation, creation, protection, storage, ex-
change, replacement, and use of keys and enables selective restriction for certain 
keys. In addition to access restriction, key management also involves the monitor-
ing and recording of each key’s access, use, and context. A key management system 
will also include key servers, user procedures, and protocols, including cryptographic 
protocol design. The security of the cryptosystem is dependent upon successful key 
management.

The topics of cryptographic key management and cryptographic key distri-
bution are complex, involving cryptographic, protocol, and management consider-
ations. The purpose of this chapter is to give the reader a feel for the issues involved 
and a broad survey of the various aspects of key management and distribution. For 
more information, the place to start is the three-volume NIST SP 800-57, followed 
by the recommended readings listed at the end of this chapter.

 15.1 SYMMETRIC KEY DISTRIBUTION USING 
SYMMETRIC ENCRYPTION

This section looks at techniques for distributing secret keys using only symmetric 
encryption techniques.

Key Distribution Options

For symmetric encryption to work, the two parties to an exchange must share the 
same key, and that key must be protected from access by others. Furthermore, fre-
quent key changes are usually desirable to limit the amount of data compromised if 
an attacker learns the key. Therefore, the strength of any cryptographic system rests 

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

◆◆ Discuss the concept of a key hierarchy.

◆◆ Understand the issues involved in using asymmetric encryption to distribute 
symmetric keys.

◆◆ Present an overview of approaches to public-key distribution and analyze 
the risks involved in various approaches.

◆◆ List and explain the elements in an X.509 certificate.

◆◆ Present an overview of public-key infrastructure concepts.
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with the key distribution technique, a term that refers to the means of delivering a key 
to two parties who wish to exchange data, without allowing others to see the key. For 
two parties A and B, key distribution can be achieved in a number of ways, as follows:

 1. A can select a key and physically deliver it to B.

 2. A third party can select the key and physically deliver it to A and B.

 3. If A and B have previously and recently used a key, one party can transmit the 
new key to the other, encrypted using the old key.

 4. If A and B each has an encrypted connection to a third party C, C can deliver 
a key on the encrypted links to A and B.

Options 1 and 2 call for manual delivery of a key. For link encryption, this 
is a reasonable requirement, because each link encryption device is going to be 
exchanging data only with its partner on the other end of the link. However, for 
end-to-end encryption over a network, manual delivery is awkward. In a distributed 
system, any given user or server may need to engage in exchanges with many other 
users and servers over time. Thus, each endpoint needs a number of keys supplied 
dynamically. The problem is especially difficult in a wide area distributed system.

The scale of the problem depends on the number of communicating pairs that 
must be supported. If end-to-end encryption is done at a network or IP level, then a 
key is needed for each pair of hosts on the network that wish to communicate. Thus, 
if there are n hosts, the number of required keys is

n(n - 1)
2

If encryption is done at the application level, then a key is needed for every 
pair of users or processes that require communication. Thus, a network may have 
hundreds of hosts but thousands of users and processes. A network using node-level 
encryption with 1000 nodes would conceivably need to distribute as many as half a 
million keys. If that same network supported 10,000 applications, then as many as 
50 million keys may be required for application-level encryption.

Returning to our list, option 3 is a possibility for either link encryption or end-
to-end encryption, but if an attacker ever succeeds in gaining access to one key, then 
all subsequent keys will be revealed. Furthermore, the initial distribution of poten-
tially millions of keys must still be made.

For end-to-end encryption, some variation on option 4 has been widely ad-
opted. In this scheme, a key distribution center is responsible for distributing keys 
to pairs of users (hosts, processes, applications) as needed. Each user must share a 
unique key with the key distribution center for purposes of key distribution.

Third-Party Key Distribution Options

Figure 15.1 illustrates two different options, each with two variations, for key distri-
bution. The numbers along the lines represent the steps of the exchange. In these 
examples, there exists a connection between entities A and B, who wish to ex-
change information using cryptographic techniques. For this purpose, they require a 

M15_STAL7484_08_GE_C15.indd   475 20/04/22   07:02



476 CHAPTER 15 / CRyPTogRAPHiC KEy MAnAgEMEnT AnD DisTRibuTion

temporary session key that will last for the duration of a logical connection, such as 
a TCP connection. A and B each share a long-lasting master key with a third party 
that is involved in providing the session key. For this discussion, the session key 
is labeled Ks and the master key between entities A and B and the third party are 
 labeled Kma and Kmb, respectively.

A key translation center (KTC) transfers symmetric keys for future commu-
nication between two entities, at least one of whom has the ability to generate or 
acquire symmetric keys by themselves. Entity A generates or acquires a symmetric 
key to be used as a session key for communication with B. A encrypts the key using 
the master key it shares with the KTC and sends the encrypted key to the KTC. The 
KTC decrypts the session key, reencrypts the session key in the master key it shares 
with B, and either sends that reencrypted session key to A (Figure 15.1a) for A to 
forward to B or sends it directly to B (Figure 15.1b).

A key distribution center (KDC) generates and distributes session keys. 
Entity A sends a request to the KDC for a symmetric key to be used as a session key 
for communication with B. The KDC generates a symmetric session key, and then 
encrypts the session key with the master key it shares with A and sends it to A. The 
KDC also encrypts the session key with the master key is shares with B and sends 
it to B (Figure 15.1c). Alternatively, it sends both encrypted key values to A, and A 
forwards the session key encrypted with the master key shared by the KDC and B 
to B (Figure 15.1d).

The foregoing discussion leaves out a number of details. For example, 
 parties that exchange keys need to authenticate themselves to each other. 
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Figure 15.1 Key Distribution Between Two Communicating Entities
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Timestamps are often used to limit the time in which a key exchange can take place 
and/or the lifetime of an exchanged key. Chapter 16 examines several detailed ap-
proaches to third-party symmetric key exchange in the context of Kerberos.

Key Hierarchy

A common requirement in a variety of protocols, such as IEEE 802.11i and IPsec, 
discussed in Part Six, is for the encryption of a symmetric key so that it can be dis-
tributed to two parties for future communication. Quite often, a protocol calls for 
a hierarchy of keys, with keys lower on the hierarchy used more frequently, and 
changed more frequently to thwart attacks (Figure 15.2). A higher-level key, which 
is used infrequently and therefore more resistant to cryptanalysis, is used to encrypt 
a newly created lower-level key so that it can be exchanged between parties that 
share the higher-level key. The term ephemeral key in Figure 15.2 refers to a key 
that is used only once or at most is very short-lived.

Master keys

Intermediate-level keys

Increasing frequency of use

In
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g 
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Ephemeral keys

Figure 15.2 Symmetric Key Hierarchy
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 15.2 SYMMETRIC KEY DISTRIBUTION USING 
ASYMMETRIC ENCRYPTION

Because of the inefficiency of public-key cryptosystems, they are almost never used 
for the direct encryption of sizable blocks of data, but are limited to relatively small 
blocks. One of the most important uses of a public-key cryptosystem is to encrypt 
secret keys for distribution. We see many specific examples of this in Part Five. 
Here, we discuss general principles and typical approaches.

Simple Secret Key Distribution

An extremely simple scheme was put forward by Merkle [MERK79], as illustrated in 
Figure 15.3. If A wishes to communicate with B, the following procedure is employed:

 1. A generates a public/private key pair {PUa, PRa} and transmits a message to B 
consisting of PUa and an identifier of A, IDA.

 2. B generates a secret key, Ks, and transmits it to A, which is encrypted with A’s 
public key.

 3. A computes D(PRa, E(PUa, Ks)) to recover the secret key. Because only A can 
decrypt the message, only A and B will know the identity of Ks.

 4. A discards PUa and PRa and B discards PUa.

A and B can now securely communicate using conventional encryption and 
the session key Ks. At the completion of the exchange, both A and B discard Ks. 
Despite its simplicity, this is an attractive protocol. No keys exist before the start of 
the communication and none exist after the completion of communication. Thus, 
the risk of compromise of the keys is minimal. At the same time, the communication 
is secure from eavesdropping.

The protocol depicted in Figure 15.3 is insecure against an adversary who can 
 intercept messages and then either relay the intercepted message or substitute  another 
message (see Figure 1.3c). Such an attack is known as a man-in-the-middle attack 
[RIVE84]. We saw this type of attack in Chapter 10 (Figure 10.2). In the present 
case, if an adversary, D, has control of the intervening communication channel, 
then D can compromise the communication in the following fashion without being 
 detected (Figure 15.4).

Figure 15.3 Simple Use of Public-Key Encryption to Establish a Session Key

BA

(1) PUa || IDA

(2) E(PUa, Ks)
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 1. A generates a public/private key pair {PUa, PRa} and transmits a message 
 intended for B consisting of PUa and an identifier of A, IDA.

 2. D intercepts the message, creates its own public/private key pair {PUd, PRd} 
and transmits PUd } IDA to B.

 3. B generates a secret key, Ks, and transmits E(PUd, Ks).

 4. D intercepts the message and learns Ks by computing D(PRd, E(PUd, Ks)).

 5. D transmits E(PUa, Ks) to A.

The result is that both A and B know Ks and are unaware that Ks has also been 
revealed to D. A and B can now exchange messages using Ks. D no longer  actively 

Figure 15.4 Another Man-in-the-Middle Attack
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interferes with the communications channel but simply eavesdrops. Knowing 
Ks, D can decrypt all messages, and both A and B are unaware of the problem. 
Thus, this simple protocol is only useful in an environment where the only threat is 
eavesdropping.

Secret Key Distribution with Confidentiality 
and Authentication

Figure 15.5, based on an approach suggested in [NEED78], provides protection 
against both active and passive attacks. We begin at a point when it is assumed that 
A and B have exchanged public keys by one of the schemes described subsequently 
in this chapter. Then the following steps occur.

 1. A uses B’s public key to encrypt a message to B containing an identifier of 
A(IDA) and a nonce (N1), which is used to identify this transaction uniquely.

 2. B sends a message to A encrypted with PUa and containing A’s nonce (N1) 
as  well as a new nonce generated by B (N2). Because only B could have 
 decrypted message (1), the presence of N1 in message (2) assures A that the 
correspondent is B.

 3. A returns N2, encrypted using B’s public key, to assure B that its correspon-
dent is A.

 4. A selects a secret key Ks and sends M = E(PUb, E(PRa, Ks)) to B. Encryption 
of this message with B’s public key ensures that only B can read it; encryption 
with A’s private key ensures that only A could have sent it.

 5. B computes D(PUa, D(PRb, M)) to recover the secret key.

The result is that this scheme ensures both confidentiality and authentication 
in the exchange of a secret key.

Figure 15.5 Public-Key Distribution of Secret Keys
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 15.3 DISTRIBUTION OF PUBLIC KEYS

Several techniques have been proposed for the distribution of public keys. Virtually 
all these proposals can be grouped into the following general schemes:

◆■ Public announcement

◆■ Publicly available directory

◆■ Public-key authority

◆■ Public-key certificates

Public Announcement of Public Keys

On the face of it, the point of public-key encryption is that the public key is public. 
Thus, if there is some broadly accepted public-key algorithm, such as RSA, any par-
ticipant can send his or her public key to any other participant or broadcast the key 
to the community at large (Figure 15.6).

Although this approach is convenient, it has a major weakness. Anyone can 
forge such a public announcement. That is, some user could pretend to be user A 
and send a public key to another participant or broadcast such a public key. Until 
such time as user A discovers the forgery and alerts other participants, the forger is 
able to read all encrypted messages intended for A and can use the forged keys for 
authentication (see Figure 9.3).

Publicly Available Directory

A greater degree of security can be achieved by maintaining a publicly available 
 dynamic directory of public keys. Maintenance and distribution of the public 
 directory would have to be the responsibility of some trusted entity or organization 
(Figure 15.7). Such a scheme would include the following elements:

 1. The authority maintains a directory with a {name, public key} entry for each 
participant.

 2. Each participant registers a public key with the directory authority. 
Registration would have to be in person or by some form of secure authenti-
cated communication.

Figure 15.6 Uncontrolled Public-Key Distribution
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 3. A participant may replace the existing key with a new one at any time, either 
because of the desire to replace a public key that has already been used for 
a large amount of data, or because the corresponding private key has been 
 compromised in some way.

 4. Participants could also access the directory electronically. For this purpose, 
secure, authenticated communication from the authority to the participant is 
mandatory.

This scheme is clearly more secure than individual public announcements 
but still has vulnerabilities. If an adversary succeeds in obtaining or computing the 
private key of the directory authority, the adversary could authoritatively pass out 
counterfeit public keys and subsequently impersonate any participant and eaves-
drop on messages sent to any participant. Another way to achieve the same end is 
for the adversary to tamper with the records kept by the authority.

Public-Key Authority

Stronger security for public-key distribution can be achieved by providing tighter 
control over the distribution of public keys from the directory. A typical scenario 
is illustrated in Figure 15.8, which is based on a figure in [POPE79]. As before, the 
scenario assumes that a central authority maintains a dynamic directory of public 
keys of all participants. In addition, each participant reliably knows a public key for 
the authority, with only the authority knowing the corresponding private key. The 
following steps (matched by number to Figure 15.8) occur.

 1. A sends a timestamped message to the public-key authority containing a 
 request for the current public key of B.

 2. The authority responds with a message that is encrypted using the authority’s 
private key, PRauth. Thus, A is able to decrypt the message using the author-
ity’s public key. Therefore, A is assured that the message originated with the 
authority. The message includes the following:

Figure 15.7 Public-Key Publication

Public-key
directory

PUa PUb

A B
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■◆ B’s public key, PUb, which A can use to encrypt messages destined for B

■◆ The original request used to enable A to match this response with the cor-
responding earlier request and to verify that the original request was not 
altered before reception by the authority

■◆ The original timestamp given so A can determine that this is not an old mes-
sage from the authority containing a key other than B’s current public key

 3. A stores B’s public key and also uses it to encrypt a message to B containing 
an identifier of A (IDA) and a nonce (N1), which is used to identify this trans-
action uniquely.

 4, 5. B retrieves A’s public key from the authority in the same manner as A  retrieved 
B’s public key.

At this point, public keys have been securely delivered to A and B, and they 
may begin their protected exchange. However, two additional steps are desirable:

 6. B sends a message to A encrypted with PUa and containing A’s nonce (N1) as well 
as a new nonce generated by B (N2). Because only B could have  decrypted mes-
sage (3), the presence of N1 in message (6) assures A that the correspondent is B.

 7. A returns N2, which is encrypted using B’s public key, to assure B that its 
 correspondent is A.

Thus, a total of seven messages are required. However, the initial five 
 messages need be used only infrequently because both A and B can save the other’s 
public key for future use—a technique known as caching. Periodically, a user should 
 request fresh copies of the public keys of its correspondents to ensure currency.

Figure 15.8 Public-Key Distribution Scenario
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Public-Key Certificates

The scenario of Figure 15.8 is attractive, yet it has some drawbacks. The  public-key 
authority could be somewhat of a bottleneck in the system, for a user must  appeal 
to the authority for a public key for every other user that it wishes to contact. 
As  before, the directory of names and public keys maintained by the authority is 
vulnerable to tampering.

An alternative approach, first suggested by Kohnfelder [KOHN78], is to use 
certificates that can be used by participants to exchange keys without contacting a 
public-key authority, in a way that is as reliable as if the keys were obtained directly 
from a public-key authority. In essence, a certificate consists of a public key, an 
identifier of the key owner, and the whole block signed by a trusted third party. 
Typically, the third party is a certificate authority, such as a government agency or 
a financial institution, that is trusted by the user community. A user can present 
his or her public key to the authority in a secure manner and obtain a certificate. 
The user can then publish the certificate. Anyone needing this user’s public key can 
obtain the certificate and verify that it is valid by way of the attached trusted signa-
ture. A participant can also convey its key information to another by transmitting 
its certificate. Other participants can verify that the certificate was created by the 
authority. We can place the following requirements on this scheme:

 1. Any participant can read a certificate to determine the name and public key of 
the certificate’s owner.

 2. Any participant can verify that the certificate originated from the certificate 
authority and is not counterfeit.

 3. Only the certificate authority can create and update certificates.

These requirements are satisfied by the original proposal in [KOHN78]. Denning 
[DENN83] added the following additional requirement:

 4. Any participant can verify the time validity of the certificate.

A certificate scheme is illustrated in Figure 15.9. Each participant applies 
to the certificate authority, supplying a public key and requesting a certificate. 
Application must be in person or by some form of secure authenticated communi-
cation. For participant A, the authority provides a certificate of the form

 CA = E(PRauth, [T } IDA }PUa]) 

where PRauth is the private key used by the authority and T is a timestamp. A may 
then pass this certificate on to any other participant, who reads and verifies the 
 certificate as follows:

 D(PUauth, CA) = D(PUauth, E(PRauth, [T } IDA }PUa])) = (T } IDA }PUa) 

The recipient uses the authority’s public key, PUauth, to decrypt the certificate. 
Because the certificate is readable only using the authority’s public key, this verifies 
that the certificate came from the certificate authority. The elements IDA and PUa 
provide the recipient with the name and public key of the certificate’s holder. The 
timestamp T validates the currency of the certificate. The timestamp counters the 
following scenario. A’s private key is learned by an adversary. A  generates a new 
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private/public key pair and applies to the certificate authority for a new  certificate. 
Meanwhile, the adversary replays the old certificate to B. If B then  encrypts  messages 
using the compromised old public key, the adversary can read those messages.

In this context, the compromise of a private key is comparable to the loss of a 
credit card. The owner cancels the credit card number but is at risk until all possible 
communicants are aware that the old credit card is obsolete. Thus, the timestamp 
serves as something like an expiration date. If a certificate is sufficiently old, it is 
assumed to be expired.

One scheme has become universally accepted for formatting public-key 
 certificates: the X.509 standard. X.509 certificates are used in most network security 
applications, including IP security, transport layer security (TLS), and S/MIME, all 
of which are discussed in Part Six. X.509 is examined in detail in the next section.

 15.4 X.509 CERTIFICATES

ITU-T recommendation X.509 is part of the X.500 series of recommendations that 
define a directory service. The directory is, in effect, a server or distributed set 
of servers that maintains a database of information about users. The information 
 includes a mapping from user name to network address, as well as other attributes 
and information about the users.

Figure 15.9 Exchange of Public-Key Certificates

(a) Obtaining certificates from CA

(b) Exchanging certificates
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X.509 defines a framework for the provision of authentication services by the 
X.500 directory to its users. The directory may serve as a repository of public-key 
certificates of the type discussed in Section 15.3. Each certificate contains the public 
key of a user and is signed with the private key of a trusted certification authority. 
In addition, X.509 defines alternative authentication protocols based on the use of 
public-key certificates.

X.509 is an important standard because the certificate structure and authenti-
cation protocols defined in X.509 are used in a variety of contexts. For example, the 
X.509 certificate format is used in S/MIME (Chapter 21), IP Security (Chapter 22), 
and SSL/TLS (Chapter 19).

X.509 was initially issued in 1988. The standard was subsequently revised 
in 1993 to address some of the security concerns documented in [IANS90] and 
[MITC90]. The standard is currently at edition eight, issued in 2016.

X.509 is based on the use of public-key cryptography and digital signatures. 
The standard does not dictate the use of a specific digital signature algorithm nor a 
specific hash function. Figure 15.10 illustrates the overall X.509 scheme for genera-
tion of a public-key certificate. The certificate for Bob’s public key includes unique 
identifying information for Bob, Bob’s public key, and identifying information 
about the CA, plus other information as explained subsequently. This information 
is then signed by computing a hash value of the information and generating a digital 
signature using the hash value and the CA’s private key. Bob can then either broad-
cast this certificate to other users, or attach the certificate to any document or data 
block he signs. Anyone who needs to use Bob’s public key can be assured that the 
public key contained in Bob’s certificate is valid because the certificate is signed by 
the trusted CA.

Figure 15.10 X.509 Public-Key Certificate Use
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Certificates

The heart of the X.509 scheme is the public-key certificate associated with each 
user. These user certificates are assumed to be created by some trusted certification 
authority (CA) and placed in the directory by the CA or by the user. The directory 
server itself is not responsible for the creation of public keys or for the certifica-
tion function; it merely provides an easily accessible location for users to obtain 
certificates.

Figure 15.11a shows the general format of a certificate, which includes the 
 following elements.

◆■ Version: Differentiates among successive versions of the certificate format; the 
default is version 1. If the issuer unique identifier or subject unique identifier 
are present, the value must be version 2. If one or more extensions are present, 
the version must be version 3. Although the X.509 specification is currently at 
version 7, no changes have been made to the fields that make up the certificate 
since version 3.

◆■ Serial number: An integer value unique within the issuing CA that is unam-
biguously associated with this certificate.

◆■ Signature algorithm identifier: The algorithm used to sign the certificate 
 together with any associated parameters. Because this information is repeated 
in the signature field at the end of the certificate, this field has little, if any, utility.

◆■ Issuer name: X.500 name of the CA that created and signed this certificate.

Figure 15.11 X.509 Formats
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◆■ Period of validity: Consists of two dates: the first and last on which the certifi-
cate is valid.

◆■ Subject name: The name of the user to whom this certificate refers. That is, this 
certificate certifies the public key of the subject who holds the corresponding 
private key.

◆■ Subject’s public-key information: The public key of the subject, plus an identi-
fier of the algorithm for which this key is to be used, together with any associ-
ated parameters.

◆■ Issuer unique identifier: An optional-bit string field used to identify uniquely 
the issuing CA in the event the X.500 name has been reused for different 
entities.

◆■ Subject unique identifier: An optional-bit string field used to identify uniquely 
the subject in the event the X.500 name has been reused for different entities.

◆■ Extensions: A set of one or more extension fields. Extensions were added in 
version 3 and are discussed later in this section.

◆■ Signature: Covers all of the other fields of the certificate. One component of 
this field is the digital signature applied to the other fields of the certificate. 
This field includes the signature algorithm identifier.

The unique identifier fields were added in version 2 to handle the possible 
reuse of subject and/or issuer names over time. These fields are rarely used.

The standard uses the following notation to define a certificate:

 CA VAW = CA {V, SN, AI, CA, UCA, A, UA, Ap, TA} 

where

Y V XW = the certificate of user X issued by certification authority Y

Y {I} =  the signing of I by Y. It consists of I with an encrypted hash 
code appended

V = version of the certificate

SN = serial number of the certificate

AI = identifier of the algorithm used to sign the certificate

CA = name of certificate authority

UCA = optional unique identifier of the CA

A = name of user A

UA = optional unique identifier of the user A

Ap = public key of user A
TA = period of validity of the certificate

The CA signs the certificate with its private key. If the corresponding public 
key is known to a user, then that user can verify that a certificate signed by the CA is 
valid. This is the typical digital signature approach illustrated in Figure 13.2.
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Obtaining a User’s CertifiCate User certificates generated by a CA have the 
 following characteristics:

◆■ Any user with access to the public key of the CA can verify the user public key 
that was certified.

◆■ No party other than the certification authority can modify the certificate 
 without this being detected.

Because certificates are unforgeable, they can be placed in a directory without the 
need for the directory to make special efforts to protect them.

If all users subscribe to the same CA, then there is a common trust of that CA. 
All user certificates can be placed in the directory for access by all users. In addi-
tion, a user can transmit his or her certificate directly to other users. In either case, 
once B is in possession of A’s certificate, B has confidence that messages it encrypts 
with A’s public key will be secure from eavesdropping and that messages signed 
with A’s private key are unforgeable.

If there is a large community of users, it may not be practical for all users to 
subscribe to the same CA. Because it is the CA that signs certificates, each partici-
pating user must have a copy of the CA’s own public key to verify signatures. This 
public key must be provided to each user in an absolutely secure (with respect 
to integrity and authenticity) way so that the user has confidence in the associ-
ated certificates. Thus, with many users, it may be more practical for there to be 
a number of CAs, each of which securely provides its public key to some fraction 
of the users.

Now suppose that A has obtained a certificate from certification  authority 
X1 and B has obtained a certificate from CA X2. If A does not securely know the 
public key of X2, then B’s certificate, issued by X2, is useless to A. A can read B’s 
 certificate, but A cannot verify the signature. However, if the two CAs have  securely 
exchanged their own public keys, the following procedure will enable A to obtain 
B’s public key.

Step 1 A obtains from the directory the certificate of X2 signed by X1. Because 
A securely knows X1>s public key, A can obtain X2>s public key from its 
 certificate and verify it by means of X1>s signature on the certificate.

Step 2 A then goes back to the directory and obtains the certificate of B signed by 
X2. Because A now has a trusted copy of X2>s public key, A can verify the 
signature and securely obtain B’s public key.

A has used a chain of certificates to obtain B’s public key. In the notation of 
X.509, this chain is expressed as

 X1 V X2 W X2 V B W  

In the same fashion, B can obtain A’s public key with the reverse chain:

 X2 V X1 W X1 V A W  
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This scheme need not be limited to a chain of two certificates. An arbitrarily 
long path of CAs can be followed to produce a chain. A chain with N elements 
would be expressed as

 X1 V X2 W X2 V X3 W c XN V B W  

In this case, each pair of CAs in the chain (Xi, Xi+ 1) must have created certifi-
cates for each other.

All these certificates of CAs by CAs need to appear in the directory, and the 
user needs to know how they are linked to follow a path to another user’s public-key 
certificate. X.509 suggests that CAs be arranged in a hierarchy so that  navigation is 
straightforward.

Figure 15.12, taken from X.509, is an example of such a hierarchy. The con-
nected circles indicate the hierarchical relationship among the CAs; the associated 
boxes indicate certificates maintained in the directory for each CA entry. The direc-
tory entry for each CA includes two types of certificates:

◆■ Forward certificates: Certificates of X generated by other CAs

◆■ Reverse certificates: Certificates generated by X that are the certificates of 
other CAs

Figure 15.12 X.509 Hierarchy: A Hypothetical Example
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In this example, user A can acquire the following certificates from the direc-
tory to establish a certification path to B:

 X V W W W V V W V V Y W Y V Z W Z V B W  

When A has obtained these certificates, it can unwrap the certification path in 
sequence to recover a trusted copy of B’s public key. Using this public key, A can 
send encrypted messages to B. If A wishes to receive encrypted messages back 
from B, or to sign messages sent to B, then B will require A’s public key, which can 
be obtained from the following certification path:

 Z V Y W Y V V W V V W W W V X W X V A W  

B can obtain this set of certificates from the directory, or A can provide them 
as part of its initial message to B.

revOCatiOn Of CertifiCates Recall from Figure 15.11 that each certificate  includes 
a period of validity, much like a credit card. Typically, a new certificate is issued just 
before the expiration of the old one. In addition, it may be desirable on occasion to 
revoke a certificate before it expires, for one of the following reasons.

 1. The user’s private key is assumed to be compromised.

 2. The user is no longer certified by this CA. Reasons for this include that the 
subject’s name has changed, the certificate is superseded, or the certificate was 
not issued in conformance with the CA’s policies.

 3. The CA’s certificate is assumed to be compromised.

Each CA must maintain a list consisting of all revoked but not expired 
 certificates issued by that CA, including both those issued to users and to other 
CAs. These lists should also be posted on the directory.

Each certificate revocation list (CRL) posted to the directory is signed by the 
issuer and includes (Figure 15.11b) the issuer’s name, the date the list was created, 
the date the next CRL is scheduled to be issued, and an entry for each revoked 
certificate. Each entry consists of the serial number of a certificate and revocation 
date for that certificate. Because serial numbers are unique within a CA, the serial 
number is sufficient to identify the certificate.

When a user receives a certificate in a message, the user must determine 
whether the certificate has been revoked. The user could check the directory each 
time a certificate is received. To avoid the delays (and possible costs) associated 
with directory searches, it is likely that the user would maintain a local cache of 
 certificates and lists of revoked certificates.

X.509 Version 3

The X.509 version 2 format does not convey all of the information that recent  design 
and implementation experience has shown to be needed. [FORD95] lists the follow-
ing requirements not satisfied by version 2.
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 1. The subject field is inadequate to convey the identity of a key owner to a 
 public-key user. X.509 names may be relatively short and lacking in obvious 
identification details that may be needed by the user.

 2. The subject field is also inadequate for many applications, which typically 
 recognize entities by an Internet email address, a URL, or some other Internet-
related identification.

 3. There is a need to indicate security policy information. This enables a security 
application or function, such as IPSec, to relate an X.509 certificate to a given 
policy.

 4. There is a need to limit the damage that can result from a faulty or malicious 
CA by setting constraints on the applicability of a particular certificate.

 5. It is important to be able to identify different keys used by the same owner at 
different times. This feature supports key lifecycle management: in particular, 
the ability to update key pairs for users and CAs on a regular basis or under 
exceptional circumstances.

Rather than continue to add fields to a fixed format, standards developers 
felt that a more flexible approach was needed. Thus, version 3 includes a number 
of  optional extensions that may be added to the version 2 format. Each extension 
consists of an extension identifier, a criticality indicator, and an extension value. 
The criticality indicator indicates whether an extension can be safely ignored. If the 
indicator has a value of TRUE and an implementation does not recognize the 
 extension, it must treat the certificate as invalid.

The certificate extensions fall into three main categories: key and policy 
 information, subject and issuer attributes, and certification path constraints.

Key and POliCy infOrmatiOn These extensions convey additional information 
about the subject and issuer keys, plus indicators of certificate policy. A certif-
icate policy is a named set of rules that indicates the applicability of a certifi-
cate to a particular community and/or class of application with common security 
 requirements. For example, a policy might be applicable to the authentication of 
electronic data interchange (EDI) transactions for the trading of goods within a 
given price range.

This area includes:

◆■ Authority key identifier: Identifies the public key to be used to verify the 
 signature on this certificate or CRL. Enables distinct keys of the same CA to 
be differentiated. One use of this field is to handle CA key pair updating.

◆■ Subject key identifier: Identifies the public key being certified. Useful for sub-
ject key pair updating. Also, a subject may have multiple key pairs and, cor-
respondingly, different certificates for different purposes (e.g., digital signature 
and encryption key agreement).

◆■ Key usage: Indicates a restriction imposed as to the purposes for which, and 
the policies under which, the certified public key may be used. May indicate 
one or more of the following: digital signature, nonrepudiation, key encryption, 
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data encryption, key agreement, CA signature verification on certificates, CA 
signature verification on CRLs.

◆■ Private-key usage period: Indicates the period of use of the private key cor-
responding to the public key. Typically, the private key is used over a different 
period from the validity of the public key. For example, with digital signature 
keys, the usage period for the signing private key is typically shorter than that 
for the verifying public key.

◆■ Certificate policies: Certificates may be used in environments where multiple 
policies apply. This extension lists policies that the certificate is recognized as 
supporting, together with optional qualifier information.

◆■ Policy mappings: Used only in certificates for CAs issued by other CAs. Policy 
mappings allow an issuing CA to indicate that one or more of that issuer’s 
policies can be considered equivalent to another policy used in the subject 
CA’s domain.

CertifiCate sUbjeCt and issUer attribUtes These extensions support alterna-
tive names, in alternative formats, for a certificate subject or certificate issuer and 
can convey additional information about the certificate subject to increase a cer-
tificate user’s confidence that the certificate subject is a particular person or entity. 
For  example, information such as postal address, position within a corporation, or 
picture image may be required.

The extension fields in this area include:

◆■ Subject alternative name: Contains one or more alternative names, using any 
of a variety of forms. This field is important for supporting certain applications, 
such as electronic mail, EDI, and IPSec, which may employ their own name 
forms.

◆■ Issuer alternative name: Contains one or more alternative names, using any of 
a variety of forms.

◆■ Subject directory attributes: Conveys any desired X.500 directory attribute 
values for the subject of this certificate.

CertifiCatiOn Path COnstraints These extensions allow constraint specifications 
to be included in certificates issued for CAs by other CAs. The constraints may 
 restrict the types of certificates that can be issued by the subject CA or that may 
occur subsequently in a certification chain.

The extension fields in this area include:

◆■ Basic constraints: Indicates if the subject may act as a CA. If so, a certification 
path length constraint may be specified.

◆■ Name constraints: Indicates a name space within which all subject names in 
subsequent certificates in a certification path must be located.

◆■ Policy constraints: Specifies constraints that may require explicit certifi-
cate policy identification or inhibit policy mapping for the remainder of the 
 certification path.
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 15.5 PUBLIC-KEY INFRASTRUCTURE

NIST SP 800-32 (Introduction to Public Key Technology and the Federal PKI 
Infrastructure) defines a public-key infrastructure (PKI) as a set of policies, 
processes, server platforms, software, and workstations used for the purpose of 
administering certificates and public–private key pairs, including the ability to 
issue, maintain, and revoke public key certificates. The principal objective for 
developing a PKI is to enable secure, convenient, and efficient acquisition of 
public keys.

A PKI architecture defines the organization and interrelationships among 
CAs and PKI users. PKI architectures satisfy the following requirements:

 1. Any participant can read a certificate to determine the name and public key of 
the certificate’s owner.

 2. Any participant can verify that the certificate originated from the certificate 
authority and is not counterfeit.

 3. Only the certificate authority can create and update certificates.

 4. Any participant can verify the currency of the certificate.

Figure 15.13 provides a typical architecture for a PKI. The essential compo-
nents are:

◆■ End entity: This can be an end user; a device, such as a router or server; a 
process; or any item that can be identified in the subject name of a public key 
certificate. End entities can also be consumers of PKI-related services and, 
in some cases, providers of PKI-related services. For example, a Registration 
Authority is considered to be an end entity from the point of view of the 
Certification Authority.

◆■ Certification authority (CA): An authority trusted by one or more users to 
create and assign public key certificates. Optionally the certification authority 
may create the subjects’ keys. CAs digitally sign public key certificates, which 
effectively binds the subject’s name to the public key. CAs are also respon-
sible for issuing Certificate Revocation Lists (CRLs). The CRL identifies cer-
tificates previously issued by the CA that are revoked before their expiration 
date. A certificate could be revoked because the user’s private key is assumed 
to be compromise, the user is no longer certified by this CA, or the certificate 
is assumed to be compromised.

◆■ Registration authority (RA): An optional component that can be used to 
offload many of the administrative functions that a CA ordinarily assumes. 
The RA is normally associated with the end entity registration process. This 
includes the verification of the identity of the end entity attempting to register 
with the PKI and obtain a certificate for its public key.

◆■ Repository: Denotes any method for storing and retrieving PKI-related in-
formation, such as public key certificates and CRLs. A repository can be 
an X.500-based directory with client access via the Lightweight Directory 
Access Protocol (LDAP). It also can be something simple, such as a means for 
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retrieval of a flat file on a remote server via the File Transfer Protocol (FTP) or 
the Hyper Text Transfer Protocol (HTTP).

◆■ Relying party: Any user or agent that relies on the data in a certificate in 
 making decisions.

Figure 15.13 illustrates the interaction of the various components. Consider 
a relying party Alice that needs to use Bob’s public key. Alice must first obtain in 
a reliable, secure fashion a copy of the public key of the CA. This can be done in a 
number of ways and depends on the particular PKI architecture and enterprise pol-
icy. If Alice wishes to send encrypted data to Bob, Alice checks with the Repository 
to determine if Bob’s certificate has been revoked, and if not obtains a copy of 
Bob’s certificate. Alice can then use Bob’s public key to encrypt data sent to Bob. 
Bob can also send a document to Alice signed with Bob’s private key. Bob may in-
clude his certificate with the document or assume that Alice already has or can ob-
tain the certificate. In either case, Alice first uses the CA’s public key to verify that 
the certificate is valid, then uses Bob’s public key (obtained from the certificate) to 
validate Bob’s signature.
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Figure 15.13 PKI Scenario
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Rather than a single CA, an enterprise may need to rely on multiple CAs 
and multiple repositories. CAs can be organized in a hierarchical fashion, with a 
root CA that is widely trusted signing the public key certificate of subordinate CAs. 
Many root certificates are embedded in Web browsers so they have built-in trust of 
those CAs. Web servers, email clients, smartphones and many other types of hard-
ware and software also support PKI and contain trusted root certificates from the 
major CAs.

 15.6 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms 

end-to-end encryption
key distribution
key distribution center (KDC)

key management
man-in-the-middle attack
master key

public-key certificate

Review Questions 
 15.1 Explain why man-in-the-middle attacks are ineffective on the secret key distribution 

protocol discussed in Figure 15.8.
 15.2 What is the difference between a session key and a master key?
 15.3 What is a key distribution center?
 15.4 What is one role that nonces play in key distribution using public-key cryptography?
 15.5 List four requirements for the distribution of public keys using the public-key 

 certificates scheme.
 15.6 Discuss the potential security issues that arise due to a public-key–directory-based system.
 15.7 What is a public-key certificate?
 15.8 What are the requirements for the use of a public-key certificate scheme?
 15.9 What is the purpose of the X.509 standard?
 15.10 What types of certificates does an X.509 CA’s directory entry contain?
 15.11 What is a certificate revocation list?

Problems 
 15.1 One local area network vendor provides a key distribution facility, as illustrated in 

Figure 15.14. Describe the operation of the scheme.
 15.2 “We are under great pressure, Holmes.” Detective Lestrade looked nervous. “We 

have learned that copies of sensitive government documents are stored in computers 
of one foreign embassy here in London. Normally these documents exist in electronic 
form only on a selected few government computers that satisfy the most stringent 
security requirements. However, sometimes they must be sent through the network 
connecting all government computers. But all messages in this network are encrypted 
using a top-secret encryption algorithm certified by our best crypto experts. Even the 
NSA and the KGB are unable to break it. And now these documents have appeared 
in hands of diplomats of a small, otherwise insignificant, country. And we have no 
idea how it could happen.”

M15_STAL7484_08_GE_C15.indd   496 20/04/22   07:02



15.6 / KEy TERMs, REviEw QuEsTions, AnD PRoblEMs 497

Figure 15.14 Figure for Problem 15.1
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“But you do have some suspicion who did it, do you?” asked Holmes.
“Yes, we did some routine investigation. There is a man who has legal access 

to one of the government computers and has frequent contacts with diplomats from 
the embassy. But the computer he has access to is not one of the trusted ones where 
these documents are normally stored. He is the suspect, but we have no idea how he 
could obtain copies of the documents. Even if he could obtain a copy of an encrypted 
document, he couldn’t decrypt it.”

“Hmm, please describe the communication protocol used on the network.” 
Holmes opened his eyes, thus proving that he had followed Lestrade’s talk with an 
attention that contrasted with his sleepy look.

“Well, the protocol is as follows. Each node N of the network has been  assigned 
a unique secret key Kn. This key is used to secure communication between the node 
and a trusted server. That is, all the keys are stored also on the server. User A,  wishing 
to send a secret message M to user B, initiates the following protocol:

1. A generates a random number R and sends to the server his name A, destination 
B, and E(Ka, R).

2. Server responds by sending E(Kb, R) to A.
3. A sends E(R, M) together with E(Kb, R) to B.
4. B knows Kb, thus decrypts E(Kb, R), to get R and will subsequently use R to 

decrypt E(R, M) to get M.

You see that a random key is generated every time a message has to be sent. I admit 
the man could intercept messages sent between the top-secret trusted nodes, but I see 
no way he could decrypt them.”

“Well, I think you have your man, Lestrade. The protocol isn’t secure because 
the server doesn’t authenticate users who send him a request. Apparently designers 
of the protocol have believed that sending E(Kx, R) implicitly authenticates user X as 
the sender, as only X (and the server) knows Kx. But you know that E(Kx, R) can be 
intercepted and later replayed. Once you understand where the hole is, you will be 
able to obtain enough evidence by monitoring the man’s use of the computer he has 
access to. Most likely he works as follows. After intercepting E(Ka, R) and E(R, M) 
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(see steps 1 and 3 of the protocol), the man, let’s denote him as Z, will continue by 
pretending to be A and . . . 

Finish the sentence for Holmes.
 15.3 The 1988 version of X.509 lists properties that RSA keys must satisfy to be secure 

given current knowledge about the difficulty of factoring large numbers. The discus-
sion concludes with a constraint on the public exponent and the modulus n:

It must be ensured that e 7 log2(n) to prevent attack by taking the eth 
root mod n to disclose the plaintext.

Although the constraint is correct, the reason given for requiring it is incorrect. What 
is wrong with the reason given and what is the correct reason?

 15.4 Determine the chain of certificates associated with the website www.pearson.com, 
describing the type of each CA.

 15.5 NIST defines the term cryptoperiod as the time span during which a specific key is 
authorized for use or in which the keys for a given system or application may remain 
in effect. One document on key management uses the following time diagram for 
a shared secret key.

Originator usage period

Recipient usage period

Cryptoperiod

Explain the overlap by giving an example application in which the originator’s usage 
period for the shared secret key begins before the recipient’s usage period and also 
ends before the recipients usage period.

 15.6 Consider the following protocol, designed to let A and B decide on a fresh, shared 
session key KAB

= . We assume that they already share a long-term key KAB.
1. A S B: A, NA.
2. B S A: E(KAB, [NA, KAB

= ])
3. A S B: E(KAB

= , NA)
a. We first try to understand the protocol designer’s reasoning:
—Why would A and B believe after the protocol ran that they share KAB

=  with the 
other party?

—Why would they believe that this shared key is fresh?
In both cases, you should explain both the reasons of both A and B, so your answer 
should complete the sentences
A believes that she shares KAB

=  with B since . . . 
B believes that he shares KAB

=  with A since . . . 
A believes that KAB

=  is fresh since . . . 
B believes that KAB

=  is fresh since . . . 
b. Assume now that A starts a run of this protocol with B. However, the connection 

is intercepted by the adversary C. Show how C can start a new run of the protocol 
using reflection, causing A to believe that she has agreed on a fresh key with B (in 
spite of the fact that she has only been communicating with C). Thus, in particular, 
the belief in (a) is false.

c. Propose a modification of the protocol that prevents this attack.
 15.7 What are the core components of a PKI? Briefly describe each component.
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 15.8 Explain the problems with key management and how it affects symmetric 
cryptography.

 15.9 What is the effect of adding the instruction EMKi

 EMKi: X S E(KMHi, X) i = 0, 1 

 15.10 Suppose N different systems use the IBM Cryptographic Subsystem with host master 
keys KMH[i](i = 1, 2, c  N). Devise a method for communicating between sys-
tems without requiring the system to either share a common host master key or to 
divulge their individual host master keys. Hint: Each system needs three variants of 
its host master key.

 15.11 The principal objective of the IBM Cryptographic Subsystem is to protect transmis-
sions between a terminal and the processing system. Devise a procedure, perhaps 
adding instructions, which will allow the processor to generate a session key KS and 
distribute it to Terminal i and Terminal j without having to store a key-equivalent 
variable in the host.
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This chapter examines some of the authentication functions that have been developed 
to support network-based user authentication. The chapter begins with an introduction 
to some of the concepts and key considerations for user authentication over a network 
or the Internet. The next section examines user-authentication protocols that rely on 
symmetric encryption. This is followed by a section on one of the earliest and also one 
of the most widely used authentication services: Kerberos. Next, the chapter looks at 
user-authentication protocols that rely on asymmetric encryption. This is followed by a 
discussion of the X.509 user-authentication protocol. Finally, the concept of federated 
identity is introduced.

 16.1 REMOTE USER-AUTHENTICATION PRINCIPLES

User authentication is the process of determining whether some user or some ap-
plication or process acting on behalf of a user is, in fact, who or what it declares itself 
to be. Authentication technology provides access control for systems by checking to 
see if a user’s credentials match the credentials in a database of authorized users or 
in a data authentication server. Authentication enables organizations to keep their 
networks secure by permitting only authenticated users (or processes) to access 
its protected resources, which may include computer systems, networks, databases, 
websites, and other network-based applications or services.

Note that user authentication is distinct from message authentication. As 
defined in Chapter 12, message authentication is a procedure that allows communicat-
ing parties to verify that the contents of a received message have not been altered and 
that the source is authentic. This chapter is concerned solely with user authentication.

The NIST Model for Electronic User Authentication

NIST SP 800-63 (Digital Identity Guidelines) defines a general model for user authen-
tication that involves a number of entities and procedures, as shown in Figure 16.1, 
based on SP-800-63. Three concepts are important in understanding this model:

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

◆◆ Present an overview of techniques for remote user authentication using 
symmetric encryption.

◆◆ Give a presentation on Kerberos.

◆◆ Explain the differences between versions 4 and 5 of Kerberos.

◆◆ Describe the use of Kerberos in multiple realms.

◆◆ Present an overview of techniques for remote user authentication using 
asymmetric encryption.

◆◆ Understand the need for a federated identity management system.
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◆■ Digital identity: The unique representation of a subject engaged in an online 
transaction. The representation consists of an attribute or set of attributes that 
uniquely describe a subject within a given context of a digital service, but does 
not necessarily uniquely identify the subject in all contexts.

◆■ Identity proofing: Establishes that a subject is who they claim to be to a stated 
level of certitude. This process involves collecting, validating, and verifying 
information about a person.

◆■ Digital authentication: The process of determining the validity of one or more 
authenticators used to claim a digital identity. Authentication establishes that 
a subject attempting to access a digital service is in control of the technologies 
used to authenticate. Successful authentication provides reasonable risk-based 
assurances that the subject accessing the service today is the same as the sub-
ject that previously accessed the service.

Six entities are defined in Figure 16.1:

◆■ Credential service provider (CSP): A trusted entity that issues or registers 
 subscriber authenticators. For this purpose, the CSP establishes a digital 
 credential for each subscriber and issues electronic credentials to  subscribers. 
A CSP may be an independent third party or may issue credentials for its 
own use.

◆■ Verifier: An entity that verifies the claimant’s identity by verifying the 
 claimant’s possession and control of one or two authenticators using an 
authentication protocol. To do this, the verifier may also need to validate 
 credentials that link the authenticator(s) to the subscriber’s identifier and 
check their status.

CSP 5 credential service provider
RP 5 relying party

Enrollment, identity proofing,
credential issuance

Digital authentication

CSP

RP

Applicant

becomes

enrollment and
identity proofing

authenticator
enrollment/

issuance

becomes

authenticated session

validate authenticator/
credential binding

authentication
assertion

authenticate

attributes

Subscriber

Claimant

Verifier

Figure 16.1  The NIST 800-63 Digital Identity Model
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◆■ Relying party (RP): An entity that relies upon the subscriber’s authenticator(s) 
and credentials or a verifier’s assertion of a claimant’s identity, typically to pro-
cess a transaction or grant access to information or a system.

◆■ Applicant: A subject undergoing the processes of enrollment and identity 
proofing.

◆■ Claimant: A subject whose identity is to be verified using one or more authen-
tication protocols.

◆■ Subscriber: A party who has received a credential or authenticator from a CSP.

The left-hand portion of Figure 16.1 illustrates the process whereby an applicant 
is enrolled into the system for purposes of accessing certain services and resources. 
First, the applicant presents to the CSP evidence of possession of the attributes to be 
associated with this digital identity. Upon successful proofing by the CSP, the applicant 
becomes a subscriber. Then, depending on the details of the overall authentication sys-
tem, the CSP issues some sort of electronic credential to the subscriber. The credential 
is a data structure that authoritatively binds an identity and additional attributes to one 
or more authenticators possessed by a subscriber, and can be verified when presented 
to the verifier in an authentication transaction. The authenticator could be an encryp-
tion key or an encrypted password that identifies the subscriber. The authenticator may 
be issued by the CSP, generated directly by the subscriber, or provided by a third party. 
The authenticator and credential may be used in subsequent authentication events.

Once a user is registered as a subscriber, the actual authentication process can 
take place between the subscriber and one or more systems that perform authen-
tication (right-hand portion of Figure 16.1). The party to be authenticated is called 
a claimant and the party verifying that identity is called a verifier. When a claimant 
successfully demonstrates possession and control of an authenticator to a verifier 
through an authentication protocol, the verifier can verify that the claimant is the 
subscriber named in the corresponding credential. The verifier passes on an asser-
tion about the identity of the subscriber to the relying party (RP). That assertion 
includes identity information about a subscriber, such as the subscriber name, an 
identifier assigned at registration, or other subscriber attributes that were verified in 
the registration process. The RP can use the authenticated information provided by 
the verifier to make access control or authorization decisions.

In some cases, the verifier interacts with the CSP to access the credential that 
binds the subscriber’s identity to their authenticator and to optionally obtain claim-
ant attributes. In other cases, the verifier does not need to communicate in real time 
with the CSP to complete the authentication activity (e.g., some uses of digital cer-
tificates). Therefore, the dashed line between the verifier and the CSP represents a 
logical link between the two entities.

An implemented system for authentication will differ from or be more com-
plex than this simplified model, but the model illustrates the key roles and functions 
needed for a secure authentication system.

Means of Authentication

There are three general means, or authentication factors, of authenticating a user’s 
identity, which can be used alone or in combination:
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◆■ Knowledge factor (something the individual knows): Requires the user to 
demonstrate knowledge of secret information. Routinely used in single-layer 
authentication processes, knowledge factors can come in the form of pass-
words, passphrases, personal identification numbers (PINs), or answers to 
secret questions.

◆■ Possession factor (something the individual possesses): Physical entity pos-
sessed by the authorized user to connect to the client computer or portal. This 
type of authenticator used to be referred to as a token, but that term is now 
deprecated. The term hardware token is a preferable alternative. Possession 
factors fall into two categories:

Connected hardware tokens are items that connect to a computer logically 
(e.g., via wireless) or physically in order to authenticate identity. Items such 
as smart cards, wireless tags, and USB tokens are common connected tokens 
used to serve as a possession factor.

Disconnected hardware tokens are items that do not directly connect to the 
client computer, instead requiring input from the individual attempting to 
sign in. Typically, a disconnected hardware token device will use a built-in 
screen to display authentication data that are then utilized by the user to sign 
in when prompted.

◆■ Inherence factor (something the individual is or does): Refers to characteris-
tics, called biometrics, that are unique or almost unique to the individual. These 
include static biometrics, such as fingerprint, retina, and face; and dynamic bio-
metrics, such as voice, handwriting, and typing rhythm.

The specific items used during authentication, such as a password or hardware 
token, are referred to as authenticators. All of these methods, properly implemented 
and used, can provide secure user authentication. However, each method has prob-
lems (Table 16.1). An adversary may be able to guess or steal a password. Similarly, 
an adversary may be able to forge or steal a card. A user may forget a password or 
lose a card. A user may share a password or card with a colleague. Furthermore, 
there is a significant administrative overhead for managing password and card 
information on systems and securing such information on systems. With respect 

Table 16.1  Authentication Factors

Factor Examples Properties

Knowledge User ID
Password
PIN

Can be shared
Many passwords easy to guess
Can be forgotten

Possession Smart Card
Electronic Badge
Electronic Key

Can be shared
Can be duplicated (cloned)
Can be lost or stolen

Inherence Fingerprint
Face
Iris
Voice print

Not possible to share
False positives and false  
  negatives possible
Forging difficult
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to biometric authenticators, there are a variety of problems, including dealing with 
false positives and false negatives, user acceptance, cost, security of the sensor itself, 
and convenience.

Multifactor Authentication

Multifactor authentication refers to the use of more than one of the authentication 
means in the preceding list (Figure 16.2). Typically, this strategy involves the use of 
authentication technologies from two of the classes of factors described above, such 
as a PIN plus a hardware token (knowledge factor plus possession factor) or a PIN 
and a biometric (knowledge factor plus inherence factor). Multifactor authentica-
tion will generally be more secure than the use of a single factor, because the failure 
modes for different factors are largely independent. So, for example, a hardware 
token might be lost or stolen, but the PIN required for use with the token would not 
be lost or stolen at the same time. This assumption is not always true, however. For 
example, a PIN attached to a hardware token is compromised at the same time that 
the token is lost or stolen. Nevertheless, multifactor authentication is an important 
means of reducing vulnerability.

Mutual Authentication

An important application area is that of mutual authentication protocols. Such pro-
tocols enable communicating parties to satisfy themselves mutually about each oth-
er’s identity and to exchange session keys. This topic was examined in Chapter 14. 

Client Client

Authen
tic

ati
on

protoco
l

Authentication
logic using
first factor

Pass

Fail

Authen
tic

ati
on

protoco
l

Authentication
logic using

second factor

Pass

Fail

Figure 16.2  Multifactor Authentication
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There, the focus was key distribution. We return to this topic here to consider the 
wider implications of authentication.

Central to the problem of authenticated key exchange are two issues: confi-
dentiality and timeliness. To prevent masquerade and to prevent compromise of 
session keys, essential identification and session-key information must be commu-
nicated in encrypted form. This requires the prior existence of secret or public keys 
that can be used for this purpose. The second issue, timeliness, is important because 
of the threat of message replays. Such replays, at worst, could allow an opponent to 
compromise a session key or successfully impersonate another party. At minimum, 
a successful replay can disrupt operations by presenting parties with messages that 
appear genuine but are not.

[GONG93] lists the following examples of replay attacks:

1. The simplest replay attack is one in which the opponent simply copies a mes-
sage and replays it later.

2. An opponent can replay a timestamped message within the valid time window. 
If both the original and the replay arrive within then time window, this inci-
dent can be logged.

3. As with example (2), an opponent can replay a timestamped message within 
the valid time window, but in addition, the opponent suppresses the original 
message. Thus, the repetition cannot be detected.

4. Another attack involves a backward replay without modification. This is a 
replay back to the message sender. This attack is possible if symmetric encryp-
tion is used and the sender cannot easily recognize the difference between 
messages sent and messages received on the basis of content.

One approach to coping with replay attacks is to attach a sequence number to 
each message used in an authentication exchange. A new message is accepted only 
if its sequence number is in the proper order. The difficulty with this approach is 
that it requires each party to keep track of the last sequence number for each claim-
ant it has dealt with. Because of this overhead, sequence numbers are generally not 
used for authentication and key exchange. Instead, one of the following two general 
approaches is used:

◆■ Timestamps: Party A accepts a message as fresh only if the message contains 
a timestamp that, in A’s judgment, is close enough to A’s knowledge of cur-
rent time. This approach requires that clocks among the various participants 
be synchronized.

◆■ Challenge/response: Party A, expecting a fresh message from B, first sends 
B a nonce (challenge) and requires that the subsequent message (response) 
received from B contain the correct nonce value.

It can be argued (e.g., [LAM92a]) that the timestamp approach should not be 
used for connection-oriented applications because of the inherent difficulties with 
this technique. First, some sort of protocol is needed to maintain synchronization 
among the various processor clocks. This protocol must be both fault tolerant, to cope 
with network errors, and secure, to cope with hostile attacks. Second, the opportu-
nity for a successful attack will arise if there is a temporary loss of synchronization 
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resulting from a fault in the clock mechanism of one of the parties. Finally,  because of 
the variable and unpredictable nature of network delays, distributed clocks cannot be 
expected to maintain precise synchronization. Therefore, any timestamp-based pro-
cedure must allow for a window of time sufficiently large to accommodate network 
delays yet sufficiently small to minimize the opportunity for attack.

On the other hand, the challenge-response approach is unsuitable for a con-
nectionless type of application, because it requires the overhead of a handshake 
before any connectionless transmission, effectively negating the chief characteris-
tic of a connectionless transaction. For such applications, reliance on some sort of 
secure time server and a consistent attempt by each party to keep its clocks in syn-
chronization may be the best approach (e.g., [LAM92b]).

 16.2 REMOTE USER-AUTHENTICATION USING 
SYMMETRIC ENCRYPTION

Mutual Authentication

As was discussed in Chapter 14, a two-level hierarchy of symmetric encryption keys 
can be used to provide confidentiality for communication in a distributed environ-
ment. In general, this strategy involves the use of a trusted key distribution center 
(KDC). Each party in the network shares a secret key, known as a master key, with 
the KDC. The KDC is responsible for generating keys to be used for a short time 
over a connection between two parties, known as session keys, and for distributing 
those keys using the master keys to protect the distribution. This approach is quite 
common. As an example, we look at the Kerberos system in Section 16.3. The discus-
sion in this subsection is relevant to an understanding of the Kerberos mechanisms.

Needham and Schroeder [NEED78] put forth a protocol for secret key dis-
tribution using a KDC that includes authentication features. The protocol can be 
summarized as follows.1

1. A S KDC: IDA } IDB }N1

2. KDC S A: E(Ka, [Ks } IDB }N1 }E(Kb, [Ks } IDA])])

3. A S B:     E(Kb, [Ks } IDA])

4. B S A:     E(Ks, N2)

5. A S B:     E(Ks, f(N2)) where f() is a generic function that modifies the  
                        value of the nonce.

Secret keys Ka and Kb are shared between A and the KDC and B and the 
KDC, respectively. The purpose of the protocol is to distribute securely a session 
key Ks to A and B. Entity A securely acquires a new session key in step 2. The mes-
sage in step 3 can be decrypted, and hence understood, only by B. Step 4 reflects B’s 
knowledge of Ks, and step 5 assures B of A’s knowledge of Ks and assures B that 
this is a fresh message because of the use of the nonce N2. The purpose of steps 4  

1The portion to the left of the colon indicates the sender and the receiver; the portion to the right indi-
cates the contents of the message; the symbol }  indicates concatenation.

M16_STAL7484_08_GE_C16.indd   507 30/04/22   8:35 AM



508  chAPteR 16 / UseR AUthenticAtion

and 5 is to prevent a certain type of replay attack. In particular, if an opponent is 
able to capture the message in step 3 and replay it, this might in some fashion dis-
rupt operations at B.

Despite the handshake of steps 4 and 5, the protocol is still vulnerable to a 
form of replay attack. Suppose that an opponent, X, has been able to compromise 
an old session key. Admittedly, this is a much more unlikely occurrence than that an 
opponent has simply observed and recorded step 3. Nevertheless, it is a potential 
security risk. X can impersonate A and trick B into using the old key by simply 
replaying step 3. Unless B remembers indefinitely all previous session keys used 
with A, B will be unable to determine that this is a replay. If X can intercept the 
handshake message in step 4, then it can impersonate A’s response in step 5. From 
this point on, X can send bogus messages to B that appear to B to come from A 
using an authenticated session key.

Denning [DENN81, DENN82] proposes to overcome this weakness by a mod-
ification to the Needham/Schroeder protocol that includes the addition of a time-
stamp to steps 2 and 3. Her proposal assumes that the master keys, Ka and Kb, are 
secure, and it consists of the following steps.

1. A S KDC: IDA } IDB

2. KDC S A: E(Ka, [Ks } IDB }T }E(Kb, [Ks } IDA }T])])

3. A S B:     E(Kb, [Ks } IDA }T])

4. B S A:     E(Ks, N1)

5. A S B:     E(Ks, f(N1))

T is a timestamp that assures A and B that the session key has only just been 
generated. Thus, both A and B know that the key distribution is a fresh exchange. 
A and B can verify timeliness by checking that

� Clock - T � 6 ∆t1 + ∆t2

where ∆t1 is the estimated normal discrepancy between the KDC’s clock and the 
local clock (at A or B) and ∆t2 is the expected network delay time. Each node can 
set its clock against some standard reference source. Because the timestamp T is 
encrypted using the secure master keys, an opponent, even with knowledge of an 
old session key, cannot succeed because a replay of step 3 will be detected by B as 
untimely.

A final point: Steps 4 and 5 were not included in the original presentation 
[DENN81] but were added later [DENN82]. These steps confirm the receipt of the 
session key at B.

The Denning protocol seems to provide an increased degree of security 
compared to the Needham/Schroeder protocol. However, a new concern is raised: 
namely, that this new scheme requires reliance on clocks that are synchronized 
throughout the network. [GONG92] points out a risk involved. The risk is based 
on the fact that the distributed clocks can become unsynchronized as a result 
of sabotage on or faults in the clocks or the synchronization mechanism. The 
 problem occurs when a sender’s clock is ahead of the intended recipient’s clock. 
In this case, an opponent can intercept a message from the sender and replay 
it later when the timestamp in the message becomes current at the recipient’s 
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site. This replay could cause unexpected results. Gong refers to such attacks as 
suppress-replay attacks.

One way to counter suppress-replay attacks is to enforce the requirement that 
parties regularly check their clocks against the KDC’s clock. The other alternative, 
which avoids the need for clock synchronization, is to rely on handshaking protocols 
using nonces. This latter alternative is not vulnerable to a suppress-replay attack, 
because the nonces the recipient will choose in the future are unpredictable to the 
sender. The Needham/Schroeder protocol relies on nonces only but, as we have 
seen, has other vulnerabilities.

In [KEHN92], an attempt is made to respond to the concerns about suppress-
replay attacks and at the same time fix the problems in the Needham/Schroeder 
protocol. Subsequently, an inconsistency in this latter protocol was noted and an 
improved strategy was presented in [NEUM93a]. The protocol is

1. A S B:     IDA }Na

2. B S KDC:   IDB }Nb }E(Kb, [IDA }Na }Tb])

3. KDC S A: E(Ka, [IDB }Na }Ks }Tb]) }E(Kb, [IDA }Ks }Tb]) }Nb

4. A S B:    E(Kb, [IDA }Ks }Tb]) }E(Ks, Nb)

Let us follow this exchange step by step.

1. A initiates the authentication exchange by generating a nonce, Na, and sending 
that plus its identifier to B in plaintext. This nonce will be returned to A in an 
encrypted message that includes the session key, assuring A of its timeliness.

2. B alerts the KDC that a session key is needed. Its message to the KDC includes 
its identifier and a nonce, Nb. This nonce will be returned to B in an encrypted 
message that includes the session key, assuring B of its timeliness. B’s message 
to the KDC also includes a block encrypted with the secret key shared by B 
and the KDC. This block is used to instruct the KDC to issue credentials to A; 
the block specifies the intended recipient of the credentials, a suggested expi-
ration time for the credentials, and the nonce received from A.

3. The KDC passes on to A B’s nonce and a block encrypted with the secret key 
that B shares with the KDC. The block serves as a “ticket” that can be used 
by A for subsequent authentications, as will be seen. The KDC also sends to 
A a block encrypted with the secret key shared by A and the KDC. This block 
verifies that B has received A’s initial message (IDB) and that this is a timely 
message and not a replay (Na), and it provides A with a session key (Ks) and 
the time limit on its use (Tb).

4. A transmits the ticket to B, together with the B’s nonce, the latter encrypted 
with the session key. The ticket provides B with the secret key that is used to 
decrypt E(Ks, Nb) to recover the nonce. The fact that B’s nonce is encrypted 
with the session key authenticates that the message came from A and is not a 
replay.

This protocol provides an effective, secure means for A and B to establish 
a session with a secure session key. Furthermore, the protocol leaves A in posses-
sion of a key that can be used for subsequent authentication to B, avoiding the 
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need to contact the authentication server repeatedly. Suppose that A and B estab-
lish a session using the aforementioned protocol and then conclude that session. 
Subsequently, but within the time limit established by the protocol, A desires a new 
session with B. The following protocol ensues:

1. A S B: E(Kb, [IDA }Ks }Tb]) }Na
=

2. B S A: Nb
= }E(Ks, Na

= )

3. A S B: E(Ks, Nb
= )

When B receives the message in step 1, it verifies that the ticket has not expired. The 
newly generated nonces Na

=  and Nb
=  assure each party that there is no replay attack.

In all the foregoing, the time specified in Tb is a time relative to B’s clock. Thus, 
this timestamp does not require synchronized clocks, because B checks only self-
generated timestamps.

 16.3 KERBEROS

Kerberos is an authentication service that addresses the following problem: Assume 
an open distributed environment in which users at workstations wish to access 
 services on servers distributed throughout the network. We would like for servers to 
be able to restrict access to authorized users and to be able to authenticate requests 
for service. In this environment, a workstation cannot be trusted to identify its users 
correctly to network services. In particular, the following three threats exist:

1. A user may gain access to a particular workstation and pretend to be another 
user operating from that workstation.

2. A user may alter the network address of a workstation so that the requests 
sent from the altered workstation appear to come from the impersonated 
workstation.

3. A user may eavesdrop on exchanges and use a replay attack to gain entrance 
to a server or to disrupt operations.

In any of these cases, an unauthorized user may be able to gain access to services 
and data that he or she is not authorized to access. Rather than building in elab-
orate authentication protocols at each server, Kerberos provides a centralized  
authentication server whose function is to authenticate users to servers and servers 
to users. Unlike most other authentication schemes described in this book, Kerberos 
relies exclusively on symmetric encryption, making no use of public-key encryption.

 The first widely used version of Kerberos was Version 4 [MILL88, STEI88].  
Version 5 [KOHL94] corrects some of the security deficiencies of version 4 and has 
been issued as a proposed Internet Standard (RFC 4120 and RFC 4121).

We begin this section with a brief discussion of the motivation for the 
Kerberos approach. Then, because of the complexity of Kerberos, it is best to start 
with a description of the authentication protocol used in version 4. This enables us 
to see the essence of the Kerberos strategy without considering some of the details 
required to handle subtle security threats. Finally, we examine version 5.
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Motivation

If a set of users is provided with dedicated personal computers that have no network 
connections, then a user’s resources and files can be protected by physically securing 
each personal computer. When these users instead are served by a centralized time-
sharing system, the time-sharing operating system must provide the security. The 
operating system can enforce access-control policies based on user identity and use 
the logon procedure to identify users.

Today, neither of these scenarios is typical. More common is a distributed 
architecture consisting of dedicated user workstations (clients) and distributed 
or centralized servers. In this environment, three approaches to security can be 
envisioned.

1. Rely on each individual client workstation to assure the identity of its user or 
users and rely on each server to enforce a security policy based on user iden-
tification (ID).

2. Require that client systems authenticate themselves to servers, but trust the 
client system concerning the identity of its user.

3. Require the user to prove his or her identity for each service invoked. Also 
require that servers prove their identity to clients.

In a small, closed environment in which all systems are owned and operated 
by a single organization, the first or perhaps the second strategy may suffice. But 
in a more open environment in which network connections to other machines are 
supported, the third approach is needed to protect user information and resources 
housed at the server. Kerberos supports this third approach. Kerberos assumes a 
distributed client/server architecture and employs one or more Kerberos servers to 
provide an authentication service.

The first published report on Kerberos [STEI88] listed the following 
requirements.

◆■ Secure: A network eavesdropper should not be able to obtain the necessary 
information to impersonate a user. More generally, Kerberos should be strong 
enough that a potential opponent does not find it to be the weak link.

◆■ Reliable: For all services that rely on Kerberos for access control, lack of 
 availability of the Kerberos service means lack of availability of the supported 
services. Hence, Kerberos should be highly reliable and should employ a 
 distributed server architecture with one system able to back up another.

◆■ Transparent: Ideally, the user should not be aware that authentication is taking 
place beyond the requirement to enter a password.

◆■ Scalable: The system should be capable of supporting large numbers of clients 
and servers. This suggests a modular, distributed architecture.

To support these requirements, the overall scheme of Kerberos is that of a 
trusted third-party authentication service that uses a protocol based on that pro-
posed by Needham and Schroeder [NEED78], which was discussed in Section 16.2. 
It is trusted in the sense that clients and servers trust Kerberos to mediate their 
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mutual authentication. Assuming the Kerberos protocol is well designed, then the 
authentication service is secure if the Kerberos server itself is secure.

Kerberos Version 4

Version 4 of Kerberos makes use of DES, in a rather elaborate protocol, to provide 
the authentication service. Viewing the protocol as a whole, it is difficult to see the 
need for the many of its elements. Therefore, we adopt a strategy used by Bill Bryant 
of Project Athena [BRYA88] and build up to the full protocol by looking first at 
several hypothetical dialogues. Each successive dialogue adds additional complexity 
to counter security vulnerabilities revealed in the preceding dialogue.

After examining the protocol, we look at some other aspects of version 4.

A Simple AuthenticAtion DiAlogue In an unprotected network environment, any 
client can apply to any server for service. The obvious security risk is that of imper-
sonation. An opponent can pretend to be another client and obtain unauthorized 
privileges on server machines. To counter this threat, servers must be able to confirm 
the identities of clients who request service. Each server can be required to under-
take this task for each client/server interaction, but in an open environment, this 
places a substantial burden on each server.

An alternative is to use an authentication server (AS) that knows the  passwords 
of all users and stores these in a centralized database. In addition, the AS shares a 
unique secret key with each server. These keys have been distributed physically or in 
some other secure manner. Consider the following hypothetical dialogue:

(1) C S AS:    IDC }PC } IDV

(2) AS S C:    Ticket

(3) C S V:   IDC }Ticket

Ticket = E(Kv, [IDC }ADC } IDV])

where

 C = client

 AS = authentication server

 V = server

 IDC = identifier of user on C

 IDV = identifier of V

 PC = password of user on C

 ADC = network address of C
 Kv = secret encryption key shared by AS and V

In this scenario, the user logs on to a workstation and requests access to server V. 
The client module C in the user’s workstation requests the user’s password and then 
sends a message to the AS that includes the user’s ID, the server’s ID, and the user’s 
password. The AS checks its database to see if the user has supplied the proper pass-
word for this user ID and whether this user is permitted access to server V. If both 
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tests are passed, the AS accepts the user as authentic and must now convince the 
server that this user is authentic. To do so, the AS creates a ticket that contains the 
user’s ID and network address and the server’s ID. This ticket is encrypted using 
the secret key shared by the AS and this server. This ticket is then sent back to C. 
Because the ticket is encrypted, it cannot be altered by C or by an opponent.

With this ticket, C can now apply to V for service. C sends a message to V con-
taining C’s ID and the ticket. V decrypts the ticket and verifies that the user ID in 
the ticket is the same as the unencrypted user ID in the message. If these two match, 
the server considers the user authenticated and grants the requested service.

Each of the ingredients of message (3) is significant. The ticket is encrypted to 
prevent alteration or forgery. The server’s ID (IDV) is included in the ticket so that 
the server can verify that it has decrypted the ticket properly. IDC is included in the 
ticket to indicate that this ticket has been issued on behalf of C. Finally, ADC serves 
to counter the following threat. An opponent could capture the ticket transmitted 
in message (2), then use the name IDC and transmit a message of form (3) from 
another workstation. The server would receive a valid ticket that matches the user 
ID and grant access to the user on that other workstation. To prevent this attack, 
the AS includes in the ticket the network address from which the original request 
came. Now the ticket is valid only if it is transmitted from the same workstation that 
initially requested the ticket.

A more Secure AuthenticAtion DiAlogue Although the foregoing scenario 
solves some of the problems of authentication in an open network environment, 
problems remain. Two in particular stand out. First, we would like to minimize the 
number of times that a user has to enter a password. Suppose each ticket can be 
used only once. If user C logs on to a workstation in the morning and wishes to 
check his or her mail at a mail server, C must supply a password to get a ticket for 
the mail server. If C wishes to check the mail several times during the day, each 
attempt requires reentering the password. We can improve matters by saying that 
tickets are reusable. For a single logon session, the workstation can store the mail 
server ticket after it is received and use it on behalf of the user for multiple accesses 
to the mail server.

However, under this scheme, it remains the case that a user would need a new 
ticket for every different service. If a user wished to access a print server, a mail 
server, a file server, and so on, the first instance of each access would require a new 
ticket and hence require the user to enter the password.

The second problem is that the earlier scenario involved a plaintext transmis-
sion of the password [message (1)]. An eavesdropper could capture the password 
and use any service accessible to the victim.

To solve these additional problems, we introduce a scheme for avoiding plain-
text passwords and a new server, known as the ticket-granting server (TGS). The 
new (but still hypothetical) scenario is as follows.

Once per user logon session:

(1) C S AS:    IDC } IDtgs

(2) AS S C:    E(Kc, Tickettgs)
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Once per type of service:

(3) C S TGS: IDC } IDV }Tickettgs

(4) TGS S C: Ticketv

Once per service session:

(5) C S V:   IDC }Ticketv

Tickettgs = E(Ktgs, [IDC }ADC } IDtgs }TS1 }Lifetime1])

Ticketv = E(Kv, [IDC }ADC } IDv }TS2 }Lifetime2])

The new service, TGS, issues tickets to users who have been authenticated to 
AS. Thus, the user first requests a ticket-granting ticket (Tickettgs) from the AS. The 
client module in the user workstation saves this ticket. Each time the user requires 
access to a new service, the client applies to the TGS, using the ticket to authenticate 
itself. The TGS then grants a ticket for the particular service. The client saves each 
service-granting ticket and uses it to authenticate its user to a server each time a 
particular service is requested. Let us look at the details of this scheme:

1. The client requests a ticket-granting ticket on behalf of the user by sending its 
user’s ID to the AS, together with the TGS ID, indicating a request to use the 
TGS service.

2. The AS responds with a ticket that is encrypted with a key that is derived from 
the user’s password (Kc), which is already stored at the AS. When this response 
arrives at the client, the client prompts the user for his or her password, gen-
erates the key, and attempts to decrypt the incoming message. If the correct 
password is supplied, the ticket is successfully recovered.

Because only the correct user should know the password, only the correct 
user can recover the ticket. Thus, we have used the password to obtain credentials 
from Kerberos without having to transmit the password in plaintext. The ticket itself 
consists of the ID and network address of the user, and the ID of the TGS. This 
corresponds to the first scenario. The idea is that the client can use this ticket to 
request multiple service-granting tickets. So the ticket-granting ticket is to be reus-
able. However, we do not wish an opponent to be able to capture the ticket and 
use it. Consider the following scenario: An opponent captures the login ticket and 
waits until the user has logged off his or her workstation. Then the opponent either 
gains access to that workstation or configures his workstation with the same net-
work address as that of the victim. The opponent would be able to reuse the ticket to 
spoof the TGS. To counter this, the ticket includes a timestamp, indicating the date 
and time at which the ticket was issued, and a lifetime, indicating the length of time 
for which the ticket is valid (e.g., eight hours). Thus, the client now has a reusable 
ticket and need not bother the user for a password for each new service request. 
Finally, note that the ticket-granting ticket is encrypted with a secret key known 
only to the AS and the TGS. This prevents alteration of the ticket. The ticket is reen-
crypted with a key based on the user’s password. This assures that the ticket can be 
recovered only by the correct user, providing the authentication.
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Now that the client has a ticket-granting ticket, access to any server can be 
obtained with steps 3 and 4.

3. The client requests a service-granting ticket on behalf of the user. For this pur-
pose, the client transmits a message to the TGS containing the user’s ID, the 
ID of the desired service, and the ticket-granting ticket.

4. The TGS decrypts the incoming ticket using a key shared only by the AS and 
the TGS (Ktgs) and verifies the success of the decryption by the presence of its 
ID. It checks to make sure that the lifetime has not expired. Then it compares 
the user ID and network address with the incoming information to authenti-
cate the user. If the user is permitted access to the server V, the TGS issues a 
ticket to grant access to the requested service.

The service-granting ticket has the same structure as the ticket-granting ticket. 
Indeed, because the TGS is a server, we would expect that the same elements are 
needed to authenticate a client to the TGS and to authenticate a client to an appli-
cation server. Again, the ticket contains a timestamp and lifetime. If the user wants 
access to the same service at a later time, the client can simply use the previously 
acquired service-granting ticket and need not bother the user for a password. Note 
that the ticket is encrypted with a secret key (Kv) known only to the TGS and the 
server, preventing alteration.

Finally, with a particular service-granting ticket, the client can gain access to 
the corresponding service with step 5.

5. The client requests access to a service on behalf of the user. For this purpose, the 
client transmits a message to the server containing the user’s ID and the service-
granting ticket. The server authenticates by using the contents of the ticket.

This new scenario satisfies the two requirements of only one password query 
per user session and protection of the user password.

the VerSion 4 AuthenticAtion DiAlogue Although the foregoing scenario en-
hances security compared to the first attempt, two additional problems remain. The 
heart of the first problem is the lifetime associated with the ticket-granting ticket. If 
this lifetime is very short (e.g., minutes), then the user will be repeatedly asked for a 
password. If the lifetime is long (e.g., hours), then an opponent has a greater oppor-
tunity for replay. An opponent could eavesdrop on the network and capture a copy 
of the ticket-granting ticket and then wait for the legitimate user to log out. Then the 
opponent could forge the legitimate user’s network address and send the message of 
step (3) to the TGS. This would give the opponent unlimited access to the resources 
and files available to the legitimate user.

Similarly, if an opponent captures a service-granting ticket and uses it before it 
expires, the opponent has access to the corresponding service.

Thus, we arrive at an additional requirement. A network service (the TGS or 
an application service) must be able to prove that the person using a ticket is the 
same person to whom that ticket was issued.

The second problem is that there may be a requirement for servers to authen-
ticate themselves to users. Without such authentication, an opponent could sabotage 
the configuration so that messages to a server were directed to another location. 
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The false server would then be in a position to act as a real server and capture any 
information from the user and deny the true service to the user.

We examine these problems in turn and refer to Table 16.2, which shows the 
actual Kerberos protocol. Figure 16.3 provides a simplified overview.

First, consider the problem of captured ticket-granting tickets and the need to 
determine that the ticket presenter is the same as the client for whom the ticket was 
issued. The threat is that an opponent will steal the ticket and use it before it expires. 
To get around this problem, let us have the AS provide both the client and the TGS 
with a secret piece of information in a secure manner. Then the client can prove its 
identity to the TGS by revealing the secret information—again in a secure manner. 
An efficient way of accomplishing this is to use an encryption key as the secure 
information; this is referred to as a session key in Kerberos.

Table 16.2a shows the technique for distributing the session key. As before, 
the client sends a message to the AS requesting access to the TGS. The AS responds 
with a message, encrypted with a key derived from the user’s password (Kc), that 
contains the ticket. The encrypted message also contains a copy of the session 
key, Kc,tgs, where the subscripts indicate that this is a session key for C and TGS. 
Because this session key is inside the message encrypted with Kc, only the user’s 
client can read it. The same session key is included in the ticket, which can be read 
only by the TGS. Thus, the session key has been securely delivered to both C and 
the TGS.

Note that several additional pieces of information have been added to this first 
phase of the dialogue. Message (1) includes a timestamp, so that the AS knows that 
the message is timely. Message (2) includes several elements of the ticket in a form 
accessible to C. This enables C to confirm that this ticket is for the TGS and to learn 
its expiration time.

(1) C S AS IDc } IDtgs }TS1

(2) AS S C E(Kc, [Kc, tgs } IDtgs }TS2 }Lifetime2 }Tickettgs])

Tickettgs = E(Ktgs, [Kc, tgs } IDC }ADC } IDtgs }TS2 }Lifetime2])

(a) Authentication Service Exchange to obtain ticket-granting ticket

(3) C S TGS IDv }Tickettgs }Authenticatorc

(4) TGS S C E(Kc, tgs, [Kc, v } IDv }TS4 }Ticketv])

Tickettgs = E(Ktgs, [Kc, tgs } IDC }ADC } IDtgs }TS2 }Lifetime2])
Ticketv = E(Kv, [Kc, v } IDC }ADC } IDv }TS4 }Lifetime4])

Authenticatorc = E(Kc, tgs, [IDC }ADC }TS3])

(b) Ticket-Granting Service Exchange to obtain service-granting ticket

(5) C S V Ticketv }Authenticatorc

(6) V S C E(Kc,v, [TS5 + 1]) (for mutual authentication)
Ticketv = E(Kv, [Kc, v } IDC }ADC } IDv }TS4 }Lifetime4])

Authenticatorc = E(Kc, v, [IDC }ADC }TS5])

(c) Client/Server Authentication Exchange to obtain service

Table 16.2 Summary of Kerberos Version 4 Message Exchanges
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Armed with the ticket and the session key, C is ready to approach the TGS. 
As before, C sends the TGS a message that includes the ticket plus the ID of the 
requested service [message (3) in Table 16.2b]. In addition, C transmits an authen-
ticator, which includes the ID and address of C’s user and a timestamp. Unlike the 
ticket, which is reusable, the authenticator is intended for use only once and has a 
very short lifetime. The TGS can decrypt the ticket with the key that it shares with 
the AS. This ticket indicates that user C has been provided with the session key 
Kc,tgs. In effect, the ticket says, “Anyone who uses Kc,tgs must be C.” The TGS uses 
the session key to decrypt the authenticator. The TGS can then check the name and 
address from the authenticator with that of the ticket and with the network address 
of the incoming message. If all match, then the TGS is assured that the sender of the 
ticket is indeed the ticket’s real owner. In effect, the authenticator says, “At time TS3,  
I hereby use Kc,tgs.” Note that the ticket does not prove anyone’s identity but is a 
way to distribute keys securely. It is the authenticator that proves the client’s identity. 
Because the authenticator can be used only once and has a short lifetime, the threat 

Figure 16.3 Overview of Kerberos
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Figure 16.4 Kerberos Exchanges

Client

Client authentication
IDc || IDtgs || TS1

Tickettgs, server ID, and client authentication
IDv || Tickettgs || Authenticatorc

Shared key and ticket
E(Kc,tgs, [Kc,v || IDv || TS4 || Ticketv])

Ticketv and client authentication
Ticketv || Authenticatorc

Service granted
E(Kc,v, [TS5 1 1])

Shared key and ticket
E(Kc, [Kc, tgs || IDtgs || TS2 ||

Lifetime2 || Tickettgs])

Authentication
server (AS)

Ticket-granting
server (TGS)

Service
provider

of an opponent stealing both the ticket and the authenticator for presentation later 
is countered.

The reply from the TGS in message (4) follows the form of message (2). The 
message is encrypted with the session key shared by the TGS and C and includes a 
session key to be shared between C and the server V, the ID of V, and the timestamp 
of the ticket. The ticket itself includes the same session key.

C now has a reusable service-granting ticket for V. When C presents this ticket, 
as shown in message (5), it also sends an authenticator. The server can decrypt the 
ticket, recover the session key, and decrypt the authenticator.

If mutual authentication is required, the server can reply as shown in message 
(6) of Table 16.2. The server returns the value of the timestamp from the authentica-
tor, incremented by 1, and encrypted in the session key. C can decrypt this message 
to recover the incremented timestamp. Because the message was encrypted by the 
session key, C is assured that it could have been created only by V. The contents of 
the message assure C that this is not a replay of an old reply.

Finally, at the conclusion of this process, the client and server share a secret key. 
This key can be used to encrypt future messages between the two or to exchange a 
new random session key for that purpose.

Figure 16.4 illustrates the Kerberos exchanges among the parties.
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KerberoS reAlmS AnD multiple Kerberi A full-service Kerberos environment 
consisting of a Kerberos server, a number of clients, and a number of application 
servers requires the following:

1. The Kerberos server must have the user ID and hashed passwords of all partic-
ipating users in its database. All users are registered with the Kerberos server.

2. The Kerberos server must share a secret key with each server. All servers are 
registered with the Kerberos server.

Such an environment is referred to as a Kerberos realm. The concept of 
realm can be explained as follows. A Kerberos realm is a set of managed nodes 
that share the same Kerberos database. The Kerberos database resides on the 
Kerberos master computer system, which should be kept in a physically secure 
room. A read-only copy of the Kerberos database might also reside on other 
Kerberos computer systems. However, all changes to the database must be made 
on the master computer system. Changing or accessing the contents of a Kerberos 
database requires the Kerberos master password. A related concept is that of a 
Kerberos principal, which is a service or user that is known to the Kerberos sys-
tem. Each Kerberos principal is identified by its principal name. Principal names 
consist of three parts: a service or user name, an instance name, and a realm name.

Networks of clients and servers under different administrative organizations 
typically constitute different realms. That is, it generally is not practical or does not 
conform to administrative policy to have users and servers in one administrative 
domain registered with a Kerberos server elsewhere. However, users in one realm 
may need access to servers in other realms, and some servers may be willing to pro-
vide service to users from other realms, provided that those users are authenticated.

Kerberos provides a mechanism for supporting such interrealm  authentication. 
For two realms to support interrealm authentication, a third requirement is added:

3. The Kerberos server in each interoperating realm shares a secret key with the 
server in the other realm. The two Kerberos servers are registered with each other.

The scheme requires that the Kerberos server in one realm trust the Kerberos 
server in the other realm to authenticate its users. Furthermore, the participating 
servers in the second realm must also be willing to trust the Kerberos server in the 
first realm.

With these ground rules in place, we can describe the mechanism as follows 
(Figure 16.5): A user wishing service on a server in another realm needs a ticket for 
that server. The user’s client follows the usual procedures to gain access to the local 
TGS and then requests a ticket-granting ticket for a remote TGS (TGS in another 
realm). The client can then apply to the remote TGS for a service-granting ticket for 
the desired server in the realm of the remote TGS.

The details of the exchanges illustrated in Figure 16.5 are as follows (compare 
Table 16.2).

(1) C S AS:    IDc } IDtgs }TS1

(2) AS S C:      E(Kc, [Kc, tgs } IDtgs }TS2 }Lifetime2 }Tickettgs])

(3) C S TGS:   IDtgsrem }Tickettgs }Authenticatorc
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(4) TGS S C:    E(Kc,tgs, [Kc, tgsrem } IDtgsrem }TS4 }Tickettgsrem])

(5) C S TGSrem: IDvrem }Tickettgsrem }Authenticatorc

(6) TGSrem S C: E(Kc,tgsrem, [Kc, vrem } IDvrem }TS6 }Ticketvrem])

(7) C S Vrem:     Ticketvrem }Authenticatorc

The ticket presented to the remote server (Vrem) indicates the realm in which 
the user was originally authenticated. The server chooses whether to honor the 
remote request.

One problem presented by the foregoing approach is that it does not scale 
well to many realms. If there are N realms, then there must be N(N - 1)/2 secure 
key exchanges so that each Kerberos realm can interoperate with all other Kerberos 
realms.

Figure 16.5 Request for Service in Another Realm
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Kerberos Version 5

Kerberos version 5 is specified in RFC 4120 and provides a number of improve-
ments over version 4 [KOHL94]. To begin, we provide an overview of the changes 
from version 4 to version 5 and then look at the version 5 protocol.

DifferenceS between VerSionS 4 AnD 5 Version 5 is intended to address the limita-
tions of version 4 in two areas: environmental shortcomings and technical deficien-
cies. Let us briefly summarize the improvements in each area.

Kerberos version 4 was developed for use within the Project Athena environ-
ment and, accordingly, did not fully address the need to be of general purpose. This 
led to the following environmental shortcomings.

1. Encryption system dependence: Version 4 requires the use of DES. Export 
restriction on DES as well as doubts about the strength of DES were thus of 
concern. Version 5 makes use of AES.

2. Internet protocol dependence: Version 4 requires the use of Internet Protocol 
(IP) addresses. Other address types, such as the ISO network address, are not 
accommodated. Version 5 network addresses are tagged with type and length, 
allowing any network address type to be used.

3. Message byte ordering: In version 4, the sender of a message employs a byte 
ordering of its own choosing and tags the message to indicate least signifi-
cant byte in lowest address or most significant byte in lowest address. This 
 technique works but does not follow established conventions. In version 5, all 
message structures are defined using Abstract Syntax Notation One (ASN.1) 
and Basic Encoding Rules (BER), which provide an unambiguous byte 
ordering.

4. Ticket lifetime: Lifetime values in version 4 are encoded in an 8-bit quantity 
in units of five minutes. Thus, the maximum lifetime that can be expressed is 
28 * 5 = 1280 minutes (a little over 21 hours). This may be inadequate for 
some applications (e.g., a long-running simulation that requires valid Kerberos 
credentials throughout execution). In version 5, tickets include an explicit start 
time and end time, allowing tickets with arbitrary lifetimes.

5. Authentication forwarding: Version 4 does not allow credentials issued to one 
client to be forwarded to some other host and used by some other client. This 
capability would enable a client to access a server and have that server access 
another server on behalf of the client. For example, a client issues a request to 
a print server that then accesses the client’s file from a file server, using the cli-
ent’s credentials for access. Version 5 provides this capability.

6. Interrealm authentication: In version 4, interoperability among N realms 
 requires on the order of N2 Kerberos-to-Kerberos relationships, as described 
earlier. Version 5 supports a method that requires fewer relationships, as 
described shortly.

Apart from these environmental limitations, there are technical  deficiencies 
in the version 4 protocol itself. Most of these deficiencies were documented in 
[BELL90], and version 5 attempts to address these. The deficiencies are the following.
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1. Double encryption: Note in Table 16.2 [messages (2) and (4)] that tickets pro-
vided to clients are encrypted twice—once with the secret key of the target 
server and then again with a secret key known to the client. The second en-
cryption is not necessary and is computationally wasteful.

2. PCBC encryption: Encryption in version 4 makes use of a nonstandard mode 
of DES known as propagating cipher block chaining (PCBC). It has been 
 demonstrated that this mode is vulnerable to an attack involving the interchange 
of ciphertext blocks [KOHL89]. PCBC was intended to provide an integrity check 
as part of the encryption operation. Version 5 provides explicit integrity mecha-
nisms, allowing the standard CBC mode to be used for encryption. In particular, a 
checksum or hash code is attached to the message prior to encryption using CBC.

3. Session keys: Each ticket includes a session key that is used by the client to 
encrypt the authenticator sent to the service associated with that ticket. In 
addition, the session key may subsequently be used by the client and the server 
to protect messages passed during that session. However, because the same 
ticket may be used repeatedly to gain service from a particular server, there is 
the risk that an opponent will replay messages from an old session to the client 
or the server. In version 5, it is possible for a client and server to negotiate a 
subsession key, which is to be used only for that one connection. A new access 
by the client would result in the use of a new subsession key.

4. Password attacks: Both versions are vulnerable to a password attack. The mes-
sage from the AS to the client includes material encrypted with a key based on 
the client’s password. An opponent can capture this message and attempt to 
decrypt it by trying various passwords. If the result of a test decryption is of the 
proper form, then the opponent has discovered the client’s password and may 
subsequently use it to gain authentication credentials from Kerberos. Version 
5 does provide a mechanism known as preauthentication, which should make 
password attacks more difficult, but it does not prevent them.

the VerSion 5 AuthenticAtion DiAlogue Table 16.3 summarizes the basic version 
5 dialogue. This is best explained by comparison with version 4 (Table 16.2).

First, consider the authentication service exchange. Message (1) is a client request 
for a ticket-granting ticket. As before, it includes the ID of the user and the TGS. The 
following new elements are added:

◆■ Realm: Indicates realm of user

◆■ Options: Used to request that certain flags be set in the returned ticket

◆■ Times: Used by the client to request the following time settings in the ticket:

—from: the desired start time for the requested ticket
—till: the requested expiration time for the requested ticket
—rtime: requested renew-till time

◆■ Nonce: A random value to be repeated in message (2) to assure that the 
response is fresh and has not been replayed by an opponent

Message (2) returns a ticket-granting ticket, identifying information for the 
client, and a block encrypted using the encryption key based on the user’s password. 
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(1) C S AS Options } IDc }Realmc } IDtgs }Times }Nonce1

(2) AS S C RealmC } IDC }Tickettgs }E(Kc, [Kc,tgs }Times }Nonce1 }Realmtgs } IDtgs])

Tickettgs = E(Ktgs, [Flags }Kc,tgs }Realmc } IDC }ADC }Times])

(a) Authentication Service Exchange to obtain ticket-granting ticket

(3) C S TGS Options } IDv }Times }Nonce2 }Tickettgs }Authenticatorc

(4) TGS S C Realmc } IDC }Ticketv }E(Kc,tgs, [Kc,v }Times }Nonce2 }Realmv } IDv])

Tickettgs = E(Ktgs, [Flags }Kc,tgs }Realmc } IDC }ADC }Times])
Ticketv = E(Kv, [Flags }Kc,v }Realmc } IDC }ADC }Times])

Authenticatorc = E(Kc,tgs, [IDC }Realmc }TS1])

(b) Ticket-Granting Service Exchange to obtain service-granting ticket

(5) C S V Options }Ticketv }Authenticatorc

(6) V S C EKc,v
[TS2 }Subkey }Seq #]

Ticketv = E(Kv, [Flag }Kc,v }Realmc } IDC }ADC }Times])
Authenticatorc = E(Kc,v, [IDC }Relamc }TS2 }Subkey }Seq #])

(c) Client/Server Authentication Exchange to obtain service

Table 16.3 Summary of Kerberos Version 5 Message Exchanges

This block includes the session key to be used between the client and the TGS, times 
specified in message (1), the nonce from message (1), and TGS identifying informa-
tion. The ticket itself includes the session key, identifying information for the cli-
ent, the requested time values, and flags that reflect the status of this ticket and the 
requested options.

Let us now compare the ticket-granting service exchange for versions 4 and 5. 
We see that message (3) for both versions includes an authenticator, a ticket, and the 
name of the requested service. In addition, version 5 includes requested times and 
options for the ticket and a nonce—all with functions similar to those of  message 
(1). The authenticator itself is essentially the same as the one used in version 4.

Message (4) has the same structure as message (2). It returns a ticket plus 
information needed by the client, with the information encrypted using the session 
key now shared by the client and the TGS.

Finally, for the client/server authentication exchange, several new features 
 appear in version 5. In message (5), the client may request as an option that mutual 
authentication is required. The authenticator includes several new fields:

◆■ Subkey: The client’s choice for an encryption key to be used to protect this 
specific application session. If this field is omitted, the session key from the 
ticket (Kc,v) is used.

◆■ Sequence number: An optional field that specifies the starting sequence num-
ber to be used by the server for messages sent to the client during this session. 
Messages may be sequence numbered to detect replays.

If mutual authentication is required, the server responds with message (6). 
This message includes the timestamp from the authenticator. Note that in version 4, 
the timestamp was incremented by one. This is not necessary in version 5, because 
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the nature of the format of messages is such that it is not possible for an oppo-
nent to create message (6) without knowledge of the appropriate encryption keys. 
The subkey field, if present, overrides the subkey field, if present, in message (5).  
The optional sequence number field specifies the starting sequence number to be 
used by the client.

 16.4  REMOTE USER-AUTHENTICATION USING 
ASYMMETRIC ENCRYPTION

Mutual Authentication

In Chapter 15, we presented one approach to the use of public-key encryption for 
the purpose of session-key distribution (Figure 15.5). This protocol assumes that 
each of the two parties is in possession of the current public key of the other. It may 
not be practical to require this assumption.

A protocol using timestamps is provided in [DENN81]:

1. A S AS: IDA } IDB

2. AS S A: E(PRas, [IDA }PUa }T]) }E(PRas, [IDB }PUb }T])

3. A S B:    E(PRas, [IDA }PUa }T]) }E(PRas, [IDB }PUb }T]) }  
 E(PUb, E(PRa, [Ks }T]))

In this case, the central system is referred to as an authentication server (AS), 
because it is not actually responsible for secret-key distribution. Rather, the AS pro-
vides public-key certificates. The session key is chosen and encrypted by A; hence, 
there is no risk of exposure by the AS. The timestamps protect against replays of 
compromised keys.

This protocol is compact but, as before, requires the synchronization of clocks. 
Another approach, proposed by Woo and Lam [WOO92a], makes use of nonces. 
The protocol consists of the following steps.

1. A S KDC: IDA } IDB

2. KDC S A: E(PRauth, [IDB }PUb])

3. A S B:    E(PUb, [Na } IDA])

4. B S KDC: IDA } IDB }E(PUauth, Na)

5. KDC S B: E(PRauth, [IDA }PUa]) }E(PUb, E(PRauth, [Na }Ks } IDB]))

6. B S A:    E(PUa, [E(PRauth, [(Na }Ks } IDB)]) }Nb])

7. A S B:    E(Ks, Nb)

In step 1, A informs the KDC of its intention to establish a secure connection 
with B. The KDC returns to A a copy of B’s public-key certificate (step 2). Using B’s 
public key, A informs B of its desire to communicate and sends a nonce Na (step 3). 
In step 4, B asks the KDC for A’s public-key certificate and requests a session key; 
B includes A’s nonce so that the KDC can stamp the session key with that nonce. 
The nonce is protected using the KDC’s public key. In step 5, the KDC returns 
to B a copy of A’s public-key certificate, plus the information {Na, Ks, IDB}. This 
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information basically says that Ks is a secret key generated by the KDC on behalf of 
B and tied to Na; the binding of Ks and Na will assure A that Ks is fresh. This triple is 
encrypted using the KDC’s private key to allow B to verify that the triple is in fact 
from the KDC. It is also encrypted using B’s public key so that no other entity may 
use the triple in an attempt to establish a fraudulent connection with A. In step 6, 
the triple {Na, Ks, IDB}, still encrypted with the KDC’s private key, is relayed to A, 
together with a nonce Nb generated by B. All the foregoing are encrypted using A’s 
public key. A retrieves the session key Ks, uses it to encrypt Nb, and returns it to B. 
This last message assures B of A’s knowledge of the session key.

This seems to be a secure protocol that takes into account the various attacks. 
However, the authors themselves spotted a flaw and submitted a revised version of 
the algorithm in [WOO92b]:

1. A S KDC: IDA } IDB

2. KDC S A:     E(PRauth, [IDB }PUb])

3. A S B:     E(PUb, [Na } IDA])

4. B S KDC: IDA } IDB }E(PUauth, Na)

5. KDC S B: E(PRauth, [IDA }PUa]) }E(PUb, E(PRauth, [Na }Ks } IDA } IDB]))

6. B S A:    E(PUa, [Nb }E(PRauth, [Na }Ks } IDA } IDB])])

7. A S B:    E(Ks, Nb)

The identifier of A, IDA, is added to the set of items encrypted with the KDC’s 
private key in steps 5 and 6. This binds the session key Ks to the identities of the two 
parties that will be engaged in the session. This inclusion of IDA accounts for the fact 
that the nonce value Na is considered unique only among all nonces generated by 
A, not among all nonces generated by all parties. Thus, it is the pair {IDA, Na} that 
uniquely identifies the connection request of A.

In both this example and the protocols described earlier, protocols that 
appeared secure were revised after additional analysis. These examples highlight the 
difficulty of getting things right in the area of authentication.

One-Way Authentication

One-way authentication involves a single transfer of information from one user (A) 
intended for another (B). In its simplest form, one way authentication would estab-
lish the identity of A, the identity of B, and establish that some sort of authentica-
tion token actually was generated by A and actually was intended to be sent to B. 
An email message is an example of an application that lends itself to one-way au-
thentication. We have already presented public-key encryption approaches that are 
suited to electronic mail, including the straightforward encryption of the entire mes-
sage for confidentiality (Figure 12.1b), authentication (Figure 12.1c), or both (Figure 
12.1d). These approaches require that either the sender know the recipient’s public 
key (confidentiality), the recipient know the sender’s public key (authentication), 
or both (confidentiality plus authentication). In addition, the public-key algorithm 
must be applied once or twice to what may be a long message.

If confidentiality is the primary concern, then the following may be more efficient:

A S B: E(PUb, Ks) }E(Ks, M)
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In this case, the message is encrypted with a one-time secret key. A also encrypts this 
one-time key with B’s public key. Only B will be able to use the corresponding private 
key to recover the one-time key and then use that key to decrypt the message. This 
scheme is more efficient than simply encrypting the entire message with B’s public key.

If authentication is the primary concern, then a digital signature may suffice, as 
was illustrated in Figure 13.1:

A S B: M }E(PRa, H(M))

This method guarantees that A cannot later deny having sent the message. 
However, this technique is open to another kind of fraud. Bob composes a mes-
sage to his boss Alice that contains an idea that will save the company money. He 
 appends his digital signature and sends it into the email system. Eventually, the mes-
sage will get delivered to Alice’s mailbox. But suppose that Max has heard of Bob’s 
idea and gains access to the mail queue before delivery. He finds Bob’s message, 
strips off his signature, appends his, and requeues the message to be delivered to 
Alice. Max gets credit for Bob’s idea.

To counter such a scheme, both the message and signature can be encrypted 
with the recipient’s public key:

A S B: E(PUb, [M }E(PRa, H(M))])

The latter two schemes require that B know A’s public key and be convinced 
that it is timely. An effective way to provide this assurance is the digital certificate, 
described in Chapter 14. Now we have

A S B: M }E(PRa, H(M)) }E(PRas, [T } IDA }PUa])

In addition to the message, A sends B the signature encrypted with A’s private 
key and A’s certificate encrypted with the private key of the authentication server. 
The recipient of the message first uses the certificate to obtain the sender’s public 
key and verify that it is authentic and then uses the public key to verify the message 
itself. If confidentiality is required, then the entire message can be encrypted with 
B’s public key. Alternatively, the entire message can be encrypted with a one-time 
secret key; the secret key is also transmitted, encrypted with B’s public key. This 
approach is explored in Chapter 21.

 16.5 FEDERATED IDENTITY MANAGEMENT

Federated identity management is a relatively new concept dealing with the use of 
a common identity management scheme across multiple enterprises and numerous 
applications and supporting many thousands, even millions, of users. We begin our 
overview with a discussion of the concept of identity management and then examine 
federated identity management.

Identity Management

Identity management is a centralized, automated approach to provide enterprise-
wide access to resources by employees and other authorized individuals. The focus 
of identity management is defining an identity for each user (human or process), 
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associating attributes with the identity, and enforcing a means by which a user can 
verify identity. The central concept of an identity management system is the use of 
single sign-on (SSO).

SSO enables a user to access all network resources after a single authentication.
Typical services provided by a federated identity management system include 

the following:

◆■ Point of contact: Includes authentication that a user corresponds to the user 
name provided, and management of user/server sessions.

◆■ SSO protocol services: Provides a vendor-neutral security token service for 
supporting a single sign on to federated services.

◆■ Trust services: Federation relationships require a trust relationship-based 
federation between business partners. A trust relationship is represented by 
the combination of the security tokens used to exchange information about a 
user, the cryptographic information used to protect these security tokens, and 
optionally the identity mapping rules applied to the information contained 
within this token.

◆■ Key services: Management of keys and certificates.

◆■ Identity services: Services that provide the interface to local data stores, includ-
ing user registries and databases, for identity-related information management.

◆■ Authorization: Granting access to specific services and/or resources based on 
the authentication.

◆■ Provisioning: Includes creating an account in each target system for the user, 
enrollment or registration of user in accounts, establishment of access rights or 
credentials to ensure the privacy and integrity of account data.

◆■ Management: Services related to runtime configuration and deployment.

Note that Kerberos contains a number of the elements of an identity manage-
ment system.

Figure 16.6 illustrates entities and data flows in a generic identity management 
architecture. A principal is an identity holder. Typically, this is a human user that 
seeks access to resources and services on the network. User devices, agent processes, 
and server systems may also function as principals. Principals authenticate them-
selves to an identity provider. The identity provider associates authentication infor-
mation with a principal, as well as attributes and one or more identifiers.

Increasingly, digital identities incorporate attributes other than simply an 
identifier and authentication information (such as passwords and biometric infor-
mation). An attribute service manages the creation and maintenance of such attri-
butes. For example, a user needs to provide a shipping address each time an order is 
placed at a new Web merchant, and this information needs to be revised when the 
user moves. Identity management enables the user to provide this information once, 
so that it is maintained in a single place and released to data consumers in accor-
dance with authorization and privacy policies. Users may create some of the attri-
butes to be associated with their digital identity, such as an address. Administrators 
may also assign attributes to users, such as roles, access permissions, and employee 
information.
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Data consumers are entities that obtain and employ data maintained and 
 provided by identity and attribute providers, which are often used to support autho-
rization decisions and to collect audit information. For example, a database server 
or file server is a data consumer that needs a client’s credentials so as to know what 
access to provide to that client.

Identity Federation

Identity federation is, in essence, an extension of identity management to multiple 
security domains. Such domains include autonomous internal business units, exter-
nal business partners, and other third-party applications and services. The goal is to 
provide the sharing of digital identities so that a user can be authenticated a single 
time and then access applications and resources across multiple domains. Because 
these domains are relatively autonomous or independent, no centralized control is 
possible. Rather, the cooperating organizations must form a federation based on 
agreed standards and mutual levels of trust to securely share digital identities.

Federated identity management refers to the agreements, standards, and tech-
nologies that enable the portability of identities, identity attributes, and entitlements 
across multiple enterprises and numerous applications and supporting many thou-
sands, even millions, of users. When multiple organizations implement interoperable 
federated identity schemes, an employee in one organization can use a single sign-
on to access services across the federation with trust relationships associated with 
the identity. For example, an employee may log onto her corporate intranet and be 
authenticated to perform authorized functions and access authorized services on 
that intranet. The employee could then access their health benefits from an outside 
health-care provider without having to reauthenticate.

Beyond SSO, federated identity management provides other capabilities. One 
is a standardized means of representing attributes. Increasingly, digital identities 

Figure 16.6 Generic Identity Management Architecture

Identity
provider

Attribute
service

Data
consumer Principal

Administrator

M16_STAL7484_08_GE_C16.indd   528 30/04/22   8:36 AM



16.5 / FedeRAted identity mAnAgement 529

incorporate attributes other than simply an identifier and authentication informa-
tion (such as passwords and biometric information). Examples of attributes include 
account numbers, organizational roles, physical location, and file ownership. A user 
may have multiple identifiers; for example, each identifier may be associated with a 
unique role with its own access permissions.

Another key function of federated identity management is identity map-
ping. Different security domains may represent identities and attributes differently. 
Further, the amount of information associated with an individual in one domain 
may be more than is necessary in another domain. The federated identity manage-
ment protocols map identities and attributes of a user in one domain to the require-
ments of another domain.

Figure 16.7 illustrates entities and data flows in a generic federated identity 
management architecture.

The identity provider acquires attribute information through dialogue and pro-
tocol exchanges with users and administrators. For example, a user needs to provide 
a shipping address each time an order is placed at a new Web merchant, and this 

Figure 16.7 Federated Identity Operation
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information needs to be revised when the user moves. Identity management enables 
the user to provide this information once, so that it is maintained in a single place and 
released to data consumers in accordance with authorization and privacy policies.

Service providers are entities that obtain and employ data maintained and 
provided by identity providers, often to support authorization decisions and to col-
lect audit information. For example, a database server or file server is a data con-
sumer that needs a client’s credentials so as to know what access to provide to that 
client. A service provider can be in the same domain as the user and the identity 
provider. The power of this approach is for federated identity management, in which 
the service provider is in a different domain (e.g., a vendor or supplier network).

Key Terms 

authentication
authentication server

federated identity 
management

Kerberos

nonce
replay attack
timestamp

Review Questions 

 16.1 Give examples of replay attacks.
 16.2 List three general approaches to dealing with replay attacks.
 16.3 What is a suppress-replay attack?
 16.4 What problem was Kerberos designed to address?
 16.5 In Kerberos, what is the purpose of the centralized authentication server?
 16.6 Which approach to secure user authentication in a distributed environment does 

Kerberos support?
 16.7 What four requirements were defined for Kerberos?
 16.8 What entities constitute a full-service Kerberos environment?
 16.9 In the context of Kerberos, explain the concept of realm.
 16.10 What are the principal differences between version 4 and version 5 of Kerberos?

Problems 

 16.1 In Section 16.4, we outlined the public-key scheme proposed in [WOO92a] for the 
distribution of secret keys. The revised version includes IDA in steps 5 and 6. What 
attack, specifically, is countered by this revision?

 16.2 The protocol referred to in Problem 16.1 can be reduced from seven steps to five, hav-
ing the following sequence:
a. A S B:
b. A S KDC:
c. KDC S B:
d. B S A:
e. A S B:

 16.6 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

M16_STAL7484_08_GE_C16.indd   530 30/04/22   8:36 AM



16.6 / Key teRms, Review QUestions, And PRoblems 531

Show the message transmitted at each step. Hint: The final message in this protocol is 
the same as the final message in the original protocol.

 16.3 Explain why replacing the timestamp by a nonce in the protocol proposed by Denning, 
and described in Section 16.2, does not offer protection against suppress-replay attacks.

 16.4 There are three typical ways to use nonces as challenges. Suppose Na is a nonce gener-
ated by A, A and B share key K, and f() is a function (such as an increment). The three 
usages are

Usage 1 Usage 2 Usage 3

(1) A S B: Na (1) A S B: E(K, Na) (1) A S B: E(K, Na)

(2) B S A: E(K, Na) (2) B S A: Na (2) B S A: E(K, f(Na))

Describe situations for which each usage is appropriate.
 16.5 In addition to providing a standard for public-key certificate formats, X.509 specifies 

an authentication protocol. The original version of X.509 contains a security flaw. The 
essence of the protocol is as follows.

 A S B: A {tA, rA, IDB}

 B S A: B {tB, rB, IDA, rA}

 A S B: A {rB}

where tA and tB are timestamps, rA and rB are nonces and the notation X{Y} indicates 
that the message Y is transmitted, encrypted, and signed by X.

The text of X.509 states that checking timestamps tA and tB is optional for 
three-way authentication. But consider the following example: Suppose A and B have 
used the preceding protocol on some previous occasion, and that opponent C has in-
tercepted the preceding three messages. In addition, suppose that timestamps are not 
used and are all set to 0. Finally, suppose C wishes to impersonate A to B. C initially 
sends the first captured message to B:

 C S B: A {0, rA, IDB} 

B responds, thinking it is talking to A but is actually talking to C:

 B S C: B {0, r B
= , IDA, rA} 

C meanwhile causes A to initiate authentication with C by some means. As a result, A 
sends C the following:

 A S C: A {0, r A
= , IDC} 

C responds to A using the same nonce provided to C by B:

 C S A: C {0, r B
= , IDA, r A

= } 

A responds with

 A S C: A {r B
= } 
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This is exactly what C needs to convince B that it is talking to A, so C now repeats the 
incoming message back out to B.

 C S B: A {r B
= }

So B will believe it is talking to A whereas it is actually talking to C. Suggest a simple 
solution to this problem that does not involve the use of timestamps.

 16.6 Consider a one-way authentication technique based on asymmetric encryption:

 A S B: IDA

 B S A: R1

 A S B: E(PRa, R1)

a. Explain the protocol.
b. What type of attack is this protocol susceptible to?

 16.7 Consider a one-way authentication technique based on asymmetric encryption:

  A S B: IDA }E(PUB, RA)

 B S A:       RA

a. Explain the protocol.
b. What type of attack is this protocol susceptible to?

 16.8 In Kerberos, when Bob receives a ticket from Alice, how does he know it is not genuine?
 16.9 In Kerberos, how does Bob know that the received token is not corresponding to 

Alice’s?
 16.10 In Kerberos, how does Alice know that a reply to an earlier message is from Bob?
 16.11 In Kerberos, where do Alice and Bob find the session key that they need to secure 

their communication?

M16_STAL7484_08_GE_C16.indd   532 30/04/22   8:36 AM



Transport-Level Security
17.1 Web Security Considerations

Web Security Threats
Web Traffic Security Approaches

17.2 Transport Layer Security

TLS Architecture
TLS Record Protocol
Change Cipher Spec Protocol
Alert Protocol
Handshake Protocol
Cryptographic Computations
SSL/TLS Attacks
TLSv1.3

17.3 HTTPS

Connection Initiation
Connection Closure

17.4 Secure Shell (SSH)

Transport Layer Protocol
User Authentication Protocol
Connection Protocol

17.5 Review Questions and Problems

Part Six: Network aNd iNterNet Security

CHAPTER17

533

M17_STAL7484_08_GE_C17.indd   533 30/04/22   8:44 AM



534  CHAPTER 17 / TRAnSPoRT-LEvEL SECuRiTy

Virtually all businesses, most government agencies, and many individuals now have 
Web sites. The number of individuals and companies with Internet access is expanding 
rapidly and all of these have graphical Web browsers. As a result, businesses are enthu-
siastic about setting up facilities on the Web for electronic commerce. But the reality 
is that the Internet and the Web are extremely vulnerable to compromises of various 
sorts. As businesses wake up to this reality, the demand for secure Web services grows.

The topic of Web security is a broad one and can easily fill a book. In this chap-
ter, we begin with a discussion of the general requirements for Web security and then 
focus on three standardized schemes that are becoming increasingly important as part 
of Web commerce and that focus on security at the transport layer: SSL/TLS, HTTPS, 
and SSH.

 17.1 WEB SECURITY CONSIDERATIONS

The World Wide Web is fundamentally a client/server application running over the 
Internet and TCP/IP intranets. As such, the security tools and approaches discussed 
so far in this book are relevant to the issue of Web security. However, the following 
characteristics of Web usage suggest the need for tailored security tools:

■■ Although Web browsers are very easy to use, Web servers are relatively easy 
to configure and manage, and Web content is increasingly easy to develop, the 
underlying software is extraordinarily complex. This complex software may 
hide many potential security flaws. The short history of the Web is filled with 
examples of new and upgraded systems, properly installed, that are vulnerable 
to a variety of security attacks.

■■ A Web server can be exploited as a launching pad into the corporation’s or 
agency’s entire computer complex. Once the Web server is subverted, an 
attacker may be able to gain access to data and systems not part of the Web 
itself but connected to the server at the local site.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

■◆ Summarize Web security threats and Web traffic security approaches.

■◆ Present an overview of Transport Layer Security (TLS).

■◆ Understand the differences between Secure Sockets Layer and Transport 
Layer Security.

■◆ Compare the pseudorandom function used in Transport Layer Security 
with those discussed earlier in the book.

■◆ Present an overview of HTTPS (HTTP over SSL).

■◆ Present an overview of Secure Shell (SSH).
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■■ Casual and untrained (in security matters) users are common clients for Web-
based services. Such users are not necessarily aware of the security risks that 
exist and do not have the tools or knowledge to take effective countermeasures.

Web Security Threats

Table 17.1 provides a summary of the types of security threats faced when using the 
Web. One way to group these threats is in terms of passive and active attacks. Passive 
attacks include eavesdropping on network traffic between browser and server and 
gaining access to information on a Web site that is supposed to be restricted. Active 
attacks include impersonating another user, altering messages in transit between cli-
ent and server, and altering information on a Web site.

Another way to classify Web security threats is in terms of the location of the 
threat: Web server, Web browser, and network traffic between browser and server. 
Issues of server and browser security fall into the category of computer system secu-
rity; Part Six of this book addresses the issue of system security in general but is also 
applicable to Web system security. Issues of traffic security fall into the category of 
network security and are addressed in this chapter.

Web Traffic Security Approaches

A number of approaches to providing Web security are possible. The various 
approaches that have been considered are similar in the services they provide and, 
to some extent, in the mechanisms that they use, but they differ with respect to their 
scope of applicability and their relative location within the TCP/IP protocol stack.

Threats Consequences Countermeasures

Integrity • Modification of user data
• Trojan horse browser
• Modification of memory
• Modification of message 

 traffic in transit

• Loss of information
• Compromise of machine
• Vulnerability to all other 

threats

Cryptographic  
checksums

Confidentiality • Eavesdropping on the net
• Theft of info from server
• Theft of data from client
• Info about network 

configuration
• Info about which client talks 

to server

• Loss of information
• Loss of privacy

Encryption, Web 
proxies

Denial of 
Service

• Killing of user threads
• Flooding machine with bogus 

requests
• Filling up disk or memory
• Isolating machine by DNS 

attacks

• Disruptive
• Annoying
• Prevent user from getting work 

done

Difficult to prevent

Authentication • Impersonation of legitimate 
users

• Data forgery

• Misrepresentation of user
• Belief that false information 

is valid

Cryptographic  
techniques

Table 17.1 A Comparison of Threats on the Web
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Figure 17.1 illustrates this difference. One way to provide Web security is 
to use IP security (IPsec) (Figure 17.1a). The advantage of using IPsec is that it is 
transparent to end users and applications and provides a general-purpose solution. 
Furthermore, IPsec includes a filtering capability so that only selected traffic need 
incur the overhead of IPsec processing.

Another relatively general-purpose solution is to implement security just 
above TCP (Figure 17.1b). The foremost example of this approach is the Secure 
Sockets Layer (SSL) and the follow-on Internet standard known as Transport Layer 
Security (TLS). At this level, there are two implementation choices. For full gener-
ality, SSL (or TLS) could be provided as part of the underlying protocol suite and 
therefore be transparent to applications. Alternatively, TLS can be embedded in 
specific packages. For example, virtually all browsers come equipped with TLS, and 
most Web servers have implemented the protocol.

Application-specific security services are embedded within the particular 
application. Figure 17.1c shows examples of this architecture. The advantage of this 
approach is that the service can be tailored to the specific needs of a given application.

 17.2 TRANSPORT LAYER SECURITY

One of the most widely used security services is Transport Layer Security (TSL); 
the current version is Version 1.2, defined in RFC 5246. TLS is an Internet stan-
dard that evolved from a commercial protocol known as Secure Sockets Layer 
(SSL). Although SSL implementations are still around, it has been deprecated by 
IETF and is disabled by most corporations offering TLS software. TLS is a general-
purpose service implemented as a set of protocols that rely on TCP. At this level, 
there are two implementation choices. For full generality, TLS could be provided as 
part of the underlying protocol suite and therefore be transparent to applications. 
Alternatively, TLS can be embedded in specific packages. For example, most brows-
ers come equipped with TLS, and most Web servers have implemented the protocol.

TLS Architecture

TLS is designed to make use of TCP to provide a reliable end-to-end secure ser-
vice. TLS is not a single protocol but rather two layers of protocols, as illustrated in 
Figure 17.2.

Figure 17.1 Relative Location of Security Facilities in the TCP/IP Protocol Stack
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The TLS Record Protocol provides basic security services to various higher-
layer protocols. In particular, the Hypertext Transfer Protocol (HTTP), which 
provides the transfer service for Web client/server interaction, can operate on top 
of TLS. Three higher-layer protocols are defined as part of TLS: the Handshake 
Protocol; the Change Cipher Spec Protocol; and the Alert Protocol. These TLS-
specific protocols are used in the management of TLS exchanges and are examined 
later in this section. A fourth protocol, the Heartbeat Protocol, is defined in a sepa-
rate RFC and is also discussed subsequently in this section.

Two important TLS concepts are the TLS session and the TLS connection, 
which are defined in the specification as follows:

■■ Connection: A connection is a transport (in the OSI layering model definition) 
that provides a suitable type of service. For TLS, such connections are peer-to-
peer relationships. The connections are transient. Every connection is associ-
ated with one session.

■■ Session: A TLS session is an association between a client and a server. Sessions 
are created by the Handshake Protocol. Sessions define a set of cryptographic 
security parameters, which can be shared among multiple connections. Sessions 
are used to avoid the expensive negotiation of new security parameters for 
each connection.

Between any pair of parties (applications such as HTTP on client and server), 
there may be multiple secure connections. In theory, there may also be multiple 
simultaneous sessions between parties, but this feature is not used in practice.

There are a number of states associated with each session. Once a session is 
 established, there is a current operating state for both read and write (i.e., receive 
and send). In addition, during the Handshake Protocol, pending read and write 
states are created. Upon successful conclusion of the Handshake Protocol, the pend-
ing states become the current states.

A session state is defined by the following parameters:

■■ Session identifier: An arbitrary byte sequence chosen by the server to identify 
an active or resumable session state.

■■ Peer certificate: An X509.v3 certificate of the peer. This element of the state 
may be null.

Figure 17.2 TLS Protocol Stack

IP

TCP

Record protocol

Handshake
protocol

Change
cipher spec

protocol

Alert
protocol HTTP

Heartbeat
protocol

M17_STAL7484_08_GE_C17.indd   537 30/04/22   8:44 AM



538  CHAPTER 17 / TRAnSPoRT-LEvEL SECuRiTy

■■ Compression method: The algorithm used to compress data prior to encryption.

■■ Cipher spec: Specifies the bulk data encryption algorithm (such as null, AES, 
etc.) and a hash algorithm (such as MD5 or SHA-1) used for MAC calculation. 
It also defines cryptographic attributes such as the hash_size.

■■ Master secret: 48-byte secret shared between the client and server.

■■ Is resumable: A flag indicating whether the session can be used to initiate new 
connections.

A connection state is defined by the following parameters:

■■ Server and client random: Byte sequences that are chosen by the server and 
client for each connection.

■■ Server write MAC secret: The secret key used in MAC operations on data sent 
by the server.

■■ Client write MAC secret: The symmetric key used in MAC operations on data 
sent by the client.

■■ Server write key: The symmetric encryption key for data encrypted by the 
server and decrypted by the client.

■■ Client write key: The symmetric encryption key for data encrypted by the 
 client and decrypted by the server.

■■ Initialization vectors: When a block cipher in CBC mode is used, an initial-
ization vector (IV) is maintained for each key. This field is first initialized by 
the TLS Handshake Protocol. Thereafter, the final ciphertext block from each 
 record is preserved for use as the IV with the following record.

■■ Sequence numbers: Each party maintains separate sequence numbers for 
transmitted and received messages for each connection. When a party sends or 
receives a “change cipher spec message,” the appropriate sequence number is 
set to zero. Sequence numbers may not exceed 264 - 1.

TLS Record Protocol

The TLS Record Protocol provides two services for TLS connections:

■■ Confidentiality: The Handshake Protocol defines a shared secret key that is 
used for conventional encryption of TLS payloads.

■■ Message Integrity: The Handshake Protocol also defines a shared secret key 
that is used to form a message authentication code (MAC).

Figure 17.3 indicates the overall operation of the TLS Record Protocol. The 
Record Protocol takes an application message to be transmitted, fragments the data 
into manageable blocks, optionally compresses the data, applies a MAC, encrypts, 
adds a header, and transmits the resulting unit in a TCP segment. Received data 
are decrypted, verified, decompressed, and reassembled before being delivered to 
higher-level users.

The first step is fragmentation. Each upper-layer message is fragmented into 
blocks of 214 bytes (16,384 bytes) or less. Next, compression is optionally applied. 
Compression must be lossless and may not increase the content length by more than 
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1024 bytes.1 In TLSv2, no compression algorithm is specified, so the default com-
pression algorithm is null.

The next step in processing is to compute a message authentication code over 
the compressed data. TLS makes use of the HMAC algorithm defined in RFC 2104. 
Recall from Chapter 12 that HMAC is defined as

 HMACK(M) = H[(K+ ⊕ opad) ‘  H[(K+ ⊕ ipad) ‘  M]] 

where

H     = embedded hash function (for TLS, either MD5 or SHA-1)

M     = message input to HMAC

K+    = secret key padded with zeros on the left so that the result is equal to 
the block length of the hash code (for MD5 and SHA-1, block 
length = 512 bits)

ipad = 00110110 (36 in hexadecimal) repeated 64 times (512 bits)
opad = 01011100 (5C in hexadecimal) repeated 64 times (512 bits)

For TLS, the MAC calculation encompasses the fields indicated in the 
 following expression:

HMAC_hash(MAC_write_secret, seq_num ‘  TLSCompressed.type ‘  
TLSCompressed.version ‘  TLSCompressed.length ‘  TLSCompressed.fragment)

The MAC calculation covers all of the fields XXX, plus the field 
TLSCompressed.version, which is the version of the protocol being employed.

Next, the compressed message plus the MAC are encrypted using symmetric 
encryption. Encryption may not increase the content length by more than 1024 bytes, 

Figure 17.3 TLS Record Protocol Operation

Application data

Fragment

Compress

Add MAC

Encrypt

Append TLS
record header

1Of course, one hopes that compression shrinks rather than expands the data. However, for very short 
blocks, it is possible, because of formatting conventions, that the compression algorithm will actually pro-
vide output that is longer than the input.
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so that the total length may not exceed 214 + 2048. The following encryption algo-
rithms are permitted:

Block Cipher Stream Cipher

Algorithm Key Size Algorithm Key Size

AES
3DES

128, 256
168

RC4-128 128

For stream encryption, the compressed message plus the MAC are encrypted. 
Note that the MAC is computed before encryption takes place and that the MAC is 
then encrypted along with the plaintext or compressed plaintext.

For block encryption, padding may be added after the MAC prior to encryp-
tion. The padding is in the form of a number of padding bytes followed by a one-
byte indication of the length of the padding. The padding can be any amount that 
results in a total that is a multiple of the cipher’s block length, up to a maximum 
of 255 bytes. For example, if the cipher block length is 16 bytes (e.g., AES) and if 
the plaintext (or compressed text if compression is used) plus MAC plus padding 
length byte is 79 bytes long, then the padding length (in bytes) can be 1, 17, 33, and 
so on, up to 161. At a padding length of 161, the total length is 79 + 161 = 240. A 
variable padding length may be used to frustrate attacks based on an analysis of 
the lengths of exchanged messages.

The final step of TLS Record Protocol processing is to prepend a header con-
sisting of the following fields:

■■ Content Type (8 bits): The higher-layer protocol used to process the enclosed 
fragment.

■■ Major Version (8 bits): Indicates major version of TLS in use. For TLSv2, the 
value is 3.

■■ Minor Version (8 bits): Indicates minor version in use. For TLSv2, the value is 1.

■■ Compressed Length (16 bits): The length in bytes of the plaintext fragment 
(or compressed fragment if compression is used). The maximum value is 
214 + 2048.

The content types that have been defined are change_cipher_spec, 
alert, handshake, and application_data. The first three are the TLS-
specific protocols, discussed next. Note that no distinction is made among the vari-
ous applications (e.g., HTTP) that might use TLS; the content of the data created by 
such applications is opaque to TLS. 

Figure 17.4 illustrates the TLS record format.

Change Cipher Spec Protocol

The Change Cipher Spec Protocol is one of the four TLS-specific protocols that use 
the TLS Record Protocol, and it is the simplest. This protocol consists of a single 
message (Figure 17.5a), which consists of a single byte with the value 1. The sole pur-
pose of this message is to cause the pending state to be copied into the current state, 
which updates the cipher suite to be used on this connection.
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Alert Protocol

The Alert Protocol is used to convey TLS-related alerts to the peer entity. As with 
other applications that use TLS, alert messages are compressed and encrypted, as 
specified by the current state.

Each message in this protocol consists of two bytes (Figure 17.5b). The first 
byte takes the value warning (1) or fatal (2) to convey the severity of the message. 
If the level is fatal, TLS immediately terminates the connection. Other connections 
on the same session may continue, but no new connections on this session may be 
established. The second byte contains a code that indicates the specific alert.

Examples of fatal alerts are bad_record_mac (an incorrect MAC was received) 
and handshake_failure (sender was unable to negotiate an acceptable set of secu-
rity parameters given the options available). An example of a warning alert is 
 unsupported_certificate (the type of the received certificate is not supported).

Handshake Protocol

The most complex part of TLS is the Handshake Protocol. This protocol allows the 
server and client to authenticate each other and to negotiate an encryption and 
MAC algorithm and cryptographic keys to be used to protect data sent in a TLS 
record. The Handshake Protocol is used before any application data is transmitted.

Figure 17.4 TLS Record Format
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Figure 17.5 TLS Record Protocol Payload
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Message Type Parameters

hello_request null

client_hello version, random, session id, cipher suite, compression method

server_hello version, random, session id, cipher suite, compression method

certificate chain of X.509v3 certificates

server_key_exchange parameters, signature

certificate_request type, authorities

server_done null

certificate_verify signature

client_key_exchange parameters, signature

finished hash value

Table 17.2 TLS Handshake Protocol Message Types

The Handshake Protocol consists of a series of messages exchanged by client and 
server. All of these have the format shown in Figure 17.5c . Each message has three fields:

■■ Type (1 byte): Indicates one of 10 messages. Table 17.2 lists the defined mes-
sage types.

■■ Length (3 bytes): The length of the message in bytes.

■■ Content (#  0 bytes): The parameters associated with this message; these are 
listed in Table 17.2.

Figure 17.6 shows the initial exchange needed to establish a logical connection 
between client and server. The exchange can be viewed as having four phases.

Phase 1. establish security caPabilities Phase 1 initiates a logical connection 
and establishes the security capabilities that will be associated with it. The exchange 
is initiated by the client, which sends a client_hello message with the following 
parameters:

■■ Version: The highest TLS version understood by the client.

■■ Random: A client-generated random structure consisting of a 32-bit timestamp 
and 28 bytes generated by a secure random number generator. These values 
serve as nonces and are used during key exchange to prevent replay attacks.

■■ Session ID: A variable-length session identifier. A nonzero value indicates that 
the client wishes to update the parameters of an existing connection or to cre-
ate a new connection on this session. A zero value indicates that the client 
wishes to establish a new connection on a new session.

■■ CipherSuite: This is a list that contains the combinations of cryptographic 
algorithms supported by the client, in decreasing order of preference. Each 
element of the list (each cipher suite) defines both a key exchange algorithm 
and a CipherSpec; these are discussed subsequently.

■■ Compression Method: This is a list of the compression methods the client 
supports.
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Figure 17.6 Handshake Protocol Action
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After sending the client_hello message, the client waits for the server_
hello message, which contains the same parameters as the client_hello 
 message. For the server_hello message, the following conventions apply. The 
Version field contains the lowest of the version suggested by the client and the highest 
supported by the server. The Random field is generated by the server and is indepen-
dent of the client’s Random field. If the SessionID field of the client was nonzero, the 
same value is used by the server; otherwise the server’s SessionID field contains the 
value for a new session. The CipherSuite field contains the single cipher suite selected 
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by the server from those proposed by the client. The Compression field contains the 
compression method selected by the server from those proposed by the client.

The first element of the Ciphersuite parameter is the key exchange method 
(i.e., the means by which the cryptographic keys for conventional encryption and 
MAC are exchanged). The following key exchange methods are supported.

■■ RSA: The secret key is encrypted with the receiver’s RSA public key. A public-
key certificate for the receiver’s key must be made available.

■■ Fixed Diffie–Hellman: This is a Diffie–Hellman key exchange in which the 
server’s certificate contains the Diffie–Hellman public parameters signed by 
the certificate authority (CA). That is, the public-key certificate contains the 
Diffie–Hellman public-key parameters. The client provides its Diffie–Hellman 
public-key parameters either in a certificate, if client authentication is required, 
or in a key exchange message. This method results in a fixed secret key between 
two peers based on the Diffie–Hellman calculation using the fixed public keys.

■■ Ephemeral Diffie-Hellman: This technique is used to create ephemeral (tem-
porary, one-time) secret keys. In this case, the Diffie–Hellman public keys are 
exchanged and signed using the sender’s private RSA or DSS key. The receiver 
can use the corresponding public key to verify the signature. Certificates are used 
to authenticate the public keys. This would appear to be the most secure of the 
three Diffie–Hellman options because it results in a temporary, authenticated key.

■■ Anonymous Diffie–Hellman: The base Diffie–Hellman algorithm is used with 
no authentication. That is, each side sends its public Diffie–Hellman parame-
ters to the other with no authentication. This approach is vulnerable to man-in-
the-middle attacks, in which the attacker conducts anonymous Diffie–Hellman 
with both parties.

Following the definition of a key exchange method is the CipherSpec, which 
includes the following fields:

■■ CipherAlgorithm: Any of the algorithms mentioned earlier: RC4, RC2, DES, 
3DES, DES40, or IDEA

■■ MACAlgorithm: MD5 or SHA-1

■■ CipherType: Stream or Block

■■ IsExportable: True or False

■■ HashSize: 0, 16 (for MD5), or 20 (for SHA-1) bytes

■■ Key Material: A sequence of bytes that contain data used in generating the 
write keys

■■ IV Size: The size of the Initialization Value for Cipher Block Chaining (CBC) 
encryption

Phase 2. server authentication and Key exchange The server begins this 
phase by sending its certificate if it needs to be authenticated; the message con-
tains one or a chain of X.509 certificates. The certificate message is required for 
any agreed-on key exchange method except anonymous Diffie–Hellman. Note 
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that if fixed Diffie–Hellman is used, this certificate message functions as the serv-
er’s key exchange message because it contains the server’s public Diffie–Hellman 
parameters.

Next, a server_key_exchange message may be sent if it is required. It is not 
required in two instances: (1) The server has sent a certificate with fixed Diffie–
Hellman parameters; or (2) RSA key exchange is to be used. The server_key_ 
exchange message is needed for the following:

■■ Anonymous Diffie–Hellman: The message content consists of the two global 
Diffie–Hellman values (a prime number and a primitive root of that number) 
plus the server’s public Diffie–Hellman key (see Figure 10.1).

■■ Ephemeral Diffie–Hellman: The message content includes the three Diffie–
Hellman parameters provided for anonymous Diffie–Hellman plus a signature 
of those parameters.

■■ RSA key exchange (in which the server is using RSA but has a signature-only 
RSA key): Accordingly, the client cannot simply send a secret key encrypted 
with the server’s public key. Instead, the server must create a temporary RSA 
public/private key pair and use the server_key_exchange message to send the 
public key. The message content includes the two parameters of the temporary 
RSA public key (exponent and modulus; see Figure 9.5) plus a signature of 
those parameters.

Some further details about the signatures are warranted. As usual, a signature 
is created by taking the hash of a message and encrypting it with the sender’s private 
key. In this case, the hash is defined as

 hash(ClientHello.random ‘  ServerHello.random ‘  ServerParams) 

So the hash covers not only the Diffie–Hellman or RSA parameters but also the 
two nonces from the initial hello messages. This ensures against replay attacks and 
misrepresentation. In the case of a DSS signature, the hash is performed using the 
SHA-1 algorithm. In the case of an RSA signature, both an MD5 and an SHA-1 hash 
are calculated, and the concatenation of the two hashes (36 bytes) is encrypted with 
the server’s private key.

Next, a nonanonymous server (server not using anonymous Diffie–Hellman) 
can request a certificate from the client. The certificate_request message includes 
two parameters: certificate_type and certificate_authorities. The certificate type 
indicates the public-key algorithm and its use:

■■ RSA, signature only

■■ DSS, signature only

■■ RSA for fixed Diffie–Hellman; in this case the signature is used only for 
authentication, by sending a certificate signed with RSA

■■ DSS for fixed Diffie–Hellman; again, used only for authentication

The second parameter in the certificate_request message is a list of the distin-
guished names of acceptable certificate authorities.
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The final message in phase 2, and one that is always required, is the server_
done message, which is sent by the server to indicate the end of the server hello 
and associated messages. After sending this message, the server will wait for a client 
response. This message has no parameters.

Phase 3. client authentication and Key exchange Upon receipt of the 
server_done message, the client should verify that the server provided a valid 
certificate (if required) and check that the server_hello parameters are ac-
ceptable. If all is satisfactory, the client sends one or more messages back to the 
server.

If the server has requested a certificate, the client begins this phase by send-
ing a certificate message. If no suitable certificate is available, the client sends a 
no_certificate alert instead.

Next is the client_key_exchange message, which must be sent in this phase. 
The content of the message depends on the type of key exchange, as follows:

■■ RSA: The client generates a 48-byte pre-master secret and encrypts with 
the public key from the server’s certificate or temporary RSA key from 
a server_key_exchange message. Its use to compute a master secret is 
explained later.

■■ Ephemeral or Anonymous Diffie–Hellman: The client’s public Diffie–Hellman 
parameters are sent.

■■ Fixed Diffie–Hellman: The client’s public Diffie–Hellman parameters were 
sent in a certificate message, so the content of this message is null.

Finally, in this phase, the client may send a certificate_verify message to pro-
vide explicit verification of a client certificate. This message is only sent following 
any client certificate that has signing capability (i.e., all certificates except those con-
taining fixed Diffie–Hellman parameters). This message signs a hash code based on 
the preceding messages, defined as

CertificateVerify.signature.md5_hash
 MD5(handshake_messages);
Certificate.signature.sha_hash
 SHA(handshake_messages);

where handshake_messages refers to all Handshake Protocol messages sent or 
received starting at client_hello but not including this message. If the user’s 
private key is DSS, then it is used to encrypt the SHA-1 hash. If the user’s private 
key is RSA, it is used to encrypt the concatenation of the MD5 and SHA-1 hashes. In 
either case, the purpose is to verify the client’s ownership of the private key for the 
client certificate. Even if someone is misusing the client’s certificate, he or she would 
be unable to send this message.

Phase 4. Finish Phase 4 completes the setting up of a secure connection. The  client 
sends a change_cipher_spec message and copies the pending CipherSpec into the 
current CipherSpec. Note that this message is not considered part of the Handshake 
Protocol but is sent using the Change Cipher Spec Protocol. The client then imme-
diately sends the finished message under the new algorithms, keys, and secrets. 
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The finished message verifies that the key exchange and authentication processes 
were successful. The content of the finished message is:

PRF(master_secret, finished_label, MD5(handshake_messages) ‘  SHA@1
(handshake_messages))

where finished_label is the string “client finished” for the client and “server 
finished” for the server.

In response to these two messages, the server sends its own change_ cipher_
spec message, transfers the pending to the current CipherSpec, and sends its fin-
ished message. At this point, the handshake is complete and the client and server 
may begin to exchange application-layer data.

Cryptographic Computations

Two further items are of interest: (1) the creation of a shared master secret by means 
of the key exchange; and (2) the generation of cryptographic parameters from the 
master secret.

Master secret creation The shared master secret is a one-time 48-byte value 
(384 bits) generated for this session by means of secure key exchange. The creation 
is in two stages. First, a pre_master_secret is exchanged. Second, the  master_ 
secret is calculated by both parties. For pre_master_secret exchange, there 
are two possibilities.

■■ RSA: A 48-byte pre_master_secret is generated by the client, encrypted with 
the server’s public RSA key, and sent to the server. The server decrypts the 
ciphertext using its private key to recover the pre_master_secret.

■■ Diffie–Hellman: Both client and server generate a Diffie–Hellman public key. 
After these are exchanged, each side performs the Diffie–Hellman calculation 
to create the shared pre_master_secret.

Both sides now compute the master_secret as

master_secret =
 PRF(pre_master_secret, “master secret”, ClientHello.random ‘  ServerHello 
.random)

where ClientHello.random and ServerHello.random are the two nonce 
values exchanged in the initial hello messages.

The algorithm is performed until 48 bytes of pseudorandom output are pro-
duced. The calculation of the key block material (MAC secret keys, session encryp-
tion keys, and IVs) is defined as

key_block =
 PRF(SecurityParameters.master_secret, “key expansion”,
SecurityParameters.server_random ‘  SecurityParameters.client_random)

until enough output has been generated.
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generation oF cryPtograPhic ParaMeters CipherSpecs require a client write 
MAC secret, a server write MAC secret, a client write key, a server write key, a 
client write IV, and a server write IV, which are generated from the master secret 
in that order. These parameters are generated from the master secret by hashing 
the master secret into a sequence of secure bytes of sufficient length for all needed 
parameters.

The generation of the key material from the master secret uses the same for-
mat for generation of the master secret from the pre-master secret as

key_block = MD5(master_secret ‘  SHA(‘A’ ‘  master_secret ‘
ServerHello.random ‘  ClientHello.random)) ‘

MD5(master_secret ‘  SHA(‘BB’ ‘  master_secret ‘
ServerHello.random ‘  ClientHello.random)) ‘

MD5(master_secret ‘  SHA(‘CCC’ ‘  master_secret ‘
ServerHello.random ‘  ClientHello.random)) ‘ c

until enough output has been generated. The result of this algorithmic structure is a 
pseudorandom function. We can view the master_secret as the pseudorandom 
seed value to the function. The client and server random numbers can be viewed as 
salt values to complicate cryptanalysis (see Chapter 21 for a discussion of the use of 
salt values).

PseudorandoM Function TLS makes use of a pseudorandom function referred 
to as PRF to expand secrets into blocks of data for purposes of key generation or 
validation. The objective is to make use of a relatively small, shared secret value but 
to generate longer blocks of data in a way that is secure from the kinds of attacks 
made on hash functions and MACs. The PRF is based on the data expansion func-
tion (Figure 17.7) given as

 
P_hash(secret, seed) = HMAC_hash(secret, A(1) ‘  seed) ‘
                                          HMAC_hash(secret, A(2) ‘  seed) ‘
                                         HMAC_hash(secret, A(3) ‘  seed) ‘

 

where A() is defined as

A(0) = seed
A(i) = HMAC_hash(secret, A(i - 1))

The data expansion function makes use of the HMAC algorithm with either MD5 
or SHA-1 as the underlying hash function. As can be seen, P_hash can be iterated 
as many times as necessary to produce the required quantity of data. For example, if 
P_SHA256 was used to generate 80 bytes of data, it would have to be iterated three 
times (through A(3)), producing 96 bytes of data of which the last 16 would be dis-
carded. In this case, P_MD5 would have to be iterated four times, producing exactly 
64 bytes of data. Note that each iteration involves two executions of HMAC, each of 
which in turn involves two executions of the underlying hash algorithm.
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To make PRF as secure as possible, it uses two hash algorithms in a way that 
should guarantee its security if either algorithm remains secure. PRF is defined as

 PRF(secret, label, seed) = P_6hash7(secret, label ‘  seed) 

PRF takes as input a secret value, an identifying label, and a seed value and 
produces an output of arbitrary length.

SSL/TLS ATTACKS

Since the first introduction of SSL in 1994, and the subsequent standardization 
of TLS, numerous attacks have been devised against these protocols. The appear-
ance of each attack has necessitated changes in the protocol, the encryption tools 
used, or some aspect of the implementation of SSL and TLS to counter these 
threats.

Figure 17.7 TLS Function P_hash(secret, seed)
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attacK categories We can group the attacks into four general categories:

■■ Attacks on the handshake protocol: As early as 1998, an approach to com-
promising the handshake protocol based on exploiting the formatting and 
implementation of the RSA encryption scheme was presented [BLEI98]. 
As  countermeasures were implemented the attack was refined and adjusted 
to not only thwart the countermeasures but also speed up the attack [e.g., 
BARD12].

■■ Attacks on the record and application data protocols: A number of vulner-
abilities have been discovered in these protocols, leading to patches to coun-
ter the new threats. As a recent example, in 2011, researchers Thai Duong 
and Juliano Rizzo demonstrated a proof of concept called BEAST (Browser 
Exploit Against SSL/TLS) that turned what had been considered only a theo-
retical vulnerability into a practical attack [GOOD11]. BEAST leverages a 
type of cryptographic attack called a chosen-plaintext attack. The attacker 
mounts the attack by choosing a guess for the plaintext that is associated 
with a known ciphertext. The researchers developed a practical algorithm 
for launching successful attacks. Subsequent patches were able to thwart this 
attack. The authors of the BEAST attack are also the creators of the 2012 
CRIME (Compression Ratio Info-leak Made Easy) attack, which can allow 
an attacker to recover the content of web cookies when data compression is 
used along with TLS [GOOD12]. When used to recover the content of secret 
authentication cookies, it allows an attacker to perform session hijacking on 
an authenticated web session.

■■ Attacks on the PKI: Checking the validity of X.509 certificates is an activity 
subject to a variety of attacks, both in the context of SSL/TLS and elsewhere. 
For example, [GEOR12] demonstrated that commonly used libraries for 
SSL/TLS suffer from vulnerable certificate validation implementations. The 
 authors revealed weaknesses in the source code of OpenSSL, GnuTLS, JSSE, 
ApacheHttpClient, Weberknecht, cURL, PHP, Python and applications built 
upon or with these products.

■■ Other attacks: [MEYE13] lists a number of attacks that do not fit into any 
of the preceding categories. One example is an attack announced in 2011 
by the German hacker group The Hackers Choice, which is a DoS attack 
[KUMA11b]. The attack creates a heavy processing load on a server by over-
whelming the target with SSL/TLS handshake requests. Boosting system load 
is done by establishing new connections or using renegotiation. Assuming that 
the majority of computation during a handshake is done by the server, the 
attack creates more system load on the server than on the source device, lead-
ing to a DoS. The server is forced to continuously recompute random numbers 
and keys.

The history of attacks and countermeasures for SSL/TLS is representative 
of that for other Internet-based protocols. A “perfect” protocol and a “perfect” 
implementation strategy are never achieved. A constant back-and-forth between 
threats and countermeasures determines the evolution of Internet-based 
protocols.
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TLSv1.3

In 2014, the IETF TLS working group began work on a version 1.3 of TLS. The pri-
mary aim is to improve the security of TLS. As of this writing, TLSv1.3 is still in 
a draft stage, but the final standard is likely to be very close to the current draft. 
Among the significant changes from version 1.2 are the following:

■■ TLSv1.3 removes support for a number of options and functions. Remov-
ing code that implements functions no longer needed reduces the chances 
of potentially dangerous coding errors and reduces the attack surface. The 
deleted items include:

–Compression
–Ciphers that do not offer authenticated encryption
–Static RSA and DH key exchange
–32-bit timestamp as part of the Random parameter in the client_hello 

message
–Renegotiation
–Change Cipher Spec Protocol
–RC4
–Use of MD5 and SHA-224 hashes with signatures

■■ TLSv1.3 uses Diffie–Hellman or Elliptic Curve Diffie–Hellman for key 
exchange and does not permit RSA. The danger with RSA is that if the private 
key is compromised, all handshakes using these cipher suites will be compro-
mised. With DH or ECDH, a new key is negotiated for each handshake.

■■ TLSv1.3 allows for a “1 round trip time” handshake by changing the order of 
message sent with establishing a secure connection. The client sends a  Client 
Key Exchange message containing its cryptographic parameters for key estab-
lishment before a cipher suite has been negotiated. This enables a server 
to  calculate keys for encryption and authentication before sending its first 
response. Reducing the number of packets sent during this handshake phase 
speeds up the process and reduces the attack surface.

These changes should improve the efficiency and security of TLS.

 17.3 HTTPS

Hyper Text Transfer Protocol Secure (HTTPS) is the secure version of HTTP. 
HTTPS encrypts all communications between the browser and the website. Web 
browsers such as Safari, Firefox, and Chrome also display a padlock icon in the ad-
dress bar to visually indicate that a HTTPS connection is in effect.

Data sent using HTTPS provides three important areas of protection:

■■ Encryption: Encrypts the exchanged data to keep it secure from eavesdrop-
pers. The encryption covers the URL of the requested document, the contents 
of the document, the contents of browser forms (filled in by browser user), the 
cookies sent from browser to server and from server to browser, and the con-
tents of the HTTP header.
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■■ Data integrity: Data cannot be modified or corrupted during transfer, inten-
tionally or otherwise, without being detected.

■■ Authentication: Proves that your users communicate with the intended web-
site. It protects against man-in-the-middle attacks and builds user trust, which 
translates into other business benefits.

Connection Initiation

For HTTPS, the agent acting as the HTTP client also acts as the TLS client. The 
client initiates a connection to the server on the appropriate port and then sends 
the TLS ClientHello to begin the TLS handshake. When the TLS handshake has 
finished, the client may then initiate the first HTTP request. All HTTP data is to be 
sent as TLS application data. Normal HTTP behavior, including retained connec-
tions, should be followed.

There are three levels of awareness of a connection in HTTPS. At the HTTP 
level, an HTTP client requests a connection to an HTTP server by sending a con-
nection request to the next lowest layer. Typically, the next lowest layer is TCP, but it 
also may be TLS/SSL. At the level of TLS, a session is established between a TLS cli-
ent and a TLS server. This session can support one or more connections at any time. 
As we have seen, a TLS request to establish a connection begins with the establish-
ment of a TCP connection between the TCP entity on the client side and the TCP 
entity on the server side.

Connection Closure

An HTTP client or server can indicate the closing of a connection by including the 
following line in an HTTP record: Connection: close. This indicates that the 
connection will be closed after this record is delivered.

The closure of an HTTPS connection requires that TLS close the connection 
with the peer TLS entity on the remote side, which will involve closing the underly-
ing TCP connection. At the TLS level, the proper way to close a connection is for 
each side to use the TLS alert protocol to send a close_notify alert. TLS imple-
mentations must initiate an exchange of closure alerts before closing a connection. 
A TLS implementation may, after sending a closure alert, close the connection 
without waiting for the peer to send its closure alert, generating an “incomplete 
close”. Note that an implementation that does this may choose to reuse the session. 
This should only be done when the application knows (typically through detecting 
HTTP message boundaries) that it has received all the message data that it cares 
about.

HTTP clients also must be able to cope with a situation in which the underly-
ing TCP connection is terminated without a prior close_notify alert and without 
a Connection: close indicator. Such a situation could be due to a programming 
error on the server or a communication error that causes the TCP connection to 
drop. However, the unannounced TCP closure could be evidence of some sort of 
attack. So the HTTPS client should issue some sort of security warning when this 
occurs.
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 17.4 SECURE SHELL (SSH)

Secure Shell (SSH) is a protocol for secure network communications designed to 
be relatively simple and inexpensive to implement. The initial version, SSH1 was 
focused on providing a secure remote logon facility to replace TELNET and other 
 remote logon schemes that provided no security. SSH also provides a more general 
client/server capability and can be used for such network functions as file transfer and 
email. A new version, SSH2, fixes a number of security flaws in the original scheme. 
SSH2 is documented as a proposed standard in IETF RFCs 4250 through 4256.

SSH client and server applications are widely available for most operating 
 systems. It has become the method of choice for remote login and X tunneling and is 
rapidly becoming one of the most pervasive applications for encryption technology 
outside of embedded systems.

SSH is organized as three protocols that typically run on top of TCP 
(Figure 17.8):

■■ Transport Layer Protocol: Provides server authentication, data confidentiality, 
and data integrity with forward secrecy (i.e., if a key is compromised during 
one session, the knowledge does not affect the security of earlier sessions). The 
transport layer may optionally provide compression.

■■ User Authentication Protocol: Authenticates the user to the server.

■■ Connection Protocol: Multiplexes multiple logical communications channels 
over a single, underlying SSH connection.

Figure 17.8 SSH Protocol Stack

IP

Internet protocol provides datagram delivery across
multiple networks.

TCP
Transmission control protocol provides reliable, connection-
oriented end-to-end delivery.

SSH Transport Layer Protocol
Provides server authentication, confidentiality, and integrity.
It may optionally also provide compression.

SSH User
Authentication Protocol
Authenticates the client-side
user to the server.

Multiplexes the encrypted
tunnel into several logical
channels.

SSH
Connection Protocol
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Transport Layer Protocol

host Keys Server authentication occurs at the transport layer, based on the server 
possessing a public/private key pair. A server may have multiple host keys using 
multiple different asymmetric encryption algorithms. Multiple hosts may share 
the same host key. In any case, the server host key is used during key exchange to 
authenticate the identity of the host. For this to be possible, the client must have a 
priori knowledge of the server’s public host key. RFC 4251 dictates two alternative 
trust models that can be used:

1. The client has a local database that associates each host name (as typed by 
the user) with the corresponding public host key. This method requires no 
centrally administered infrastructure and no third-party coordination. The 
downside is that the database of name-to-key associations may become bur-
densome to maintain.

2. The host name-to-key association is certified by a trusted certification author-
ity (CA). The client only knows the CA root key and can verify the validity of 
all host keys certified by accepted CAs. This alternative eases the maintenance 
problem, since ideally, only a single CA key needs to be securely stored on the 
client. On the other hand, each host key must be appropriately certified by a 
central authority before authorization is possible.

PacKet exchange Figure 17.9 illustrates the sequence of events in the SSH 
Transport Layer Protocol. First, the client establishes a TCP connection to the server. 
This is done via the TCP protocol and is not part of the Transport Layer Protocol. 
Once the connection is established, the client and server exchange data, referred to 
as packets, in the data field of a TCP segment. Each packet is in the  following format 
(Figure 17.10).

■■ Packet length: Length of the packet in bytes, not including the packet length 
and MAC fields.

■■ Padding length: Length of the random padding field.

■■ Payload: Useful contents of the packet. Prior to algorithm negotiation, this 
field is uncompressed. If compression is negotiated, then in subsequent 
 packets, this field is compressed.

■■ Random padding: Once an encryption algorithm has been negotiated, this 
field is added. It contains random bytes of padding so that the total length of 
the packet (excluding the MAC field) is a multiple of the cipher block size, or 
8 bytes for a stream cipher.

■■ Message authentication code (MAC): If message authentication has been 
negotiated, this field contains the MAC value. The MAC value is computed 
over the entire packet plus a sequence number, excluding the MAC field. The 
sequence number is an implicit 32-bit packet sequence that is initialized to 
zero for the first packet and incremented for every packet. The sequence num-
ber is not included in the packet sent over the TCP connection.

M17_STAL7484_08_GE_C17.indd   554 30/04/22   8:44 AM



17.4 / SECuRE SHELL (SSH) 555

Figure 17.9 SSH Transport Layer Protocol Packet Exchanges
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Once an encryption algorithm has been negotiated, the entire packet 
 (excluding the MAC field) is encrypted after the MAC value is calculated.

The SSH Transport Layer packet exchange consists of a sequence of steps 
(Figure 17.9). The first step, the identification string exchange, begins with the  client 
sending a packet with an identification string of the form:

SSH-protoversion-softwareversion SP comments CR LF

where SP,CR, and LF are space character, carriage return, and line feed, respec-
tively. An example of a valid string is SSH-2.0-billsSSH_3.6.3q3<CR><LF>. 
The server responds with its own identification string. These strings are used in the 
Diffie–Hellman key exchange.

Next comes algorithm negotiation. Each side sends an SSH_MSG_KEXINIT 
containing lists of supported algorithms in the order of preference to the sender. 
There is one list for each type of cryptographic algorithm. The algorithms 
include key exchange, encryption, MAC algorithm, and compression algorithm. 
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Table 17.3 shows the allowable options for encryption, MAC, and compression. 
For each category, the algorithm chosen is the first algorithm on the client’s list 
that is also supported by the server.

The next step is key exchange. The specification allows for alternative methods 
of key exchange, but at present, only two versions of Diffie–Hellman key exchange 
are specified. Both versions are defined in RFC 2409 and require only one packet in 
each direction. The following steps are involved in the exchange. In this, C is the  client; 
S is the server; p is a large safe prime; g is a generator for a subgroup of GF(p); q is the 
order of the subgroup; V_S is S’s identification string; V_C is C’s identification string; 
K_S is S’s public host key; I_C is C’s SSH_MSG_KEXINIT  message and I_S is S’s  
SSH_MSG_KEXINIT message that have been exchanged before this part begins. The val-
ues of p, g, and q are known to both client and server as a result of the algorithm selection 
negotiation. The hash function hash() is also decided during algorithm negotiation.

1. C generates a random number x(1 6 x 6 q) and computes e = gx mod p. C 
sends e to S.

2. S generates a random number y(0 6 y 6 q) and computes f = gy mod p.  
S receives e. It computes K = ey mod p, H = hash(V_C ‘  V_S ‘  I_C ‘  I_S ‘  K_S ‘  

Figure 17.10 SSH Transport Layer Protocol Packet Formation
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e ‘  f ‘  K), and signature s on H with its private host key. S sends (K_S ‘  f ‘  s)  
to C. The signing operation may involve a second hashing operation.

3. C verifies that K_S really is the host key for S (e.g., using certificates or a 
local database). C is also allowed to accept the key without verification; how-
ever, doing so will render the protocol insecure against active attacks (but may 
be desirable for practical reasons in the short term in many environments). C 
then computes K = f x mod p, H = hash(V_C ‘  V_S ‘  I_C ‘  I_S ‘  K_S ‘  e ‘  f ‘  K), 
and verifies the signature s on H.

As a result of these steps, the two sides now share a master key K. In addition, the 
server has been authenticated to the client, because the server has used its private key 
to sign its half of the Diffie-Hellman exchange. Finally, the hash value H serves as a ses-
sion identifier for this connection. Once computed, the session identifier is not changed, 
even if the key exchange is performed again for this connection to obtain fresh keys.

The end of key exchange is signaled by the exchange of SSH_MSG_NEWKEYS 
packets. At this point, both sides may start using the keys generated from K, as dis-
cussed subsequently.

MAC algorithm

hmac-sha1* HMAC-SHA1; digest 
length = key length = 20

hmac-sha1-96** First 96 bits of HMAC-
SHA1; digest length = 12; 
key length = 20

hmac-md5 HMAC-MD5; digest 
length = key length = 16

hmac-md5-96 First 96 bits of 
HMAC-MD5;  
digest length = 12;  
key length = 16

Compression algorithm

none* No compression

zlib Defined in RFC 1950 and 
RFC 1951

Cipher

3des-cbc* Three-key 3DES in CBC 
mode

blowfish-cbc Blowfish in CBC mode

twofish256-cbc Twofish in CBC mode with 
a 256-bit key

twofish192-cbc Twofish with a 192-bit key

twofish128-cbc Twofish with a 128-bit key

aes256-cbc AES in CBC mode with a 
256-bit key

aes192-cbc AES with a 192-bit key

aes128-cbc** AES with a 128-bit key

Serpent256-cbc Serpent in CBC mode with 
a 256-bit key

Serpent192-cbc Serpent with a 192-bit key

Serpent128-cbc Serpent with a 128-bit key

arcfour RC4 with a 128-bit key

cast128-cbc CAST-128 in CBC mode

* = Required
** = Recommended

Table 17.3 SSH Transport Layer Cryptographic Algorithms
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The final step is service request. The client sends an SSH_MSG_SERVICE_
REQUEST packet to request either the User Authentication or the Connection 
Protocol. Subsequent to this, all data is exchanged as the payload of an SSH 
Transport Layer packet, protected by encryption and MAC.

Key generation The keys used for encryption and MAC (and any needed IVs) are 
generated from the shared secret key K, the hash value from the key exchange H, 
and the session identifier, which is equal to H unless there has been a subsequent 
key exchange after the initial key exchange. The values are computed as follows.

■■ Initial IV client to server: HASH(K ‘  H ‘  “A” ‘  session_id)

■■ Initial IV server to client: HASH(K ‘  H ‘  “B” ‘  session_id)

■■ Encryption key client to server: HASH(K ‘  H ‘  “C” ‘  session_id)

■■ Encryption key server to client: HASH(K ‘  H ‘  “D” ‘  session_id)

■■ Integrity key client to server: HASH(K ‘  H ‘  “E” ‘  session_id)

■■ Integrity key server to client: HASH(K ‘  H ‘  “F” ‘  session_id)

where HASH() is the hash function determined during algorithm negotiation.

User Authentication Protocol

The User Authentication Protocol provides the means by which the client is 
 authenticated to the server.

Message tyPes and ForMats Three types of messages are always used in the User 
Authentication Protocol. Authentication requests from the client have the format:

byte SSH_MSG_USERAUTH_REQUEST (50)

string user name

string service name

string method name

 . . .  method specific fields

where user name is the authorization identity the client is claiming, service 
name is the facility to which the client is requesting access (typically the SSH 
Connection Protocol), and method name is the authentication method being 
used in this request. The first byte has decimal value 50, which is interpreted as 
SSH_MSG_USERAUTH_REQUEST.

If the server either (1) rejects the authentication request or (2) accepts the 
 request but requires one or more additional authentication methods, the server 
sends a message with the format:

byte SSH_MSG_USERAUTH_FAILURE (51)

name-list authentications that can continue

boolean partial success
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where the name-list is a list of methods that may productively continue the  dialog. 
If the server accepts authentication, it sends a single byte message: SSH_MSG_ 
USERAUTH_SUCCESS (52).

Message exchange The message exchange involves the following steps.

1. The client sends a SSH_MSG_USERAUTH_REQUEST with a requested method 
of none.

2. The server checks to determine if the user name is valid. If not, the server 
 returns SSH_MSG_USERAUTH_FAILURE with the partial success value of 
false. If the user name is valid, the server proceeds to step 3.

3. The server returns SSH_MSG_USERAUTH_FAILURE with a list of one or more 
authentication methods to be used.

4. The client selects one of the acceptable authentication methods and sends a 
SSH_MSG_USERAUTH_REQUEST with that method name and the required 
method-specific fields. At this point, there may be a sequence of exchanges to 
perform the method.

5. If the authentication succeeds and more authentication methods are required, 
the server proceeds to step 3, using a partial success value of true. If the 
authentication fails, the server proceeds to step 3, using a partial success value 
of false.

6. When all required authentication methods succeed, the server sends a  
SSH_MSG_USERAUTH_SUCCESS message, and the Authentication Protocol is over.

authentication Methods The server may require one or more of the following 
authentication methods.

■■ publickey: The details of this method depend on the public-key algo-
rithm chosen. In essence, the client sends a message to the server that con-
tains the client’s public key, with the message signed by the client’s private 
key. When the server receives this message, it checks whether the supplied 
key is acceptable for authentication and, if so, it checks whether the signa-
ture is correct.

■■ password: The client sends a message containing a plaintext password, 
which is protected by encryption by the Transport Layer Protocol.

■■ hostbased: Authentication is performed on the client’s host rather than the 
client itself. Thus, a host that supports multiple clients would provide authentica-
tion for all its clients. This method works by having the client send a signature 
created with the private key of the client host. Thus, rather than directly verify-
ing the user’s identity, the SSH server verifies the identity of the client host—and 
then believes the host when it says the user has already authenticated on the 
client side.
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Connection Protocol

The SSH Connection Protocol runs on top of the SSH Transport Layer Protocol and 
assumes that a secure authentication connection is in use.2 That secure authentica-
tion connection, referred to as a tunnel, is used by the Connection Protocol to mul-
tiplex a number of logical channels.

channel MechanisM All types of communication using SSH, such as a terminal ses-
sion, are supported using separate channels. Either side may open a channel. For each 
channel, each side associates a unique channel number, which need not be the same on 
both ends. Channels are flow controlled using a window mechanism. No data may be 
sent to a channel until a message is received to indicate that window space is available.

The life of a channel progresses through three stages: opening a channel, data 
transfer, and closing a channel.

When either side wishes to open a new channel, it allocates a local number for 
the channel and then sends a message of the form:

byte SSH_MSG_CHANNEL_OPEN

string channel type

uint32 sender channel

uint32 initial window size

uint32 maximum packet size

.... channel type specific data follows

where uint32 means unsigned 32-bit integer. The channel type identifies the appli-
cation for this channel, as described subsequently. The sender channel is the local 
channel number. The initial window size specifies how many bytes of channel 
data can be sent to the sender of this message without adjusting the window. The 
maximum packet size specifies the maximum size of an individual data packet 
that can be sent to the sender. For example, one might want to use smaller pack-
ets for interactive connections to get better interactive response on slow links.

If the remote side is able to open the channel, it returns a SSH_MSG_CHANNEL_
OPEN_CONFIRMATION message, which includes the sender channel number, the 
recipient channel number, and window and packet size values for  incoming  traffic. 
Otherwise, the remote side returns a SSH_MSG_CHANNEL_OPEN_FAILURE 
 message with a reason code indicating the reason for failure.

Once a channel is open, data transfer is performed using a SSH_MSG_CHANNEL_
DATA message, which includes the recipient channel number and a block of data. 
These messages, in both directions, may continue as long as the channel is open.

When either side wishes to close a channel, it sends a SSH_MSG_CHANNEL_
CLOSE message, which includes the recipient channel number.

2RFC 4254, The Secure Shell (SSH) Connection Protocol, states that the Connection Protocol runs on 
top of the Transport Layer Protocol and the User Authentication Protocol. RFC 4251, SSH Protocol 
Architecture, states that the Connection Protocol runs over the User Authentication Protocol. In fact, the 
Connection Protocol runs over the Transport Layer Protocol, but assumes that the User Authentication 
Protocol has been previously invoked.

M17_STAL7484_08_GE_C17.indd   560 30/04/22   8:44 AM



17.4 / SECuRE SHELL (SSH) 561

Figure 17.11 provides an example of Connection Protocol Message Exchange.

channel tyPes Four channel types are recognized in the SSH Connection Protocol 
specification.

■■ session: The remote execution of a program. The program may be a shell, an 
application such as file transfer or email, a system command, or some built-in 
subsystem. Once a session channel is opened, subsequent requests are used to 
start the remote program.

■■ x11: This refers to the X Window System, a computer software system and 
 network protocol that provides a graphical user interface (GUI) for net-
worked computers. X allows applications to run on a network server but to be 
displayed on a desktop machine.

■■ forwarded-tcpip: This is remote port forwarding, as explained in the next subsection.

■■ direct-tcpip: This is local port forwarding, as explained in the next subsection.

Figure 17.11 Example of SSH Connection Protocol Message Exchange
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Port Forwarding One of the most useful features of SSH is port forwarding. In 
essence, port forwarding provides the ability to convert any insecure TCP con-
nection into a secure SSH connection. This is also referred to as SSH tunneling. 
We need to know what a port is in this context. A port is an identifier of a user of 
TCP. So, any application that runs on top of TCP has a port number. Incoming TCP 
traffic is delivered to the appropriate application on the basis of the port number. 
An application may employ multiple port numbers. For example, for the Simple 
Mail Transfer Protocol (SMTP), the server side generally listens on port 25, so an 
incoming SMTP request uses TCP and addresses the data to destination port 25.  
TCP recognizes that this is the SMTP server address and routes the data to the 
SMTP server application.

Figure 17.12 illustrates the basic concept behind port forwarding. We have a 
client application that is identified by port number x and a server application identi-
fied by port number y. At some point, the client application invokes the local TCP 
entity and requests a connection to the remote server on port y. The local TCP entity 

Figure 17.12 SSH Transport Layer Packet Exchanges
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negotiates a TCP connection with the remote TCP entity, such that the  connection 
links local port x to remote port y.

To secure this connection, SSH is configured so that the SSH Transport Layer 
Protocol establishes a TCP connection between the SSH client and server entities, 
with TCP port numbers a and b, respectively. A secure SSH tunnel is established 
over this TCP connection. Traffic from the client at port x is redirected to the local 
SSH entity and travels through the tunnel where the remote SSH entity delivers 
the data to the server application on port y. Traffic in the other direction is similarly 
redirected.

SSH supports two types of port forwarding: local forwarding and remote for-
warding. Local forwarding allows the client to set up a “hijacker” process. This will 
intercept selected application-level traffic and redirect it from an unsecured TCP 
connection to a secure SSH tunnel. SSH is configured to listen on selected ports. 
SSH grabs all traffic using a selected port and sends it through an SSH tunnel. On 
the other end, the SSH server sends the incoming traffic to the destination port dic-
tated by the client application.

The following example should help clarify local forwarding. Suppose you have 
an email client on your desktop and use it to get email from your mail server via the 
Post Office Protocol (POP). The assigned port number for POP3 is port 110. We can 
secure this traffic in the following way:

1. The SSH client sets up a connection to the remote server.

2. Select an unused local port number, say 9999, and configure SSH to accept 
traffic from this port destined for port 110 on the server.

3. The SSH client informs the SSH server to create a connection to the destina-
tion, in this case mailserver port 110.

4. The client takes any bits sent to local port 9999 and sends them to the server 
inside the encrypted SSH session. The SSH server decrypts the incoming bits 
and sends the plaintext to port 110.

5. In the other direction, the SSH server takes any bits received on port 110 and 
sends them inside the SSH session back to the client, who decrypts and sends 
them to the process connected to port 9999.

With remote forwarding, the user’s SSH client acts on the server’s behalf. The 
client receives traffic with a given destination port number, places the traffic on the 
correct port and sends it to the destination the user chooses. A typical example of 
remote forwarding is the following. You wish to access a server at work from your 
home computer. Because the work server is behind a firewall, it will not accept an 
SSH request from your home computer. However, from work you can set up an SSH 
tunnel using remote forwarding. This involves the following steps.

1. From the work computer, set up an SSH connection to your home computer. 
The firewall will allow this, because it is a protected outgoing connection.

2. Configure the SSH server to listen on a local port, say 22, and to deliver data 
across the SSH connection addressed to remote port, say 2222.
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3. You can now go to your home computer, and configure SSH to accept traffic 
on port 2222.

4. You now have an SSH tunnel that can be used for remote logon to the work 
server.

 17.5 REVIEW QUESTIONS AND PROBLEMS

Review Questions 

 17.1 What are the advantages of each of the three approaches shown in Figure 17.1?
 17.2 What protocols comprise TLS?
 17.3 What is the difference between a TLS connection and a TLS session?
 17.4 List and briefly define the parameters that define a TLS session state.
 17.5 List and briefly define the parameters that define a TLS session connection.
 17.6 What services are provided by the TLS Record Protocol?
 17.7 What steps are involved in the TLS Record Protocol transmission?
 17.8 Briefly discuss the different levels of awareness of a connection in HTTPS.
 17.9 Which protocol was replaced by SSH and why? Which version is currently in the pro-

cess of being standardized?
 17.10 List and briefly define the SSH protocols.

Problems 

 17.1 In SSL and TLS, why is there a separate Change Cipher Spec Protocol rather than 
including a change_cipher_spec message in the Handshake Protocol?

 17.2 What purpose does the MAC serve during the change cipher spec TLS exchange?
 17.3 Consider the following threats to Web security and describe how each is countered by 

a particular feature of TLS.
a. Brute-Force Cryptanalytic Attack: An exhaustive search of the key space for a 

conventional encryption algorithm.
b. Known Plaintext Dictionary Attack: Many messages will contain predictable 

plaintext, such as the HTTP GET command. An attacker constructs a diction-
ary containing every possible encryption of the known-plaintext message. When 
an encrypted message is intercepted, the attacker takes the portion containing 
the encrypted known plaintext and looks up the ciphertext in the dictionary. The 
ciphertext should match against an entry that was encrypted with the same secret 
key. If there are several matches, each of these can be tried against the full cipher-
text to determine the right one. This attack is especially effective against small key 
sizes (e.g., 40-bit keys).

c. Replay Attack: Earlier TLS handshake messages are replayed.
d. Man-in-the-Middle Attack: An attacker interposes during key exchange, acting as 

the client to the server and as the server to the client.
e. Password Sniffing: Passwords in HTTP or other application traffic are eaves-

dropped.
f. IP Spoofing: Uses forged IP addresses to fool a host into accepting bogus data.
g. IP Hijacking: An active, authenticated connection between two hosts is disrupted 

and the attacker takes the place of one of the hosts.
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h. SYN Flooding: An attacker sends TCP SYN messages to request a connection 
but does not respond to the final message to establish the connection fully. The 
 attacked TCP module typically leaves the “half-open connection” around for a few 
minutes. Repeated SYN messages can clog the TCP module.

 17.4 Based on what you have learned in this chapter, is it possible in TLS for the receiver 
to reorder TLS record blocks that arrive out of order? If so, explain how it can be 
done. If not, why not?

 17.5 For SSH packets, what is the advantage, if any, of not including the MAC in the scope 
of the packet encryption?
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This chapter begins with a general overview of wireless security issues. We then focus 
on the relatively new area of mobile device security, examining threats and counter-
measures for mobile devices used in the enterprise. Then, we look at the IEEE 802.11i 
standard for wireless LAN security. This standard is part of IEEE 802.11, also referred 
to as Wi-Fi. We begin the discussion with an overview of IEEE 802.11, and then we 
look in some detail at IEEE 802.11i.

 18.1 WIRELESS SECURITY

Wireless networks, and the wireless devices that use them, introduce a host of secu-
rity problems over and above those found in wired networks. Some of the key fac-
tors contributing to the higher security risk of wireless networks compared to wired 
networks include the following [MA10]:

 ■ Channel: Wireless networking typically involves broadcast communications, 
which is far more susceptible to eavesdropping and jamming than wired 
networks. Wireless networks are also more vulnerable to active attacks that 
exploit vulnerabilities in communications protocols.

 ■ Mobility: Wireless devices are, in principal and usually in practice, far more 
portable and mobile than wired devices. This mobility results in a number of 
risks, described subsequently.

 ■ Resources: Some wireless devices, such as smartphones and tablets, have 
sophisticated operating systems but limited memory and processing resources 
with which to counter threats, including denial of service and malware.

 ■ Accessibility: Some wireless devices, such as sensors and robots, may be left 
unattended in remote and/or hostile locations. This greatly increases their 
 vulnerability to physical attacks.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

 ◆ Present an overview of security threats and countermeasures for wireless 
networks.

 ◆ Understand the unique security threats posed by the use of mobile devices 
with enterprise networks.

 ◆ Describe the principal elements in a mobile device security strategy.

 ◆ Understand the essential elements of the IEEE 802.11 wireless LAN 
 standard.

 ◆ Summarize the various components of the IEEE 802.11i wireless LAN 
 security architecture.
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In simple terms, the wireless environment consists of three components that 
provide point of attack (Figure 18.1). The wireless client can be a cell phone, a 
 Wi-Fi–enabled laptop or tablet, a wireless sensor, a Bluetooth device, and so on. The 
wireless access point provides a connection to the network or service. Examples of 
access points are cell towers, Wi-Fi hotspots, and wireless access points to wired local 
or wide area networks. The transmission medium, which carries the radio waves for 
data transfer, is also a source of vulnerability.

Wireless Network Threats

[CHOI08] lists the following security threats to wireless networks:

 ■ Accidental association: Company wireless LANs or wireless access points to 
wired LANs in close proximity (e.g., in the same or neighboring buildings) 
may create overlapping transmission ranges. A user intending to connect to 
one LAN may unintentionally lock on to a wireless access point from a neigh-
boring network. Although the security breach is accidental, it nevertheless 
 exposes resources of one LAN to the accidental user.

 ■ Malicious association: In this situation, a wireless device is configured to 
 appear to be a legitimate access point, enabling the operator to steal pass-
words from legitimate users and then penetrate a wired network through a 
legitimate wireless access point.

 ■ Ad hoc networks: These are peer-to-peer networks between wireless comput-
ers with no access point between them. Such networks can pose a security 
threat due to a lack of a central point of control.

 ■ Nontraditional networks: Nontraditional networks and links, such as personal 
network Bluetooth devices, barcode readers, and handheld PDAs, pose a secu-
rity risk in terms of both eavesdropping and spoofing.

 ■ Identity theft (MAC spoofing): This occurs when an attacker is able to eaves-
drop on network traffic and identify the MAC address of a computer with 
network privileges.

 ■ Man-in-the middle attacks: This type of attack is described in Chapter 10 in 
the context of the Diffie–Hellman key exchange protocol. In a broader sense, 
this attack involves persuading a user and an access point to believe that they 
are talking to each other when in fact the communication is going through an 
intermediate attacking device. Wireless networks are particularly vulnerable 
to such attacks.

Figure 18.1 Wireless Networking Components

Endpoint Wireless medium Access point
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 ■ Denial of service (DoS): This type of attack is discussed in detail in Chapter 
21. In the context of a wireless network, a DoS attack occurs when an attacker 
continually bombards a wireless access point or some other accessible wireless 
port with various protocol messages designed to consume system resources. 
The wireless environment lends itself to this type of attack, because it is so 
easy for the attacker to direct multiple wireless messages at the target.

 ■ Network injection: A network injection attack targets wireless access points 
that are exposed to nonfiltered network traffic, such as routing protocol mes-
sages or network management messages. An example of such an attack is 
one in which bogus reconfiguration commands are used to affect routers and 
switches to degrade network performance.

Wireless Security Measures

Following [CHOI08], we can group wireless security measures into those dealing 
with wireless transmissions, wireless access points, and wireless networks (consisting 
of wireless routers and endpoints).

Securing WireleSS TranSmiSSionS The principal threats to wireless transmission 
are eavesdropping, altering or inserting messages, and disruption. To deal with 
eavesdropping, two types of countermeasures are appropriate:

 ■ Signal-hiding techniques: Organizations can take a number of measures to 
make it more difficult for an attacker to locate their wireless access points, 
including turning off service set identifier (SSID) broadcasting by wireless 
 access points; assigning cryptic names to SSIDs; reducing signal strength to the 
lowest level that still provides requisite coverage; and locating wireless access 
points in the interior of the building, away from windows and exterior walls. 
Greater security can be achieved by the use of directional antennas and of 
signal-shielding techniques.

 ■ Encryption: Encryption of all wireless transmission is effective against eaves-
dropping to the extent that the encryption keys are secured.

The use of encryption and authentication protocols is the standard method of 
countering attempts to alter or insert transmissions.

The methods discussed in Chapter 21 for dealing with DoS apply to wireless 
transmissions. Organizations can also reduce the risk of unintentional DoS attacks. 
Site surveys can detect the existence of other devices using the same frequency 
range, to help determine where to locate wireless access points. Signal strengths can 
be adjusted and shielding used in an attempt to isolate a wireless environment from 
competing nearby transmissions.

Securing WireleSS acceSS PoinTS The main threat involving wireless access points 
is unauthorized access to the network. The principal approach for preventing such 
access is the IEEE 802.1X standard for port-based network access control. The stan-
dard provides an authentication mechanism for devices wishing to attach to a LAN 
or wireless network. The use of 802.1X can prevent rogue access points and other 
unauthorized devices from becoming insecure backdoors.

Section 16.3 provides an introduction to 802.1X.
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Securing WireleSS neTWorkS [CHOI08] recommends the following techniques 
for wireless network security:

1. Use encryption. Wireless routers are typically equipped with built-in encryp-
tion mechanisms for router-to-router traffic.

2. Use antivirus and antispyware software, and a firewall. These facilities should 
be enabled on all wireless network endpoints.

3. Turn off identifier broadcasting. Wireless routers are typically configured to 
broadcast an identifying signal so that any device within range can learn of the 
router’s existence. If a network is configured so that authorized devices know 
the identity of routers, this capability can be disabled, so as to thwart attackers.

4. Change the identifier on your router from the default. Again, this measure 
thwarts attackers who will attempt to gain access to a wireless network using 
default router identifiers.

5. Change your router’s pre-set password for administration. This is another 
 prudent step.

6. Allow only specific computers to access your wireless network. A router can 
be configured to only communicate with approved MAC addresses. Of course, 
MAC addresses can be spoofed, so this is just one element of a security strategy.

 18.2 MOBILE DEVICE SECURITY

Prior to the widespread use of smartphones, the dominant paradigm for computer 
and network security in organizations was as follows. Corporate IT was tightly con-
trolled. User devices were typically limited to Windows PCs. Business applications 
were controlled by IT and either run locally on endpoints or on physical servers 
in data centers. Network security was based upon clearly defined perimeters that 
 separated trusted internal networks from the untrusted Internet. Since then, there 
have been massive changes in each of these assumptions. An organization’s  networks 
must accommodate the following:

 ■ Growing use of new devices: Organizations are experiencing significant growth 
in employee use of mobile devices. In many cases, employees are allowed to 
use a combination of endpoint devices as part of their day-to-day activities.

 ■ Cloud-based applications: Applications no longer run solely on physical 
servers in corporate data centers. Quite the opposite, applications can run 
 anywhere—on traditional physical servers, on mobile virtual servers, or in the 
cloud. Additionally, end users can now take advantage of a wide variety of 
cloud-based applications and IT services for personal and professional use. 
Facebook can be used for an employee’s personal profiles or as a component 
of a corporate marketing campaign. Employees depend upon Skype to speak 
with friends abroad or for legitimate business video conferencing. Dropbox 
and Box can be used to distribute documents between corporate and personal 
devices for mobility and user productivity.
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 ■ De-perimeterization: Given new device proliferation, application mobility, 
and cloud-based consumer and corporate services, the notion of a static net-
work perimeter is all but gone. Now there are a multitude of network perim-
eters around devices, applications, users, and data. These perimeters have also 
become quite dynamic as they must adapt to various environmental conditions 
such as user role, device type, server virtualization mobility, network location, 
and time-of-day.

 ■ External business requirements: The enterprise must also provide guests, 
third-party contractors, and business partners network access using various 
devices from a multitude of locations.

The central element in all of these changes is the mobile computing device. 
Mobile devices have become an essential element for organizations as part of the 
overall network infrastructure. Mobile devices such as smartphones, tablets, and 
memory sticks provide increased convenience for individuals as well as the potential 
for increased productivity in the workplace. Because of their widespread use and 
unique characteristics, security for mobile devices is a pressing and complex issue. In 
essence, an organization needs to implement a security policy through a combina-
tion of security features built into the mobile devices and additional security con-
trols provided by network components that regulate the use of the mobile devices.

Security Threats

Mobile devices need additional, specialized protection measures beyond those 
 implemented for other client devices, such as desktop and laptop devices that are 
used only within the organization’s facilities and on the organization’s networks. SP 
800-14 (Guidelines for Managing and Securing Mobile Devices in the Enterprise, July 
2012) lists seven major security concerns for mobile devices. We examine each of 
these in turn.

lack of PhySical SecuriTy conTrolS Mobile devices are typically under the com-
plete control of the user, and are used and kept in a variety of locations outside the 
organization’s control, including off premises. Even if a device is required to remain 
on premises, the user may move the device within the organization between secure 
and nonsecured locations. Thus, theft and tampering are realistic threats.

The security policy for mobile devices must be based on the assumption that 
any mobile device may be stolen or at least accessed by a malicious party. The threat 
is twofold: A malicious party may attempt to recover sensitive data from the device 
itself, or may use the device to gain access to the organization’s resources.

uSe of unTruSTed mobile deviceS In addition to company-issued and company-
controlled mobile devices, virtually all employees will have personal smartphones 
and/or tablets. The organization must assume that these devices are not  trustworthy. 
That is, the devices may not employ encryption and either the user or a third party 
may have installed a bypass to the built-in restrictions on security, operating system 
use, and so on.
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uSe of unTruSTed neTWorkS If a mobile device is used on premises, it can  connect 
to organization resources over the organization’s own in-house wireless networks. 
However, for off-premises use, the user will typically access organizational resources 
via Wi-Fi or cellular access to the Internet and from the Internet to the organiza-
tion. Thus, traffic that includes an off-premises segment is potentially susceptible to 
eavesdropping or man-in-the-middle types of attacks. Thus, the security policy must 
be based on the assumption that the networks between the mobile  device and the 
organization are not trustworthy.

uSe of aPPlicaTionS creaTed by unknoWn ParTieS By design, it is easy to find 
and install third-party applications on mobile devices. This poses the obvious risk of 
installing malicious software. An organization has several options for dealing with 
this threat, as described subsequently.

inTeracTion WiTh oTher SySTemS A common feature found on smartphones and 
tablets is the ability to automatically synchronize data, apps, contacts, photos, and so 
on with other computing devices and with cloud-based storage. Unless an organiza-
tion has control of all the devices involved in synchronization, there is considerable 
risk of the organization’s data being stored in an unsecured location, plus the risk of 
the introduction of malware.

uSe of unTruSTed conTenT Mobile devices may access and use content that other 
computing devices do not encounter. An example is the Quick Response (QR) code, 
which is a two-dimensional barcode. QR codes are designed to be captured by a mo-
bile device camera and used by the mobile device. The QR code translates to a URL, 
so that a malicious QR code could direct the mobile device to malicious Web sites.

uSe of locaTion ServiceS The GPS capability on mobile devices can be used to 
maintain a knowledge of the physical location of the device. While this feature might 
be useful to an organization as part of a presence service, it creates security risks. An 
attacker can use the location information to determine where the device and user 
are located, which may be of use to the attacker.

Mobile Device Security Strategy

With the threats listed in the preceding discussion in mind, we outline the principal 
elements of a mobile device security strategy. They fall into three categories: device 
security, client/server traffic security, and barrier security (Figure 18.2).

device SecuriTy A number of organizations will supply mobile devices for 
 employee use and preconfigure those devices to conform to the enterprise secu-
rity policy. However, many organizations will find it convenient or even necessary 
to adopt a bring-your-own-device (BYOD) policy that allows the personal mobile 
devices of employees to have access to corporate resources. IT managers should be 
able to inspect each device before allowing network access. IT will want to estab-
lish configuration guidelines for operating systems and applications. For example, 
“rooted” or “jail-broken” devices are not permitted on the network, and mobile 
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devices cannot store corporate contacts on local storage. Whether a device is owned 
by the organization or BYOD, the organization should configure the device with 
security controls, including the following:

 ■ Enable auto-lock, which causes the device to lock if it has not been used for a 
given amount of time, requiring the user to re-enter a four-digit PIN or a pass-
word to re-activate the device.

 ■ Enable password or PIN protection. The PIN or password is needed to unlock 
the device. In addition, it can be configured so that email and other data on the 
device are encrypted using the PIN or password and can only be retrieved with 
the PIN or password.

 ■ Avoid using auto-complete features that remember user names or passwords.

 ■ Enable remote wipe.

 ■ Ensure that SSL protection is enabled, if available.

 ■ Make sure that software, including operating systems and applications, is up 
to date.

 ■ Install antivirus software as it becomes available.

Figure 18.2 Mobile Device Security Elements
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 ■ Either sensitive data should be prohibited from storage on the mobile device 
or it should be encrypted.

 ■ IT staff should also have the ability to remotely access devices, wipe the device 
of all data, and then disable the device in the event of loss or theft.

 ■ The organization may prohibit all installation of third-party applications, 
 implement whitelisting to prohibit installation of all unapproved applica-
tions, or implement a secure sandbox that isolates the organization’s data and 
 applications from all other data and applications on the mobile device. Any 
application that is on an approved list should be accompanied by a digital sig-
nature and a public-key certificate from an approved authority.

 ■ The organization can implement and enforce restrictions on what devices can 
synchronize and on the use of cloud-based storage.

 ■ To deal with the threat of untrusted content, security responses can include 
training of personnel on the risks inherent in untrusted content and disabling 
camera use on corporate mobile devices.

 ■ To counter the threat of malicious use of location services, the security policy 
can dictate that such service is disabled on all mobile devices.

Traffic SecuriTy Traffic security is based on the usual mechanisms for encryption 
and authentication. All traffic should be encrypted and travel by secure means, such 
as SSL or IPv6. Virtual private networks (VPNs) can be configured so that all traffic 
between the mobile device and the organization’s network is via a VPN.

A strong authentication protocol should be used to limit the access from 
the device to the resources of the organization. Often, a mobile device has a sin-
gle  device-specific authenticator, because it is assumed that the device has only 
one user. A preferable strategy is to have a two-layer authentication mechanism, 
which involves authenticating the device and then authenticating the user of the 
device.

barrier SecuriTy The organization should have security mechanisms to protect the 
network from unauthorized access. The security strategy can also include firewall 
policies specific to mobile device traffic. Firewall policies can limit the scope of data 
and application access for all mobile devices. Similarly, intrusion detection and in-
trusion prevention systems can be configured to have tighter rules for mobile device 
traffic.

 18.3 IEEE 802.11 WIRELESS LAN OVERVIEW

IEEE 802 is a committee that has developed standards for a wide range of local area 
networks (LANs). In 1990, the IEEE 802 Committee formed a new working group, 
IEEE 802.11, with a charter to develop a protocol and transmission specifications 
for wireless LANs (WLANs). Since that time, the demand for WLANs at different 
frequencies and data rates has exploded. Keeping pace with this demand, the IEEE 
802.11 working group has issued an ever-expanding list of standards. Table 18.1 
briefly defines key terms used in the IEEE 802.11 standard.
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The Wi-Fi Alliance

The first 802.11 standard to gain broad industry acceptance was 802.11b. Although 
802.11b products are all based on the same standard, there is always a concern 
whether products from different vendors will successfully interoperate. To meet 
this concern, the Wireless Ethernet Compatibility Alliance (WECA), an indus-
try consortium, was formed in 1999. This organization, subsequently renamed the 
Wi-Fi (Wireless Fidelity) Alliance, created a test suite to certify interoperability for 
802.11b products. The term used for certified 802.11b products is Wi-Fi. Wi-Fi cer-
tification has been extended to 802.11g products. The Wi-Fi Alliance has also devel-
oped a certification process for 802.11a products, called Wi-Fi5. The Wi-Fi Alliance 
is concerned with a range of market areas for WLANs, including enterprise, home, 
and hot spots.

More recently, the Wi-Fi Alliance has developed certification procedures for 
IEEE 802.11 security standards, referred to as Wi-Fi Protected Access (WPA). The 
most recent version of WPA, known as WPA2, incorporates all of the features of the 
IEEE 802.11i WLAN security specification.

IEEE 802 Protocol Architecture

Before proceeding, we need to briefly preview the IEEE 802 protocol architecture. 
IEEE 802.11 standards are defined within the structure of a layered set of protocols. 
This structure, used for all IEEE 802 standards, is illustrated in Figure 18.3.

PhySical layer The lowest layer of the IEEE 802 reference model is the  physical 
layer, which includes such functions as encoding/decoding of signals and bit trans-
mission/reception. In addition, the physical layer includes a specification of the 
transmission medium. In the case of IEEE 802.11, the physical layer also defines 
frequency bands and antenna characteristics.

Access point (AP) Any entity that has station functionality and provides access to the distri-
bution system via the wireless medium for associated stations.

Basic service set (BSS) A set of stations controlled by a single coordination function.

Coordination function The logical function that determines when a station operating within a BSS 
is permitted to transmit and may be able to receive PDUs.

Distribution system (DS) A system used to interconnect a set of BSSs and integrated LANs to create 
an ESS.

Extended service set (ESS) A set of one or more interconnected BSSs and integrated LANs that 
appear as a single BSS to the LLC layer at any station associated with one 
of these BSSs.

MAC protocol data unit 
(MPDU)

The unit of data exchanged between two peer MAC entities using the ser-
vices of the physical layer.

MAC service data unit 
(MSDU)

Information that is delivered as a unit between MAC users.

Station Any device that contains an IEEE 802.11 conformant MAC and physical 
layer.

Table 18.1 IEEE 802.11 Terminology
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media acceSS conTrol All LANs consist of collections of devices that share the 
network’s transmission capacity. Some means of controlling access to the transmis-
sion medium is needed to provide an orderly and efficient use of that capacity. This 
is the function of a media access control (MAC) layer. The MAC layer receives data 
from a higher-layer protocol, typically the Logical Link Control (LLC) layer, in the 
form of a block of data known as the MAC service data unit (MSDU). In general, 
the MAC layer performs the following functions:

 ■ On transmission, assemble data into a frame, known as a MAC protocol data 
unit (MPDU) with address and error-detection fields.

 ■ On reception, disassemble frame, and perform address recognition and error 
detection.

 ■ Govern access to the LAN transmission medium.

The exact format of the MPDU differs somewhat for the various MAC proto-
cols in use. In general, all of the MPDUs have a format similar to that of Figure 18.4. 
The fields of this frame are as follows.

 ■ MAC Control: This field contains any protocol control information needed for 
the functioning of the MAC protocol. For example, a priority level could be 
indicated here.

 ■ Destination MAC Address: The destination physical address on the LAN for 
this MPDU.

 ■ Source MAC Address: The source physical address on the LAN for this MPDU.

Figure 18.3 IEEE 802.11 Protocol Stack
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 ■ MAC Service Data Unit: The data from the next higher layer.

 ■ CRC: The cyclic redundancy check field; also known as the Frame Check 
Sequence (FCS) field. This is an error-detecting code, such as that which is 
used in other data-link control protocols. The CRC is calculated based on the 
bits in the entire MPDU. The sender calculates the CRC and adds it to the 
frame. The receiver performs the same calculation on the incoming MPDU 
and compares that calculation to the CRC field in that incoming MPDU. If 
the two values don’t match, then one or more bits have been altered in transit.

The fields preceding the MSDU field are referred to as the MAC header, and 
the field following the MSDU field is referred to as the MAC trailer. The header and 
trailer contain control information that accompany the data field and that are used 
by the MAC protocol.

logical link conTrol In most data-link control protocols, the data-link protocol 
entity is responsible not only for detecting errors using the CRC, but for recovering 
from those errors by retransmitting damaged frames. In the LAN protocol archi-
tecture, these two functions are split between the MAC and LLC layers. The MAC 
layer is responsible for detecting errors and discarding any frames that contain er-
rors. The LLC layer optionally keeps track of which frames have been successfully 
received and retransmits unsuccessful frames.

IEEE 802.11 Network Components and Architectural Model

Figure 18.5 illustrates the model developed by the 802.11 working group. The small-
est building block of a wireless LAN is a basic service set (BSS), which consists of 
wireless stations executing the same MAC protocol and competing for access to the 
same shared wireless medium. A BSS may be isolated, or it may connect to a back-
bone distribution system (DS) through an access point (AP). The AP functions as a 
bridge and a relay point. In a BSS, client stations do not communicate directly with 
one another. Rather, if one station in the BSS wants to communicate with another 
station in the same BSS, the MAC frame is first sent from the originating station 
to the AP and then from the AP to the destination station. Similarly, a MAC frame 
from a station in the BSS to a remote station is sent from the local station to the AP 
and then relayed by the AP over the DS on its way to the destination station. The 
BSS generally corresponds to what is referred to as a cell in the literature. The DS 
can be a switch, a wired network, or a wireless network.

When all the stations in the BSS are mobile stations that communicate directly 
with one another (not using an AP), the BSS is called an independent BSS (IBSS). 
An IBSS is typically an ad hoc network. In an IBSS, the stations all communicate 
directly, and no AP is involved.

Figure 18.4 General IEEE 802 MPDU Format
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A simple configuration is shown in Figure 18.5, in which each station belongs 
to a single BSS; that is, each station is within wireless range only of other stations 
within the same BSS. It is also possible for two BSSs to overlap geographically, so 
that a single station could participate in more than one BSS. Furthermore, the asso-
ciation between a station and a BSS is dynamic. Stations may turn off, come within 
range, and go out of range.

An extended service set (ESS) consists of two or more basic service sets 
 interconnected by a distribution system. The extended service set appears as a single 
logical LAN to the logical link control (LLC) level.

IEEE 802.11 Services

IEEE 802.11 defines nine services that need to be provided by the wireless LAN to 
achieve functionality equivalent to that which is inherent to wired LANs. Table 18.2 
lists the services and indicates two ways of categorizing them.

1. The service provider can be either the station or the DS. Station services are 
implemented in every 802.11 station, including AP stations. Distribution ser-
vices are provided between BSSs; these services may be implemented in an AP 
or in another special-purpose device attached to the distribution system.

2. Three of the services are used to control IEEE 802.11 LAN access and confi-
dentiality. Six of the services are used to support delivery of MSDUs between 
stations. If the MSDU is too large to be transmitted in a single MPDU, it may 
be fragmented and transmitted in a series of MPDUs.

Figure 18.5 IEEE 802.11 Extended Service Set
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Following the IEEE 802.11 document, we next discuss the services in an order 
designed to clarify the operation of an IEEE 802.11 ESS network. MSDU delivery, 
which is the basic service, already has been mentioned. Services related to security 
are introduced in Section 18.4.

diSTribuTion of meSSageS WiThin a dS The two services involved with the dis-
tribution of messages within a DS are distribution and integration. Distribution is 
the primary service used by stations to exchange MPDUs when the MPDUs must 
traverse the DS to get from a station in one BSS to a station in another BSS. For 
example, suppose a frame is to be sent from station 2 (STA 2) to station 7 (STA 7) 
in Figure 18.5. The frame is sent from STA 2 to AP 1, which is the AP for this BSS. 
The AP gives the frame to the DS, which has the job of directing the frame to the AP 
associated with STA 7 in the target BSS. AP 2 receives the frame and forwards it to 
STA 7. How the message is transported through the DS is beyond the scope of the 
IEEE 802.11 standard.

If the two stations that are communicating are within the same BSS, then the 
distribution service logically goes through the single AP of that BSS.

The integration service enables transfer of data between a station on an IEEE 
802.11 LAN and a station on an integrated IEEE 802.x LAN. The term integrated 
refers to a wired LAN that is physically connected to the DS and whose stations 
may be logically connected to an IEEE 802.11 LAN via the integration service. The 
integration service takes care of any address translation and media conversion logic 
required for the exchange of data.

aSSociaTion-relaTed ServiceS The primary purpose of the MAC layer is to 
transfer MSDUs between MAC entities; this purpose is fulfilled by the distribu-
tion service. For that service to function, it requires information about stations 
within the ESS that is provided by the association-related services. Before the 
distribution  service can deliver data to or accept data from a station, that sta-
tion must be  associated. Before looking at the concept of association, we need 

Service Provider Used to support

Association Distribution system MSDU delivery

Authentication Station LAN access and security

Deauthentication Station LAN access and security

Disassociation Distribution system MSDU delivery

Distribution Distribution system MSDU delivery

Integration Distribution system MSDU delivery

MSDU delivery Station MSDU delivery

Privacy Station LAN access and security

Reassociation Distribution system MSDU delivery

Table 18.2 IEEE 802.11 Services
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to describe the concept of mobility. The standard defines three transition types, 
based on mobility:

 ■ No transition: A station of this type is either stationary or moves only within 
the direct communication range of the communicating stations of a single BSS.

 ■ BSS transition: This is defined as a station movement from one BSS to another 
BSS within the same ESS. In this case, delivery of data to the station requires that 
the addressing capability be able to recognize the new location of the station.

 ■ ESS transition: This is defined as a station movement from a BSS in one ESS 
to a BSS within another ESS. This case is supported only in the sense that 
the station can move. Maintenance of upper-layer connections supported by 
802.11 cannot be guaranteed. In fact, disruption of service is likely to occur.

To deliver a message within a DS, the distribution service needs to know where 
the destination station is located. Specifically, the DS needs to know the identity 
of the AP to which the message should be delivered in order for that message to reach 
the destination station. To meet this requirement, a station must maintain an associa-
tion with the AP within its current BSS. Three services relate to this requirement:

 ■ Association: Establishes an initial association between a station and an AP. 
Before a station can transmit or receive frames on a wireless LAN, its iden-
tity and address must be known. For this purpose, a station must establish an 
 association with an AP within a particular BSS. The AP can then communicate 
this information to other APs within the ESS to facilitate routing and delivery 
of addressed frames.

 ■ Reassociation: Enables an established association to be transferred from one 
AP to another, allowing a mobile station to move from one BSS to another.

 ■ Disassociation: A notification from either a station or an AP that an existing 
association is terminated. A station should give this notification before leaving 
an ESS or shutting down. However, the MAC management facility protects 
itself against stations that disappear without notification.

 18.4 IEEE 802.11i WIRELESS LAN SECURITY

There are two characteristics of a wired LAN that are not inherent in a wireless LAN.

1. In order to transmit over a wired LAN, a station must be physically connected 
to the LAN. On the other hand, with a wireless LAN, any station within radio 
range of the other devices on the LAN can transmit. In a sense, there is a form 
of authentication with a wired LAN in that it requires some positive and pre-
sumably observable action to connect a station to a wired LAN.

2. Similarly, in order to receive a transmission from a station that is part of a 
wired LAN, the receiving station also must be attached to the wired LAN. 
On the other hand, with a wireless LAN, any station within radio range can 
 receive. Thus, a wired LAN provides a degree of privacy, limiting reception of 
data to stations connected to the LAN.
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These differences between wired and wireless LANs suggest the increased 
need for robust security services and mechanisms for wireless LANs. The original 
802.11 specification included a set of security features for privacy and authenti-
cation that were quite weak. For privacy, 802.11 defined the Wired Equivalent 
Privacy (WEP) algorithm. The privacy portion of the 802.11 standard contained 
major weaknesses. Subsequent to the development of WEP, the 802.11i task group 
has developed a set of capabilities to address the WLAN security issues. In order 
to accelerate the introduction of strong security into WLANs, the Wi-Fi Alliance 
promulgated Wi-Fi Protected Access (WPA) as a Wi-Fi standard. WPA is a set of 
security mechanisms that eliminates most 802.11 security issues and was based on 
the current state of the 802.11i standard. The final form of the 802.11i standard is 
referred to as Robust Security Network (RSN). The Wi-Fi Alliance certifies ven-
dors in compliance with the full 802.11i specification under the WPA2 program.

The RSN specification is quite complex, and occupies 145 pages of the 2012 
IEEE 802.11 standard. In this section, we provide an overview.

IEEE 802.11i Services

The 802.11i RSN security specification defines the following services.

 ■ Authentication: A protocol is used to define an exchange between a user and 
an AS that provides mutual authentication and generates temporary keys to 
be used between the client and the AP over the wireless link.

 ■ Access control:1 This function enforces the use of the authentication function, 
routes the messages properly, and facilitates key exchange. It can work with a 
variety of authentication protocols.

 ■ Privacy with message integrity: MAC-level data (e.g., an LLC PDU) are 
 encrypted along with a message integrity code that ensures that the data have 
not been altered.

Figure 18.6a indicates the security protocols used to support these services, 
while Figure 18.6b lists the cryptographic algorithms used for these services.

IEEE 802.11i Phases of Operation

The operation of an IEEE 802.11i RSN can be broken down into five distinct phases 
of operation. The exact nature of the phases will depend on the configuration and 
the end points of the communication. Possibilities include (see Figure 18.5):

1. Two wireless stations in the same BSS communicating via the access point 
(AP) for that BSS.

2. Two wireless stations (STAs) in the same ad hoc IBSS communicating directly 
with each other.

1In this context, we are discussing access control as a security function. This is a different function than 
media access control (MAC) as described in Section 18.3. Unfortunately, the literature and the standards 
use the term access control in both contexts.
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3. Two wireless stations in different BSSs communicating via their respective 
APs across a distribution system.

4. A wireless station communicating with an end station on a wired network via 
its AP and the distribution system.

IEEE 802.11i security is concerned only with secure communication between 
the STA and its AP. In case 1 in the preceding list, secure communication is assured 
if each STA establishes secure communications with the AP. Case 2 is similar, with 
the AP functionality residing in the STA. For case 3, security is not provided across 
the distribution system at the level of IEEE 802.11, but only within each BSS. End-
to-end security (if required) must be provided at a higher layer. Similarly, in case 4, 
security is only provided between the STA and its AP.

Figure 18.6 Elements of IEEE 802.11i
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With these considerations in mind, Figure 18.7 depicts the five phases of oper-
ation for an RSN and maps them to the network components involved. One new 
component is the authentication server (AS). The rectangles indicate the exchange 
of sequences of MPDUs. The five phases are defined as follows.

 ■ Discovery: An AP uses messages called Beacons and Probe Responses to 
advertise its IEEE 802.11i security policy. The STA uses these to identify an 
AP for a WLAN with which it wishes to communicate. The STA associates 
with the AP, which it uses to select the cipher suite and authentication mecha-
nism when the Beacons and Probe Responses present a choice.

 ■ Authentication: During this phase, the STA and AS prove their identities to 
each other. The AP blocks non-authentication traffic between the STA and AS 
until the authentication transaction is successful. The AP does not participate 
in the authentication transaction other than forwarding traffic between the 
STA and AS.

 ■ Key generation and distribution: The AP and the STA perform several opera-
tions that cause cryptographic keys to be generated and placed on the AP and 
the STA. Frames are exchanged between the AP and STA only.

 ■ Protected data transfer: Frames are exchanged between the STA and the end 
station through the AP. As denoted by the shading and the encryption module 
icon, secure data transfer occurs between the STA and the AP only; security is 
not provided end-to-end.

Figure 18.7 IEEE 802.11i Phases of Operation
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 ■ Connection termination: The AP and STA exchange frames. During this phase, 
the secure connection is torn down and the connection is restored to the origi-
nal state.

Discovery Phase

We now look in more detail at the RSN phases of operation, beginning with the 
discovery phase, which is illustrated in the upper portion of Figure 18.8. The purpose 
of this phase is for an STA and an AP to recognize each other, agree on a set of secu-
rity capabilities, and establish an association for future communication using those 
security capabilities.

Figure 18.8  IEEE 802.11i Phases of Operation: Capability Discovery, 
Authentication, and Association
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SecuriTy caPabiliTieS During this phase, the STA and AP decide on specific tech-
niques in the following areas:

 ■ Confidentiality and MPDU integrity protocols for protecting unicast traffic 
(traffic only between this STA and AP)

 ■ Authentication method

 ■ Cryptography key management approach

Confidentiality and integrity protocols for protecting multicast/broadcast traf-
fic are dictated by the AP, since all STAs in a multicast group must use the same 
protocols and ciphers. The specification of a protocol, along with the chosen key 
length (if variable) is known as a cipher suite. The options for the confidentiality and 
integrity cipher suite are

 ■ WEP, with either a 40-bit or 104-bit key, which allows backward compatibility 
with older IEEE 802.11 implementations

 ■ TKIP

 ■ CCMP

 ■ Vendor-specific methods

The other negotiable suite is the authentication and key management (AKM) 
suite, which defines (1) the means by which the AP and STA perform mutual 
authentication and (2) the means for deriving a root key from which other keys may 
be generated. The possible AKM suites are

 ■ IEEE 802.1X

 ■ Pre-shared key (no explicit authentication takes place and mutual authentica-
tion is implied if the STA and AP share a unique secret key)

 ■ Vendor-specific methods

mPdu exchange The discovery phase consists of three exchanges.

 ■ Network and security capability discovery: During this exchange, STAs dis-
cover the existence of a network with which to communicate. The AP either 
periodically broadcasts its security capabilities (not shown in figure), indicated 
by RSN IE (Robust Security Network Information Element), in a specific 
channel through the Beacon frame; or responds to a station’s Probe Request 
through a Probe Response frame. A wireless station may discover available 
access points and corresponding security capabilities by either passively moni-
toring the Beacon frames or actively probing every channel.

 ■ Open system authentication: The purpose of this frame sequence, which pro-
vides no security, is simply to maintain backward compatibility with the IEEE 
802.11 state machine, as implemented in existing IEEE 802.11 hardware. In 
essence, the two devices (STA and AP) simply exchange identifiers.

 ■ Association: The purpose of this stage is to agree on a set of security capa-
bilities to be used. The STA then sends an Association Request frame to 
the AP. In this frame, the STA specifies one set of matching capabilities 
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(one authentication and key management suite, one pairwise cipher suite, 
and one group-key cipher suite) from among those advertised by the AP. 
If there is no match in capabilities between the AP and the STA, the AP 
refuses the Association Request. The STA blocks it too, in case it has associ-
ated with a rogue AP or someone is inserting frames illicitly on its channel. 
As shown in Figure 18.8, the IEEE 802.1X controlled ports are blocked, and 
no user traffic goes beyond the AP. The concept of blocked ports is  explained 
subsequently.

Authentication Phase

As was mentioned, the authentication phase enables mutual authentication between 
an STA and an authentication server (AS) located in the DS. Authentication is 
designed to allow only authorized stations to use the network and to provide the 
STA with assurance that it is communicating with a legitimate network.

ieee 802.1x acceSS conTrol aPProach IEEE 802.11i makes use of another stan-
dard that was designed to provide access control functions for LANs. The standard 
is IEEE 802.1X, Port-Based Network Access Control. The authentication protocol 
that is used, the Extensible Authentication Protocol (EAP), is defined in the IEEE 
802.1X standard. IEEE 802.1X uses the terms supplicant, authenticator, and authen-
tication server (AS). In the context of an 802.11 WLAN, the first two terms corre-
spond to the wireless station and the AP. The AS is typically a separate device on the 
wired side of the network (i.e., accessible over the DS) but could also reside directly 
on the authenticator.

Before a supplicant is authenticated by the AS using an authentication proto-
col, the authenticator only passes control or authentication messages between the 
supplicant and the AS; the 802.1X control channel is unblocked, but the 802.11 data 
channel is blocked. Once a supplicant is authenticated and keys are provided, the 
authenticator can forward data from the supplicant, subject to predefined access 
control limitations for the supplicant to the network. Under these circumstances, the 
data channel is unblocked.

As indicated in Figure 16.5, 802.1X uses the concepts of controlled and uncon-
trolled ports. Ports are logical entities defined within the authenticator and refer to 
physical network connections. For a WLAN, the authenticator (the AP) may have 
only two physical ports: one connecting to the DS and one for wireless communica-
tion within its BSS. Each logical port is mapped to one of these two physical ports. 
An uncontrolled port allows the exchange of PDUs between the supplicant and the 
other AS, regardless of the authentication state of the supplicant. A controlled port 
allows the exchange of PDUs between a supplicant and other systems on the LAN 
only if the current state of the supplicant authorizes such an exchange. IEEE 802.1X 
is covered in more detail in Chapter 16.

The 802.1X framework, with an upper-layer authentication protocol, fits nicely 
with a BSS architecture that includes a number of wireless stations and an AP. However, 
for an IBSS, there is no AP. For an IBSS, 802.11i provides a more complex solution 
that, in essence, involves pairwise authentication between stations on the IBSS.
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MPDU ExchangE The lower part of Figure 18.8 shows the MPDU exchange dic-
tated by IEEE 802.11 for the authentication phase. We can think of authentication 
phase as consisting of the following three phases.

 ■ Connect to AS: The STA sends a request to its AP (the one with which it has 
an association) for connection to the AS. The AP acknowledges this request 
and sends an access request to the AS.

 ■ EAP exchange: This exchange authenticates the STA and AS to each other. 
A number of alternative exchanges are possible, as explained subsequently.

 ■ Secure key delivery: Once authentication is established, the AS generates a 
master session key (MSK), also known as the Authentication, Authorization, 
and Accounting (AAA) key and sends it to the STA. As explained subse-
quently, all the cryptographic keys needed by the STA for secure communi-
cation with its AP are generated from this MSK. IEEE 802.11i does not pre-
scribe a method for secure delivery of the MSK but relies on EAP for this. 
Whatever method is used, it involves the transmission of an MPDU containing 
an encrypted MSK from the AS, via the AP, to the AS.

EaP ExchangE As mentioned, there are a number of possible EAP exchanges that 
can be used during the authentication phase. Typically, the message flow between 
STA and AP employs the EAP over LAN (EAPOL) protocol, and the message 
flow between the AP and AS uses the Remote Authentication Dial In User Service 
(RADIUS) protocol, although other options are available for both STA-to-AP and 
AP-to-AS exchanges. [FRAN07] provides the following summary of the authentica-
tion exchange using EAPOL and RADIUS.

1. The EAP exchange begins with the AP issuing an EAP-Request/Identity 
frame to the STA.

2. The STA replies with an EAP-Response/Identity frame, which the AP receives 
over the uncontrolled port. The packet is then encapsulated in RADIUS over 
EAP and passed on to the RADIUS server as a RADIUS-Access-Request packet.

3. The AAA server replies with a RADIUS-Access-Challenge packet, which is 
passed on to the STA as an EAP-Request. This request is of the appropriate 
authentication type and contains relevant challenge information.

4. The STA formulates an EAP-Response message and sends it to the AS. The 
response is translated by the AP into a Radius-Access-Request with the 
response to the challenge as a data field. Steps 3 and 4 may be repeated mul-
tiple times, depending on the EAP method in use. For TLS tunneling methods, 
it is common for authentication to require 10 to 20 round trips.

5. The AAA server grants access with a Radius-Access-Accept packet. The AP 
issues an EAP-Success frame. (Some protocols require confirmation of the 
EAP success inside the TLS tunnel for authenticity validation.) The controlled 
port is authorized, and the user may begin to access the network.

Note from Figure 18.8 that the AP controlled port is still blocked to general 
user traffic. Although the authentication is successful, the ports remain blocked until 
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the temporal keys are installed in the STA and AP, which occurs during the 4-Way 
Handshake.

Key Management Phase

During the key management phase, a variety of cryptographic keys are generated 
and distributed to STAs. There are two types of keys: pairwise keys used for commu-
nication between an STA and an AP and group keys used for multicast communica-
tion. Figure 18.9, based on [FRAN07], shows the two key hierarchies, and Table 18.3 
defines the individual keys.

Figure 18.9 IEEE 802.11i Key Hierarchies
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Abbreviation Name Description / Purpose Size (bits) Type

AAA Key Authentication, 
Accounting, and 
Authorization Key

Used to derive the PMK. 
Used with the IEEE 
802.1X authentication 
and key management 
approach. Same as 
MMSK.

Ú  256 Key generation key, 
root key

PSK Pre-shared Key Becomes the PMK in 
pre-shared key environ-
ments.

256 Key generation key, 
root key

PMK Pairwise Master Key Used with other inputs to 
derive the PTK.

256 Key generation key

GMK Group Master Key Used with other inputs to 
derive the GTK.

128 Key generation key

PTK Pair-wise Transient 
Key

Derived from the PMK. 
Comprises the EAPOL-
KCK, EAPOL-KEK, and 
TK and (for TKIP) the 
MIC key.

512 (TKIP)
384 (CCMP)

Composite key

TK Temporal Key Used with TKIP or 
CCMP to provide confi-
dentiality and integrity 
protection for unicast 
user traffic.

256 (TKIP)
128 (CCMP)

Traffic key

GTK Group Temporal Key Derived from the GMK. 
Used to provide confi-
dentiality and integrity 
protection for multicast/
broadcast user traffic.

256 (TKIP)
128 (CCMP)

40,104 (WEP)

Traffic key

MIC Key Message Integrity 
Code Key

Used by TKIP’s Michael 
MIC to provide integrity 
protection of messages.

64 Message integrity key

EAPOL-KCK EAPOL-Key 
Confirmation Key

Used to provide integrity 
protection for key mate-
rial distributed during the 
4-Way Handshake.

128 Message integrity key

EAPOL-KEK EAPOL-Key 
Encryption Key

Used to ensure the con-
fidentiality of the GTK 
and other key material in 
the 4-Way Handshake.

128 Traffic key / key 
encryption key

WEP Key Wired Equivalent 
Privacy Key

Used with WEP. 40,104 Traffic key

Table 18.3 IEEE 802.11i Keys for Data Confidentiality and Integrity Protocols
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PairWiSe keyS Pairwise keys are used for communication between a pair of devices, 
typically between an STA and an AP. These keys form a hierarchy beginning with 
a master key from which other keys are derived dynamically and used for a limited 
period of time.

At the top level of the hierarchy are two possibilities. A pre-shared key (PSK) 
is a secret key shared by the AP and a STA and installed in some fashion outside the 
scope of IEEE 802.11i. The other alternative is the master session key (MSK), also 
known as the AAAK, which is generated using the IEEE 802.1X protocol during 
the authentication phase, as described previously. The actual method of key genera-
tion depends on the details of the authentication protocol used. In either case (PSK 
or MSK), there is a unique key shared by the AP with each STA with which it com-
municates. All the other keys derived from this master key are also unique between 
an AP and an STA. Thus, each STA, at any time, has one set of keys, as depicted in 
the hierarchy of Figure 18.9a, while the AP has one set of such keys for each of its 
STAs.

The pairwise master key (PMK) is derived from the master key. If a PSK is 
used, then the PSK is used as the PMK; if a MSK is used, then the PMK is derived 
from the MSK by truncation (if necessary). By the end of the authentication phase, 
marked by the 802.1X EAP Success message (Figure 18.8), both the AP and the 
STA have a copy of their shared PMK.

The PMK is used to generate the pairwise transient key (PTK), which in fact 
consists of three keys to be used for communication between an STA and AP after 
they have been mutually authenticated. To derive the PTK, the HMAC-SHA-1 
function is applied to the PMK, the MAC addresses of the STA and AP, and nonces 
generated when needed. Using the STA and AP addresses in the generation of the 
PTK provides protection against session hijacking and impersonation; using nonces 
provides additional random keying material.

The three parts of the PTK are as follows.

 ■ EAP Over LAN (EAPOL) Key Confirmation Key (EAPOL-KCK): Supports 
the integrity and data origin authenticity of STA-to-AP control frames  during 
operational setup of an RSN. It also performs an access control function: 
proof-of-possession of the PMK. An entity that possesses the PMK is autho-
rized to use the link.

 ■ EAPOL Key Encryption Key (EAPOL-KEK): Protects the confidentiality of 
keys and other data during some RSN association procedures.

 ■ Temporal Key (TK): Provides the actual protection for user traffic.

grouP keyS Group keys are used for multicast communication in which one STA 
sends MPDU’s to multiple STAs. At the top level of the group key hierarchy is the 
group master key (GMK). The GMK is a key-generating key used with other inputs 
to derive the group temporal key (GTK). Unlike the PTK, which is generated using 
material from both AP and STA, the GTK is generated by the AP and transmit-
ted to its associated STAs. Exactly how this GTK is generated is undefined. IEEE 
802.11i, however, requires that its value is computationally indistinguishable from 
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random. The GTK is distributed securely using the pairwise keys that are  already 
established. The GTK is changed every time a device leaves the network.

PairWiSe key diSTribuTion The upper part of Figure 18.10 shows the MPDU 
 exchange for distributing pairwise keys. This exchange is known as the 4-way 
 handshake. The STA and AP use this handshake to confirm the existence of the 

Figure 18.10 IEEE 802.11i Phases of Operation: Four-Way Handshake and Group Key Handshake

STA AP

Message 1 delivers a nonce to
the STA so that it can generate
the PTK.

Message 1 delivers a new GTK to
the STA. The GTK is encrypted
before it is sent and the entire
message is integrity protected.

The AP installs the GTK.

Message 3 demonstrates to
the STA that the authenticator
is alive, ensures that the PTK is
fresh (new) and that there is no
man-in-the-middle.

Message 2 delivers another nonce to the
AP so that it can also generate the
PTK. It demonstrates to the AP that
the STA is alive, ensures that the
PTK is fresh (new) and that there is no
man-in-the-middle.

The STA decrypts the GTK
and installs it for use.

Message 2 is delivered to the 
AP. This frame serves only as
an acknowledgment to the AP.

Message 4 serves as an acknowledgment to
Message 3. It serves no cryptographic
function. This message also ensures the
reliable start of the group key handshake.

Message 2
EAPOL-key (Snonce,

Unicast, MIC)

Message 1
EAPOL-key (Anonce, Unicast)

Message 1
EAPOL-key (GTK, MIC) 

Message 4
EAPOL-key (Unicast, MIC)

Message 2
EAPOL-key (MIC)

Message 3
EAPOL-key (Install PTK,

Unicast, MIC) 

AP’s 802.1X-controlled port blocked

AP’s 802.1X-controlled port
 unblocked for unicast traffic
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PMK, verify the selection of the cipher suite, and derive a fresh PTK for the follow-
ing data session. The four parts of the exchange are as follows.

 ■ AP S STA: Message includes the MAC address of the AP and a nonce 
(Anonce)

 ■ STA S AP: The STA generates its own nonce (Snonce) and uses both nonces 
and both MAC addresses, plus the PMK, to generate a PTK. The STA then 
sends a message containing its MAC address and Snonce, enabling the AP to 
generate the same PTK. This message includes a message integrity code 
(MIC)2 using HMAC-MD5 or HMAC-SHA-1-128. The key used with the MIC 
is KCK.

 ■ AP S STA: The AP is now able to generate the PTK. The AP then sends a 
message to the STA, containing the same information as in the first message, 
but this time including a MIC.

 ■ STA S AP: This is merely an acknowledgment message, again protected by 
a MIC.

grouP key diSTribuTion For group key distribution, the AP generates a GTK and 
distributes it to each STA in a multicast group. The two-message exchange with each 
STA consists of the following:

 ■ AP S STA: This message includes the GTK, encrypted either with RC4 or 
with AES. The key used for encryption is KEK, using a key wrapping algo-
rithm (as discussed in Chapter 12). A MIC value is appended.

 ■ STA S AP: The STA acknowledges receipt of the GTK. This message  includes 
a MIC value.

Protected Data Transfer Phase

IEEE 802.11i defines two schemes for protecting data transmitted in 802.11 MPDUs: 
the Temporal Key Integrity Protocol (TKIP), and the Counter Mode-CBC MAC 
Protocol (CCMP).

TkiP TKIP is designed to require only software changes to devices that are im-
plemented with the older wireless LAN security approach called Wired Equivalent 
Privacy (WEP). TKIP provides two services:

 ■ Message integrity: TKIP adds a message integrity code (MIC) to the 802.11 
MAC frame after the data field. The MIC is generated by an algorithm, called 
Michael, that computes a 64-bit value using as input the source and destination 
MAC address values and the Data field, plus key material.

 ■ Data confidentiality: Data confidentiality is provided by encrypting the 
MPDU plus MIC value using RC4.

2 While MAC is commonly used in cryptography to refer to a Message Authentication Code, the term 
MIC is used instead in connection with 802.11i because MAC has another standard meaning, Media 
Access Control, in networking.
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The 256-bit TK (Figure 18.9) is employed as follows. Two 64-bit keys are used 
with the Michael message digest algorithm to produce a message integrity code. 
One key is used to protect STA-to-AP messages, and the other key is used to protect 
AP-to-STA messages. The remaining 128 bits are truncated to generate the RC4 key 
used to encrypt the transmitted data.

For additional protection, a monotonically increasing TKIP sequence counter 
(TSC) is assigned to each frame. The TSC serves two purposes. First, the TSC is included 
with each MPDU and is protected by the MIC to protect against replay attacks. Second, 
the TSC is combined with the session TK to produce a dynamic encryption key that 
changes with each transmitted MPDU, thus making cryptanalysis more difficult.

ccmP CCMP is intended for newer IEEE 802.11 devices that are equipped with 
the hardware to support this scheme. As with TKIP, CCMP provides two services:

 ■ Message integrity: CCMP uses the cipher block chaining message authentica-
tion code (CBC-MAC), described in Chapter 12.

 ■ Data confidentiality: CCMP uses the CTR block cipher mode of operation 
with AES for encryption. CTR is described in Chapter 7.

The same 128-bit AES key is used for both integrity and confidentiality. The 
scheme uses a 48-bit packet number to construct a nonce to prevent replay attacks.

The IEEE 802.11i Pseudorandom Function

At a number of places in the IEEE 802.11i scheme, a pseudorandom function (PRF) 
is used. For example, it is used to generate nonces, to expand pairwise keys, and to gen-
erate the GTK. Best security practice dictates that different pseudorandom number 
streams be used for these different purposes. However, for implementation  efficiency, 
we would like to rely on a single pseudorandom number generator function.

The PRF is built on the use of HMAC-SHA-1 to generate a pseudorandom 
bit stream. Recall that HMAC-SHA-1 takes a message (block of data) and a key of 
length at least 160 bits and produces a 160-bit hash value. SHA-1 has the property 
that the change of a single bit of the input produces a new hash value with no appar-
ent connection to the preceding hash value. This property is the basis for pseudoran-
dom number generation.

The IEEE 802.11i PRF takes four parameters as input and produces the 
desired number of random bits. The function is of the form PRF(K, A, B, Len), where

K = a secret key

A = a text string specific to the application (e.g., nonce generation or pairwise 
key expansion)

B = some data specific to each case
Len = desired number of pseudorandom bits

For example, for the pairwise transient key for CCMP:

PTK = PRF (PMK, “Pairwise key expansion”, min (AP-
Addr, STA-Addr) || max (AP-Addr, STA-Addr) || min
(Anonce, Snonce) || max (Anonce, Snonce), 384)
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So, in this case, the parameters are

K = PMK

A = the text string “Pairwise key expansion”

B = a sequence of bytes formed by concatenating the two MAC addresses  
and the two nonces

Len = 384 bits

Similarly, a nonce is generated by

Nonce = PRF (Random Number, “InitCounter”, MAC || Time, 256)

where Time is a measure of the network time known to the nonce generator. 
The group temporal key is generated by

GTK = PRF (GMK, “Group key expansion”, MAC || Gnonce, 256)

Figure 18.11 illustrates the function PRF(K, A, B, Len). The parameter K 
serves as the key input to HMAC. The message input consists of four items con-
catenated together: the parameter A, a byte with value 0, the parameter B, and a 
counter i. The counter is initialized to 0. The HMAC algorithm is run once, produc-
ing a 160-bit hash value. If more bits are required, HMAC is run again with the same 
inputs, except that i is incremented each time until the necessary number of bits is 
generated. We can express the logic as

PRF (K, A, B, Len)
R 

S

 null string
for i 

S

 0 to ((Len + 159)/160 − 1) do
R 

S

 R || HMAC-SHA-1 (K, A || 0 || B || i)
Return Truncate-to-Len (R, Len)

Figure 18.11 IEEE 802.11i Pseudorandom Function

HMAC-SHA-1

| |

K

A 0 B i

R 5 HMAC-SHA-1(K,  A || 0 || B || i)  

1 1
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 18.5 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms 

group keys
IEEE 802.11

media access control (MAC)
pairwise keys

pseudorandom function (PRF)
Wi-Fi

Review Questions 

 18.1 What is the basic building block of an 802.11 WLAN?
 18.2 List and briefly define threats to a wireless network.
 18.3 List and briefly define IEEE 802.11 services.
 18.4 List some security threats related to mobile devices.
 18.5 How is the concept of an association related to that of mobility?
 18.6 What security areas are addressed by IEEE 802.11i?
 18.7 Briefly describe the five IEEE 802.11i phases of operation.
 18.8 What is the difference between TKIP and CCMP?

Problems 

 18.1 In IEEE 802.11, open system authentication simply consists of two communications. 
An authentication is requested by the client, which contains the station ID (typically 
the MAC address). This is followed by an authentication response from the AP/router 
containing a success or failure message. An example of when a failure may occur is if 
the client’s MAC address is explicitly excluded in the AP/router configuration.
a. What are the benefits of this authentication scheme?
b. What are the security vulnerabilities of this authentication scheme?

 18.2 Prior to the introduction of IEEE 802.11i, the security scheme for IEEE 802.11 was 
Wired Equivalent Privacy (WEP). WEP assumed all devices in the network share a 
secret key. The purpose of the authentication scenario is for the STA to prove that 
it possesses the secret key. Authentication proceeds as shown in Figure 18.12. The 
STA sends a message to the AP requesting authentication. The AP issues a challenge, 
which is a sequence of 128 random bytes sent as plaintext. The STA encrypts the 
challenge with the shared key and returns it to the AP. The AP decrypts the  incoming 
value and compares it to the challenge that it sent. If there is a match, the AP confirms 
that authentication has succeeded.
a. What are the benefits of this authentication scheme?
b. This authentication scheme is incomplete. What is missing and why is this impor-

tant? Hint: The addition of one or two messages would fix the problem.
c. What is a cryptographic weakness of this scheme?
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 18.3 For WEP, data integrity and data confidentiality are achieved using the RC4 stream 
encryption algorithm. The transmitter of an MPDU performs the following steps, re-
ferred to as encapsulation:
1. The transmitter selects an initial vector (IV) value.
2. The IV value is concatenated with the WEP key shared by transmitter and receiver 

to form the seed, or key input, to RC4.
3. A 32-bit cyclic redundancy check (CRC) is computed over all the bits of the MAC 

data field and appended to the data field. The CRC is a common error-detection 
code used in data link control protocols. In this case, the CRC serves as a integrity 
check value (ICV).

4. The result of step 3 is encrypted using RC4 to form the ciphertext block.
5. The plaintext IV is prepended to the ciphertext block to form the encapsulated 

MPDU for transmission.
a. Draw a block diagram that illustrates the encapsulation process.
b. Describe the steps at the receiver end to recover the plaintext and perform the 

integrity check.
c. Draw a block diagram that illustrates part b.

 18.4 A potential weakness of the CRC as an integrity check is that it is a linear function. 
This means that you can predict which bits of the CRC are changed if a single bit of 
the message is changed. Furthermore, it is possible to determine which combination 
of bits could be flipped in the message so that the net result is no change in the CRC. 
Thus, there are a number of combinations of bit flippings of the plaintext message 
that leave the CRC unchanged, so message integrity is defeated. However, in WEP, if 
an attacker does not know the encryption key, the attacker does not have access to the 
plaintext, only to the ciphertext block. Does this mean that the ICV is protected from 
the bit flipping attack? Explain.

Figure 18.12 WEP Authentication; refer to Problem 18.2

STA AP

RequestStation sends a request
for authentication

AP sends challenge message
containing 128-bit random
number

AP decrypts challenge response.
If match, send authentication
success message

Station responds
with encrypted version

of challenge number

Response

Challenge

 Success

M18_STAL7484_08_GE_C18.indd   596 05/04/22   10:39 PM



597

Electronic Mail Security

CHAPTER19
19.1 Internet Mail Architecture

Email Components
Email Protocols

19.2 Email Formats

RFC 5322
Multipurpose Internet Mail Extensions

19.3 Email Threats and Comprehensive Email Security

19.4 S/MIME

Operational Description
S/MIME Message Content Types
S/MIME Messages
S/MIME Certificate Processing
Enhanced Security Services

19.5 DNSSEC

Domain Name System
DNS Security Extensions

19.6 DNS-Based Authentication of Named Entities

TLSA Record
Use of DANE for SMTP
Use of DNSSEC for S/MIME

19.7 Sender Policy Framework

SPF on the Sender Side
SPF on the Receiver Side

M19_STAL7484_08_GE_C19.indd   597 20/04/22   14:09



598  CHAPTER 19 / ElECTRoniC MAil SECuRiTy

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

◆◆ Summarize the key functional components of the Internet mail  architecture.

◆◆ Explain the basic functionality of SMTP, POP3, and IMAP.

◆◆ Explain the need for MIME as an enhancement to ordinary email.

◆◆ Describe the key elements of MIME.

◆◆ Understand the functionality of S/MIME and the security threats it  addresses.

◆◆ Understand the basic mechanisms of STARTTLS and its role in email 
 security.

◆◆ Understand the basic mechanisms of DANE and its role in email security.

◆◆ Understand the basic mechanisms of SPF and its role in email security.

◆◆ Understand the basic mechanisms of DKIM and its role in email security.

◆◆ Understand the basic mechanisms of DMARC and its role in email  security.

19.8 DomainKeys Identified Mail

Email Threats
DKIM Strategy
DKIM Functional Flow

19.9 Domain-Based Message Authentication, Reporting, and Conformance

Identifier Alignment
DMARC on the Sender Side
DMARC on the Receiver Side
DMARC Reports

19.10 Key Terms, Review Questions, and Problems

In virtually all distributed environments, electronic mail is the most heavily used 
 network-based application. Users expect to be able to, and do, send email to others 
who are connected directly or indirectly to the Internet, regardless of host operating 
system or communications suite. With the explosively growing reliance on email, there 
grows a demand for authentication and confidentiality services. A complementary set 
of standards related to secure email have been developed. This chapter provides an 
overview.
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 19.1 INTERNET MAIL ARCHITECTURE

For an understanding of the topics in this chapter, it is useful to have a basic grasp of 
the Internet mail architecture, which is currently defined in RFC 5598 (Internet Mail 
Architecture, July 2009). This section provides an overview of the basic concepts.

Email Components

At its most fundamental level, the Internet mail architecture consists of a user world 
in the form of Message User Agents (MUA), and the transfer world, in the form 
of the Message Handling Service (MHS), which is composed of Message Transfer 
Agents (MTA). The MHS accepts a message from one user and delivers it to one 
or more other users, creating a virtual MUA-to-MUA exchange environment. This 
architecture involves three types of interoperability. One is directly between users: 
messages must be formatted by the MUA on behalf of the message author so that 
the message can be displayed to the message recipient by the destination MUA. 
There are also interoperability requirements between the MUA and the MHS—first 
when a message is posted from an MUA to the MHS and later when it is deliv-
ered from the MHS to the destination MUA. Interoperability is required among the 
MTA components along the transfer path through the MHS.

Figure 19.1 illustrates the key components of the Internet mail architecture, 
which include the following.

◆■ Message User Agent (MUA): Operates on behalf of user actors and user 
applications. It is their representative within the email service. Typically, this 
function is housed in the user’s computer and is referred to as a client email 
program or a local network email server. The author MUA formats a message 
and performs initial submission into the MHS via a MSA. The recipient MUA 
processes received mail for storage and/or display to the recipient user.

◆■ Mail Submission Agent (MSA): Accepts the message submitted by an MUA 
and enforces the policies of the hosting domain and the requirements of 
Internet standards. This function may be located together with the MUA or 
as a separate functional model. In the latter case, the Simple Mail Transfer 
Protocol (SMTP) is used between the MUA and the MSA.

◆■ Message Transfer Agent (MTA): Relays mail for one application-level hop. It 
is like a packet switch or IP router in that its job is to make routing assessments 
and to move the message closer to the recipients. Relaying is performed by a 
sequence of MTAs until the message reaches a destination MDA. An MTA 
also adds trace information to the message header. SMTP is used  between 
MTAs and between an MTA and an MSA or MDA.

◆■ Mail Delivery Agent (MDA): Responsible for transferring the message from 
the MHS to the MS.

◆■ Message Store (MS): An MUA can employ a long-term MS. An MS can be 
located on a remote server or on the same machine as the MUA. Typically, 
an MUA retrieves messages from a remote server using POP (Post Office 
Protocol) or IMAP (Internet Message Access Protocol).
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Figure 19.1   Function Modules and Standardized Protocols Used between 
them in the Internet Mail Architecture
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Two other concepts need to be defined. An administrative management  domain 
(ADMD) is an Internet email provider. Examples include a  department that oper-
ates a local mail relay (MTA), an IT department that operates an  enterprise mail 
relay, and an ISP that operates a public shared email service. Each ADMD can have 
different operating policies and trust-based decision making. One obvious  example 
is the distinction between mail that is exchanged within an organization and mail 
that is exchanged between independent organizations. The rules for  handling the 
two types of traffic tend to be quite different.

The Domain Name System (DNS) is a directory lookup service that provides a 
mapping between the name of a host on the Internet and its numerical address. DNS 
is discussed subsequently in this chapter.

Email Protocols

Two types of protocols are used for transferring email. The first type is used to move 
messages through the Internet from source to destination. The protocol used for this 
purpose is SMTP, with various extensions and in some cases restrictions. The second 
type consists of protocols used to transfer messages between mail  servers, of which 
IMAP and POP are the most commonly used.
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Simple mail TranSfer proTocol SMTP encapsulates an email message in an 
 envelope and is used to relay the encapsulated messages from source to  destination 
through multiple MTAs. SMTP was originally specified in 1982 as RFC 821 and has 
undergone several revisions, the most current being RFC 5321 (October 2008). These 
revisions have added additional commands and introduced extensions. The term 
Extended SMTP (ESMTP) is often used to refer to these later versions of SMTP.

SMTP is a text-based client-server protocol where the client (email sender) 
contacts the server (next-hop recipient) and issues a set of commands to tell the 
server about the message to be sent, then sending the message itself. The majority of 
these commands are ASCII text messages sent by the client and a resulting return 
code (and additional ASCII text) returned by the server.

The transfer of a message from a source to its ultimate destination can occur 
over a single SMTP client/server conversation over a single TCP connection. 
Alternatively, an SMTP server may be an intermediate relay that assumes the role 
of an SMTP client after receiving a message and then forwards that message to an 
SMTP server along a route to the ultimate destination.

The operation of SMTP consists of a series of commands and responses  exchanged 
between the SMTP sender and receiver. The initiative is with the SMTP sender, who 
establishes the TCP connection. Once the connection is established, the SMTP sender 
sends commands over the connection to the receiver. Each command consists of a single 
line of text, beginning with a four-letter command code followed in some cases by an 
argument field. Each command generates exactly one reply from the SMTP receiver. 
Most replies are a single-line, although multiple-line replies are possible. Each reply 
begins with a three-digit code and may be followed by additional information.

Similar mechanisms are available for running TLS over IMAP and POP protocols.
Historically, MUA/MSA message transfers have used SMTP. The standard 

currently preferred is SUBMISSION, defined in RFC 6409 (Message Submission 
for Mail, November 2011). Although SUBMISSION derives from SMTP, it uses a 
separate TCP port and imposes distinct requirements, such as access authorization.

mail acceSS proTocolS (pop3, imap) Post Office Protocol (POP3) allows an 
email client (user agent) to download an email from an email server (MTA). POP3 
user agents connect via TCP to the server (typically port 110). The user agent enters 
a username and password (either stored internally for convenience or  entered each 
time by the user for stronger security). After authorization, the UA can issue POP3 
commands to retrieve and delete mail.

As with POP3, Internet Mail Access Protocol (IMAP) also enables an email 
client to access mail on an email server. IMAP also uses TCP, with server TCP port 
143. IMAP is more complex than POP3. IMAP provides stronger authentication 
than POP3 and provides other functions not supported by POP3.

 19.2 EMAIL FORMATS

To understand S/MIME, we need first to have a general understanding of the 
 underlying email format that it uses, namely, MIME. But to understand the sig-
nificance of MIME, we need to go back to the traditional email format standard, 
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RFC 822, which is still in common use. The most recent version of this format speci-
fication is RFC 5322 (Internet Message Format, October 2008). Accordingly, this sec-
tion first provides an introduction to these two earlier standards and then moves on 
to a discussion of S/MIME.

RFC 5322

RFC 5322 defines a format for text messages that are sent using electronic mail. It 
has been the standard for Internet-based text mail messages and remains in com-
mon use. In the RFC 5322 context, messages are viewed as having an envelope and 
contents. The envelope contains whatever information is needed to accomplish 
transmission and delivery. The contents compose the object to be delivered to the 
recipient. The RFC 5322 standard applies only to the contents. However, the content 
standard includes a set of header fields that may be used by the mail system to cre-
ate the envelope, and the standard is intended to facilitate the acquisition of such 
information by programs.

The overall structure of a message that conforms to RFC 5322 is very  simple. 
A message consists of some number of header lines (the header) followed by 
 unrestricted text (the body). The header is separated from the body by a blank line. 
Put differently, a message is ASCII text, and all lines up to the first blank line are 
 assumed to be header lines used by the user agent part of the mail system.

A header line usually consists of a keyword, followed by a colon, followed by 
the keyword’s arguments; the format allows a long line to be broken up into several 
lines. The most frequently used keywords are From, To, Subject, and Date. Here is an 
example message:

Date: October 8, 2009 2:15:49 PM EDT

From: “William Stallings” <ws@shore.net>

Subject: The Syntax in RFC 5322

To: Smith@Other-host.com

Cc: Jones@Yet-Another-Host.com

Hello. This section begins the actual 

message body, which is delimited from the 

message heading by a blank line.

Another field that is commonly found in RFC 5322 headers is Message-ID. 
This field contains a unique identifier associated with this message.

Multipurpose Internet Mail Extensions

Multipurpose Internet Mail Extension (MIME) is an extension to the RFC 5322 
framework that is intended to address some of the problems and limitations of the 
use of Simple Mail Transfer Protocol (SMTP) or some other mail transfer protocol 
and RFC 5322 for electronic mail. RFCs 2045 through 2049 define MIME, and there 
have been a number of updating documents since then.
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As justification for the use of MIME, [PARZ06] lists the following limitations 
of the SMTP/5322 scheme.

1. SMTP cannot transmit executable files or other binary objects. A number of 
schemes are in use for converting binary files into a text form that can be used 
by SMTP mail systems, including the popular UNIX UUencode/UUdecode 
scheme. However, none of these is a standard or even a de facto standard.

2. SMTP cannot transmit text data that includes national language characters, 
because these are represented by 8-bit codes with values of 128 decimal or 
higher, and SMTP is limited to 7-bit ASCII.

3. SMTP servers may reject mail message over a certain size.

4. SMTP gateways that translate between ASCII and the character code EBCDIC 
do not use a consistent set of mappings, resulting in translation problems.

5. SMTP gateways to X.400 electronic mail networks cannot handle nontextual 
data included in X.400 messages.

6. Some SMTP implementations do not adhere completely to the SMTP 
 standards defined in RFC 821. Common problems include:

—Deletion, addition, or reordering of carriage return and linefeed

—Truncating or wrapping lines longer than 76 characters

—Removal of trailing white space (tab and space characters)

—Padding of lines in a message to the same length

—Conversion of tab characters into multiple space characters

MIME is intended to resolve these problems in a manner that is compatible 
with existing RFC 5322 implementations.

overview The MIME specification includes the following elements.

1. Five new message header fields are defined, which may be included in an 
RFC 5322 header. These fields provide information about the body of the 
message.

2. A number of content formats are defined, thus standardizing representations 
that support multimedia electronic mail.

3. Transfer encodings are defined that enable the conversion of any content 
 format into a form that is protected from alteration by the mail system.

In this subsection, we introduce the five message header fields. The next two 
subsections deal with content formats and transfer encodings.

The five header fields defined in MIME are as follows:

◆■ MIME-Version: Must have the parameter value 1.0. This field indicates that 
the message conforms to RFCs 2045 and 2046.

◆■ Content-Type: Describes the data contained in the body with sufficient detail 
that the receiving user agent can pick an appropriate agent or mechanism to 
represent the data to the user or otherwise deal with the data in an  appropriate 
manner.
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◆■ Content-Transfer-Encoding: Indicates the type of transformation that has 
been used to represent the body of the message in a way that is acceptable for 
mail transport.

◆■ Content-ID: Used to identify MIME entities uniquely in multiple contexts.

◆■ Content-Description: A text description of the object with the body; this is 
useful when the object is not readable (e.g., audio data).

Any or all of these fields may appear in a normal RFC 5322 header. A compli-
ant implementation must support the MIME-Version, Content-Type, and Content-
Transfer-Encoding fields; the Content-ID and Content-Description fields are 
 optional and may be ignored by the recipient implementation.

mime conTenT TypeS The bulk of the MIME specification is concerned with 
the definition of a variety of content types. This reflects the need to provide stan-
dardized ways of dealing with a wide variety of information representations in a 
multimedia environment.

Table 19.1 lists the content types specified in RFC 2046. There are seven dif-
ferent major types of content and a total of 15 subtypes. In general, a content type 
declares the general type of data, and the subtype specifies a particular format for 
that type of data.

Type Subtype Description

Text Plain Unformatted text; may be ASCII or ISO 8859.
Enriched Provides greater format flexibility.

Multipart Mixed The different parts are independent but are to be transmitted 
together. They should be presented to the receiver in the order that 
they appear in the mail message.

Parallel Differs from Mixed only in that no order is defined for delivering 
the parts to the receiver.

Alternative The different parts are alternative versions of the same informa-
tion. They are ordered in increasing faithfulness to the original, and 
the recipient’s mail system should display the “best” version to the 
user.

Digest Similar to Mixed, but the default type/subtype of each part is mes-
sage/rfc822.

Message rfc822 The body is itself an encapsulated message that conforms to RFC 822.
Partial Used to allow fragmentation of large mail items, in a way that is 

transparent to the recipient.
External-body Contains a pointer to an object that exists elsewhere.

Image jpeg The image is in JPEG format, JFIF encoding.
gif The image is in GIF format.

Video mpeg MPEG format.
Audio Basic Single-channel 8-bit ISDN m -law encoding at a sample rate of  

8 kHz.
Application PostScript Adobe Postscript format.

octet-stream General binary data consisting of 8-bit bytes.

Table 19.1 MIME Content Types
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For the text type of body, no special software is required to get the full  meaning 
of the text aside from support of the indicated character set. The primary subtype is 
plain text, which is simply a string of ASCII characters or ISO 8859 characters. The 
enriched subtype allows greater formatting flexibility.

The multipart type indicates that the body contains multiple, independent parts. 
The Content-Type header field includes a parameter (called boundary) that defines the 
delimiter between body parts. This boundary should not appear in any parts of the mes-
sage. Each boundary starts on a new line and consists of two  hyphens followed by the 
boundary value. The final boundary, which indicates the end of the last part, also has a 
suffix of two hyphens. Within each part, there may be an optional ordinary MIME header.

There are four subtypes of the multipart type, all of which have the same  overall 
syntax. The multipart/mixed subtype is used when there are multiple independent body 
parts that need to be bundled in a particular order. For the multipart/parallel subtype, 
the order of the parts is not significant. If the recipient’s system is appropriate, the mul-
tiple parts can be presented in parallel. For example, a picture or text part could be 
accompanied by a voice commentary that is played while the picture or text is displayed.

For the multipart/alternative subtype, the various parts are different represen-
tations of the same information.

In this subtype, the body parts are ordered in terms of increasing preference.
The multipart/digest subtype is used when each of the body parts is inter-

preted as an RFC 5322 message with headers. This subtype enables the construction 
of a message whose parts are individual messages. For example, the moderator of a 
group might collect email messages from participants, bundle these messages, and 
send them out in one encapsulating MIME message.

The message type provides a number of important capabilities in MIME. 
The message/rfc822 subtype indicates that the body is an entire message, including 
header and body. Despite the name of this subtype, the encapsulated message may 
be not only a simple RFC 5322 message, but also any MIME message.

The message/partial subtype enables fragmentation of a large message into 
a number of parts, which must be reassembled at the destination. For this subtype, 
three parameters are specified in the Content-Type: Message/Partial field: an id 
common to all fragments of the same message, a sequence number unique to each 
fragment, and the total number of fragments.

The message/external-body subtype indicates that the actual data to be conveyed 
in this message are not contained in the body. Instead, the body contains the information 
needed to access the data. As with the other message types, the message/external-body 
subtype has an outer header and an encapsulated message with its own header. The only 
necessary field in the outer header is the Content-Type field, which identifies this as a 
message/external-body subtype. The inner header is the message header for the encap-
sulated message. The Content-Type field in the outer header must include an access-type 
parameter, which indicates the method of access, such as FTP (file transfer protocol).

The application type refers to other kinds of data, typically either uninter-
preted binary data or information to be processed by a mail-based application.

mime TranSfer encodingS The other major component of the MIME specifica-
tion, in addition to content type specification, is a definition of transfer encodings 
for message bodies. The objective is to provide reliable delivery across the largest 
range of environments.
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The MIME standard defines two methods of encoding data. The Content-
Transfer-Encoding field can actually take on six values, as listed in Table 19.2. 
However, three of these values (7-bit, 8-bit, and binary) indicate that no encoding has 
been done but provide some information about the nature of the data. For SMTP 
transfer, it is safe to use the 7-bit form. The 8-bit and binary forms may be  usable in 
other mail transport contexts. Another Content-Transfer-Encoding value is x-token, 
which indicates that some other encoding scheme is used for which a name is to be 
supplied. This could be a vendor-specific or application-specific scheme. The two 
actual encoding schemes defined are quoted-printable and base64. Two schemes are 
defined to provide a choice between a transfer technique that is essentially human 
readable and one that is safe for all types of data in a way that is reasonably compact.

The quoted-printable transfer encoding is useful when the data consists largely 
of octets that correspond to printable ASCII characters. In essence, it represents 
nonsafe characters by the hexadecimal representation of their code and introduces 
reversible (soft) line breaks to limit message lines to 76 characters.

The base64 transfer encoding, also known as radix-64 encoding, is a common 
one for encoding arbitrary binary data in such a way as to be invulnerable to the pro-
cessing by mail-transport programs.

canonical form An important concept in MIME and S/MIME is that of canonical 
form. Canonical form is a format, appropriate to the content type, that is standard-
ized for use between systems. This is in contrast to native form, which is a format that 
may be peculiar to a particular system. RFC 2049 defines these two forms as follows:

◆■ Native form: The body to be transmitted is created in the system’s native format. 
The native character set is used and, where appropriate, local end-of-line conven-
tions are used as well. The body may be any format that corresponds to the local 
model for the representation of some form of information. Examples include a 
UNIX-style text file, or a Sun raster image, or a VMS indexed file, and audio data in 
a system-dependent format stored only in memory. In  essence, the data are created 
in the native form that corresponds to the type specified by the media type.

◆■ Canonical form: The entire body, including out-of-band information such as 
record lengths and possibly file attribute information, is converted to a univer-
sal canonical form. The specific media type of the body as well as its associated 

7 bit The data are all represented by short lines of ASCII characters.

8 bit The lines are short, but there may be non-ASCII characters (octets with the 
high-order bit set).

binary Not only may non-ASCII characters be present but the lines are not necessarily 
short enough for SMTP transport.

quoted-printable Encodes the data in such a way that if the data being encoded are mostly ASCII 
text, the encoded form of the data remains largely recognizable by humans.

base64 Encodes data by mapping 6-bit blocks of input to 8-bit blocks of output, all of 
which are printable ASCII characters.

x-token A named nonstandard encoding.

Table 19.2 MIME Transfer Encodings

M19_STAL7484_08_GE_C19.indd   606 20/04/22   14:09



19.3 / EMAil THREATS And CoMPREHEnSivE EMAil SECuRiTy 607

attributes dictates the nature of the canonical form that is used. Conversion to 
the proper canonical form may involve character set conversion, transforma-
tion of audio data, compression, or various other operations specific to the 
various media types.

 19.3 EMAIL THREATS AND COMPREHENSIVE EMAIL SECURITY

For both organizations and individuals, email is both pervasive and especially vul-
nerable to a wide range of security threats. In general terms, email security threats 
can be classified as follows:

◆■ Authenticity-related threats: Could result in unauthorized access to an enter-
prise’s email system.

◆■ Integrity-related threats: Could result in unauthorized modification of email 
content.

◆■ Confidentiality-related threats: Could result in unauthorized disclosure of 
 sensitive information.

◆■ Availability-related threats: Could prevent end users from being able to send 
or receive email.

A useful list of specific email threats, together with approaches to mitigation, 
is provided in NIST SP 800-177 (Trustworthy Email, September 2015) and is shown 
in Table 19.3.

SP 800-177 recommends use of a variety of standardized protocols as a means 
for countering these threats. These include:

◆■ STARTTLS: An SMTP security extension that provides authentication, integ-
rity, non-repudiation (via digital signatures) and confidentiality (via encryp-
tion) for the entire SMTP message by running SMTP over TLS.

◆■ S/MIME: Provides authentication, integrity, non-repudiation (via digital 
 signatures) and confidentiality (via encryption) of the message body carried 
in SMTP messages.

◆■ DNS Security Extensions (DNSSEC): Provides authentication and integ-
rity protection of DNS data, and is an underlying tool used by various email 
 security protocols.

◆■ DNS-based Authentication of Named Entities (DANE): Is designed to over-
come problems in the certificate authority (CA) system by providing an 
 alternative channel for authenticating public keys based on DNSSEC, with the 
result that the same trust relationships used to certify IP addresses are used to 
certify servers operating on those addresses.

◆■ Sender Policy Framework (SPF): Uses the Domain Name System (DNS) to 
allow domain owners to create records that associate the domain name with 
a specific IP address range of authorized message senders. It is a simple mat-
ter for receivers to check the SPF TXT record in the DNS to confirm that the 
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Threat
Impact on Purported 

Sender Impact on Receiver Mitigation

Email sent by unauthor-
ized MTA in enterprise 
(e.g., malware botnet)

Loss of reputation, valid 
email from enterprise 
may be blocked as pos-
sible spam/phishing 
attack.

UBE and/or email con-
taining malicious links 
may be delivered into 
user inboxes.

Deployment of domain-
based authentication 
techniques. Use of digi-
tal signatures over email.

Email message sent 
using spoofed or unreg-
istered sending domain

Loss of reputation, valid 
email from enterprise 
may be blocked as pos-
sible spam/phishing 
attack.

UBE and/or email con-
taining malicious links 
may be delivered into 
user inboxes.

Deployment of domain-
based authentication 
techniques. Use of digi-
tal signatures over email.

Email message sent 
using forged sending 
address or email address 
(i.e., phishing, spear 
phishing)

Loss of reputation, valid 
email from enterprise 
may be blocked as pos-
sible spam/phishing 
attack.

UBE and/or email 
containing malicious 
links may be delivered. 
Users may inadvertently 
divulge sensitive infor-
mation or PII.

Deployment of domain-
based authentication 
techniques. Use of digi-
tal signatures over email.

Email modified in transit Leak of sensitive infor-
mation or PII.

Leak of sensitive infor-
mation, altered message 
may contain malicious 
information.

Use of TLS to encrypt 
email transfer between 
servers. Use of end-to-
end email encryption.

Disclosure of sensitive 
information (e.g., PII) 
via monitoring and cap-
turing of email traffic

Leak of sensitive infor-
mation or PII.

Leak of sensitive infor-
mation, altered message 
may contain malicious 
information.

Use of TLS to encrypt 
email transfer between 
servers. Use of end-to-
end email encryption.

Unsolicited Bulk Email 
(UBE) (i.e., spam)

None, unless purported 
sender is spoofed.

UBE and/or email con-
taining malicious links 
may be delivered into 
user inboxes.

Techniques to address 
UBE.

DoS/DDoS attack 
against an enterprises’ 
email servers

Inability to send email. Inability to receive 
email.

Multiple mail servers, 
use of cloud-based email 
providers.

Table 19.3 Email Threats and Mitigations

purported sender of a message is permitted to use that source address and 
reject mail that does not come from an authorized IP address.

◆■ DomainKeys Identified Mail (DKIM): Enables an MTA to sign selected 
 headers and the body of a message. This validates the source domain of the 
mail and provides message body integrity.

◆■ Domain-based Message Authentication, Reporting, and Conformance 
(DMARC): Lets senders know the proportionate effectiveness of their SPF 
and DKIM policies, and signals to receivers what action should be taken in 
various individual and bulk attack scenarios.

Figure 19.2 shows how these components interact to provide message authen-
ticity and integrity. Not shown, for simplicity, is that S/MIME also provides message 
confidentiality by encrypting messages.
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Figure 19.2  The Interrelationship of DNSSEC, SPF, DKIM, DMARC, DANE, and  
S/MIME for Assuring Message Authenticity and Integrity
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 19.4 S/MIME

Secure/Multipurpose Internet Mail Extension (S/MIME) is a security enhancement 
to the MIME Internet email format standard based on technology from RSA Data 
Security. S/MIME is a complex capability that is defined in a number of documents. 
The most important documents relevant to S/MIME include the following:

◆■ RFC 5750, S/MIME Version 3.2 Certificate Handling: Specifies conventions 
for X.509 certificate usage by (S/MIME) v3.2.

◆■ RFC 5751, S/MIME) Version 3.2 Message Specification: The principal defining 
document for S/MIME message creation and processing.
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◆■ RFC 4134, Examples of S/MIME Messages: Gives examples of message  bodies 
formatted using S/MIME.

◆■ RFC 2634, Enhanced Security Services for S/MIME: Describes four optional 
security service extensions for S/MIME.

◆■ RFC 5652, Cryptographic Message Syntax (CMS): Describes the Cryptographic 
Message Syntax (CMS). This syntax is used to digitally sign, digest, authenti-
cate, or encrypt arbitrary message content.

◆■ RFC 3370, CMS Algorithms: Describes the conventions for using several 
 cryptographic algorithms with the CMS.

◆■ RFC 5752, Multiple Signatures in CMS: Describes the use of multiple, parallel 
signatures for a message.

◆■ RFC 1847, Security Multiparts for MIME—Multipart/Signed and Multipart/
Encrypted: Defines a framework within which security services may be applied 
to MIME body parts. The use of a digital signature is relevant to S/MIME, as 
explained subsequently.

Operational Description

S/MIME provides for four message-related services: authentication, confidentiality, 
compression, and email compatibility (Table 19.4). This subsection provides an over-
view. We then look in more detail at this capability by examining message  formats 
and message preparation.

auThenTicaTion Authentication is provided by means of a digital  signature, using 
the general scheme discussed in Chapter 13 and illustrated in Figure 13.1. Most 
commonly RSA with SHA-256 is used. The sequence is as follows:

1. The sender creates a message.

2. SHA-256 is used to generate a 256-bit message digest of the message.

3. The message digest is encrypted with RSA using the sender’s private key, 
and the result is appended to the message. Also appended is identifying 

Function Typical Algorithm Typical Action

Digital signature RSA/SHA-256 A hash code of a message is created using SHA-256. 
This message digest is encrypted using SHA-256 
with the sender’s private key and included with 
the message.

Message encryption AES-128 with CBC A message is encrypted using AES-128 with CBC 
with a one-time session key generated by the 
sender. The session key is encrypted using RSA 
with the recipient’s public key and included with 
the message.

Compression unspecified A message may be compressed for storage or trans-
mission.

Email compatibility Radix-64 conversion To provide transparency for email applications, an 
encrypted message may be converted to an ASCII 
string using radix-64 conversion.

Table 19.4 Summary of S/MIME Services
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information for the signer, which will enable the receiver to retrieve the 
 signer’s public key.

4. The receiver uses RSA with the sender’s public key to decrypt and recover the 
message digest.

5. The receiver generates a new message digest for the message and compares it with 
the decrypted hash code. If the two match, the message is accepted as authentic.

The combination of SHA-256 and RSA provides an effective digital signa-
ture scheme. Because of the strength of RSA, the recipient is assured that only 
the possessor of the matching private key can generate the signature. Because of 
the strength of SHA-256, the recipient is assured that no one else could generate a 
new message that matches the hash code and, hence, the signature of the original 
message.

Although signatures normally are found attached to the message or file that 
they sign, this is not always the case: Detached signatures are supported. A  detached 
signature may be stored and transmitted separately from the message it signs. 
This is useful in several contexts. A user may wish to maintain a separate signa-
ture log of all messages sent or received. A detached signature of an executable 
program can detect subsequent virus infection. Finally, detached signatures can be 
used when more than one party must sign a document, such as a legal contract.  
Each person’s signature is independent and therefore is applied only to the docu-
ment. Otherwise, signatures would have to be nested, with the second signer signing 
both the  document and the first signature, and so on.

confidenTialiTy S/MIME provides confidentiality by encrypting messages. Most 
commonly AES with a 128-bit key is used, with the cipher block chaining (CBC) 
mode. The key itself is also encrypted, typically with RSA, as explained below.

As always, one must address the problem of key distribution. In S/MIME, each 
symmetric key, referred to as a content-encryption key, is used only once. That is, a 
new key is generated as a random number for each message. Because it is to be used 
only once, the content-encryption key is bound to the message and transmitted with 
it. To protect the key, it is encrypted with the receiver’s public key. The sequence can 
be described as follows:

1. The sender generates a message and a random 128-bit number to be used as a 
content-encryption key for this message only.

2. The message is encrypted using the content-encryption key.

3. The content-encryption key is encrypted with RSA using the recipient’s public 
key and is attached to the message.

4. The receiver uses RSA with its private key to decrypt and recover the 
 content-encryption key.

5. The content-encryption key is used to decrypt the message.

Several observations may be made. First, to reduce encryption time, the combi-
nation of symmetric and public-key encryption is used in preference to simply using 
public-key encryption to encrypt the message directly: Symmetric algorithms are sub-
stantially faster than asymmetric ones for a large block of content. Second, the use of 
the public-key algorithm solves the session-key distribution problem, because only 
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the recipient is able to recover the session key that is bound to the message. Note that 
we do not need a session-key exchange protocol of the type discussed in Chapter 14, 
because we are not beginning an ongoing session. Rather, each message is a one-time 
independent event with its own key. Furthermore, given the store-and-forward nature 
of electronic mail, the use of handshaking to assure that both sides have the same ses-
sion key is not practical. Finally, the use of one-time symmetric keys strengthens what 
is already a strong symmetric encryption  approach. Only a small amount of plaintext 
is encrypted with each key, and there is no relationship among the keys. Thus, to the 
extent that the public-key algorithm is secure, the entire scheme is secure.

confidenTialiTy and auThenTicaTion As Figure 19.3 illustrates, both confidential-
ity and encryption may be used for the same message. The figure shows a  sequence in 

Figure 19.3 Simplified S/MIME Functional Flow
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which a signature is generated for the plaintext message and appended to the message.  
Then the plaintext message and signature are encrypted as a single block using symmetric 
encryption and the symmetric encryption key is encrypted using public-key encryption.

S/MIME allows the signing and message encryption operations to be per-
formed in either order. If signing is done first, the identity of the signer is hidden 
by the encryption. Plus, it is generally more convenient to store a signature with a 
plaintext version of a message. Furthermore, for purposes of third-party verification, 
if the signature is performed first, a third party need not be concerned with the sym-
metric key when verifying the signature.

If encryption is done first, it is possible to verify a signature without exposing 
the message content. This can be useful in a context in which automatic signature 
verification is desired, as no private key material is required to verify a signature. 
However, in this case the recipient cannot determine any relationship between the 
signer and the unencrypted content of the message.

email compaTibiliTy When S/MIME is used, at least part of the block to be transmitted 
is encrypted. If only the signature service is used, then the message digest is encrypted 
(with the sender’s private key). If the confidentiality service is used, the message plus 
signature (if present) are encrypted (with a one-time symmetric key). Thus, part or all 
of the resulting block consists of a stream of arbitrary 8-bit octets. However, many elec-
tronic mail systems only permit the use of blocks consisting of ASCII text. To accom-
modate this restriction, S/MIME provides the service of converting the raw 8-bit binary 
stream to a stream of printable ASCII characters, a process referred to as 7-bit encoding.

The scheme typically used for this purpose is base64 conversion. Each group 
of three octets of binary data is mapped into four ASCII characters. Base64 is 
described in RFC 4648 (The base16, base32, and base64 Data Encodings).

One noteworthy aspect of the base64 algorithm is that it blindly converts the 
input stream to base64 format regardless of content, even if the input happens to 
be ASCII text. Thus, if a message is signed but not encrypted and the conversion  
is  applied to the entire block, the output will be unreadable to the casual observer, 
which provides a certain level of confidentiality.

RFC 5751 also recommends that even if outer 7-bit encoding is not used, the 
original MIME content should be 7-bit encoded. The reason for this is that it allows 
the MIME entity to be handled in any environment without changing it. For exam-
ple, a trusted gateway might remove the encryption, but not the signature, of a mes-
sage, and then forward the signed message on to the end recipient so that they can 
verify the signatures directly. If the transport internal to the site is not 8-bit clean, 
such as on a wide area network with a single mail gateway, verifying the signature 
will not be possible unless the original MIME entity was only 7-bit data.

compreSSion S/MIME also offers the ability to compress a message. This has the 
benefit of saving space both for email transmission and for file storage. Compression 
can be applied in any order with respect to the signing and message encryption 
 operations. RFC 5751 provides the following guidelines:

◆■ Compression of binary encoded encrypted data is discouraged, since it will not yield 
significant compression. Base64 encrypted data could very well benefit, however.

◆■ If a lossy compression algorithm is used with signing, you will need to  compress 
first, then sign.
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S/MIME Message Content Types

S/MIME uses the following message content types, which are defined in RFC 5652, 
Cryptographic Message Syntax:

◆■ Data: Refers to the inner MIME-encoded message content, which may then 
be encapsulated in a SignedData, EnvelopedData, or CompressedData 
content type.

◆■ SignedData: Used to apply a digital signature to a message.

◆■ EnvelopedData: This consists of encrypted content of any type and encrypted-
content encryption keys for one or more recipients.

◆■ CompressedData: Used to apply data compression to a message.

The Data content type is also used for a procedure known as clear signing. 
For clear signing, a digital signature is calculated for a MIME-encoded message and 
the two parts, the message and signature, form a multipart MIME message. Unlike 
SignedData, which involves encapsulating the message and signature in a special 
format, clear-signed messages can be read and their signatures verified by email 
entities that do not implement S/MIME.

The following rules, in the following order, should be followed by a sending agent.

1. If the sending agent has a list of preferred decrypting capabilities from an 
 intended recipient, it SHOULD choose the first (highest preference) capabil-
ity on the list that it is capable of using.

2. If the sending agent has no such list of capabilities from an intended recipi-
ent but has received one or more messages from the recipient, then the 
outgoing message SHOULD use the same encryption algorithm as was 
used on the last signed and encrypted message received from that intended 
recipient.

3. If the sending agent has no knowledge about the decryption capabilities of the 
intended recipient and is willing to risk that the recipient may not be able to 
decrypt the message, then the sending agent SHOULD use triple DES.

4. If the sending agent has no knowledge about the decryption capabilities of the 
intended recipient and is not willing to risk that the recipient may not be able 
to decrypt the message, then the sending agent MUST use RC2/40.

If a message is to be sent to multiple recipients and a common encryption 
 algorithm cannot be selected for all, then the sending agent will need to send 
two messages. However, in that case, it is important to note that the security 
of the  message is made vulnerable by the transmission of one copy with lower 
security.

S/MIME Messages

S/MIME makes use of a number of new MIME content types. All of the new applica-
tion types use the designation PKCS. This refers to a set of public-key cryptography 
specifications issued by RSA Laboratories and made available for the S/MIME effort.

We examine each of these in turn after first looking at the general procedures 
for S/MIME message preparation.
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Securing a mIME enTiTy S/MIME secures a MIME entity with a signature, 
 encryption, or both. A MIME entity may be an entire message (except for the RFC 
5322 headers), or if the MIME content type is multipart, then a MIME entity is one 
or more of the subparts of the message. The MIME entity is prepared according 
to the normal rules for MIME message preparation. Then the MIME entity plus 
some security-related data, such as algorithm identifiers and certificates, are pro-
cessed by S/MIME to produce what is known as a PKCS object. A PKCS object is 
then treated as message content and wrapped in MIME (provided with appropriate 
MIME headers). This process should become clear as we look at specific objects and 
provide examples.

In all cases, the message to be sent is converted to canonical form. In particu-
lar, for a given type and subtype, the appropriate canonical form is used for the mes-
sage content. For a multipart message, the appropriate canonical form is used for each 
subpart.

The use of transfer encoding requires special attention. For most cases, the 
result of applying the security algorithm will be to produce an object that is partially 
or totally represented in arbitrary binary data. This will then be wrapped in an outer 
MIME message and transfer encoding can be applied at that point, typically base64. 
However, in the case of a multipart signed message (described in more detail later), 
the message content in one of the subparts is unchanged by the security process. 
Unless that content is 7 bit, it should be transfer encoded using base64 or quoted-
printable so that there is no danger of altering the content to which the signature 
was applied.

We now look at each of the S/MIME content types.

envelopeddaTa An application/pkcs7-mime subtype is used for one of four catego-
ries of S/MIME processing, each with a unique smime-type parameter. In all cases, 
the resulting entity, (referred to as an object) is represented in a form known as Basic 
Encoding Rules (BER), which is defined in ITU-T Recommendation X.209. The 
BER format consists of arbitrary octet strings and is therefore binary data. Such an 
object should be transfer encoded with base64 in the outer MIME message. We first 
look at envelopedData.

The steps for preparing an envelopedData MIME entity are:

1. Generate a pseudorandom session key for a particular symmetric encryption 
algorithm (RC2/40 or triple DES).

2. For each recipient, encrypt the session key with the recipient’s public RSA key.

3. For each recipient, prepare a block known as RecipientInfo that contains 
an identifier of the recipient’s public-key certificate,1 an identifier of the 
 algorithm used to encrypt the session key, and the encrypted session key.

4. Encrypt the message content with the session key.

The RecipientInfo blocks followed by the encrypted content constitute the 
envelopedData. This information is then encoded into base64. A sample message 
(excluding the RFC 5322 headers) is given below.

1This is an X.509 certificate, discussed later in this section.
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Content-Type: application/pkcs7-mime; smime-type=enveloped-

data; name=smime.p7m

Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename=smime.p7m

rfvbnj756tbBghyHhHUujhJhjH77n8HHGT9HG4VQpfyF467GhIGfHfYT6

7n8HHGghyHhHUujhJh4VQpfyF467GhIGfHfYGTrfvbnjT6jH7756tbB9H

f8HHGTrfvhJhjH776tbB9HG4VQbnj7567GhIGfHfYT6ghyHhHUujpfyF4

0GhIGfHfQbnj756YT64V

To recover the encrypted message, the recipient first strips off the base64 
 encoding. Then the recipient’s private key is used to recover the session key. Finally, 
the message content is decrypted with the session key.

SigneddaTa The signedData smime-type can be used with one or more signers. 
For clarity, we confine our description to the case of a single digital signature. The 
steps for preparing a signedData MIME entity are as follows.

1. Select a message digest algorithm (SHA or MD5).

2. Compute the message digest (hash function) of the content to be signed.

3. Encrypt the message digest with the signer’s private key.

4. Prepare a block known as SignerInfo that contains the signer’s public-key 
certificate, an identifier of the message digest algorithm, an identifier of the 
 algorithm used to encrypt the message digest, and the encrypted message 
digest.

The signedData entity consists of a series of blocks, including a message 
digest algorithm identifier, the message being signed, and SignerInfo. The 
signedData entity may also include a set of public-key certificates sufficient to 
constitute a chain from a recognized root or top-level certification authority to the 
signer. This information is then encoded into base64. A sample message (excluding 
the RFC 5322 headers) is the following.

Content-Type: application/pkcs7-mime; smime-type=signed-

data; name=smime.p7m

Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename=smime.p7m

567GhIGfHfYT6ghyHhHUujpfyF4f8HHGTrfvhJhjH776tbB9HG4VQbnj7

77n8HHGT9HG4VQpfyF467GhIGfHfYT6rfvbnj756tbBghyHhHUujhJhjH

HUujhJh4VQpfyF467GhIGfHfYGTrfvbnjT6jH7756tbB9H7n8HHGghyHh

6YT64V0GhIGfHfQbnj75

To recover the signed message and verify the signature, the recipient first strips 
off the base64 encoding. Then the signer’s public key is used to decrypt the message 
digest. The recipient independently computes the message digest and  compares it to 
the decrypted message digest to verify the signature.
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clear Signing Clear signing is achieved using the multipart content type with a signed 
subtype. As was mentioned, this signing process does not involve transforming the mes-
sage to be signed, so that the message is sent “in the clear.” Thus, recipients with MIME 
capability but not S/MIME capability are able to read the  incoming message.

A multipart/signed message has two parts. The first part can be any MIME 
type but must be prepared so that it will not be altered during transfer from source 
to destination. This means that if the first part is not 7 bit, then it needs to be  encoded 
using base64 or quoted-printable. Then this part is processed in the same manner as 
signedData, but in this case an object with signedData format is created that 
has an empty message content field. This object is a detached signature. It is then 
transfer encoded using base64 to become the second part of the multipart/signed 
message. This second part has a MIME content type of application and a subtype of 
pkcs7-signature. Here is a sample message:

Content-Type: multipart/signed;

protocol=”application/pkcs7-signature”;

micalg=sha1; boundary=boundary42

—boundary42

Content-Type: text/plain

This is a clear-signed message.

—boundary42

Content-Type: application/pkcs7-signature; name=smime.p7s

Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename=smime.p7s

ghyHhHUujhJhjH77n8HHGTrfvbnj756tbB9HG4VQpfyF467GhIGfHfYT6

4VQpfyF467GhIGfHfYT6jH77n8HHGghyHhHUujhJh756tbB9HGTrfvbnj

n8HHGTrfvhJhjH776tbB9HG4VQbnj7567GhIGfHfYT6ghyHhHUujpfyF4

7GhIGfHfYT64VQbnj756

—boundary42—

The protocol parameter indicates that this is a two-part clear-signed entity. 
The micalg parameter indicates the type of message digest used. The receiver can 
verify the signature by taking the message digest of the first part and comparing this 
to the message digest recovered from the signature in the second part.

regiSTraTion requeST Typically, an application or user will apply to a certifi-
cation authority for a public-key certificate. The application/pkcs10 S/MIME  
 entity is used to transfer a certification request. The certification  request  includes 
 certificationRequestInfo block, followed by an  identifier of the public-key 
 encryption algorithm, followed by the signature of the  certificationRequestInfo 
block, made using the sender’s private key. The certificationRequestInfo 
block includes a name of the certificate subject (the entity whose public key is to be 
certified) and a bit-string representation of the user’s public key.
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cerTificaTeS-only meSSage A message containing only certificates or a certificate 
revocation list (CRL) can be sent in response to a registration request. The message 
is an application/pkcs7-mime type/subtype with an smime-type parameter of degen-
erate. The steps involved are the same as those for creating a signedData  message, 
except that there is no message content and the signerInfo field is empty.

S/MIME Certificate Processing

S/MIME uses public-key certificates that conform to version 3 of X.509 (see 
Chapter 14). S/MIME managers and/or users must configure each client with a list of 
trusted keys and with certificate revocation lists. That is, the responsibility is local for 
maintaining the certificates needed to verify incoming signatures and to encrypt outgo-
ing messages. On the other hand, the certificates are signed by certification authorities.

uSer agenT role An S/MIME user has several key management functions to 
perform.

◆■ Key generation: The user of some related administrative utility (e.g., one 
 associated with LAN management) MUST be capable of generating separate 
Diffie–Hellman and DSS key pairs and SHOULD be capable of generating 
RSA key pairs. Each key pair MUST be generated from a good source of 
nondeterministic random input and be protected in a secure fashion. A user 
agent SHOULD generate RSA key pairs with a length in the range of 768 to 
1024 bits and MUST NOT generate a length of less than 512 bits.

◆■ Registration: A user’s public key must be registered with a certification 
 authority in order to receive an X.509 public-key certificate.

◆■ Certificate storage and retrieval: A user requires access to a local list of certifi-
cates in order to verify incoming signatures and to encrypt outgoing messages. 
Such a list could be maintained by the user or by some local administrative 
entity on behalf of a number of users.

Enhanced Security Services

RFC 2634 defines four enhanced security services for S/MIME:

◆■ Signed receipts: A signed receipt may be requested in a SignedData  object. 
Returning a signed receipt provides proof of delivery to the originator of a 
message and allows the originator to demonstrate to a third party that the 
 recipient received the message. In essence, the recipient signs the entire 
 original message plus the original (sender’s) signature and appends the new 
signature to form a new S/MIME message.

◆■ Security labels: A security label may be included in the authenticated 
 attributes of a SignedData object. A security label is a set of security infor-
mation  regarding the sensitivity of the content that is protected by S/MIME 
encapsulation. The labels may be used for access control, by indicating which 
users are permitted access to an object. Other uses include priority (secret, 
confidential, restricted, and so on) or role based, describing which kind of 
people can see the information (e.g., patient’s health-care team, medical bill-
ing agents).
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◆■ Secure mailing lists: When a user sends a message to multiple recipients, a cer-
tain amount of per-recipient processing is required, including the use of each 
recipient’s public key. The user can be relieved of this work by employing the 
services of an S/MIME Mail List Agent (MLA). An MLA can take a single 
incoming message, perform the recipient-specific encryption for each recipi-
ent, and forward the message. The originator of a message need only send the 
message to the MLA with encryption performed using the MLA’s public key.

◆■ Signing certificates: This service is used to securely bind a sender’s certificate 
to their signature through a signing certificate attribute.

 19.5 DNSSEC

DNS Security Extensions (DNSSEC) are used by several protocols that provide 
email security. This section provides a brief overview of the Domain Name System 
(DNS) and then looks at DNSSEC.

Domain Name System

DNS is a directory lookup service that provides a mapping between the name of a 
host on the Internet and its numeric IP address. DNS is essential to the functioning 
of the Internet. The DNS is used by MUAs and MTAs to find the address of the 
next hop server for mail delivery. Sending MTAs query DNS for the Mail Exchange 
Resource Record (MX RR) of the recipient’s domain (the right hand side of the 
“@” symbol) in order to find the receiving MTA to contact.

Four elements comprise the DNS:

◆■ Domain name space: DNS uses a tree-structured name space to identify 
 resources on the Internet.

◆■ DNS database: Conceptually, each node and leaf in the name space tree struc-
ture names a set of information (e.g., IP address, name server for this domain 
name) that is contained in resource record. The collection of all RRs is orga-
nized into a distributed database.

◆■ Name servers: These are server programs that hold information about a por-
tion of the domain name tree structure and the associated RRs.

◆■ Resolvers: These are programs that extract information from name servers in 
response to client requests. A typical client request is for an IP address corre-
sponding to a given domain name.

The dnS daTabaSe DNS is based on a hierarchical database containing resource 
records (RRs) that include the name, IP address, and other information about hosts. 
The key features of the database are as follows:

◆■ Variable-depth hierarchy for names: DNS allows essentially unlimited levels and 
uses the period (.) as the level delimiter in printed names, as described earlier.

◆■ Distributed database: The database resides in DNS servers scattered through-
out the Internet.
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◆■ Distribution controlled by the database: The DNS database is divided into 
thousands of separately managed zones, which are managed by  separate 
 administrators. Distribution and update of records is controlled by the  database 
software.

Using this database, DNS servers provide a name-to-address directory service 
for network applications that need to locate specific servers. For example, every 
time an email message is sent or a Web page is accessed, there must be a DNS name 
lookup to determine the IP address of the email server or Web server.

Table 19.5 lists the various types of resource records.

dnS operaTion DNS operation typically includes the following steps (Figure 19.4):

1. A user program requests an IP address for a domain name.

2. A resolver module in the local host or local ISP queries a local name server in 
the same domain as the resolver.

3. The local name server checks to see if the name is in its local database or cache, 
and, if so, returns the IP address to the requestor. Otherwise, the name server 
queries other available name servers, if necessary going to the root server, as 
explained subsequently.

4. When a response is received at the local name server, it stores the name/ 
address mapping in its local cache and may maintain this entry for the amount 
of time specified in the time-to-live field of the retrieved RR.

5. The user program is given the IP address or an error message.

The distributed DNS database that supports the DNS functionality must be 
updated frequently because of the rapid and continued growth of the Internet. 
Further, the DNS must cope with dynamic assignment of IP addresses, such as is 

Type Description

A A host address. This RR type maps the name of a system to its IPv4 address. Some sys-
tems (e.g., routers) have multiple addresses, and there is a separate RR for each.

AAAA Similar to A type, but for IPv6 addresses.
CNAME Canonical name. Specifies an alias name for a host and maps this to the canonical 

(true) name.
HINFO Host information. Designates the processor and operating system used by the host.
MINFO Mailbox or mail list information. Maps a mailbox or mail list name to a host name.
MX Mail exchange. Identifies the system(s) via which mail to the queried domain name 

should be relayed.
NS Authoritative name server for this domain.
PTR Domain name pointer. Points to another part of the domain name space.
SOA Start of a zone of authority (which part of naming hierarchy is implemented). Includes 

parameters related to this zone.
SRV For a given service provides name of server or servers in domain that provide that service.
TXT Arbitrary text. Provides a way to add text comments to the database.
WKS Well-known services. May list the application services available at this host.

Table 19.5 Resource Record Types
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done for home DSL users by their ISP. Accordingly, dynamic updating functions 
for DNS have been defined. In essence, DNS name servers automatically send out 
updates to other relevant name servers as conditions warrant.

DNS Security Extensions

DNSSEC provides end-to-end protection through the use of digital signatures that 
are created by responding zone administrators and verified by a recipient’s resolver 
software. In particular, DNSSEC avoids the need to trust intermediate name  servers 
and resolvers that cache or route the DNS records originating from the responding 
zone administrator before they reach the source of the query. DNSSEC consists of 
a set of new resource record types and modifications to the existing DNS protocol, 
and is defined in the following documents:

◆■ RFC 4033, DNS Security Introduction and Requirements: Introduces the 
DNS security extensions and describes their capabilities and limitations. The 
document also discusses the services that the DNS security extensions do and 
do not provide.

◆■ RFC 4034, Resource Records for the DNS Security Extensions: Defines four 
new resource records that provide security for DNS.

◆■ RFC 4035, Protocol Modifications for the DNS Security Extensions: Defines 
the concept of a signed zone, along with the requirements for serving and 
 resolving by using DNSSEC. These techniques allow a security-aware resolver 
to authenticate both DNS resource records and authoritative DNS error 
indications.

Figure 19.4 DNS Name Resolution
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dnSSec operaTion In essence, DNSSEC is designed to protect DNS clients 
from accepting forged or altered DNS resource records. It does this by using digital 
 signatures to provide:

◆■ Data origin authentication: Ensures that data has originated from the correct 
source.

◆■ Data integrity verification: Ensures that the content of a RR has not been 
modified.

The DNS zone administrator digitally signs every Resource Record set (RRset) in 
the zone, and publishes this collection of digital signatures, along with the zone admin-
istrator’s public key, in the DNS itself. In DNSSEC, trust in the public key (for signature 
verification) of the source is established not by going to a third party or a chain of third 
parties (as in public key infrastructure [PKI] chaining), but by starting from a trusted 
zone (such as the root zone) and establishing the chain of trust down to the current 
source of response through successive verifications of signature of the public key of a 
child by its parent. The public key of the trusted zone is called the trust anchor.

reSource recordS for dnSSec RFC 4034 defines four new DNS resource 
records:

◆■ DNSKEY: Contains a public key.

◆■ RRSIG: A resource record digital signature.

◆■ NSEC: Authenticated denial of existence record.

◆■ DS: Delegation signer.

An RRSIG is associated with each RRset, where an RRset is the set of 
 resource records that have the same label, class, and type. When a client requests 
data, an RRset is returned, together with the associated digital signature in an 
RRSIG record. The client obtains the relevant DNSKEY public key and verifies the 
signature for this RRset.

DNSSEC depends on establishing the authenticity of the DNS hierarchy leading 
to the domain name in question, and thus its operation depends on beginning the use 
of cryptographic digital signatures in the root zone. The DS resource record facilitates 
key signing and authentication between DNS zones to create an authentication chain, 
or trusted sequence of signed data, from the root of the DNS tree down to a specific 
domain name. To secure all DNS lookups, including those for non-existent domain 
names and record types, DNSSEC uses the NSEC resource record to authenticate 
negative responses to queries. NSEC is used to identify the range of DNS names or 
resource record types that do not exist among the sequence of domain names in a zone.

 19.6 DNS-BASED AUTHENTICATION OF NAMED ENTITIES

DANE is a protocol to allow X.509 certificates, commonly used for Transport Layer 
Security (TLS), to be bound to DNS names using DNSSEC. It is proposed in RFC 
6698 as a way to authenticate TLS client and server entities without a certificate 
authority (CA).

M19_STAL7484_08_GE_C19.indd   622 20/04/22   14:10



19.6 / dnS-BASEd AuTHEnTiCATion oF nAMEd EnTiTiES 623

The rationale for DANE is the vulnerability of the use of CAs in a global PKI sys-
tem. Every browser developer and operating system supplier maintains a list of CA root 
certificates as trust anchors. These are called the software’s root certificates and are stored 
in its root certificate store. The PKIX procedure allows a certificate recipient to trace a 
certificate back to the root. So long as the root certificate remains trustworthy, and the 
authentication concludes successfully, the client can proceed with the connection.

However, if any of the hundreds of CAs operating on the Internet is compro-
mised, the effects can be widespread. The attacker can obtain the CA’s private key, 
get issued certificates under a false name, or introduce new bogus root certificates 
into a root certificate store. There is no limitation of scope for the global PKI and 
a compromise of a single CA damages the integrity of the entire PKI system. In 
 addition, some CAs have engaged in poor security practices. For example, some CAs 
have issued wildcard certificates that allow the holder to issue sub-certificates for 
any domain or entity, anywhere in the world.

The purpose of DANE is to replace reliance on the security of the CA system 
with reliance on the security provided by DNSSEC. Given that the DNS administra-
tor for a domain name is authorized to give identifying information about the zone, it 
makes sense to allow that administrator to also make an authoritative binding between 
the domain name and a certificate that might be used by a host at that domain name.

TLSA Record

DANE defines a new DNS record type, TLSA, that can be used for a secure method 
of authenticating SSL/TLS certificates. The TLSA provides for:

◆■ Specifying constraints on which CA can vouch for a certificate, or which 
 specific PKIX end-entity certificate is valid.

◆■ Specifying that a service certificate or a CA can be directly authenticated in 
the DNS itself.

The TLSA RR enables certificate issue and delivery to be tied to a given 
 domain. A server domain owner creates a TLSA resource record that identifies 
the certificate and its public key. When a client receives an X.509 certificate in the 
TLS negotiation, it looks up the TLSA RR for that domain and matches the TLSA 
data against the certificate as part of the client’s certificate validation procedure.

Figure 19.5 shows the format of a TLSA RR as it is transmitted to a requesting 
entity. It contains four fields. The Certificate Usage field defines four different usage 
models, to accommodate users who require different forms of authentication. The 
usage models are:

◆■ PKIX-TA (CA constraint): Specifies which CA should be trusted to authenticate 
the certificate for the service. This usage model limits which CA can be used to 
issue certificates for a given service on a host. The server certificate chain must pass 
PKIX validation that terminates with a trusted root certificate stored in the client.

◆■ PKIX-EE (service certificate constraint): Defines which specific end entity 
service certificate should be trusted for the service. This usage model limits 
which end entity certificate can be used by a given service on a host. The server 
certificate chain must pass PKIX validation that terminates with a trusted root 
certificate stored in the client.
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◆■ DANE-TA (trust anchor assertion): Specifies a domain-operated CA to be 
used as a trust anchor. This usage model allows a domain name administrator 
to specify a new trust anchor—for example, if the domain issues its own certifi-
cates under its own CA that is not expected to be in the end users’ collection 
of trust anchors. The server certificate chain is self-issued and does not need to 
verify against a trusted root stored in the client.

◆■ DANE-EE (domain-issued certificate): Specifies a domain-operated CA to 
be used as a trust anchor. This certificate usage allows a domain name admin-
istrator to issue certificates for a domain without involving a third-party CA. 
The server certificate chain is self-issued and does not need to verify against a 
trusted root stored in the client.

The first two usage models are designed to co-exist with and strengthen the pub-
lic CA system. The final two usage models operate without the use of public CAs.

The Selector field indicates whether the full certificate will be matched or just 
the value of the public key. The match is made between the certificate presented 
in TLS negotiation and the certificate in the TLSA RR. The Matching Type field 
indicates how the match of the certificate is made. The options are exact match, 
 SHA-256 hash match, or SHA-512 hash match. The Certificate Association Data is 
the raw certificate data in hex format.

Use of DANE for SMTP

DANE can be used in conjunction with SMTP over TLS, as provided by STARTTLS, 
to more fully secure email delivery. DANE can authenticate the certificate of the 
SMTP submission server that the user’s mail client (MUA) communicates with. It 
can also authenticate the TLS connections between SMTP servers (MTAs). The 
use of DANE with SMTP is documented in an Internet Draft (SMTP Security via 
Opportunistic DANE TLS, draft-ietf-dane-smtp-with-dane-19, May 29, 2015).

As discussed in Section 19.1, SMTP can use the STARTTLS extension to run 
SMTP over TLS, so that the entire email message plus SMTP envelope are encrypted. 
This is done opportunistically, that is, if both sides support STARTTLS. Even when 
TLS is used to provide confidentiality, it is vulnerable to attack in the following ways:

◆■ Attackers can strip away the TLS capability advertisement and downgrade the 
connection to not use TLS.

◆■ TLS connections are often unauthenticated (e.g., the use of self-signed certifi-
cates as well as mismatched certificates is common).

Figure 19.5 TLSA RR Transmission Format

Certificate usage Selector Matching type

Certificate association data

0Bit: 318 16 24
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DANE can address both these vulnerabilities. A domain can use the presence 
of the TLSA RR as an indicator that encryption must be performed, thus prevent-
ing malicious downgrade. A domain can authenticate the certificate used in the TLS 
connection setup using a DNSSEC-signed TLSA RR.

Use of DNSSEC for S/MIME

DNSSEC can be used in conjunction with S/MIME to more fully secure email 
 delivery, in a manner similar to the DANE functionality. This use is documented in 
an Internet Draft (Using Secure DNS to Associate Certificates with Domain Names 
for S/MIME, draft-ietf-dane-smime-09, August 27, 2015), which proposes a new 
SMIMEA DNS RR. The purpose of the SMIMEA RR is to associate certificates 
with DNS domain names.

As discussed in Section 19.4, S/MIME messages often contain certificates 
that can assist in authenticating the message sender and can be used in encrypt-
ing messages sent in reply. This feature requires that the receiving MUA validate 
the  certificate associated with the purported sender. SMIMEA RRs can provide a 
 secure means of doing this validation.

In essence, the SMIMEA RR will have the same format and content as the 
TLSA RR, with the same functionality. The difference is that it is geared to the 
needs of MUAs in dealing with domain names as specified in email addresses 
in the message body, rather than domain names specified in the outer SMTP 
envelope.

 19.7 SENDER POLICY FRAMEWORK

SPF is the standardized way for a sending domain to identify and assert the mail 
senders for a given domain. The problem that SPF addresses is the following: With 
the current email infrastructure, any host can use any domain name for each of the 
various identifiers in the mail header, not just the domain name where the host is 
located. Two major drawbacks of this freedom are:

◆■ It is a major obstacle to reducing unsolicited bulk email (UBE), also known as 
spam. It makes it difficult for mail handlers to filter out emails on the basis of 
known UBE sources.

◆■ ADMDs (see Section 19.1) are understandably concerned about the ease with 
which other entities can make use of their domain names, often with malicious 
intent.

RFC 7208 defines the SPF. It provides a protocol by which ADMDs can 
 authorize hosts to use their domain names in the “MAIL FROM” or “HELO” identi-
ties. Compliant ADMDs publish Sender Policy Framework (SPF) records in the DNS 
specifying which hosts are permitted to use their names, and compliant mail receiv-
ers use the published SPF records to test the authorization of sending Mail Transfer 
Agents (MTAs) using a given “HELO” or “MAIL FROM” identity  during a mail 
transaction.
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SPF works by checking a sender’s IP address against the policy encoded in any 
SPF record found at the sending domain. The sending domain is the domain used in 
the SMTP connection, not the domain indicated in the message header as displayed 
in the MUA. This means that SPF checks can be applied before the message  content 
is received from the sender.

Figure 19.6 is an example in which SPF would come into play. Assume that the 
sender’s IP address is 192.168.0.1. The message arrives from the MTA with  domain 
mta.example.net. The sender uses the MAIL FROM tag of alice@example.org, 
 indicating that the message originates in the example.org domain. But the message 
header specifies alice.sender@example.net. The receiver uses SPF to query for the 
SPF RR that corresponds to example.com to check if the IP address 192.168.0.1 is 
listed as a valid sender, and then takes appropriate action based on the results of 
checking the RR.

SPF on the Sender Side

A sending domain needs to identify all the senders for a given domain and add that 
information into the DNS as a separate resource record. Next, the sending domain 
encodes the appropriate policy for each sender using the SPF syntax. The encod-
ing is done in a TXT DNS resource record as a list of mechanisms and modifiers. 
Mechanisms are used to define an IP address or range of addresses to be matched, 
and modifiers indicate the policy for a given match. Table 19.6 lists the most 
 important mechanisms and modifiers used in SPF.

The SPF syntax is fairly complex and can express complex relationships 
 between senders. For more detail, see RFC 7208.

S: 220 foo.com Simple Mail Transfer Service Ready

C: HELO mta.example.net

S: 250 OK

C: MAIL FROM:<alice@example.org>

S: 250 OK

C: RCPT TO:<Jones@foo.com>

S: 250 OK

C: DATA

S: 354 Start mail input; end with <crlf>.<crlf>

C: To: bob@foo.com

C: From: alice.sender@example.net

C: Date: Today

C: Subject: Meeting Today

 . . . 

Figure 19.6  Example in which SMTP Envelope Header Does 
Not Match Message Header
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SPF on the Receiver Side

If SPF is implemented at a receiver, the SPF entity uses the SMTP envelope MAIL 
FROM: address domain and the IP address of the sender to query an SPF TXT RR. 
The SPF checks can be started before the body of the email message is received, 
which may result in blocking the transmission of the email content. Alternatively, 
the entire message can be absorbed and buffered until all the checks are finished. 
In either case, checks must be completed before the mail message is sent to the end 
user’s inbox.

The checking involves the following rules:

1. If no SPF TXT RR is returned, the default behavior is to accept the message.

2. If the SPF TXT RR has formatting errors, the default behavior is to accept the 
message.

Tag Description

ip4 Specifies an IPv4 address or range of addresses that are authorized senders for 
a domain.

ip6 Specifies an IPv6 address or range of addresses that are authorized senders for 
a domain.

mx Asserts that the listed hosts for the Mail Exchange RRs are also valid senders for 
the domain.

include Lists another domain where the receiver should look for an SPF RR for further 
senders. This can be useful for large organizations with many domains or   
sub-domains that have a single set of shared senders. The include mechanism is 
recursive, in that the SPF check in the record found is tested in its entirety before 
proceeding. It is not simply a concatenation of the checks.

all Matches every IP address that has not otherwise been matched.

(a) SPF Mechanisms

Modifier Description

+ The given mechanism check must pass. This is the default mechanism and does not 
need to be explicitly listed.

- The given mechanism is not allowed to send email on behalf of the domain.

∼ The given mechanism is in transition and if an email is seen from the listed host/IP 
address, then it should be accepted but marked for closer inspection.

? The SPF RR explicitly states nothing about the mechanism. In this case, the default 
behavior is to accept the email. (This makes it equivalent to = + >  unless some sort 
of discrete or aggregate message review is conducted.)

(b) SPF Mechanism Modifiers

Table 19.6 Common SPF Mechanisms and Modifiers
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3. Otherwise the mechanisms and modifiers in the RR are used to determine 
disposition of the email message.

Figure 19.7 illustrates SPF operation.

 19.8 DOMAINKEYS IDENTIFIED MAIL

DomainKeys Identified Mail (DKIM) is a specification for cryptographically 
signing email messages, permitting a signing domain to claim responsibility for a 
message in the mail stream. Message recipients (or agents acting in their  behalf) 
can verify the signature by querying the signer’s domain directly to  retrieve the 
appropriate public key and thereby can confirm that the message was attested to 
by a party in possession of the private key for the signing domain. DKIM is an 
Internet Standard (RFC 6376: DomainKeys Identified Mail (DKIM) Signatures). 
DKIM has been widely adopted by a range of email providers, including 
 corporations, government agencies, gmail, Yahoo!, and many Internet Service 
Providers (ISPs).

Email Threats

RFC 4686 (Analysis of Threats Motivating DomainKeys Identified Mail) describes 
the threats being addressed by DKIM in terms of the characteristics, capabilities, 
and location of potential attackers.

Figure 19.7 Sender Policy Framework Operation
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characTeriSTicS RFC 4686 characterizes the range of attackers on a spectrum of 
three levels of threat.

1. At the low end are attackers who simply want to send email that a  recipient 
does not want to receive. The attacker can use one of a number of  commercially 
available tools that allow the sender to falsify the origin address of messages. 
This makes it difficult for the receiver to filter spam on the basis of originating 
address or domain.

2. At the next level are professional senders of bulk spam mail. These attackers 
often operate as commercial enterprises and send messages on behalf of third 
parties. They employ more comprehensive tools for attack, including Mail 
Transfer Agents (MTAs) and registered domains and networks of compro-
mised computers (zombies), to send messages and (in some cases) to harvest 
addresses to which to send.

3. The most sophisticated and financially motivated senders of messages are 
those who stand to receive substantial financial benefit, such as from an 
email-based fraud scheme. These attackers can be expected to employ all 
of the above mechanisms and additionally may attack the Internet infra-
structure  itself, including DNS cache-poisoning attacks and IP routing 
attacks.

capabiliTieS RFC 4686 lists the following as capabilities that an attacker might 
have.

1. Submit messages to MTAs and Message Submission Agents (MSAs) at 
 multiple locations in the Internet.

2. Construct arbitrary Message Header fields, including those claiming to be 
mailing lists, resenders, and other mail agents.

3. Sign messages on behalf of domains under their control.

4. Generate substantial numbers of either unsigned or apparently signed 
 messages that might be used to attempt a denial-of-service attack.

5. Resend messages that may have been previously signed by the domain.

6. Transmit messages using any envelope information desired.

7. Act as an authorized submitter for messages from a compromised computer.

8. Manipulation of IP routing. This could be used to submit messages from 
 specific IP addresses or difficult-to-trace addresses, or to cause diversion of 
messages to a specific domain.

9. Limited influence over portions of DNS using mechanisms such as cache 
 poisoning. This might be used to influence message routing or to falsify adver-
tisements of DNS-based keys or signing practices.

10. Access to significant computing resources, for example, through the conscrip-
tion of worm-infected “zombie” computers. This could allow the “bad actor” to 
perform various types of brute-force attacks.

11. Ability to eavesdrop on existing traffic, perhaps from a wireless network.
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locaTion DKIM focuses primarily on attackers located outside of the admin-
istrative units of the claimed originator and the recipient. These administrative 
units frequently correspond to the protected portions of the network adjacent to 
the originator and recipient. It is in this area that the trust relationships required 
for authenticated message submission do not exist and do not scale adequately 
to be practical. Conversely, within these administrative units, there are other 
mechanisms (such as authenticated message submission) that are easier to deploy  
and more likely to be used than DKIM. External bad actors are usually attempt-
ing to exploit the “any-to-any” nature of email that motivates most recipient 
MTAs to accept messages from anywhere for delivery to their local domain. They 
may generate messages without signatures, with incorrect signatures, or with cor-
rect signatures from domains with little traceability. They may also pose as mail-
ing lists, greeting cards, or other agents that legitimately send or resend messages 
on behalf of others.

DKIM Strategy

DKIM is designed to provide an email authentication technique that is transpar-
ent to the end user. In essence, a user’s email message is signed by a private key of 
the administrative domain from which the email originates. The signature covers all 
of the content of the message and some of the RFC 5322 message headers. At the 
 receiving end, the MDA can access the corresponding public key via a DNS and 
verify the signature, thus authenticating that the message comes from the claimed 
administrative domain. Thus, mail that originates from somewhere else but claims to 
come from a given domain will not pass the authentication test and can be  rejected. 
This approach differs from that of S/MIME, which use the originator’s private key to 
sign the content of the message. The motivation for DKIM is based on the following 
reasoning:

1. S/MIME depends on both the sending and receiving users employing S/
MIME. For almost all users, the bulk of incoming mail does not use S/
MIME, and the bulk of the mail the user wants to send is to recipients not 
using S/MIME.

2. S/MIME signs only the message content. Thus, RFC 5322 header information 
concerning origin can be compromised.

3. DKIM is not implemented in client programs (MUAs) and is therefore trans-
parent to the user; the user need not take any action.

4. DKIM applies to all mail from cooperating domains.

5. DKIM allows good senders to prove that they did send a particular message 
and to prevent forgers from masquerading as good senders.

Figure 19.8 is a simple example of the operation of DKIM. We begin with a 
message generated by a user and transmitted into the MHS to an MSA that is within 
the user’s administrative domain. An email message is generated by an email client 
program. The content of the message, plus selected RFC 5322 headers, is signed by 
the email provider using the provider’s private key. The signer is associated with a 
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Figure 19.8 Simple Example of DKIM Deployment
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domain, which could be a corporate local network, an ISP, or a public email facility 
such as gmail. The signed message then passes through the Internet via a sequence 
of MTAs. At the destination, the MDA retrieves the public key for the incoming 
signature and verifies the signature before passing the message on to the destination 
email client. The default signing algorithm is RSA with SHA-256. RSA with SHA-1 
also may be used.

DKIM Functional Flow

Figure 19.9 provides a more detailed look at the elements of DKIM operation. 
Basic message processing is divided between a signing Administrative Management 
Domain (ADMD) and a verifying ADMD. At its simplest, this is between the origi-
nating ADMD and the delivering ADMD, but it can involve other ADMDs in the 
handling path.

Signing is performed by an authorized module within the signing ADMD and uses 
private information from a Key Store. Within the originating ADMD, this might be per-
formed by the MUA, MSA, or an MTA. Verifying is  performed by an authorized module 
within the verifying ADMD. Within a delivering ADMD, verifying might be performed 
by an MTA, MDA or MUA. The module verifies the signature or determines whether a 
particular signature was  required. Verifying the signature uses public information from 
the Key Store. If the signature passes, reputation information is used to assess the signer 
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Figure 19.9 DKIM Functional Flow
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and that information is passed to the message filtering system. If the signature fails or 
there is no signature using the author’s domain, information about signing practices 
related to the author can be retrieved remotely and/or locally, and that information is 
passed to the message filtering system. For example, if the sender (e.g., gmail) uses DKIM 
but no DKIM signature is present, then the message may be  considered fraudulent.

The signature is inserted into the RFC 5322 message as an additional header 
entry, starting with the keyword Dkim-Signature. You can view examples from your 
own incoming mail by using the View Long Headers (or similar wording) option for 
an incoming message. Here is an example:

Dkim-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed;  
  d=gmail.com; s=gamma; h=domainkey- 
  signature:mime-version:received:date: 
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  message-id:subject :from:to:content-type: 
  content-transfer-encoding; 
  bh=5mZvQDyCRuyLb1Y28K4zgS2MPOemFToDBgvbJ 
  7GO90s=; 
   b=PcUvPSDygb4ya5Dyj1rbZGp/VyRiScuaz7TTG 

J5qW5slM+klzv6kcfYdGDHzEVJW+Z 
  FetuPfF1ETOVhELtwH0zjSccOyPkEiblOf6gILO
  bm3DDRm3Ys1/FVrbhVOlA+/jH9Aei 
  uIIw/5iFnRbSH6qPDVv/beDQqAWQfA/wF7O5k=

Before a message is signed, a process known as canonicalization is performed 
on both the header and body of the RFC 5322 message. Canonicalization is neces-
sary to deal with the possibility of minor changes in the message made en route, 
including character encoding, treatment of trailing white space in message lines, and 
the “folding” and “unfolding” of header lines. The intent of canonicalization is to 
make a minimal transformation of the message (for the purpose of signing; the mes-
sage itself is not changed, so the canonicalization must be performed again by the 
verifier) that will give it its best chance of producing the same canonical value at 
the receiving end. DKIM defines two header canonicalization algorithms (“simple” 
and “relaxed”) and two for the body (with the same names). The simple algorithm 
tolerates almost no modification, while the relaxed algorithm tolerates common 
modifications.

The signature includes a number of fields. Each field begins with a tag consist-
ing of a tag code followed by an equals sign and ends with a semicolon. The fields 
include the following:

◆■ v= DKIM version/

◆■ a= Algorithm used to generate the signature; must be either rsa-sha1 or 
rsa-sha256

◆■ c= Canonicalization method used on the header and the body.

◆■ d= A domain name used as an identifier to refer to the identity of a responsible 
person or organization. In DKIM, this identifier is called the Signing Domain 
IDentifier (SDID). In our example, this field indicates that the sender is using 
a gmail address.

◆■ s= In order that different keys may be used in different circumstances for the 
same signing domain (allowing expiration of old keys, separate departmen-
tal signing, or the like), DKIM defines a selector (a name associated with a 
key) that is used by the verifier to retrieve the proper key during signature 
verification.

◆■ h= Signed Header fields. A colon-separated list of header field names that 
identify the header fields presented to the signing algorithm. Note that in our 
example above, the signature covers the domainkey-signature field. This refers 
to an older algorithm (since replaced by DKIM) that is still in use.

◆■ bh= The hash of the canonicalized body part of the message. This provides 
 additional information for diagnosing signature verification failures.

◆■ b= The signature data in base64 format; this is the encrypted hash code.
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 19.9  DOMAIN-BASED MESSAGE AUTHENTICATION, 
REPORTING, AND CONFORMANCE

Domain-Based Message Authentication, Reporting, and Conformance (DMARC) 
 allows email senders to specify policy on how their mail should be handled, the 
types of reports that receivers can send back, and the frequency those reports 
should be sent. It is defined in RFC 7489 (Domain-based Message Authentication, 
Reporting, and Conformance, March 2015).

DMARC works with SPF and DKIM. SPF and DKM enable senders to advise 
receivers, via DNS, whether mail purporting to come from the sender is valid, and 
whether it should be delivered, flagged, or discarded. However, neither SPF nor 
DKIM include a mechanism to tell receivers if SPF or DKIM are in use, nor do they 
have feedback mechanism to inform senders of the effectiveness of the anti-spam 
techniques. For example, if a message arrives at a receiver without a DKIM signa-
ture, DKIM provides no mechanism to allow the receiver to learn if the message is 
authentic but was sent from a sender that did not implement DKIM, or if the mes-
sage is a spoof. DMARC addresses these issues essentially by standardizing how 
email receivers perform email authentication using SPF and DKIM mechanisms.

Identifier Alignment

DKIM, SPF, and DMARC authenticate various aspects of an individual message. 
DKIM authenticates the domain that affixed a signature to the message. SPF  focuses 
on the SMTP envelope, defined in RFC 5321. It can authenticate either the domain that 
appears in the MAIL FROM portion of the SMTP envelope or the HELO domain, or 
both. These may be different domains, and they are typically not visible to the end user.

DMARC authentication deals with the From domain in the message header, 
as defined in RFC 5322. This field is used as the central identity of the DMARC 
mechanism because it is a required message header field and therefore guaran-
teed to be present in compliant messages, and most MUAs represent the RFC 5322 
From field as the originator of the message and render some or all of this header 
field’s content to end users. The email address in this field is the one used by end 
users to identify the source of the message and therefore is a prime target for abuse.

DMARC requires that From address match (be aligned with) an Authenticated 
Identifier from DKIM or SPF. In the case of DKIM, the match is made between 
the DKIM signing domain and the From domain. In the case of SPF, the match is 
 between the SPF-authenticated domain and the From domain.

DMARC on the Sender Side

A mail sender that uses DMARC must also use SPF or DKIM, or both. The sender 
posts a DMARC policy in the DNS that advises receivers on how to treat mes-
sages that purport to originate from the sender’s domain. The policy is in the form 
of a DNS TXT resource record. The sender also needs to establish email addresses 
to receive aggregate and forensic reports. As these email addresses are published 
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Tag (Name) Description

v= (Version) Version field that must be present as the first element. By default the value is 
always DMARC1.

p= (Policy) Mandatory policy field. May take values none or quarantine or reject. This 
allows for a gradually tightening policy where the sender domain recommends 
no specific action on mail that fails DMARC checks (p= none), through treating 
failed mail as suspicious (p= quarantine),  to rejecting all failed mail  
(p= reject),  preferably at the SMTP transaction stage.

aspf= (SPF Policy) Values are r (default) for relaxed and s for strict SPF domain enforcement. Strict 
alignment requires an exact match between the From address domain and the 
(passing) SPF check must exactly match the MailFrom address (HELO address). 
Relaxed requires that only the From and MailFrom address domains be in align-
ment. For example, the MailFrom address domain smtp.example.org and the 
From address announce@example.org are in alignment, but not a strict match.

adkim= (DKIM Policy) Optional. Values are r (default) for relaxed and s for strict DKIM domain 
enforcement. Strict alignment requires an exact match between the From domain 
in the message header and the DKIM domain presented in the  
(d= DKIM), tag. Relaxed requires only that the domain part is in alignment 
(as in aspf).

fo= (Failure reporting 
options)

Optional. Ignore if a ruf argument is not also present. Value 0 indicates the 
receiver should generate a DMARC failure report if all underlying mechanisms 
fail to produce an aligned pass result. Value 1 means generate a DMARC failure 
report if any underlying mechanism produces something other than an aligned 
pass result. Other possible values are d (generate a DKIM failure report if a 
signature failed evaluation), and s (generate an SPF failure report if the message 
failed SPF evaluation). These values are not exclusive and may be combined.

ruf= Optional, but requires the fo argument to be present. Lists a series of URIs 
(currently just mailto:<emailaddress>) that list where to send forensic feedback 
reports. This is for reports on message-specific failures.

rua= Optional list of URIs (like in ruf= , using the mailto: URI) listing where to send 
aggregate feedback back to the sender. These reports are sent based on the inter-
val requested using the ri= option with a default of 86400 seconds if not listed.

ri= (Reporting interval) Optional with the default value of 86400 seconds. The value listed is the report-
ing interval desired by the sender.

pct= (Percent) Optional with the default value of 100. Expresses the percentage of a sender’s 
mail that should be subject to the given DMARC policy. This allows senders to 
ramp up their policy enforcement gradually and prevent having to commit to a 
rigorous policy before getting feedback on their existing policy.

sp= (Receiver Policy) Optional with a default value of none. Other values include the same range of 
values as the p= argument. This is the policy to be applied to mail from all identi-
fied subdomains of the given DMARC RR.

Table 19.7 DMARC Tag and Value Descriptions

unencrypted in the DNS TXT RR, they are easily discovered, leaving the poster 
subject to unsolicited bulk email. Thus, the poster of the DNS TXT RR needs to 
employ some kind of abuse countermeasures.

Similar to SPF and DKIM, the DMARC policy in the TXT RR is encoded 
in a series of tag=value pairs separated by semicolons. Table 19.7 describes the 
 common tags.
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Once the DMARC RR is posted, messages from the sender are typically 
 processed as follows:

1. The domain owner constructs an SPF policy and publishes it in its DNS  database. 
The domain owner also configures its system for DKIM  signing. Finally, the do-
main owner publishes via the DNS a DMARC message- handling policy.

2. The author generates a message and hands the message to the domain owner’s 
designated mail submission service.

3. The submission service passes relevant details to the DKIM signing module in 
order to generate a DKIM signature to be applied to the message.

4. The submission service relays the now-signed message to its designated trans-
port service for routing to its intended recipient(s).

DMARC on the Receiver Side

A message generated on the sender side may pass through other relays but even-
tually arrives at a receiver’s transport service. The typical processing order for 
DMARC on the receiving side is the following:

1. The receiver performs standard validation tests, such as checking against IP 
blocklists and domain reputation lists, as well as enforcing rate limits from a 
particular source.

2. The receiver extracts the RFC 5322 From address from the message. This must 
contain a single, valid address or else the mail is refused as an error.

3. The receiver queries for the DMARC DNS record based on the sending 
domain. If none exists, terminate DMARC processing.

4. The receiver performs DKIM signature checks. If more than one DKIM signa-
ture exists in the message, one must verify.

5. The receiver queries for the sending domain’s SPF record and performs SPF 
validation checks.

6. The receiver conducts Identifier Alignment checks between the RFC 5321 
From and the results of the SPF and DKIM records (if present).

7. The results of these steps are passed to the DMARC module along with the Author’s 
domain. The DMARC module attempts to retrieve a policy from the DNS for  
that domain. If none is found, the DMARC module determines the  organizational 
domain and repeats the attempt to retrieve a policy from the DNS.

8. If a policy is found, it is combined with the Author’s domain and the SPF and 
DKIM results to produce a DMARC policy result (a “pass” or “fail”) and can 
optionally cause one of two kinds of reports to be generated.

9. Recipient transport service either delivers the message to the recipient inbox 
or takes other local policy action based on the DMARC result.

10. When requested, Recipient transport service collects data from the message 
delivery session to be used in providing feedback.

Figure 19.10, based on one at DMARC.org, summarizes the sending and 
 receiving functional flow.
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Figure 19.10 DMARC Functional Flow
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DMARC Reports

DMARC reporting provides the sender’s feedback on their SPF, DKIM, Identifier 
Alignment, and message disposition policies, which enable the sender to make these poli-
cies more effective. Two types of reports are sent: aggregate reports and forensic reports.

Aggregate reports are sent by receivers periodically and include aggregate 
 figures for successful and unsuccessful message authentications, including:

◆■ The sender’s DMARC policy for that interval.

◆■ The message disposition by the receiver (i.e., delivered, quarantined, rejected).

◆■ SPF result for a given SPF identifier.

◆■ DKIM result for a given DKIM identifier.

◆■ Whether identifiers are in alignment or not.

◆■ Results classified by sender subdomain.

◆■ The sending and receiving domain pair.

◆■ The policy applied, and whether this is different from the policy requested.

◆■ The number of successful authentications.

◆■ Totals for all messages received.

This information enables the sender to identify gaps in email infrastruc-
ture and policy. SP 800-177 recommends that a sending domain begin by setting 
a DMARC policy of p= none, so that the ultimate disposition of a message that 
fails some check is determined by the receiver’s local policy. As DMARC aggregate 
reports are collected, the sender will have a quantitatively better assessment of the 
extent to which the sender’s email is authenticated by outside receivers, and will 
be able to set a policy of p=reject, indicating that any message that fails the SPF, 
DKIM, and alignment checks really should be rejected. From their own traffic analy-
sis, receivers can develop a determination of whether a sender’s p=reject policy is 
sufficiently trustworthy to act on.

A forensic report helps the sender refine the component SPF and DKIM 
mechanisms as well as alerting the sender that their domain is being used as part 
of a phishing/spam campaign. Forensic reports are similar in format to aggregation 
reports, with these changes:

◆■ Receivers include as much of the message and message header as is reason-
able to allow the domain to investigate the failure. Add an Identity-Alignment 
field, with DKIM and SPF DMARC-method fields as appropriate.

◆■ Optionally add a Delivery-Result field.

◆■ Add DKIM Domain, DKIM Identity, and DKIM selector fields, if the message 
was DKIM signed. Optionally also add DKIM Canonical header and body fields.

◆■ Add an additional DMARC authentication failure type, for use when some 
authentication mechanisms fail to produce aligned identifiers.
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 19.10  KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms 

base64 transfer encoding
detached signature
electronic mail

Post Office Protocol  
(POP3)

session key

Simple Mail Transfer Protocol 
(SMTP)

trust

Review Questions 
 19.1 What types of interoperability issues are involved in Internet mail architecture and 

how are they handled?
 19.2 Briefly explain the protocol(s) that are recommended to enhance threat reduction.
 19.3 What is the difference between a MIME content type and a MIME transfer encoding?
 19.4 How does SPF work on the sender and receiver sides?
 19.5 What are the strategies of the DomainKeys Identified Mail?
 19.6 What is the role of STARTTLS in email security and how does it work?
 19.7 What are the four principal services provided by S/MIME?
 19.8 What is the utility of a detached signature?
 19.9 What is DKIM?

Problems 
 19.1 The character sequence “<CR><LF>.<CR><LF>” indicates the end of mail data to a 

SMTP-server. What happens if the mail data itself contains that character sequence?
 19.2 Using a comparison table, describe an example(s) of how SMTP, POP3, and IMAP 

correlate with and differ from each other.
 19.3 If a lossless compression algorithm, such as ZIP, is used with S/MIME, why is it prefer-

able to generate a signature before applying compression?
 19.4 Before the deployment of the Domain Name System, a simple text file (HOSTS.TXT) 

centrally maintained at the SRI Network Information Center was used to  enable 
mapping between host names and addresses. Each host connected to the Internet had 
to have an updated local copy of it to be able to use host names instead of having to 
cope directly with their IP addresses. Discuss the main advantages of the DNS over 
the old centralized HOSTS.TXT system.

 19.5 Consider base64 conversion as a form of encryption. In this case, there is no key. But 
suppose that an opponent knew only that some form of substitution algorithm was 
being used to encrypt English text and did not guess that it was base64. How effective 
would this algorithm be against cryptanalysis?

 19.6 Encode the text “ciphertext” using the following techniques. Assume characters are 
stored in 8-bit ASCII with zero parity.
a. base64
b. Quoted-printable

 19.7 Describe the mechanisms of DANE and DMARC in email security using at least two 
different examples.
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LEARNING OBJECTIVES

After studying this chapter, you should be able to:

 ◆ Present an overview of IP security (IPsec).

 ◆ Explain the difference between transport mode and tunnel mode.

 ◆ Understand the concept of security association.

 ◆ Explain the difference between the security association database and the 
security policy database.

 ◆ Summarize the traffic processing functions performed by IPsec for out-
bound packets and for inbound packets.

 ◆ Present an overview of Encapsulating Security Payload.

 ◆ Discuss the alternatives for combining security associations.

 ◆ Present an overview of Internet Key Exchange.

 ◆ Summarize the alternative cryptographic suites approved for use with IPsec.

1In this chapter, the term IP packet refers to either an IPv4 datagram or an IPv6 packet.

There are application-specific security mechanisms for a number of application areas, 
including electronic mail (S/MIME, PGP), client/server (Kerberos), Web access 
(Secure Sockets Layer), and others. However, users have security concerns that cut 
across protocol layers. For example, an enterprise can run a secure, private IP net-
work by disallowing links to untrusted sites, encrypting packets that leave the prem-
ises, and authenticating packets that enter the premises.1 By implementing security at 
the IP level, an organization can ensure secure networking not only for applications 
that have security mechanisms but also for the many security-ignorant applications.

IP-level security encompasses three functional areas: authentication, confiden-
tiality, and key management. The authentication mechanism assures that a received 
packet was, in fact, transmitted by the party identified as the source in the packet 
header. In addition, this mechanism assures that the packet has not been altered in 
transit. The confidentiality facility enables communicating nodes to encrypt messages 
to prevent eavesdropping by third parties. The key management facility is concerned 
with the secure exchange of keys.

We begin this chapter with an overview of IP security (IPsec) and an introduction 
to the IPsec architecture. We then look at each of the three functional areas in detail.

 20.1 IP SECURITY OVERVIEW

In 1994, the Internet Architecture Board (IAB) issued a report titled “Security in 
the Internet Architecture” (RFC 1636). The report identified key areas for security 
mechanisms. Among these were the need to secure the network infrastructure from 
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unauthorized monitoring and control of network traffic and the need to secure end-
user-to-end-user traffic using authentication and encryption mechanisms.

To provide security, the IAB included authentication and encryption as nec-
essary security features in the next-generation IP, which has been issued as IPv6. 
Fortunately, these security capabilities were designed to be usable with both ver-
sions currently in use: IPv4 and IPv6. This means that vendors can begin offering 
these features now, and many vendors now do have some IPsec capability in their 
products. The IPsec specification now exists as a set of Internet standards.

Applications of IPsec

IPsec provides the capability to secure communications across a LAN, across private 
and public WANs, and across the Internet. Examples of its use include:

 ■ Secure branch office connectivity over the Internet: A company can build a 
secure virtual private network over the Internet or over a public WAN. This 
enables a business to rely heavily on the Internet and reduce its need for pri-
vate networks, saving costs and network management overhead.

 ■ Secure remote access over the Internet: An end user whose system is equipped 
with IP security protocols can make a local call to an Internet Service Provider 
(ISP) and gain secure access to a company network. This reduces the cost of 
toll charges for traveling employees and telecommuters.

 ■ Establishing extranet and intranet connectivity with partners: IPsec can be 
used to secure communication with other organizations, ensuring authentica-
tion and confidentiality and providing a key exchange mechanism.

 ■ Enhancing electronic commerce security: Even though some Web and elec-
tronic commerce applications have built-in security protocols, the use of IPsec 
enhances that security. IPsec guarantees that all traffic designated by the net-
work administrator is both encrypted and authenticated, adding an additional 
layer of security to whatever is provided at the application layer.

The principal feature of IPsec that enables it to support these varied applica-
tions is that it can encrypt and/or authenticate all traffic at the IP level. Thus, all dis-
tributed applications (including remote logon, client/server, email, file transfer, Web 
access, and so on) can be secured.

IPsec Documents

IPsec encompasses three functional areas: authentication, confidentiality, and key 
management. The totality of the IPsec specification is scattered across dozens of 
RFCs and draft IETF documents, making this the most complex and difficult to 
grasp of all IETF specifications. The best way to grasp the scope of IPsec is to consult 
the latest version of the IPsec document roadmap, which as of this writing is RFC 
6071 [IP Security (IPsec) and Internet Key Exchange (IKE) Document Roadmap, 
February 2011]. The documents can be categorized into the following groups.

 ■ Architecture: Covers the general concepts, security requirements, definitions, 
and mechanisms defining IPsec technology. The current specification is RFC 
4301, Security Architecture for the Internet Protocol.
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 ■ Authentication Header (AH): AH is an extension header to provide mes-
sage authentication. The current specification is RFC 4302, IP Authentication 
Header. Because message authentication is provided by ESP, the use of AH 
is deprecated. It is included in IPsecv3 for backward compatibility but should 
not be used in new applications. We do not discuss AH in this chapter.

 ■ Encapsulating Security Payload (ESP): ESP consists of an encapsulat-
ing header and trailer used to provide encryption or combined encryption/ 
authentication. The current specification is RFC 4303, IP Encapsulating 
Security Payload (ESP).

 ■ Internet Key Exchange (IKE): This is a collection of documents describing 
the key management schemes for use with IPsec. The main specification is 
RFC 7296, Internet Key Exchange (IKEv2) Protocol, but there are a number 
of  related RFCs.

 ■ Cryptographic algorithms: This category encompasses a large set of documents 
that define and describe cryptographic algorithms for encryption, message authen-
tication, pseudorandom functions (PRFs), and cryptographic key exchange.

 ■ Other: There are a variety of other IPsec-related RFCs, including those deal-
ing with security policy and management information base (MIB) content.

IPsec Services

IPsec provides security services at the IP layer by enabling a system to select 
 required security protocols, determine the algorithm(s) to use for the service(s), and 
put in place any cryptographic keys required to provide the requested  services. Two 
protocols are used to provide security: an authentication protocol designated by the 
header of the protocol, Authentication Header (AH); and a combined  encryption/
authentication protocol designated by the format of the packet for that protocol, 
Encapsulating Security Payload (ESP). RFC 4301 lists the following services:

 ■ Access control

 ■ Connectionless integrity

 ■ Data origin authentication

 ■ Rejection of replayed packets (a form of partial sequence integrity)

 ■ Confidentiality (encryption)

 ■ Limited traffic flow confidentiality

 20.2 IP SECURITY POLICY

Fundamental to the operation of IPsec is the concept of a security policy  applied to 
each IP packet that transits from a source to a destination. IPsec policy is  determined 
primarily by the interaction of two databases, the security association  database 
(SAD) and the security policy database (SPD). This section provides an overview 
of these two databases and then summarizes their use during IPsec operation.  
Figure 20.1 illustrates the relevant relationships.
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Security Associations

A key concept that appears in both the authentication and confidentiality mecha-
nisms for IP is the security association (SA). An association is a one-way logical con-
nection between a sender and a receiver that affords security services to the traffic 
carried on it. If a peer relationship is needed for two-way secure exchange, then two 
security associations are required.

A security association is uniquely identified by three parameters.

 ■ Security Parameters Index (SPI): A 32-bit unsigned integer assigned to this 
SA and having local significance only. The SPI is carried in AH and ESP head-
ers to enable the receiving system to select the SA under which a received 
packet will be processed.

 ■ IP Destination Address: This is the address of the destination endpoint of the SA, 
which may be an end-user system or a network system such as a firewall or router.

 ■ Security Protocol Identifier: This field from the outer IP header indicates 
whether the association is an AH or ESP security association.

Hence, in any IP packet, the security association is uniquely identified by the 
Destination Address in the IPv4 or IPv6 header and the SPI in the enclosed exten-
sion header (AH or ESP).

Security Association Database

In each IPsec implementation, there is a nominal2 Security Association Database 
that defines the parameters associated with each SA. A security association is nor-
mally defined by the following parameters in an SAD entry.

 ■ Security Parameter Index: A 32-bit value selected by the receiving end of an 
SA to uniquely identify the SA. In an SAD entry for an outbound SA, the SPI 
is used to construct the packet’s AH or ESP header. In an SAD entry for an 
inbound SA, the SPI is used to map traffic to the appropriate SA.

2Nominal in the sense that the functionality provided by a Security Association Database must be present 
in any IPsec implementation, but the way in which that functionality is provided is up to the implementer.

Figure 20.1 IPsec Architecture
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 ■ Sequence Number Counter: A 32-bit value used to generate the Sequence 
Number field in AH or ESP headers, described in Section 20.3 (required for all 
implementations).

 ■ Sequence Counter Overflow: A flag indicating whether overflow of the 
Sequence Number Counter should generate an auditable event and prevent 
further transmission of packets on this SA (required for all implementations).

 ■ Anti-Replay Window: Used to determine whether an inbound AH or ESP 
packet is a replay, described in Section 20.3 (required for all implementations).

 ■ AH Information: Authentication algorithm, keys, key lifetimes, and related 
parameters being used with AH (required for AH implementations).

 ■ ESP Information: Encryption and authentication algorithm, keys, initialization 
values, key lifetimes, and related parameters being used with ESP  (required 
for ESP implementations).

 ■ Lifetime of this Security Association: A time interval or byte count after which an 
SA must be replaced with a new SA (and new SPI) or terminated, plus an indica-
tion of which of these actions should occur (required for all implementations).

 ■ IPsec Protocol Mode: Tunnel, transport, or wildcard.

 ■ Path MTU: Any observed path maximum transmission unit (maximum size of 
a packet that can be transmitted without fragmentation) and aging variables 
(required for all implementations).

The key management mechanism that is used to distribute keys is coupled to 
the authentication and privacy mechanisms only by way of the Security Parameters 
Index (SPI). Hence, authentication and privacy have been specified independent of 
any specific key management mechanism.

IPsec provides the user with considerable flexibility in the way in which IPsec 
services are applied to IP traffic. As we will see later, SAs can be combined in a number 
of ways to yield the desired user configuration. Furthermore, IPsec provides a high 
degree of granularity in discriminating between traffic that is afforded IPsec protection 
and traffic that is allowed to bypass IPsec, as in the former case relating IP traffic to 
specific SAs.

Security Policy Database

The means by which IP traffic is related to specific SAs (or no SA in the case of traf-
fic allowed to bypass IPsec) is the nominal Security Policy Database (SPD). In its 
simplest form, an SPD contains entries, each of which defines a subset of IP traffic 
and points to an SA for that traffic. In more complex environments, there may be 
multiple entries that potentially relate to a single SA or multiple SAs associated with 
a single SPD entry. The reader is referred to the relevant IPsec documents for a full 
discussion.

Each SPD entry is defined by a set of IP and upper-layer protocol field values, 
called selectors. In effect, these selectors are used to filter outgoing traffic in order 
to map it into a particular SA. Outbound processing obeys the following general 
sequence for each IP packet.

1. Compare the values of the appropriate fields in the packet (the selector fields) 
against the SPD to find a matching SPD entry, which will point to zero or more SAs.
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2. Determine the SA if any for this packet and its associated SPI.

3. Do the required IPsec processing (i.e., AH or ESP processing).

The following selectors determine an SPD entry:

 ■ Remote IP Address: This may be a single IP address, an enumerated list or range 
of addresses, or a wildcard (mask) address. The latter two are required to support 
more than one destination system sharing the same SA (e.g., behind a firewall).

 ■ Local IP Address: This may be a single IP address, an enumerated list or range 
of addresses, or a wildcard (mask) address. The latter two are required to sup-
port more than one source system sharing the same SA (e.g., behind a firewall).

 ■ Next Layer Protocol: The IP protocol header (IPv4, IPv6, or IPv6 Extension) 
includes a field (Protocol for IPv4, Next Header for IPv6 or IPv6 Extension) 
that designates the protocol operating over IP. This is an individual protocol 
number, ANY, or for IPv6 only, OPAQUE. If AH or ESP is used, then this IP 
protocol header immediately precedes the AH or ESP header in the packet.

 ■ Name: A user identifier from the operating system. This is not a field in the IP 
or upper-layer headers but is available if IPsec is running on the same operat-
ing system as the user.

 ■ Local and Remote Ports: These may be individual TCP or UDP port values, an 
enumerated list of ports, or a wildcard port.

Table 20.1 provides an example of an SPD on a host system (as opposed to a 
network system such as a firewall or router). This table reflects the following con-
figuration: A local network configuration consists of two networks. The basic cor-
porate network configuration has the IP network number 1.2.3.0/24. The local con-
figuration also includes a secure LAN, often known as a DMZ, that is identified as 
1.2.4.0/24. The DMZ is protected from both the outside world and the rest of the 
corporate LAN by firewalls. The host in this example has the IP address 1.2.3.10, and 
it is authorized to connect to the server 1.2.4.10 in the DMZ.

The entries in the SPD should be self-explanatory. For example, UDP port 500 
is the designated port for IKE. Any traffic from the local host to a remote host for 
purposes of an IKE exchange bypasses the IPsec processing.

Protocol Local IP Port Remote IP Port Action Comment

UDP 1.2.3.101 500 * 500 BYPASS IKE

ICMP 1.2.3.101 * * * BYPASS Error messages

* 1.2.3.101 * 1.2.3.0/24 * PROTECT: ESP 
intransport-mode

Encrypt intranet traffic

TCP 1.2.3.101 * 1.2.4.10 80 PROTECT: ESP 
intransport-mode

Encrypt to server

TCP 1.2.3.101 * 1.2.4.10 443 BYPASS TLS: avoid double encryption

* 1.2.3.101 * 1.2.4.0/24 * DISCARD Others in DMZ

* 1.2.3.101 * * * BYPASS Internet

Table 20.1 Host SPD Example
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IP Traffic Processing

IPsec is executed on a packet-by-packet basis. When IPsec is implemented, each 
outbound IP packet is processed by the IPsec logic before transmission, and each 
inbound packet is processed by the IPsec logic after reception and before passing 
the packet contents on to the next higher layer (e.g., TCP or UDP). We look at the 
logic of these two situations in turn.

OutbOund Packets Figure 20.2 highlights the main elements of IPsec processing 
for outbound traffic. A block of data from a higher layer, such as TCP, is passed 
down to the IP layer and an IP packet is formed, consisting of an IP header and an 
IP body. Then the  following steps occur:

1. IPsec searches the SPD for a match to this packet.

2. If no match is found, then the packet is discarded and an error message is generated.

3. If a match is found, further processing is determined by the first matching 
entry in the SPD. If the policy for this packet is DISCARD, then the packet is 
discarded. If the policy is BYPASS, then there is no further IPsec processing; 
the packet is forwarded to the network for transmission.

4. If the policy is PROTECT, then a search is made of the SAD for a matching 
entry. If no entry is found, then IKE is invoked to create an SA with the appro-
priate keys and an entry is made in the SA.

5. The matching entry in the SAD determines the processing for this packet. Either 
encryption, authentication, or both can be performed, and either transport or tun-
nel mode can be used. The packet is then forwarded to the network for transmission.

Figure 20.2 Processing Model for Outbound Packets

Outbound IP packet
(e.g., from TCP or UDP)

No match
found

No match
found

Match found

Match
found

DISCARD PROTECT

BYPASS

Forward
packet via

IP

Internet
key

exchange

Process
(AH/ESP)

Determine
policy

Search
security policy

database

Discard
packet

Search
security association

database

M20_STAL7484_08_GE_C20.indd   647 05/04/22   20:10



648  cHAPter 20 / IP SecurIty

InbOund Packets Figure 20.3 highlights the main elements of IPsec processing for 
inbound traffic. An incoming IP packet triggers the IPsec processing. The following 
steps occur:

1. IPsec determines whether this is an unsecured IP packet or one that has ESP 
or AH headers/trailers, by examining the IP Protocol field (IPv4) or Next 
Header field (IPv6).

2. If the packet is unsecured, IPsec searches the SPD for a match to this packet. 
If the first matching entry has a policy of BYPASS, the IP header is processed 
and stripped off and the packet body is delivered to the next higher layer, such 
as TCP. If the first matching entry has a policy of PROTECT or DISCARD, or 
if there is no matching entry, the packet is discarded.

3. For a secured packet, IPsec searches the SAD. If no match is found, the packet 
is discarded. Otherwise, IPsec applies the appropriate ESP or AH processing. 
Then, the IP header is processed and stripped off and the packet body is deliv-
ered to the next higher layer, such as TCP.

 20.3 ENCAPSULATING SECURITY PAYLOAD

ESP can be used to provide confidentiality, data origin authentication, connection-
less integrity, an anti-replay service (a form of partial sequence integrity), and (lim-
ited) traffic flow confidentiality. The set of services provided depends on options 
selected at the time of Security Association (SA) establishment and on the location 
of the implementation in a network topology.

ESP can work with a variety of encryption and authentication algorithms, 
including authenticated encryption algorithms such as GCM.

Figure 20.3 Processing Model for Inbound Packets
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ESP Format

Figure 20.4a shows the top-level format of an ESP packet. It contains the following fields.

 ■ Security Parameters Index (32 bits): Identifies a security association.

 ■ Sequence Number (32 bits): A monotonically increasing counter value; this 
provides an anti-replay function, as discussed for AH.

 ■ Payload Data (variable): This is a transport-level segment (transport mode) or 
IP packet (tunnel mode) that is protected by encryption.

 ■ Padding (0–255 bytes): The purpose of this field is discussed later.

 ■ Pad Length (8 bits): Indicates the number of pad bytes immediately preceding 
this field.

 ■ Next Header (8 bits): Identifies the type of data contained in the payload data 
field by identifying the first header in that payload (e.g., an extension header 
in IPv6, or an upper-layer protocol such as TCP).

 ■ Integrity Check Value (variable): A variable-length field (must be an integral 
number of 32-bit words) that contains the Integrity Check Value computed 
over the ESP packet minus the Authentication Data field.

When any combined mode algorithm is employed, the algorithm itself is 
expected to return both decrypted plaintext and a pass/fail indication for the integ-
rity check. For combined mode algorithms, the ICV that would normally appear 
at the end of the ESP packet (when integrity is selected) may be omitted. When 
the ICV is omitted and integrity is selected, it is the responsibility of the combined 
mode algorithm to encode within the Payload Data an ICV-equivalent means of 
verifying the integrity of the packet.

Two additional fields may be present in the payload (Figure 20.4b). 
An  initialization value (IV), or nonce, is present if this is required by the encryption 
or authenticated encryption algorithm used for ESP. If tunnel mode is being used, 
then the IPsec implementation may add traffic flow confidentiality (TFC) padding 
after the Payload Data and before the Padding field, as explained subsequently.

Encryption and Authentication Algorithms

The Payload Data, Padding, Pad Length, and Next Header fields are encrypted by 
the ESP service. If the algorithm used to encrypt the payload requires cryptographic 
synchronization data, such as an initialization vector (IV), then these data may be 
carried explicitly at the beginning of the Payload Data field. If included, an IV is 
usually not encrypted, although it is often referred to as being part of the ciphertext.

The ICV field is optional. It is present only if the integrity service is selected 
and is provided by either a separate integrity algorithm or a combined mode algo-
rithm that uses an ICV. The ICV is computed after the encryption is performed. This 
order of processing facilitates rapid detection and rejection of replayed or bogus 
packets by the receiver prior to decrypting the packet, hence potentially reducing 
the impact of denial of service (DoS) attacks. It also allows for the possibility of 
parallel processing of packets at the receiver that is decryption can take place in par-
allel with integrity checking. Note that because the ICV is not protected by encryp-
tion, a keyed integrity algorithm must be employed to compute the ICV.
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Padding

The Padding field serves several purposes:

 ■ If an encryption algorithm requires the plaintext to be a multiple of some 
number of bytes (e.g., the multiple of a single block for a block cipher), the 
Padding field is used to expand the plaintext (consisting of the Payload Data, 
Padding, Pad Length, and Next Header fields) to the required length.

 ■ The ESP format requires that the Pad Length and Next Header fields be right 
aligned within a 32-bit word. Equivalently, the ciphertext must be an integer 
multiple of 32 bits. The Padding field is used to assure this alignment.

 ■ Additional padding may be added to provide partial traffic-flow confidential-
ity by concealing the actual length of the payload.

Anti-Replay Service

A replay attack is one in which an attacker obtains a copy of an authenticated packet 
and later transmits it to the intended destination. The receipt of duplicate, authenti-
cated IP packets may disrupt service in some way or may have some other undesired 

Figure 20.4 ESP Packet Format
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consequence. The Sequence Number field is designed to thwart such attacks. First, 
we discuss sequence number generation by the sender, and then we look at how it is 
processed by the recipient.

When a new SA is established, the sender initializes a sequence number 
 counter to 0. Each time that a packet is sent on this SA, the sender increments the 
counter and places the value in the Sequence Number field. Thus, the first value to 
be used is 1. If anti-replay is enabled (the default), the sender must not allow the 
sequence number to cycle past 232 - 1 back to zero. Otherwise, there would be mul-
tiple valid packets with the same sequence number. If the limit of 232 - 1 is reached, 
the sender should terminate this SA and negotiate a new SA with a new key.

Because IP is a connectionless, unreliable service, the protocol does not guarantee 
that packets will be delivered in order and does not guarantee that all packets will be 
delivered. Therefore, the IPsec authentication document dictates that the receiver should 
implement a window of size W, with a default of W = 64. The right edge of the win-
dow represents the highest sequence number, N, so far received for a valid packet. For 
any packet with a sequence number in the range from N - W + 1 to N that has been 
correctly received (i.e., properly authenticated), the corresponding slot in the window is 
marked (Figure 20.5). Inbound processing proceeds as follows when a packet is received:

1. If the received packet falls within the window and is new, the MAC is checked. 
If the packet is authenticated, the corresponding slot in the window is marked.

2. If the received packet is to the right of the window and is new, the MAC is 
checked. If the packet is authenticated, the window is advanced so that this 
sequence number is the right edge of the window, and the corresponding slot 
in the window is marked.

3. If the received packet is to the left of the window or if authentication fails, the 
packet is discarded; this is an auditable event.

Transport and Tunnel Modes

Both AH and ESP support two modes of use: transport and tunnel mode. The opera-
tion of these two modes is best understood in the context of a description of ESP, 
which is more widely used than AH. In what follows, we look at the scope of ESP for 

Figure 20.5 Anti-replay Mechanism
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the two modes. The former technique is supported by a transport mode SA, while the 
latter technique uses a tunnel mode SA.

The considerations are somewhat different for IPv4 and IPv6. We use the 
packet formats of  Figure 20.6a as a starting point.

transPOrt MOde esP Transport mode provides protection primarily for upper-layer 
protocols. That is, transport mode protection extends to the payload of an IP packet. 

Figure 20.6 Scope of ESP Encryption and Authentication
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Examples include a TCP or UDP segment or an ICMP packet, all of which operate 
directly above IP in a host protocol stack. Typically, transport mode is used for end-to-
end communication between two hosts (e.g., a client and a server, or two workstations; 
see Figure 20.7). When a host runs AH or ESP over IPv4, the payload is the data that 
normally follow the IP header. For IPv6, the payload is the data that normally follow 
both the IP header and any IPv6 extensions headers that are present, with the possible 
exception of the destination options header, which may be included in the protection. 
Transport mode ESP is used to encrypt and optionally authenticate the data carried by 
IP (e.g., a TCP segment), as shown in Figure 20.6b. For this mode using IPv4, the ESP 
header is inserted into the IP packet immediately prior to the transport-layer header 
(e.g., TCP, UDP, ICMP), and an ESP trailer (Padding, Pad Length, and Next Header 
fields) is placed after the IP packet. If authentication is selected, the ESP Authentication 
Data field is added after the ESP trailer. The entire transport-level segment plus the ESP 
trailer are encrypted. Authentication covers all of the ciphertext plus the ESP header.

In the context of IPv6, ESP is viewed as an end-to-end payload; that is, it is not 
examined or processed by intermediate routers. Therefore, the ESP header appears after 
the IPv6 base header and the hop-by-hop, routing, and fragment extension headers. The  
destination options extension header could appear before or after the ESP header, 
depending on the semantics desired. For IPv6, encryption covers the entire transport-level 
segment plus the ESP trailer plus the destination options extension header if it occurs 
after the ESP header. Again, authentication covers the ciphertext plus the ESP header.

Transport mode operation may be summarized as follows.

1. At the source, the block of data consisting of the ESP trailer plus the entire 
transport-layer segment is encrypted and the plaintext of this block is replaced 
with its ciphertext to form the IP packet for transmission. Authentication is 
added if this option is selected.

2. The packet is then routed to the destination. Each intermediate router needs 
to examine and process the IP header plus any plaintext IP extension headers 
but does not need to examine the ciphertext.

3. The destination node examines and processes the IP header plus any plaintext 
IP extension headers. Then, on the basis of the SPI in the ESP header, the 
destination node decrypts the remainder of the packet to recover the plaintext 
transport-layer segment.

Transport mode operation provides confidentiality for any application that 
uses it, thus avoiding the need to implement confidentiality in every individual 
application. One drawback to this mode is that it is possible to do traffic analysis on 
the transmitted packets.

Figure 20.7 End-to-end IPsec Transport-Mode Encryption
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tunnel MOde esP Tunnel mode provides protection to the entire IP packet (Figure 
20.6c). To achieve this, after the AH or ESP fields are added to the IP packet, the en-
tire packet plus security fields is treated as the payload of new outer IP packet with 
a new outer IP header. The entire original, inner, packet travels through a tunnel 
from one point of an IP network to another; no routers along the way are able to 
examine the inner IP header. Because the original packet is encapsulated, the new, 
larger packet may have totally different source and destination addresses, adding to 
the security. Tunnel mode is used when one or both ends of a security association 
(SA) are a security gateway, such as a firewall or router that implements IPsec. With 
tunnel mode, a number of hosts on networks behind firewalls may engage in secure 
communications without implementing IPsec. The unprotected packets generated by 
such hosts are tunneled through external networks by tunnel mode SAs set up by the 
IPsec software in the firewall or secure router at the boundary of the local network.  

Here is an example of how tunnel mode IPsec operates. Host A on a network 
generates an IP packet with the destination address of host B on another network. This 
packet is routed from the originating host to a firewall or secure router at the bound-
ary of A’s network. The firewall filters all outgoing packets to determine the need 
for IPsec processing. If this packet from A to B requires IPsec, the firewall performs 
IPsec processing and encapsulates the packet with an outer IP header. The source IP 
address of this outer IP packet is this firewall, and the destination address may be a 
firewall that forms the boundary to B’s local network. This packet is now routed to B’s 
firewall, with intermediate routers examining only the outer IP header. At B’s firewall, 
the outer IP header is stripped off, and the inner packet is delivered to B.

Whereas the transport mode is suitable for protecting connections between 
hosts that support the ESP feature, the tunnel mode is useful in a configuration that 
includes a firewall or other sort of security gateway that protects a trusted network 
from external networks. In this latter case, encryption occurs only between an exter-
nal host and the security gateway or between two security gateways. This relieves 
hosts on the internal network of the processing burden of encryption and simplifies 
the key distribution task by reducing the number of needed keys. Further, it thwarts 
traffic analysis based on ultimate destination.

Tunnel mode can be used to implement a secure virtual private network. A virtual 
private network (VPN) is a private network that is configured within a public network 
(a carrier’s network or the Internet) in order to take advantage of the economies of 
scale and management facilities of large networks. VPNs are widely used by enterprises 
to create wide area networks that span large geographic areas, to provide site-to-site 
connections to branch offices, and to allow mobile users to dial up their company LANs. 
From the point of view of the provider, the pubic network facility is shared by many 
customers, with the traffic of each customer segregated from other traffic. Traffic desig-
nated as VPN traffic can only go from a VPN source to a destination in the same VPN. It 
is often the case that encryption and authentication facilities are provided for the VPN.

Figure 20.8 shows a typical scenario of IPsec tunnel mode for implementing a 
VPN. An organization maintains LANs at dispersed locations. Nonsecure IP traf-
fic is conducted on each LAN. For traffic offsite, through some sort of private or 
public network, IPsec protocols are used. These protocols operate in networking 
devices, such as a router or firewall, that connect each LAN to the outside world. 
The IPsec networking device will typically encrypt and compress all traffic going 
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into the Internet or other network and decrypt and decompress traffic coming from 
the network; these operations are transparent to workstations and servers on the 
LAN. Secure transmission is also possible with individual users who connect to the 
Internet or other network. Such user workstations must implement the IPsec proto-
cols to provide security.

Transport Mode SA Tunnel Mode SA

AH Authenticates IP payload and selected 
portions of IP header and IPv6 exten-
sion headers.

Authenticates entire inner IP packet (inner 
header plus IP payload) plus selected portions 
of outer IP header and outer IPv6 extension 
headers.

ESP Encrypts IP payload and any IPv6 exten-
sion headers following the ESP header.

Encrypts entire inner IP packet.

ESP with 
Authentication

Encrypts IP payload and any IPv6 exten-
sion headers following the ESP header. 
Authenticates IP payload but not IP 
header.

Encrypts entire inner IP packet. Authenticates 
inner IP packet.

Table 20.2 Tunnel Mode and Transport Mode Functionality
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Networking
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Figure 20.8 Example of Virtual Private Network Implemented with IPsec Tunnel Mode
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Figure 20.9 Protocol Operation for ESP
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Table 20.2 summarizes transport and tunnel mode functionality. Figure 20.9 
shows the protocol architecture for the transport and tunnel modes.

 20.4 COMBINING SECURITY ASSOCIATIONS

An individual SA can implement either the AH or ESP protocol but not both. 
Sometimes a particular traffic flow will call for the services provided by both AH and 
ESP. Further, a particular traffic flow may require IPsec services between hosts and, 
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for that same flow, separate services between security gateways, such as firewalls. In 
all of these cases, multiple SAs must be employed for the same traffic flow to achieve 
the desired IPsec services. The term security association bundle refers to a sequence of 
SAs through which traffic must be processed to provide a desired set of IPsec services. 
The SAs in a bundle may terminate at different endpoints or at the same endpoints.

Security associations may be combined into bundles in two ways:

 ■ Transport adjacency: Refers to applying more than one security protocol to 
the same IP packet without invoking tunneling. This approach to combining 
AH and ESP allows for only one level of combination; further nesting yields 
no added benefit since the processing is performed at one IPsec instance: the 
(ultimate) destination.

 ■ Iterated tunneling: Refers to the application of multiple layers of security protocols 
effected through IP tunneling. This approach allows for multiple levels of nesting, 
since each tunnel can originate or terminate at a different IPsec site along the path.

The two approaches can be combined, for example, by having a transport SA be-
tween hosts travel part of the way through a tunnel SA between security gateways.

One interesting issue that arises when considering SA bundles is the order in 
which authentication and encryption may be applied between a given pair of end-
points and the ways of doing so. We examine that issue next. Then we look at combi-
nations of SAs that involve at least one tunnel.

Authentication Plus Confidentiality

Encryption and authentication can be combined in order to transmit an IP packet 
that has both confidentiality and authentication between hosts. We look at several 
approaches.

esP wIth authentIcatIOn OPtIOn This approach is illustrated in Figure 20.6. 
In this approach, the user first applies ESP to the data to be protected and then 
 appends the authentication data field. There are actually two subcases:

 ■ Transport mode ESP: Authentication and encryption apply to the IP payload 
delivered to the host, but the IP header is not protected.

 ■ Tunnel mode ESP: Authentication applies to the entire IP packet delivered 
to the outer IP destination address (e.g., a firewall), and authentication is per-
formed at that destination. The entire inner IP packet is protected by the pri-
vacy mechanism for delivery to the inner IP destination.

For both cases, authentication applies to the ciphertext rather than the plaintext.

transPOrt adjacency Another way to apply authentication after encryption is to 
use two bundled transport SAs, with the inner being an ESP SA and the outer being 
an AH SA. In this case, ESP is used without its authentication option. Because the 
inner SA is a transport SA, encryption is applied to the IP payload. The resulting 
packet consists of an IP header (and possibly IPv6 header extensions) followed by 
an ESP. AH is then applied in transport mode, so that authentication covers the ESP 
plus the original IP header (and extensions) except for mutable fields. The advantage 
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of this approach over simply using a single ESP SA with the ESP authentication op-
tion is that the authentication covers more fields, including the source and destina-
tion IP addresses. The disadvantage is the overhead of two SAs versus one SA.

transPOrt-tunnel bundle The use of authentication prior to encryption might 
be preferable for several reasons. First, because the authentication data are pro-
tected by encryption, it is impossible for anyone to intercept the message and alter 
the authentication data without detection. Second, it may be desirable to store the 
authentication information with the message at the destination for later reference. 
It is more convenient to do this if the authentication information applies to the un-
encrypted message; otherwise the message would have to be reencrypted to verify 
the authentication information.

One approach to applying authentication before encryption between two hosts 
is to use a bundle consisting of an inner AH transport SA and an outer ESP tun-
nel SA. In this case, authentication is applied to the IP payload plus the IP header 
(and extensions) except for mutable fields. The resulting IP packet is then processed 
in tunnel mode by ESP; the result is that the entire, authenticated inner packet is 
encrypted and a new outer IP header (and extensions) is added.

Basic Combinations of Security Associations

The IPsec Architecture document lists four examples of combinations of SAs that 
must be supported by compliant IPsec hosts (e.g., workstation, server) or security 
gateways (e.g., firewall, router). These are illustrated in Figure 20.10. The lower part 
of each case in the figure represents the physical connectivity of the elements; the 
upper part represents logical connectivity via one or more nested SAs. Each SA can 
be either AH or ESP. For host-to-host SAs, the mode may be either transport or tun-
nel; otherwise it must be tunnel mode.

Case 1. All security is provided between end systems that implement IPsec. 
For any two end systems to communicate via an SA, they must share the appropri-
ate secret keys. Among the possible combinations are

a. AH in transport mode

b. ESP in transport mode

c. ESP followed by AH in transport mode (an ESP SA inside an AH SA)

d. Any one of a, b, or c inside an AH or ESP in tunnel mode

We have already discussed how these various combinations can be used to 
support authentication, encryption, authentication before encryption, and authenti-
cation after encryption.

Case 2. Security is provided only between gateways (routers, firewalls, etc.) and no 
hosts implement IPsec. This case illustrates simple virtual private network support. The 
security architecture document specifies that only a single tunnel SA is needed for this 
case. The tunnel could support AH, ESP, or ESP with the authentication option. Nested 
tunnels are not required, because the IPsec services apply to the entire inner packet.

Case 3. This builds on case 2 by adding end-to-end security. The same combi-
nations discussed for cases 1 and 2 are allowed here. The gateway-to-gateway tun-
nel provides either authentication, confidentiality, or both for all traffic between 
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end systems. When the gateway-to-gateway tunnel is ESP, it also provides a lim-
ited form of traffic confidentiality. Individual hosts can implement any additional 
IPsec services required for given applications or given users by means of end-to-
end SAs.

Case 4. This provides support for a remote host that uses the Internet to reach 
an organization’s firewall and then to gain access to some server or workstation 
behind the firewall. Only tunnel mode is required between the remote host and the 
firewall. As in case 1, one or two SAs may be used between the remote host and the 
local host.

 20.5 INTERNET KEY EXCHANGE

The key management portion of IPsec involves the determination and distribu-
tion of secret keys. A typical requirement is four keys for communication be-
tween two applications: transmit and receive pairs for both integrity and confi-
dentiality. The IPsec Architecture document mandates support for two types of 
key management:

 ■ Manual: A system administrator manually configures each system with its own 
keys and with the keys of other communicating systems. This is practical for 
small, relatively static environments.

 ■ Automated: An automated system enables the on-demand creation of keys for 
SAs and facilitates the use of keys in a large distributed system with an evolv-
ing configuration.

Figure 20.10 Basic Combinations of Security Associations
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The default automated key management protocol for IPsec is referred to as 
ISAKMP/Oakley and consists of the following elements:

 ■ Oakley Key Determination Protocol: Oakley is a key exchange protocol based 
on the Diffie–Hellman algorithm but providing added security. Oakley is 
generic in that it does not dictate specific formats.

 ■ Internet Security Association and Key Management Protocol (ISAKMP): 
ISAKMP provides a framework for Internet key management and provides the 
specific protocol support, including formats, for negotiation of security attributes.

ISAKMP by itself does not dictate a specific key exchange algorithm; rather, 
ISAKMP consists of a set of message types that enable the use of a variety of key 
exchange algorithms. Oakley is the specific key exchange algorithm mandated for 
use with the initial version of ISAKMP.

In IKEv2, the terms Oakley and ISAKMP are no longer used, and there are sig-
nificant differences from the use of Oakley and ISAKMP in IKEv1. Nevertheless, the 
basic functionality is the same. In this section, we describe the IKEv2 specification.

Key Determination Protocol

IKE key determination is a refinement of the Diffie–Hellman key exchange algo-
rithm. Recall that Diffie–Hellman involves the following interaction between users 
A and B. There is prior agreement on two global parameters: q, a large prime num-
ber; and a, a primitive root of q. A selects a random integer XA as its private key and 
transmits to B its public key ΥA = aXA mod q. Similarly, B selects a random integer 
XB as its private key and transmits to A its public key ΥB = aXB mod q. Each side 
can now compute the secret session key:

 K = (ΥB)XA mod q = (ΥA)XB mod q = aXAXB mod q 

The Diffie–Hellman algorithm has two attractive features:

 ■ Secret keys are created only when needed. There is no need to store secret 
keys for a long period of time, exposing them to increased vulnerability.

 ■ The exchange requires no pre-existing infrastructure other than an agreement 
on the global parameters.

However, there are a number of weaknesses to Diffie–Hellman, as pointed out in 
[HUIT98].

 ■ It does not provide any information about the identities of the parties.

 ■ It is subject to a man-in-the-middle attack, in which a third party C imperson-
ates B while communicating with A and impersonates A while communicating 
with B. Both A and B end up negotiating a key with C, which can then listen to 
and pass on traffic. The man-in-the-middle attack proceeds as

1. B sends his public key YB in a message addressed to A (see Figure 10.1).

2. The enemy (E) intercepts this message. E saves B’s public key and sends a 
message to A that has B’s User ID but E’s public key YE. This message is 
sent in such a way that it appears as though it was sent from B’s host system. 
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A receives E’s message and stores E’s public key with B’s User ID. Similarly, 
E sends a message to B with E’s public key, purporting to come from A.

3. B computes a secret key K1 based on B’s private key and YE. A computes 
a secret key K2 based on A’s private key and YE. E computes K1 using E’s 
secret key XE and YB and computers K2 using XE and YA.

4. From now on, E is able to relay messages from A to B and from B to A, 
appropriately changing their encipherment en route in such a way that nei-
ther A nor B will know that they share their communication with E.

 ■ It is computationally intensive. As a result, it is vulnerable to a clogging attack, in 
which an opponent requests a high number of keys. The victim spends considerable 
computing resources doing useless modular exponentiation rather than real work.

IKE key determination is designed to retain the advantages of Diffie–Hellman, 
while countering its weaknesses.

Features OF Ike key deterMInatIOn The IKE key determination algorithm is 
characterized by five important features:

1. It employs a mechanism known as cookies to thwart clogging attacks.

2. It enables the two parties to negotiate a group; this, in essence, specifies the 
global parameters of the Diffie–Hellman key exchange.

3. It uses nonces to ensure against replay attacks.

4. It enables the exchange of Diffie–Hellman public key values.

5. It authenticates the Diffie–Hellman exchange to thwart man-in-the-middle 
attacks.

We have already discussed Diffie–Hellman. Let us look at the remainder of 
these elements in turn. First, consider the problem of clogging attacks. In this attack, 
an opponent forges the source address of a legitimate user and sends a public Diffie–
Hellman key to the victim. The victim then performs a modular exponentiation to 
compute the secret key. Repeated messages of this type can clog the victim’s system 
with useless work. The cookie exchange requires that each side send a pseudoran-
dom number, the cookie, in the initial message, which the other side acknowledges. 
This acknowledgment must be repeated in the first message of the Diffie–Hellman 
key exchange. If the source address was forged, the opponent gets no answer. Thus, 
an opponent can only force a user to generate acknowledgments and not to perform 
the Diffie–Hellman calculation.

IKE mandates that cookie generation satisfy three basic requirements:

1. The cookie must depend on the specific parties. This prevents an attacker from 
obtaining a cookie using a real IP address and UDP port and then using it to 
swamp the victim with requests from randomly chosen IP addresses or ports.

2. It must not be possible for anyone other than the issuing entity to generate 
cookies that will be accepted by that entity. This implies that the issuing entity 
will use local secret information in the generation and subsequent verification 
of a cookie. It must not be possible to deduce this secret information from any 
particular cookie. The point of this requirement is that the issuing entity need 
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not save copies of its cookies, which are then more vulnerable to discovery, but 
can verify an incoming cookie acknowledgment when it needs to.

3. The cookie generation and verification methods must be fast to thwart attacks 
intended to sabotage processor resources.

The recommended method for creating the cookie is to perform a fast hash 
(e.g., MD5) over the IP Source and Destination addresses, the UDP Source and 
Destination ports, and a locally generated secret value.

IKE key determination supports the use of different groups for the Diffie–Hellman 
key exchange. Each group includes the definition of the two global parameters and  
the identity of the algorithm. The current specification includes the following groups.

 ■ Modular exponentiation with a 768-bit modulus

q = 2768 - 2704 - 1 + 264 * (:2638 * p; + 149686)

a = 2

 ■ Modular exponentiation with a 1024-bit modulus

q = 21024 - 2960 - 1 + 264 * (:2894 * p; + 129093)

a = 2

 ■ Modular exponentiation with a 1536-bit modulus

 ■ Parameters to be determined

 ■ Elliptic curve group over 2155

 ■ Generator (hexadecimal): X = 7B, Y = 1C8

 ■ Elliptic curve parameters (hexadecimal): A = 0, Y = 7338F

 ■ Elliptic curve group over 2185

 ■ Generator (hexadecimal): X = 18, Y = D

 ■ Elliptic curve parameters (hexadecimal): A = 0, Y = 1EE9

The first three groups are the classic Diffie–Hellman algorithm using modular 
exponentiation. The last two groups use the elliptic curve analog to Diffie–Hellman, 
which was described in Chapter 10.

IKE key determination employs nonces to ensure against replay attacks. Each 
nonce is a locally generated pseudorandom number. Nonces appear in responses 
and are encrypted during certain portions of the exchange to secure their use.

Three different authentication methods can be used with IKE key determination:

 ■ Digital signatures: The exchange is authenticated by signing a mutually obtain-
able hash; each party encrypts the hash with its private key. The hash is gener-
ated over important parameters, such as user IDs and nonces.

 ■ Public-key encryption: The exchange is authenticated by encrypting param-
eters such as IDs and nonces with the sender’s private key.

 ■ Symmetric-key encryption: A key derived by some out-of-band mechanism 
can be used to authenticate the exchange by symmetric encryption of exchange 
parameters.
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Ikev2 exchanges The IKEv2 protocol involves the exchange of messages in 
pairs. The first two pairs of exchanges are referred to as the initial exchanges 
(Figure  20.11a). In the first exchange, the two peers exchange information concern-
ing cryptographic algorithms and other security parameters they are willing to use 
along with nonces and Diffie–Hellman (DH) values. The result of this exchange is to 
set up a special SA called the IKE SA (see Figure 20.1). This SA defines parameters 
for a secure channel between the peers over which subsequent message exchanges 
take place. Thus, all subsequent IKE message exchanges are protected by encryption 
and message authentication. In the second exchange, the two parties authenticate 
one another and set up a first IPsec SA to be placed in the SADB and used for pro-
tecting ordinary (i.e. non-IKE) communications between the peers. Thus, four mes-
sages are needed to establish the first SA for general use.

The CREATE_CHILD_SA exchange can be used to establish further SAs 
for protecting traffic. The informational exchange is used to exchange management 
information, IKEv2 error messages, and other notifications.

Figure 20.11 IKEv2 Exchanges

HDR, SAi1, KEi, Ni

ResponderInitiator

(a) Initial exchanges

HDR, SAr1, KEr, Nr, [CERTREQ]

HDR, SK {IDi, [CERT,] [CERTREQ,] [IDr,] AUTH, SAi2, TSi, TSr}

HDR, SK {IDr, [CERT,] AUTH, SAr2, TSi, TSr}

HDR, SK {[N], SA, Ni, [KEi], [TSi, TSr]}

(b) CREATE_CHILD_SA exchange

HDR, SK {SA, Nr, [KEr], [TSi, TSr]}

HDR, SK {[N,] [D,] [CP,] ...}

(c) Informational exchange

HDR, SK {[N,] [D,] [CP], ...}

HDR 5 IKE header
SAx1 5 offered and chosen algorithms, DH group
KEx 5 Diffie–Hellman public key
Nx5 nonces
CERTREQ 5 Certificate request
IDx 5 identity
CERT 5 certificate

SK {...} 5 MAC and encrypt
AUTH 5 Authentication
SAx2 5 algorithms, parameters for IPsec SA
TSx 5 traffic selectors for IPsec SA
N 5 Notify
D 5 Delete
CP 5 Configuration
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Header and Payload Formats

IKE defines procedures and packet formats to establish, negotiate, modify, and de-
lete security associations. As part of SA establishment, IKE defines payloads for 
exchanging key generation and authentication data. These payload formats provide 
a consistent framework independent of the specific key exchange protocol, encryp-
tion algorithm, and authentication mechanism.

Ike header FOrMat An IKE message consists of an IKE header followed by one 
or more payloads. All of this is carried in a transport protocol. The specification dic-
tates that implementations must support the use of UDP for the transport protocol.

Figure 20.12a shows the header format for an IKE message. It consists of the 
following fields.

 ■ Initiator SPI (64 bits): A value chosen by the initiator to identify a unique IKE 
security association (SA).

 ■ Responder SPI (64 bits): A value chosen by the responder to identify a unique 
IKE SA.

 ■ Next Payload (8 bits): Indicates the type of the first payload in the message; 
payloads are discussed in the next subsection.

 ■ Major Version (4 bits): Indicates major version of IKE in use.

 ■ Minor Version (4 bits): Indicates minor version in use.

 ■ Exchange Type (8 bits): Indicates the type of exchange; these are discussed 
later in this section.

 ■ Flags (8 bits): Indicates specific options set for this IKE exchange. Three bits 
are defined so far. The initiator bit indicates whether this packet is sent by 

MjVer MnVer Exchange Type FlagsNext Payload

Message ID

Length

(a) IKE header

(b) Generic Payload header

Initiator’s Security Parameter Index (SPI)

Responder’s Security Parameter Index (SPI)

0Bit: 8 16 24 31

RESERVED Payload LengthNext Payload C

0Bit: 8 16 31

Figure 20.12 IKE Formats
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the SA initiator. The version bit indicates whether the transmitter is capable 
of using a higher major version number than the one currently indicated. The 
response bit indicates whether this is a response to a message containing the 
same message ID.

 ■ Message ID (32 bits): Used to control retransmission of lost packets and 
matching of requests and responses.

 ■ Length (32 bits): Length of total message (header plus all payloads) in octets.

Ike PaylOad tyPes All IKE payloads begin with the same generic payload header 
shown in Figure 20.12b. The Next Payload field has a value of 0 if this is the last pay-
load in the message; otherwise its value is the type of the next payload. The Payload 
Length field indicates the length in octets of this payload, including the generic pay-
load header.

The critical bit is 0 if the sender wants the recipient to skip this payload if it 
does not understand the payload type code in the Next Payload field of the previous 
payload. It is set to 1 if the sender wants the recipient to reject this entire message if 
it does not understand the payload type.

Table 20.3 summarizes the payload types defined for IKE and lists the fields, 
or parameters, that are part of each payload. The SA payload is used to begin the 
establishment of an SA. The payload has a complex, hierarchical structure. The pay-
load may contain multiple proposals. Each proposal may contain multiple protocols. 
Each protocol may contain multiple transforms. And each transform may contain 
multiple attributes. These elements are formatted as substructures within the pay-
load as follows.

Type Parameters

Security Association Proposals

Key Exchange DH Group #, Key Exchange Data

Identification ID Type, ID Data

Certificate Cert Encoding, Certificate Data

Certificate Request Cert Encoding, Certification Authority

Authentication Auth Method, Authentication Data

Nonce Nonce Data

Notify Protocol-ID, SPI Size, Notify Message Type, SPI, Notification Data

Delete Protocol-ID, SPI Size, # of SPIs, SPI (one or more)

Vendor ID Vendor ID

Traffic Selector Number of TSs, Traffic Selectors

Encrypted IV, Encrypted IKE payloads, Padding, Pad Length, ICV

Configuration CFG Type, Configuration Attributes

Extensible Authentication 
Protocol

EAP Message

Table 20.3 IKE Payload Types
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 ■ Proposal: This substructure includes a proposal number, a protocol ID (AH, 
ESP, or IKE), an indicator of the number of transforms, and then a trans-
form substructure. If more than one protocol is to be included in a proposal, 
then there is a subsequent proposal substructure with the same proposal 
number.

 ■ Transform: Different protocols support different transform types. The trans-
forms are used primarily to define cryptographic algorithms to be used with a 
particular protocol.

 ■ Attribute: Each transform may include attributes that modify or complete the 
specification of the transform. An example is key length.

The Key Exchange payload can be used for a variety of key exchange tech-
niques, including Oakley, Diffie–Hellman, and the RSA-based key exchange used by 
PGP. The Key Exchange data field contains the data required to generate a session 
key and is dependent on the key exchange algorithm used.

The Identification payload is used to determine the identity of communicating 
peers and may be used for determining authenticity of information. Typically the ID 
Data field will contain an IPv4 or IPv6 address.

The Certificate payload transfers a public-key certificate. The Certificate 
Encoding field indicates the type of certificate or certificate-related information.

At any point in an IKE exchange, the sender may include a Certificate Request 
payload to request the certificate of the other communicating entity. The payload 
may list more than one certificate type that is acceptable and more than one certifi-
cate authority that is acceptable.

The Authentication payload contains data used for message authentication 
purposes. The authentication method types so far defined are RSA digital signature, 
shared-key message integrity code, and DSS digital signature.

The Nonce payload contains random data used to guarantee liveness during 
an exchange and to protect against replay attacks.

The Notify payload contains either error or status information associated with 
this SA or this SA negotiation.

The Delete payload indicates one or more SAs that the sender has deleted 
from its database and that therefore are no longer valid.

The Vendor ID payload contains a vendor-defined constant. The constant is 
used by vendors to identify and recognize remote instances of their implementa-
tions. This mechanism allows a vendor to experiment with new features while main-
taining backward compatibility.

The Traffic Selector payload allows peers to identify packet flows for process-
ing by IPsec services.

The Encrypted payload contains other payloads in encrypted form. The 
encrypted payload format is similar to that of ESP. It may include an IV if the 
encryption algorithm requires it and an ICV if authentication is selected.

The Configuration payload is used to exchange configuration information 
between IKE peers.

The Extensible Authentication Protocol (EAP) payload allows IKE SAs to be 
authenticated using EAP.
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 20.6 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms 

IP Security (IPsec)
IPv4

IPv6
replay attack

transport mode
tunnel mode

Review Questions 

 20.1 List and briefly describe some benefits of IPsec.
 20.2 List and briefly define different categories of IPsec documents.
 20.3 What is the key concept of the security association (SA) in an IP Security Policy?
 20.4 What is the difference between transport mode and tunnel mode?
 20.5 What are the types of secret key algorithms used in IPsec?
 20.6 Why does ESP include a padding field?
 20.7 What are the parameters that identify an SA in any IP packet?
 20.8 What are the roles of the Oakley key determination protocol and ISAKMP in IPsec?

Problems 

 20.1 Describe and explain each of the entries in Table 20.1.
 20.2 Draw a figure similar to Figure 20.6 for AH.
 20.3 Summarize the major security services provided by the Encapsulating Security 

Payload (ESP) and the Internet Key Exchange (IKE) together with the respective 
RFCs involved for each standard.

 20.4 In terms of outbound processing in a security policy database (SPD), how important 
is it to determine an SA? How many SAs can we have in each IP packet to filter out-
going traffic?

 20.5 Suppose that the current replay window spans from 120 to 530.
a. If the next incoming authenticated packet has sequence number 340, what will the 

receiver do with the packet, and what will be the parameters of the window after 
that?

b. If instead the next incoming authenticated packet has sequence number 598, what 
will the receiver do with the packet, and what will be the parameters of the win-
dow after that?

c. If instead the next incoming authenticated packet has sequence number 110, what 
will the receiver do with the packet, and what will be the parameters of the win-
dow after that?
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 20.6 When tunnel mode is used, a new outer IP header is constructed. For both IPv4 
and IPv6, indicate the relationship of each outer IP header field and each extension 
header in the outer packet to the corresponding field or extension header of the inner 
IP packet. That is, indicate which outer values are derived from inner values and 
which are constructed independently of the inner values.

 20.7 End-to-end authentication and encryption are desired between two hosts. Draw 
 figures similar to Figure 20.6 that show each of the following.
a. Transport adjacency with encryption applied before authentication.
b. A transport SA bundled inside a tunnel SA with encryption applied before 

 authentication.
c. A transport SA bundled inside a tunnel SA with authentication applied before 

encryption.
 20.8 The IPsec architecture document states that when two transport mode SAs are bun-

dled to allow both AH and ESP protocols on the same end-to-end flow, only one 
ordering of security protocols seems appropriate: performing the ESP protocol 
 before performing the AH protocol. Why is this approach recommended rather than 
authentication before encryption?

 20.9 Describe the association between an IKE header and the Key Exchange Payload with 
the aid of a diagram, detailing each field of both.

 20.10 What is the process to transfer a public key certificate using IKE? What happens 
when an SA is deleted?
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This chapter focuses on security threats directed at endpoints, such as servers, 
workstations, and mobile devices, that are attached to an enterprise network or 
the Internet. Detailed discussion of the countermeasures implemented on the end-
points, such as antivirus software, is beyond our scope. Instead, this chapter looks at 
endpoint security from a network perspective.

The chapter begins with a discussion of firewalls. Firewalls can be an effective 
means of protecting a local system or network of systems from network-based se-
curity threats while at the same time affording access to the outside world via wide 
area networks and the Internet.

Section 21.2 deals with intrusion detection systems, while Section 21.3 provides 
an overview of malicious software. The last section discusses the important topic of 
distributed denial of service.

21.1 FIREWALLS

The firewall is an important complement to host-based security services such as in-
trusion detection systems. Typically, a firewall is inserted between the premises net-
work and the Internet to establish a controlled link and to erect an outer security 
wall or perimeter. The aim of this perimeter is to protect the premises network from 
Internet-based attacks and to provide a single choke point where security and audit-
ing can be imposed. Firewalls are also deployed internal to the enterprise network 
to segregate portions of the network.

The firewall provides an additional layer of defense, insulating internal 
 systems from external networks or other parts of the internal network. This  follows 
the  classic military doctrine of “defense in depth,” which is just as applicable to 
IT security.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

 ◆ Explain the role of firewalls as part of a computer and network security strategy.

 ◆ List the key characteristics of firewalls.

 ◆ Understand the relative merits of various choices for firewall location and configu-
rations.

 ◆ Understand the basic principles of and requirements for intrusion detection.

 ◆ Discuss the key features of intrusion detection systems.

 ◆ Describe some of the main categories of malicious software.

 ◆ Present an overview of the key elements of malware defense.

 ◆ Discuss the nature of a distributed denial of service attack.
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Firewall Characteristics

[BELL94] lists the following design goals for a firewall:

1. All traffic from inside to outside, and vice versa, must pass through the fire-
wall. This is achieved by physically blocking all access to the local network 
except via the firewall. Various configurations are possible, as explained later 
in this section.

2. Only authorized traffic, as defined by the local security policy, will be allowed 
to pass. Various types of firewalls are used, which implement various types of 
security policies, as explained later in this chapter.

3. The firewall itself is immune to penetration. This implies the use of a hard-
ened system with a secured operating system (OS). Trusted computer sys-
tems are suitable for hosting a firewall and are often required in government 
applications.

In general terms, there are four techniques that firewalls use to control access 
and enforce the site’s security policy. Originally, firewalls focused primarily on ser-
vice control, but they have since evolved to provide all four:

 ■ Service control: Determines the types of Internet services that can be accessed, 
inbound or outbound. The firewall may filter traffic on the basis of IP address, 
protocol, or port number; may provide proxy software that receives and inter-
prets each service request before passing it on; or may host the server software 
itself, such as a Web or mail service.

 ■ Direction control: Determines the direction in which particular service re-
quests may be initiated and allowed to flow through the firewall.

 ■ User control: Controls access to a service according to which user is attempt-
ing to access it. This feature is typically applied to users inside the firewall pe-
rimeter (local users). It may also be applied to incoming traffic from external 
users; the latter requires some form of secure authentication technology, such 
as the one provided in IPsec.

 ■ Behavior control: Controls how particular services are used. For example, the 
firewall may filter email to eliminate spam, or it may enable external access to 
only a portion of the information on a local Web server.

Before proceeding to the details of firewall types and configurations, it is best to 
summarize what one can expect from a firewall. The following capabilities are within 
the scope of a firewall:

1. A firewall defines a single choke point that keeps unauthorized users out of the 
protected network, prohibits potentially vulnerable services from entering or leav-
ing the network, and provides protection from various kinds of IP spoofing and 
routing attacks. The use of a single choke point simplifies security management 
because security capabilities are consolidated on a single system or set of systems.

2. A firewall provides a location for monitoring security-related events. Audits 
and alarms can be implemented on the firewall system.
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3. A firewall is a convenient platform for several Internet functions that are not 
security related. These include a network address translator, which maps local 
addresses to Internet addresses, and a network management function that au-
dits or logs Internet usage.

4. A firewall can serve as the platform for implementing virtual private networks. 
This is discussed in the following section.

Firewalls have their limitations, including the following:

1. The firewall cannot protect against attacks that bypass the firewall. Internal 
systems may have dial-out capability to connect to an ISP. An internal LAN 
may support a modem pool that provides dial-in capability for traveling em-
ployees and telecommuters.

2. The firewall may not protect fully against internal threats, such as a disgrun-
tled employee or an employee who unwittingly cooperates with an external 
attacker.

3. An improperly secured wireless LAN may be accessed from outside the orga-
nization. An internal firewall that separates portions of an enterprise network 
cannot guard against wireless communications between local systems on dif-
ferent sides of the internal firewall.

4. A laptop, smartphone, or portable storage device may be used and infected 
outside the corporate network, and then connected and used internally.

Types of Firewalls

A firewall may act as a packet filter. It can operate as a positive filter, allowing to 
pass only packets that meet specific criteria, or as a negative filter, rejecting any 
packet that meets certain criteria. Depending on the type of firewall, it may examine 
one or more protocol headers in each packet, the payload of each packet, or the 
pattern generated by a sequence of packets. In this section, we look at the principal 
types of firewalls.

Packet Filtering Firewall A packet filtering firewall applies a set of rules to 
each incoming and outgoing IP packet and then forwards or discards the packet 
(Figure 21.1b). The firewall is typically configured to filter packets going in both di-
rections (from and to the internal network). Filtering rules are based on information 
contained in a network packet:

 ■ Source IP address: The IP address of the system that originated the IP packet 
(e.g., 192.178.1.1)

 ■ Destination IP address: The IP address of the system the IP packet is trying to 
reach (e.g., 192.168.1.2)

 ■ Source and destination transport-level address: The transport-level (e.g., TCP 
or UDP) port number, which defines applications such as SNMP or TELNET

 ■ IP protocol field: Defines the transport protocol

 ■ Interface: For a firewall with three or more ports, which interface of the firewall 
the packet came from or which interface of the firewall the packet is destined for
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The packet filter is typically set up as a list of rules based on matches to fields in 
the IP or TCP header. If there is a match to one of the rules, that rule is invoked to 
determine whether to forward or discard the packet. If there is no match to any rule, 
then a default action is taken. Two default policies are possible:

 ■ Default = discard: That which is not expressly permitted is prohibited.

 ■ Default = forward: That which is not expressly prohibited is permitted.

The default = discard policy is more conservative. Initially, everything is blocked, 
and services must be added on a case-by-case basis. This policy is more visible to 
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Figure 21.1 Types of Firewalls
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users, who are more likely to see the firewall as a hindrance. However, this is the 
policy likely to be preferred by businesses and government organizations. Further, 
visibility to users diminishes as rules are created. The default = forward  policy in-
creases ease of use for end users but provides reduced security; the security admin-
istrator must, in essence, react to each new security threat as it becomes known. This 
policy may be used by generally more open organizations, such as universities.

Figure 21.2 gives some examples of packet filtering rule sets. In each set, the 
rules are applied top to bottom. The “*” in a field is a wildcard designator that 
matches everything. We assume that the default = discard policy is in force. The rule 
sets can be described as follows:

A. Inbound mail is allowed (port 25 is for SMTP incoming), but only to a gateway 
host. However, packets from a particular external host, SPIGOT, are blocked 
because that host has a history of sending massive files in e-mail messages.

B. This is an explicit statement of the default policy. All rule sets include this rule 
implicitly as the last rule.

Rule Set A

action Ourhost port theirhost port comment
block * * SPIGOT * we don't trust these people
allow OUR-GW 25 * * connection to our SMTP port

Rule Set B

action Ourhost port theirhost port comment
block * * * * default

Rule Set C

action Ourhost port theirhost port comment
allow * * * 25 connection to their SMTP port

Rule Set D

action Src port dest port flags comment

allow {our hosts} * * 25 our packets to their 
SMTP port

allow * 25 * * ACK their replies

Rule Set E

action Src port dest port flags comment
allow {our hosts} * * * our outgoing calls
allow * * * * ACK replies to our calls
allow * * * .1024 traffic to nonservers

Figure 21.2 Packet-Filtering Example
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C. This rule set is intended to specify that any inside host can send mail to the 
outside. A TCP packet with a destination port of 25 is routed to the SMTP 
server on the destination machine. The problem with this rule is that the use of 
port 25 for SMTP receipt is only a default; an outside machine could be con-
figured to have some other application linked to port 25. As this rule is written, 
an attacker could gain access to internal machines by sending packets with a 
TCP source port number of 25.

D. This rule set achieves the intended result that was not achieved in C. The rules 
take advantage of a feature of TCP connections. Once a connection is set up, 
the ACK flag of a TCP segment is set to acknowledge segments sent from the 
other side. Thus, this rule set states that it allows IP packets where the source 
IP address is one of a list of designated internal hosts and the destination TCP 
port number is 25. It also allows incoming packets with a source port number 
of 25 that include the ACK flag in the TCP segment. Note that we explicitly 
designate source and destination systems to define these rules explicitly.

E. This rule set is one approach to handling FTP connections. With FTP, two TCP 
connections are used: a control connection to set up the file transfer and a data 
connection for the actual file transfer. The data connection uses a different 
port number that is dynamically assigned for the transfer. Most servers, and 
hence most attack targets, use low-numbered ports; most outgoing calls tend 
to use a higher-numbered port, typically above 1023. Thus, this rule set allows

—Packets that originate internally

—Reply packets to a connection initiated by an internal machine

—Packets destined for a high-numbered port on an internal machine

This scheme requires that the systems be configured so that only the appropriate 
port numbers are in use.

Rule set E points out the difficulty in dealing with applications at the packet fil-
tering level. Another way to deal with FTP and similar applications is either stateful 
filters or an application-level gateway, both described subsequently in this section.

One advantage of a packet filtering firewall is its simplicity. Also, packet filters 
typically are transparent to users and are very fast. However, packet filters have the 
following weaknesses:

 ■ Because packet filter firewalls do not examine upper-layer data, they cannot 
prevent attacks that employ application-specific vulnerabilities or functions. 
For example, if a packet filter firewall cannot block specific application com-
mands and if a packet filter firewall allows a given application, all functions 
available within that application will be permitted.

 ■ Because of the limited information available to the firewall, the logging func-
tionality present in packet filter firewalls is limited. Packet filter logs normally 
contain the same information used to make access control decisions (source 
address, destination address, and traffic type).

 ■ Most packet filter firewalls do not support advanced user authentication 
schemes. Once again, this limitation is mostly due to the lack of upper-layer 
functionality by the firewall.
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 ■ Packet filter firewalls are generally vulnerable to attacks and exploits that take 
advantage of problems within the TCP/IP specification and protocol stack, 
such as network layer address spoofing. Many packet filter firewalls cannot 
detect a network packet in which the OSI Layer 3 addressing information has 
been altered. Spoofing attacks are generally employed by intruders to bypass 
the security controls implemented in a firewall platform.

 ■ Finally, due to the small number of variables used in access control decisions, 
packet filter firewalls are susceptible to security breaches caused by improper 
configurations. In other words, it is easy to accidentally configure a packet 
filter firewall to allow traffic types, sources, and destinations that should be 
 denied based on an organization’s information security policy.

Some of the attacks that can be made on packet filtering firewalls and the  appropriate 
countermeasures are the following:

 ■ IP address spoofing: The intruder transmits packets from the outside with a 
source IP address field containing an address of an internal host. The attacker 
hopes that the use of a spoofed address will allow penetration of systems that 
employ simple source address security, in which packets from specific trusted 
internal hosts are accepted. The countermeasure is to discard packets with an 
inside source address if the packet arrives on an external interface. In fact, this 
countermeasure is often implemented at the router external to the firewall.

 ■ Source routing attacks: The source station specifies the route that a packet 
should take as it crosses the Internet, in the hopes that this will bypass security 
measures that do not analyze the source routing information. The countermea-
sure is to discard all packets that use this option.

 ■ Tiny fragment attacks: The intruder uses the IP fragmentation option to cre-
ate extremely small fragments and force the TCP header information into a 
separate packet fragment. This attack is designed to circumvent filtering rules 
that depend on TCP header information. Typically, a packet filter will make a 
filtering decision on the first fragment of a packet. All subsequent fragments 
of that packet are filtered out solely on the basis that they are part of the 
packet whose first fragment was rejected. The attacker hopes that the filtering 
firewall examines only the first fragment and that the remaining fragments 
are passed through. A tiny fragment attack can be defeated by enforcing a 
rule that the first fragment of a packet must contain a predefined minimum 
amount of the transport header. If the first fragment is rejected, the filter can 
remember the packet and discard all subsequent fragments.

StateFul inSPection FirewallS A traditional packet filter makes filtering deci-
sions on an individual packet basis and does not take into consideration any higher-
layer context. To understand what is meant by context and why a traditional packet 
filter is limited with regard to context, a little background is needed. Most stan-
dardized applications that run on top of TCP follow a client/server model. For ex-
ample, for the Simple Mail Transfer Protocol (SMTP), email is transmitted from a 
client system to a server system. The client system generates new email messages, 
typically from user input. The server system accepts incoming email messages and 
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places them in the appropriate user mailboxes. SMTP operates by setting up a TCP 
connection between client and server, in which the TCP server port number, which 
identifies the SMTP server application, is 25. The TCP port number for the SMTP 
client is a number between 1024 and 65535 that is generated by the SMTP client.

In general, when an application that uses TCP creates a session with a remote 
host, it creates a TCP connection in which the TCP port number for the remote 
(server) application is a number less than 1024 and the TCP port number for the local 
(client) application is a number between 1024 and 65535. The numbers less than 1024 
are the “well-known” port numbers and are assigned permanently to particular appli-
cations (e.g., 25 for server SMTP). The numbers between 1024 and 65535 are generated 
 dynamically and have temporary significance only for the lifetime of a TCP connection.

A simple packet filtering firewall must permit inbound network traffic on all 
these high-numbered ports for TCP-based traffic to occur. This creates a vulnerabil-
ity that can be exploited by unauthorized users.

A stateful inspection packet firewall tightens up the rules for TCP traffic by 
creating a directory of outbound TCP connections, as shown in Table 21.1. There is 
an entry for each currently established connection. The packet filter will now allow 
incoming traffic to high-numbered ports only for those packets that fit the profile of 
one of the entries in this directory.

A stateful packet inspection firewall reviews the same packet information as a 
packet filtering firewall, but also records information about TCP connections (Figure 
21.1c). Some stateful firewalls also keep track of TCP sequence numbers to prevent 
attacks that depend on the sequence number, such as session hijacking. Some even 
inspect limited amounts of application data for some well-known protocols like FTP, 
IM, and SIPS commands, in order to identify and track related connections.

aPPlication-level gateway An application-level gateway, also called an 
 application proxy, acts as a relay of application-level traffic (Figure 21.1d). The user 
contacts the gateway using a TCP/IP application, such as Telnet or FTP, and the 
gateway asks the user for the name of the remote host to be accessed. When the user 
responds and provides a valid user ID and authentication information, the gateway 

Table 21.1 Example Stateful Firewall Connection State Table

Source 
Address Source Port

Destination 
Address

Destination 
Port

Connection 
State

192.168.1.100 1030 210.9.88.29 80 Established

192.168.1.102 1031 216.32.42.123 80 Established

192.168.1.101 1033 173.66.32.122 25 Established

192.168.1.106 1035 177.231.32.12 79 Established

223.43.21.231 1990 192.168.1.6 80 Established

219.22.123.32 2112 192.168.1.6 80 Established

210.99.212.18 3321 192.168.1.6 80 Established

24.102.32.23 1025 192.168.1.6 80 Established

223.21.22.12 1046 192.168.1.6 80 Established
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contacts the application on the remote host and relays TCP segments containing the 
application data between the two endpoints. If the gateway does not implement the 
proxy code for a specific application, the service is not supported and cannot be for-
warded across the firewall. Further, the gateway can be configured to support only 
specific features of an application that the network administrator considers accept-
able while denying all other features.

Application-level gateways tend to be more secure than packet filters. Rather 
than trying to deal with the numerous possible combinations that are to be allowed 
and forbidden at the TCP and IP level, the application-level gateway need only scru-
tinize a few allowable applications. In addition, it is easy to log and audit all incom-
ing traffic at the application level.

A prime disadvantage of this type of gateway is the additional processing 
overhead on each connection. In effect, there are two spliced connections between 
the end users, with the gateway at the splice point, and the gateway must examine 
and forward all traffic in both directions.

circuit-level gateway A fourth type of firewall is the circuit-level gateway or 
circuit-level proxy (Figure 21.1e). This can be a stand-alone system or it can be a spe-
cialized function performed by an application-level gateway for certain applications. 
As with an application gateway, a circuit-level gateway does not permit an end-to-
end TCP connection; rather, the gateway sets up two TCP connections, one between 
itself and a TCP user on an inner host and one between itself and a TCP user on an 
outside host. Once the two connections are established, the gateway typically relays 
TCP segments from one connection to the other without examining the contents. 
The security function consists of determining which connections will be allowed.

A typical use of circuit-level gateways is a situation in which the system 
 administrator trusts the internal users. The gateway can be configured to support 
 application-level or proxy service on inbound connections and circuit-level func-
tions for outbound connections. In this configuration, the gateway can incur the pro-
cessing overhead of examining incoming application data for forbidden functions 
but does not incur that overhead on outgoing data.

DMZ Networks

Figure 21.3 suggests the most common distinction, that between an internal and 
an external firewall. An external firewall is placed at the edge of a local or enter-
prise network, just inside the boundary router that connects to the Internet or 
some wide area network (WAN). One or more internal firewalls protect the bulk 
of the  enterprise network. Between these two types of firewalls are one or more 
networked devices in a region referred to as a demilitarized zone (DMZ) network. 
Systems that are externally accessible but need some protections are usually located 
on DMZ networks. Typically, the systems in the DMZ require or foster external con-
nectivity, such as a corporate Web site, an email server, or a domain name system 
(DNS) server.

The external firewall provides a measure of access control and protection for 
the DMZ systems consistent with their need for external connectivity. The external 
firewall also provides a basic level of protection for the remainder of the enterprise 
network. In this type of configuration, internal firewalls serve three purposes:
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1. The internal firewall adds more stringent filtering capability, compared to the 
external firewall, in order to protect enterprise servers and workstations from 
external attack.

2. The internal firewall provides two-way protection with respect to the DMZ. 
First, the internal firewall protects the remainder of the network from attacks 
launched from DMZ systems. Such attacks might originate from worms, root-
kits, bots, or other malware lodged in a DMZ system. Second, an internal firewall 
can protect the DMZ systems from attack from the internal protected network.

3. Multiple internal firewalls can be used to protect portions of the internal net-
work from each other. For example, firewalls can be configured so that internal 
servers are protected from internal workstations and vice versa. A common 
practice is to place the DMZ on a different network interface on the external 
firewall from that used to access the internal networks.
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Application and database servers

Web
server(s)

Email
server

Internal DMZ network

Boundary
router

External
firewall

LAN
switch

LAN
switch

Internal
firewall

Internal protected network

DNS
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Internet
Remote

users

Figure 21.3 Example Firewall Configuration
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21.2 INTRUSION DETECTION SYSTEMS

It is useful to begin this section by defining the following terms:

 ■ Intrusion: Violations of security policy, usually characterized as attempts to 
affect the confidentiality, integrity, or availability of a computer or network. 
These violations can come from attackers accessing systems from the Internet 
or from authorized users of the systems who attempt to overstep their legiti-
mate authorization levels or who use their legitimate access to the system to 
conduct unauthorized activity.

 ■ Intrusion detection: The process of collecting information about events oc-
curring in a computer system or network and analyzing them for signs of 
intrusions.

 ■ Intrusion detection system: Hardware or software products that gather and 
analyze information from various areas within a computer or a network for 
the purpose of finding, and providing real-time or near-real-time warning of, 
attempts to access system resources in an unauthorized manner.

Intrusion detection systems (IDSs) can be classified as follows:

 ■ Host-based IDS: Monitors the characteristics of a single host and the events 
occurring within that host for suspicious activity. This vantage point allows 
host-based IDSs to determine exactly which processes and user accounts are 
involved in a particular attack on the OS. Furthermore, unlike network-based 
IDSs, host-based IDSs can more readily see the intended outcome of an at-
tempted attack, because they can directly access and monitor the data files and 
system processes usually targeted by attacks.

 ■ Network-based IDS: Monitors network traffic for particular network seg-
ments or devices and analyzes network, transport, and application protocols to 
identify suspicious activity.

An IDS comprises three logical components:

 ■ Sensors: Sensors are responsible for collecting data. The input for a sensor 
may be any part of a system that could contain evidence of an intrusion. Types 
of input to a sensor include network packets, log files, and system call traces. 
Sensors collect and forward this information to the analyzer.

 ■ Analyzers: Analyzers receive input from one or more sensors or from other 
analyzers. The analyzer is responsible for determining if an intrusion has oc-
curred. The output of this component is an indication that an intrusion has 
occurred. The output may include evidence supporting the conclusion that an 
intrusion occurred. The analyzer may provide guidance about what actions to 
take as a result of the intrusion.

 ■ User interface: The user interface to an IDS enables a user to view output 
from the system or control the behavior of the system. In some systems, the 
user interface may equate to a manager, director, or console component.
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Basic Principles

Authentication facilities, access control facilities, and firewalls all play a role in coun-
tering intrusions. Another line of defense is intrusion detection, and this has been 
the focus of much research in recent years. This interest is motivated by a number of 
considerations, including the following:

1. If an intrusion is detected quickly enough, the intruder can be identified and 
ejected from the system before any damage is done or any data are compro-
mised. Even if the detection is not sufficiently timely to preempt the intruder, 
the sooner that the intrusion is detected, the less the amount of damage and 
the more quickly that recovery can be achieved.

2. An effective IDS can serve as a deterrent, thus acting to prevent intrusions.

3. Intrusion detection enables the collection of information about intrusion tech-
niques that can be used to strengthen intrusion prevention measures.

Approaches to Intrusion Detection

Intrusion detection assumes that the behavior of the intruder differs from that of a le-
gitimate user in ways that can be quantified. Of course, we cannot expect that there will 
be a crisp, exact distinction between an attack by an intruder and the normal use of re-
sources by an authorized user. Rather, we must expect that there will be some overlap.

There are two general approaches to intrusion detection: misuse detection and 
anomaly detection (Figure 21.4).

Misuse detection is based on rules that specify system events, sequences of 
events, or observable properties of a system that are believed to be symptomatic of 
security incidents. Misuse detectors use various pattern-matching algorithms, oper-
ating on large databases of attack patterns, or signatures. An advantage of misuse 
detection is that it is accurate and generates few false alarms. A disadvantage is that 
it cannot detect novel or unknown attacks.

Anomaly detection searches for activity that is different from the normal be-
havior of system entities and system resources. An advantage of anomaly detection 
is that it is able to detect previously unknown attacks based on an audit of activity. A 
disadvantage is that there is a significant trade-off between false positives and false 
negatives. Figure 21.5 suggests, in abstract terms, the nature of the task confronting 
the designer of an anomaly detection system. Although the typical behavior of an 
intruder differs from the typical behavior of an authorized user, there is an overlap 
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DefineKnown
attacks
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if not 
known attack

Anomaly  Detection
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behavior

Rejected as
suspicious

if not 
normal
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Figure 21.4 Approaches to Intrusion Detection
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in these behaviors. Thus, a loose interpretation of intruder behavior, which will catch 
more intruders, will also lead to a number of false positives, or authorized users 
identified as intruders. On the other hand, an attempt to limit false positives by a 
tight interpretation of intruder behavior will lead to an increase in false negatives, 
or intruders not identified as intruders. Thus, there is an element of compromise and 
art in the practice of anomaly detection.

Table 21.2 clarifies the relationship between the terms false positive, true posi-
tive, false negative, and true negative.

Host-Based Intrusion Detection Techniques

Host-based IDSs add a specialized layer of security software to vulnerable or 
 sensitive systems; examples include database servers and administrative systems. 
The host-based IDS monitors activity on the system in a variety of ways to detect 
suspicious behavior. In some cases, an IDS can halt an attack before any damage 

overlap in observed
or expected behavior

profile of
intruder behavior

profile of
authorized user

behavior

measurable behavior
parameter

average behavior
of intruder

average behavior
of authorized user

Probability
density function

Figure 21.5 Profiles of Behavior of Intruders and Authorized Users

Table 21.2 Test Outcomes

Test Result Condition A Occurs
Condition A Does Not 
Occur

Test says “A” True positive False positive

Test says “NOT A” False negative True negative
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is done, but its primary purpose is to detect intrusions, log suspicious events, and 
send alerts.

The primary benefit of a host-based IDS is that it can detect both external and 
internal intrusions, something that is not possible either with network-based IDSs 
or firewalls.

Host-based IDSs use one or a combination of anomaly and misuse protection. 
For anomaly detection, two common strategies are:

 ■ Threshold detection: This approach involves defining thresholds, independent 
of user, for the frequency of occurrence of various events.

 ■ Profile based: A profile of the activity of each user is developed and used to 
detect changes in the behavior of individual accounts.

Network-Based Intrusion Detection Systems

A network-based ID system (NIDS) monitors the traffic on its network segment as 
a data source. This is generally accomplished by placing the network interface card 
in promiscuous mode to capture all network traffic that crosses its network segment. 
Network traffic on other segments, and traffic on other means of communication 
(like phone lines), can’t be monitored by a single NIDS.

niDS Function Network-based ID involves looking at the packets on the net-
work as they pass by some sensor. Packets are considered to be of interest if they 
match a signature. Three primary types of signatures are string signatures, port sig-
natures, and header condition signatures.

String signatures look for a text string that indicates a possible attack. An ex-
ample string signature for UNIX might be “cat “+ +” 7/.rhosts”, which if successful, 
might cause a UNIX system to become extremely vulnerable to network attack. To 
refine the string signature to reduce the number of false positives, it may be neces-
sary to use a compound string signature. A compound string signature for a common 
Web server attack might be “cgi-bin” AND “aglimpse” AND “IFS”.

Port signatures simply watch for connection attempts to well known, fre-
quently attacked ports. Examples of these ports include telnet (TCP port 23), FTP 
(TCP port 21/20), SUNRPC (TCP/UDP port 111), and IMAP (TCP port 143). If 
any of these ports aren’t used by the site, then incoming packets to these ports are 
suspicious.

Header signatures watch for dangerous or illogical combinations in packet 
headers. The most famous example is WinNuke, where a packet is destined for a 
NetBIOS port and the Urgent pointer, or Out Of Band pointer is set. This resulted 
in the “blue screen of death” for Windows systems. Another well-known header sig-
nature is a TCP packet with both the SYN and FIN flags set, signifying that the 
requestor wishes to start and stop a connection at the same time.

niDS Placement An NIDS sensor can only see the packets that happen to be 
carried on the network segment to which it is attached. Accordingly, a NIDS deploy-
ment is typically set up as a number of sensors distributed on key network points to 
passively gather traffic data and feed information on potential threats to a central 
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NIDS manager. Figure 21.6 gives examples of NIDS sensor placement. There are 
four types of locations for the sensors:

1. Outside the main enterprise firewall. Useful for establishing the level of threat 
for a given enterprise network. Those responsible for winning management 
support for security efforts can find this placement valuable.

2. In the network DMZ (inside the main firewall but outside internal firewalls). 
This location can monitor for penetration attempts that target Web and other 
services generally open to outsiders.

3. Behind internal firewalls, positioned to monitor major backbone networks, 
such as those that support internal servers and database resources.

4. Behind internal firewalls, positioned to monitor LANs that support user 
workstations and servers specific to a single department. Locations 3 and 4 in 
Figure 21.6 can monitor for more specific attacks at network segments, as well 
as attacks originating from inside the organization.
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Figure 21.6 Example of NIDS Sensor Deployment
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21.3 MALICIOUS SOFTWARE

Malicious software, commonly called malware, is perhaps the most significant 
 security threat to organizations. NIST SP 800-83 (Guide to Malware Incident 
Prevention and Handling for Desktops and Laptops) defines malware as “a  program 
that is covertly inserted into another program with the intent to destroy data, run 
destructive or intrusive programs, or otherwise compromise the confidentiality, 
integrity, or availability of the victim’s data, applications, or operating system.” 
Hence, malware can pose a threat to application programs, to utility  programs, such 
as editors and compilers, and to kernel-level programs. Malware can also be used 
on compromised or malicious Web sites and servers, or in especially crafted spam 
emails or other messages, which aim to trick users into revealing sensitive personal 
information.

Types of Malware

There is a growing variety of types of malware, most of which fits into one of the 
following broad categories:

 ■ Virus: A computer program that can copy itself and infect a computer without 
permission or knowledge of the user. A virus might corrupt or delete data on 
a computer, use email programs to spread itself to other computers, or even 
erase everything on a hard disk. It can replicate itself and can attach to another 
program. The program to which the virus attaches itself is known as host.

 ■ Worm: A self-replicating, self-propagating, self-contained program that uses 
networking mechanisms to spread itself. The main differences between viruses 
and worms is that the worms can self-replicate and propagate without human 
interaction and that the worm does not integrate into existing code. Worms 
target systems and applications that have known vulnerabilities.

 ■ Trojan Horse: A computer program that appears to have a useful function, 
but also has a hidden and potentially malicious function that evades security 
mechanisms, sometimes by exploiting legitimate authorizations of a system 
entity that invokes the program. As the name suggests, the purpose of a Trojan 
horse is to make a malicious program appear like a legitimate program. Trojan 
horse can monitor users’ action, steal users’ data, and can open a backdoor for 
the attackers.

 ■ Spyware: Software that is secretly or surreptitiously installed into an infor-
mation system to gather information on individuals or organizations without 
their knowledge.

 ■ Rootkit: A set of tools used by an attacker after gaining root-level access to a 
host to conceal the attacker’s activities on the host and permit the attacker to 
maintain root-level access to the host through covert means.

 ■ Backdoor: An undocumented way of gaining access to a computer system. 
Typically, a backdoor is a program that has the ability to bypass a system’s se-
curity control, allowing an attacker to access the system stealthily. Backdoors 
are usually installed by the attackers or by a malware program.
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 ■ Mobile code: Software (e.g., script, macro, or other portable instruction) that 
can be shipped unchanged to a heterogeneous collection of platforms and ex-
ecute with identical semantics.

 ■ Bot: Also known as a zombie. Program that is installed on a system to launch 
attacks on other machines. For example, a distributed denial-of-service 
(DDoS) attack involves traffic from a number of infected bot machines to a 
single target, to overwhelm the resources of the target machine. A collection of 
bots that act in concert is referred to as a botnet.

Malware Defense

Approaches to malware defense are commonly categorized along two dimensions, 
as shown in Figure 21.7. In terms of time scale, there are two categories:

 ■ Real-time and Near-real-time: Approaches in this category involve monitor-
ing and, if possible, blocking malware-related attacks as they are happening or 
very soon thereafter. These approaches typically also involve remedial action, 
such as removing malware and reporting the incident.

 ■ Post-compromise: Approaches in this category involve analysis of incident 
 reports and traffic patterns to aid in improving security controls.

The remainder of this section provides an overview of the approaches shown in 
Figure 21.7.

network traFFic analySiS Network traffic analysis involves monitoring traffic 
flows to detect potentially malicious activity. Such monitors are often placed at the 
boundary of the enterprise network to the outside world, such as the Internet or 
private networks. Monitors can also be placed on internal network devices or near 
server endpoints.

As with intrusion detection, traffic analysis can involve misuse detection 
(signature detection) or anomaly detection. As an example of misuse detection, a 
dramatic surge in traffic at any point likely indicates that a DDoS attack is under-
way. For anomaly detection, network security software needs to collect and main-
tain profiles of typical network traffic patterns, and then monitor current traffic for 
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significant deviation from normal behavior. For example, anomalous DNS (Domain 
Name System) traffic is a good indicator of botnet activity.

PayloaD analySiS The term payload refers to the data encapsulated within 
 packets that has meaning to endpoint applications. As with traffic analysis,  payload 
analysis is a real-time or near-real-time activity. It involves looking for known 
malicious payloads (signature detection) or looking for payload patterns that are 
anomalous. One useful technique for payload analysis is the use of a sandbox en-
vironment, which quarantines the payload until the analysis is done. This enables 
a payload analysis system to observe the behavior of payloads in motion, such as 
when they cross the network perimeter, and to either flag suspicious payloads or 
block them outright.

enDPoint Behavior analySiS This category involves a wide variety of tools and 
approaches implemented at the endpoint. Antivirus software uses signature and 
anomaly detection techniques to identify malware and prevent it from executing 
on the host system. Application whitelisting, which restricts application execution 
to only known good applications is also employed. At the system software level, 
 application containers can isolate applications and files in virtual containers to 
 prevent damage.

inciDent management Information security incident management as consist-
ing of processes for detecting, reporting, assessing, responding to, dealing with, and 
learning from information security incidents.

Key elements of incident management include:

 ■ Data collection: In a typical use case, an incident management system must be 
able to touch any number of different systems: firewalls, proxy servers, data 
bases, intrusion detection and prevention systems, OSs, routers, switches, ac-
cess control systems, etc. Some of these may share similar logging and alert 
functions, but frequently there is significant variation in the format, protocol 
and information provided.

 ■ Data aggregation: The aggregator serves as a consolidating resource before 
data is sent to be correlated or retained.

 ■ Data normalization: Normalization is the process of resolving different repre-
sentations of the same types of data into a similar format in a common database.

 ■ Correlation: Event correlation is the function of linking multiple security events 
or alerts, typically within a given time window and across multiple systems, to 
identify anomalous activity that would not be evident from any singular event.

 ■ Alerting: When data is gathered or identified that trigger certain responses, 
such as alerts or potential security problems, tools can activate certain proto-
cols to alert users, like notifications sent to the dashboard, an automated email 
or text message.

 ■ Reporting/Compliance: Protocols can be established that automatically collect 
data necessary for compliance with company, organizational, and government 
policies.
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The goal is to analyze the security incidents both for purposes of improving 
system security and for updating signatures and anomaly profiles used for detection. 
This process applies both to malware-related attacks and to intrusions.

ForenSicS NIST SP 800-96 (Guide to Integrating Forensic Techniques into Incident 
Response) defines computer forensics, or digital forensics, as the identification, col-
lection, examination, and analysis of data while preserving the integrity of the infor-
mation and maintaining a strict chain of custody for the data. Computer forensics 
seeks to answer a number of questions including the following:

 ■ What happened?

 ■ When did the events occur?

 ■ In what order did the events occur?

 ■ What was the cause of these events?

 ■ Who caused these events to occur?

 ■ What enabled these events to take place?

 ■ What was affected? How much was it affected?

Most security incidents do not require a forensic investigation but can be dealt 
with by the ordinary incident management process. But more serious incidents may 
 warrant the more in-depth analysis of a forensic investigation.

21.4 DISTRIBUTED DENIAL OF SERVICE ATTACKS

A denial-of-service (DoS) attack is an attempt to prevent legitimate users of a ser-
vice from using that service. When this attack comes from a single host or network 
node, then it is simply referred to as a DoS attack. A more serious threat is posed 
by a DDoS attack. DDoS attacks make computer systems inaccessible by flooding 
servers, networks, or even end-user systems with useless traffic so that legitimate 
users can no longer gain access to those resources. In a typical DDoS attack, a large 
number of compromised hosts are amassed to send useless packets.

This section is concerned with DDoS attacks. First, we look at the nature 
and types of attacks. Next, we examine methods by which an attacker is able 
to recruit a network of hosts for attack launch. Finally, this section looks at 
countermeasures.

DDoS Attack Description

A DDoS attack attempts to consume the target’s resources so that it cannot provide 
service. One way to classify DDoS attacks is in terms of the type of resource that 
is consumed. Broadly speaking, the resource consumed is either an internal host 
resource on the target system or data transmission capacity in the local network to 
which the target is attacked.

A simple example of an internal resource attack is the SYN flood attack. 
Figure 21.8a shows the steps involved:
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1. The attacker takes control of multiple hosts over the Internet, instructing them 
to contact the target Web server.

2. The agent hosts begin sending TCP/IP SYN (synchronize/initialization) pack-
ets, with erroneous return IP address information, to the target.

3. Each SYN packet is a request to open a TCP connection. For each such packet, 
the Web server responds with a SYN/ACK (synchronize/acknowledge) packet, 
trying to establish a TCP connection with a TCP entity at a spurious IP ad-
dress. The Web server maintains a data structure for each SYN request waiting 
for a response back and becomes bogged down as more traffic floods in. The 
result is that legitimate connections are denied while the victim machine is 
waiting to complete bogus “half-open” connections.

The TCP state data structure is a popular internal resource target but by no means 
the only one. Other possibilities include the following:

1. An intruder may attempt to use up available data structures that are used by 
the OS to manage processes, such as process table entries and process control 
information entries. The attack can be quite simple, such as a program that 
forks new processes repeatedly.
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2. An intruder may attempt to allocate to itself large amounts of disk space by a 
variety of straightforward means. These include generating numerous emails, 
forcing errors that trigger audit trails, and placing files in shareable areas.

Figure 21.8b illustrates an example of an attack that consumes data  transmission 
resources. The following steps are involved:

1. The attacker takes control of multiple hosts over the Internet, instructing them 
to send ICMP ECHO packets1 with the target’s spoofed IP address to a group 
of hosts that act as reflectors, as described subsequently.

2. Nodes at the bounce site receive multiple spoofed requests and respond by 
sending echo reply packets to the target site.

3. The target’s router is flooded with packets from the bounce site, leaving 
no data transmission capacity for legitimate traffic.

Another way to classify DDoS attacks is as either direct or reflector DDoS 
attacks. In a direct DDoS attack (Figure 21.9a), the attacker is able to implant zom-
bie software on a number of sites distributed throughout the Internet. Often, the 
DDoS attack involves two levels of zombie machines: primary zombies and agent 
zombies. The hosts of both machines have been infected with malicious code. The 
attacker coordinates and triggers the primary zombies, which in turn coordinate 
and trigger the agent zombies. The use of two levels of zombies makes it more 
difficult to trace the attack back to its source and provides for a more resilient 
network of attackers.

A reflector DDoS attack adds another layer of machines (Figure 21.9b). In 
this type of attack, the agent zombies construct packets requiring a response that 
contain the target’s IP address as the source IP address in the packet’s IP header. 
These packets are sent to uninfected machines known as reflectors. The uninfected 
machines  respond with packets directed at the target machine. A reflector DDoS 
attack can easily involve more machines and more traffic than a direct DDoS at-
tack and hence be more damaging. Further, tracing back the attack or filtering out 
the attack packets is more difficult because the attack comes from widely dispersed 
uninfected machines.

Constructing the Attack Network

The first step in a DDoS attack is for the attacker to infect a number of machines 
with zombie software that will ultimately be used to carry out the attack. The essen-
tial ingredients in this phase of the attack are the following:

1. Software that can carry out the DDoS attack. The software must be able to 
run on a large number of machines, must be able to conceal its  existence, 
must be able to communicate with the attacker or have some sort of 
 time-triggered mechanism, and must be able to launch the intended attack 
toward the target.

1The Internet Control Message Protocol (ICMP) is an IP-level protocol for the exchange of control pack-
ets between a router and a host or between hosts. The ECHO packet requires the recipient to respond 
with an echo reply to check that communication is possible between entities.
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2. A vulnerability in a large number of systems. The attacker must become 
aware of a vulnerability that many system administrators and individual 
users have failed to patch and that enables the attacker to install the zombie 
software.

3. A strategy for locating vulnerable machines, a process known as scanning.

(a) Direct DDoS attack

Attacker

Attacker

Reflectors

Victim

Victim

Primary
zombies

Primary
zombies

Agent
zombies

Agent
zombies

(b) Reflector DDoS attack

Figure 21.9 Types of Flooding-Based DDoS Attacks
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In the scanning process, the attacker first seeks out a number of vulnerable ma-
chines and infects them. Then, typically, the zombie software that is installed in the 
infected machines repeats the same scanning process, until a large distributed net-
work of infected machines is created. [MIRK04] lists the following types of scanning 
strategies:

 ■ Random: Each compromised host probes random addresses in the IP ad-
dress space, using a different seed. This technique produces a high volume of 
Internet traffic, which may cause generalized disruption even before the actual 
attack is launched.

 ■ Hit list: The attacker first compiles a long list of potential vulnerable machines. 
This can be a slow process done over a long period to avoid detection that an 
attack is underway. Once the list is compiled, the attacker begins infecting ma-
chines on the list. Each infected machine is provided with a portion of the list 
to scan. This strategy results in a very short scanning period, which may make 
it difficult to detect that infection is taking place.

 ■ Topological: This method uses information contained on an infected victim 
machine to find more hosts to scan.

 ■ Local subnet: If a host can be infected behind a firewall, that host then looks 
for targets in its own local network. The host uses the subnet address structure 
to find other hosts that would otherwise be protected by the firewall.

DDoS Countermeasures

In general, there are three lines of defense against DDoS attacks:

 ■ Attack prevention and preemption (before the attack): These mechanisms 
 enable the victim to endure attack attempts without denying service to legiti-
mate clients. Techniques include enforcing policies for resource consumption 
and providing backup resources available on demand. In addition, preven-
tion mechanisms modify systems and protocols on the Internet to reduce the 
 possibility of DDoS attacks.

 ■ Attack detection and filtering (during the attack): These mechanisms attempt 
to detect the attack as it begins and respond immediately. This minimizes the 
impact of the attack on the target. Detection involves looking for suspicious 
patterns of behavior. Response involves filtering out packets likely to be part 
of the attack.

 ■ Attack source traceback and identification (during and after the attack): This 
is an attempt to identify the source of the attack as a first step in preventing fu-
ture attacks. However, this method typically does not yield results fast enough, 
if at all, to mitigate an ongoing attack.

The challenge in coping with DDoS attacks is the sheer number of ways in which 
they can operate. Thus, DDoS countermeasures must evolve with the threat.
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Review Questions

 21.1 List three design goals for a firewall.
 21.2 List four techniques used by firewalls to control access and enforce a security policy.
 21.3 What information is used by a typical packet filtering firewall?
 21.4 What are some weaknesses of a packet filtering firewall?
 21.5 What is the difference between a packet filtering firewall and a stateful inspection 

firewall?
 21.6 What is an application-level gateway?
 21.7 What is a circuit-level gateway?
 21.8 What is a DMZ network and what types of systems would you expect to find on such 

networks?
 21.9 What is the difference between an internal and an external firewall?
 21.10 Explain the difference between host-based and network-based intrusion detection 

systems.
 21.11 What are the main logical components of an IDS?
 21.12 What are the two main approaches to intrusion detection?
 21.13 List the main categories of malicious software.
 21.14 Explain the difference between network traffic analysis, payload analysis, and end-

point behavior analysis.
 21.15 What is a distributed denial-of-service system?

Problems
 21.1 As was mentioned in Section 21.1, one approach to defeating the tiny fragment attack 

is to enforce a minimum length of the transport header that must be contained in the 
first fragment of an IP packet. If the first fragment is rejected, all subsequent frag-
ments can be rejected. However, the nature of IP is such that fragments may arrive out 
of order. Thus, an intermediate fragment may pass through the filter before the initial 
fragment is rejected. How can this situation be handled?

 21.2 In an IPv4 packet, the size of the payload in the first fragment, in octets, is equal to 
Total Length - (4 * IHL). If this value is less than the required minimum (8 octets 
for TCP), then this fragment and the entire packet are rejected. Suggest an alternative 
method of achieving the same result using only the Fragment Offset field.

 21.3 RFC 791, the IPv4 protocol specification, describes a reassembly algorithm that  results 
in new fragments overwriting any overlapped portions of previously received frag-
ments. Given such a reassembly implementation, an attacker could construct a series 
of packets in which the lowest (zero-offset) fragment would contain innocuous data 
(and thereby be passed by administrative packet filters), and in which some  subsequent 
packet having a nonzero offset would overlap TCP header information (destination 

21.5 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

anomaly detection
application proxy
botnet

circuit-level proxy
false negatives
false positives 

malware
misuse detection
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port, for instance) and cause it to be modified. The second packet would be passed 
through most filter implementations because it does not have a zero fragment offset. 
Suggest a method that could be used by a packet filter to counter this attack.

 21.4 Table 21.3 shows a sample of a packet filter firewall ruleset for an imaginary network of 
IP address that range from 192.168.1.0 to 192.168.1.254. Describe the effect of each rule.

 21.5 SMTP (Simple Mail Transfer Protocol) is the standard protocol for transferring mail 
between hosts over TCP. A TCP connection is set up between a user agent and a 
server program. The server listens on TCP port 25 for incoming connection requests. 
The user end of the connection is on a TCP port number above 1023. Suppose you 
wish to build a packet filter rule set allowing inbound and outbound SMTP traffic. 
You generate the following rule set:

Rule Direction Src Addr Dest Addr Protocol Dest Port Action

A In External Internal TCP 25 Permit

B Out Internal External TCP 71023 Permit

C Out Internal External TCP 25 Permit

D In External Internal TCP 71023 Permit

E Either Any Any Any Any Deny

a. Describe the effect of each rule.
b. Your host in this example has IP address 172.16.1.1. Someone tries to send email 

from a remote host with IP address 192.168.3.4. If successful, this generates an 
SMTP dialogue between the remote user and the SMTP server on your host con-
sisting of SMTP commands and mail. Additionally, assume that a user on your host 
tries to send email to the SMTP server on the remote system. Four typical packets 
for this scenario are as shown:

Packet Direction Src Addr Dest Addr Protocol Dest Port Action

1 In 192.168.3.4 172.16.1.1 TCP 25 ?

2 Out 172.16.1.1 192.168.3.4 TCP 1234 ?

3 Out 172.16.1.1 192.168.3.4 TCP 25 ?

4 In 192.168.3.4 172.16.1.1 TCP 1357 ?

Indicate which packets are permitted or denied and which rule is used in each case.
c. Someone from the outside world (10.1.2.3) attempts to open a connection from 

port 5150 on a remote host to the Web proxy server on port 8080 on one of your 

Table 21.3  Sample Packet Filter Firewall Ruleset

Source 
Address

Source Port Destination 
Address

Destination 
Port

Action

1 Any Any 192.168.1.0 7 1023 Allow

2 192.168.1.1 Any Any Any Deny

3 Any Any 192.168.1.1 Any Deny

4 192.168.1.0 Any Any Any Allow

5 Any Any 192.168.1.2 SMTP Allow

6 Any Any 192.168.1.3 HTTP Allow

7 Any Any Any Any Deny
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local hosts (172.16.3.4), in order to carry out an attack. Typical packets are as 
follows:

Packet Direction Src Addr Dest Addr Protocol Dest Port Action

5 In 10.1.2.3 172.16.3.4 TCP 8080 ?

6 Out 172.16.3.4 10.1.2.3 TCP 5150 ?

Will the attack succeed? Give details.
 21.6 To provide more protection, the rule set from the preceding problem is modified as 

follows:

Rule Direction Src Addr Dest Addr Protocol Src Port Dest Port Action

A In External Internal TCP 71023 25 Permit

B Out Internal External TCP 25 71023 Permit

C Out Internal External TCP 71023 25 Permit

D In External Internal TCP 25 71023 Permit

E Either Any Any Any Any Any Deny

a. Describe the change.
b. Apply this new rule set to the same six packets of the preceding problem. Indicate 

which packets are permitted or denied and which rule is used in each case.
 21.7 A hacker uses port 25 as the client port on his or her end to attempt to open a connec-

tion to your Web proxy server.
a. The following packets might be generated:

Packet Direction Src Addr Dest Addr Protocol Src Port Dest Port Action

7 In 10.1.2.3 172.16.3.4 TCP 25 8080 ?

8 Out 172.16.3.4 10.1.2.3 TCP 8080 25 ?

Explain why this attack will succeed, using the rule set of the preceding problem.

b. When a TCP connection is initiated, the ACK bit in the TCP header is not set. 
Subsequently, all TCP headers sent over the TCP connection have the ACK bit set. 
Use this information to modify the rule set of the preceding problem to prevent 
the attack just described.

 21.8 A common management requirement is that “all external Web traffic must flow via 
the organization’s Web proxy.” However, that requirement is easier stated than imple-
mented. Discuss the various problems and issues, possible solutions, and limitations 
supporting this requirement. In particular, consider issues such as identifying exactly 
what constitutes “Web traffic” and how it may be monitored, given the large range of 
ports and various protocols used by Web browsers and servers.

 21.9 Consider the threat of “theft/breach of proprietary or confidential information held in 
key data files on the system.” One method by which such a breach might occur is the 
accidental/deliberate emailing of information to a user outside to the organization. A 
possible countermeasure to this is to require all external email to be given a sensitivity 
tag (classification if you like) in its subject and for external e-mail to have the lowest 
sensitivity tag. Discuss how this measure could be implemented in a firewall and what 
components and architecture would be needed to do this.

 21.10 In the context of an IDS, we define a false positive to be an alarm generated by an IDS 
in which the IDS alerts to a condition that is actually benign. A false negative occurs 
when an IDS fails to generate an alarm when an alert-worthy condition is in effect. 
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Using the above diagram, depict two curves that roughly indicate false positives and 
false negatives, respectively.

 21.11 The overlapping area of the two probability density functions of Figure 21.5 repre-
sents the region in which there is the potential for false positives and false negatives. 
Further, Figure 21.5 is an idealized and not necessarily representative depiction of the 
relative shapes of the two density functions. Suppose there is 1 actual intrusion for 
every 1000 authorized users, and the overlapping area covers 1% of the authorized 
users and 50% of the intruders.
a. Sketch such a set of density functions and argue that this is not an unreasonable 

depiction.
b. What is the probability that an event that occurs in this region is that of an autho-

rized user? Keep in mind that 50% of all intrusions fall in this region.
 21.12 An example of a host-based intrusion detection tool is the tripwire program. This is 

a file integrity checking tool that scans files and directories on the system on a regu-
lar basis and notifies the administrator of any changes. It uses a protected database 
of cryptographic checksums for each file checked and compares this value with that 
recomputed on each file as it is scanned. It must be configured with a list of files and 
directories to check, and what changes, if any, are permissible to each. It can allow, 
for example, log files to have new entries appended, but not for existing entries to 
be changed. What are the advantages and disadvantages of using such a tool? Con-
sider the problem of determining which files should only change rarely, which files 
may change more often and how, and which change frequently and hence cannot be 
checked. Hence consider the amount of work in both the configuration of the pro-
gram and on the system administrator monitoring the responses generated.

 21.13 A taxicab was involved in a fatal hit-and-run accident at night. Two cab companies, the 
Green and the Blue, operate in the city. You are told that:

• 85% of the cabs in the city are Green and 15% are Blue.
• A witness identified the cab as Blue.

The court tested the reliability of the witness under the same circumstances that exist-
ed on the night of the accident and concluded that the witness was correct in identify-
ing the color of the cab 80% of the time. What is the probability that the cab involved 
in the incident was Blue rather than Green?

Less specific
or looser

Frequency
of alerts

Conservativeness
of signatures

More specific
or stricter
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 21.14 The question arises as to whether it is possible to develop a program that can analyze 
a piece of software to determine if it is a virus. Consider that we have a program D 
that is supposed to be able to do that. That is, for any program P, if we run D(P), the 
result returned is TRUE (P is a virus) or FALSE (P is not a virus). Now consider the 
following program:

Program CV:=

{…

main-program:=

{if D(CV) then goto next:

else infect-executable;

}

next:

}

In the preceding program, infect-executable is a module that scans memory for 
executable programs and replicates itself in those programs. Determine if D can cor-
rectly decide whether CV is a virus.
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Cloud computing: A model for enabling ubiquitous, convenient, on-demand net-
work access to a shared pool of configurable computing resources (e.g., networks, 
servers, storage, applications, and services) that can be rapidly provisioned and re-
leased with minimal management effort or service provider interaction. This cloud 
model promotes availability and is composed of five essential characteristics, three 
service models, and four deployment models.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

 ◆ Present an overview of cloud computing concepts.

 ◆ List and define the principal cloud services.

 ◆ List and define the cloud deployment models.

 ◆ Explain the NIST cloud computing reference architecture.

 ◆ Understand the unique security issues related to cloud computing.

 ◆ Describe Cloud Security as a Service.

 ◆ Understand the OpenStack security module for cloud security.

The two most significant developments in computing in recent years are cloud 
 computing and the Internet of Things (IoT). In both cases, operating systems, cryp-
tographic algorithms, and security protocols tailored to the specific requirements of 
these environments are evolving. This chapter surveys security issues related to cloud 
computing. Chapter 23 covers IoT.

This chapter begins with an overview of the concepts of cloud computing, 
 followed by a discussion of cloud security.

22.1 CLOUD COMPUTING

There is an increasingly prominent trend in many organizations to move a  substantial 
portion or even all information technology (IT) operations to an Internet-connected 
infrastructure known as enterprise cloud computing. This section provides an 
 overview of cloud computing.

Cloud Computing Elements

NIST defines cloud computing, in NIST SP-800-145 (The NIST Definition of Cloud 
Computing), as follows:

The definition refers to various models and characteristics, whose relationship 
is illustrated in Figure 22.1. The essential characteristics of cloud computing include 
the following:
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 ■ Broad network access: Capabilities are available over the network and ac-
cessed through standard mechanisms that promote use by heterogeneous thin 
or thick client platforms (e.g., mobile phones, laptops, and PDAs) as well as 
other traditional or cloud-based software services.

 ■ Rapid elasticity: Cloud computing gives you the ability to expand and reduce 
resources according to your specific service requirement. For example, you 
may need a large number of server resources for the duration of a specific task. 
You can then release these resources upon completion of the task.

 ■ Measured service: Cloud systems automatically control and optimize resource 
use by leveraging a metering capability at some level of abstraction appropri-
ate to the type of service (e.g., storage, processing, bandwidth, and active user 
accounts). Resource usage can be monitored, controlled, and reported, provid-
ing transparency for both the provider and consumer of the utilized service.

 ■ On-demand self-service: A cloud service consumer (CSC) can unilaterally 
provision computing capabilities, such as server time and network storage, as 
needed automatically without requiring human interaction with each service 
provider. Because the service is on demand, the resources are not permanent 
parts of your IT infrastructure.

 ■ Resource pooling: The provider’s computing resources are pooled to serve 
multiple CSCs using a multi-tenant model, with different physical and virtual 
resources dynamically assigned and reassigned according to consumer de-
mand. There is a degree of location independence in that the CSC generally 
has no control or knowledge of the exact location of the provided resources, 
but may be able to specify location at a higher level of abstraction (e.g., coun-
try, state, or data center). Examples of resources include storage, processing, 

Broad
Network Access

Resource Pooling

Rapid
Elasticity

E
ss

en
tia

l
C

ha
ra

ct
er

is
tic

s
Se

rv
ic

e
M

od
el

s
D

ep
lo

ym
en

t
M

od
el

s

Measured
Service

On-Demand
Self-Service

Public Private Hybrid Community

Software as a Service (SaaS)
Platform as a Service (PaaS)

Infrastructure as a Service (IaaS)

Figure 22.1 Cloud Computing Elements

M22_STAL7484_08_GE_C22.indd   700 05/04/22   10:45 PM



22.1 / Cloud Computing 701

memory, network bandwidth, and virtual machines. Even private clouds tend 
to pool resources between different parts of the same organization.

Cloud Service Models

NIST defines three service models, which can be viewed as nested service  alternatives: 
software as a service (SaaS), platform as a service (PaaS), and  infrastructure as a 
 service (IaaS).

Software aS a Service SaaS provides service to customers in the form of soft-
ware, specifically application software, running on and accessible in the cloud. SaaS 
 follows the familiar model of Web services, in this case applied to cloud resources. 
SaaS enables the customer to use the cloud provider’s applications running on the 
provider’s cloud infrastructure. The applications are accessible from various client 
devices through a simple interface such as a Web browser. Instead of obtaining desk-
top and server licenses for software products it uses, an enterprise obtains the same 
functions from the cloud service. The use of SaaS avoids the complexity of software 
installation, maintenance, upgrades, and patches. Examples of services at this level 
are Google Gmail, Microsoft 365, Salesforce, Citrix GoToMeeting, and Cisco WebEx.

Common subscribers to SaaS are organizations that want to provide their 
 employees with access to typical office productivity software, such as document 
management and email. Individuals also commonly use the SaaS model to acquire 
cloud resources. Typically, subscribers use specific applications on demand. The 
cloud provider also usually offers data-related features such as automatic backup 
and data sharing between subscribers.

Platform aS a Service A PaaS cloud provides service to customers in the form of 
a platform on which the customer’s applications can run. PaaS enables the customer 
to deploy onto the cloud infrastructure customer-created or acquired applications. 
A PaaS cloud provides useful software building blocks, plus a number of develop-
ment tools, such as programming language tools, run-time environments, and other 
tools that assist in deploying new applications. In effect, PaaS is an operating system 
in the cloud. PaaS is useful for an organization that wants to develop new or tailored 
applications while paying for the needed computing resources only as needed and 
only for as long as needed. Google AppEngine, Engine Yard, Heroku, Microsoft 
Azure Cloud Services, and Apache Stratos are examples of PaaS.

infraStructure aS a Service With IaaS, the customer has access to the resources of 
the underlying cloud infrastructure. The cloud service user does not manage or con-
trol the resources of the underlying cloud infrastructure but has control over operat-
ing systems, deployed applications, and possibly limited control of select networking 
components (e.g., host firewalls). IaaS provides virtual machines (VMs) and other 
virtualized hardware and operating systems. IaaS offers the customer processing, 
storage, networks, and other fundamental computing resources so that the customer 
is able to deploy and run arbitrary software, which can include operating systems 
and applications. IaaS enables customers to combine basic computing services, such 
as number crunching and data storage, to build highly adaptable computer systems.
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Typically, customers are able to self-provision this infrastructure, using a Web-
based graphical user interface that serves as an IT operations management console 
for the overall environment. API access to the infrastructure may also be offered as 
an option. Examples of IaaS are Amazon Elastic Compute Cloud (Amazon EC2), 
Microsoft Azure, Google Compute Engine (GCE), and Rackspace.

Figure 22.2 compares the functions implemented by the cloud service provider 
for the three service models.

Cloud Deployment Models

There is an increasingly prominent trend in many organizations to move a substan-
tial portion or even all information technology (IT) operations to enterprise cloud 
computing. The organization is faced with a range of choices as to cloud ownership 
and management. Here, we look at the four most prominent deployment models for 
cloud computing.

Public cloud A public cloud infrastructure is made available to the general public 
or a large industry group and is owned by an organization selling cloud services. The 
cloud provider is responsible both for the cloud infrastructure and for the  control of 
data and operations within the cloud. A public cloud may be owned,  managed, and 
operated by a business, academic, or government organization, or some  combination 
of them. It exists on the premises of the cloud service provider.

In a public cloud model, all major components are outside the enterprise 
firewall, located in a multitenant infrastructure. Applications and storage are 
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made available over the Internet via secured IP, and can be free or offered at a 
 pay-per-usage fee. This type of cloud supplies easy-to-use consumer-type services, 
such as Amazon and Google on-demand Web applications or capacity; Yahoo mail; 
and Facebook or LinkedIn social media providing free storage for photographs. 
While public clouds are inexpensive and scale to meet needs, they typically pro-
vide no or lower service level agreements (SLAs) and may not offer the guarantees 
against data loss or corruption found with private or hybrid cloud offerings. The 
public cloud is appropriate for CSCs and entities not requiring the same levels of 
service that are expected within the firewall. Also, the public IaaS clouds do not 
necessarily provide for restrictions and compliance with privacy laws, which remain 
the responsibility of the subscriber or corporate end user. In many public clouds, the 
focus is on the CSC and small and medium businesses where pay-per-use pricing is 
available, often equating to pennies per gigabyte. Examples of services here might 
be picture and music sharing, laptop backup, or file sharing.

The major advantage of the public cloud is cost. A subscribing organization 
only pays for the services and resources it needs and can adjust these as needed. 
Further, the subscriber has greatly reduced management overhead. The principal 
concern is security. However, there are a number of public cloud providers that have 
demonstrated strong security controls and, in fact, such providers may have more re-
sources and expertise to devote to security that would be available in a private cloud.

Figure 22.3 shows in general terms the context of a public cloud used to pro-
vide dedicated cloud services to an enterprise. The public cloud provider serves a 
diverse pool of clients. Any given enterprise’s cloud resources are segregated from 
those used by other clients, but the degree of segregation varies among providers. 
For example, a provider dedicates a number of virtual machines to a given customer, 
but a virtual machine for one customer may share the same hardware as virtual ma-
chines for other customers.
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Figure 22.3 Public Cloud Configuration
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Private cloud A private cloud is implemented within the internal IT environ-
ment of the organization. The organization may choose to manage the cloud in 
house or contract the management function to a third party. Additionally, the cloud 
servers and storage devices may exist on premise or off premise.

Private clouds can deliver IaaS internally to employees or business units 
through an intranet or the Internet via a virtual private network (VPN), as well as 
software (applications) or storage as services to its branch offices. In both cases, pri-
vate clouds are a way to leverage existing infrastructure, and deliver and chargeback 
for bundled or complete services from the privacy of the organization’s network. 
Examples of services delivered through the private cloud include database on de-
mand, email on demand, and storage on demand.

A key motivation for opting for a private cloud is security. A private cloud 
infrastructure offers tighter controls over the geographic location of data storage 
and other aspects of security. Other benefits include easy resource sharing and rapid 
deployment to organizational entities.

Figure 22.4 illustrates the two typical private cloud configurations. The 
 private cloud consists of an interconnected collection of servers and data storage 
devices hosting enterprise applications and data. Local workstations have access to 
cloud resources from within the enterprise security perimeter. Remote users (e.g., 
from satellite offices) have access through a secure link, such as a VPN connect-
ing to a secure boundary access controller, such as a firewall. An enterprise may 
also choose to outsource the private cloud to a cloud provider. The cloud provider 
establishes and maintains the private cloud, consisting of dedicated infrastructure 
resources not shared with other cloud provider clients. Typically, a secure link be-
tween boundary controllers provides communications between enterprise client 
systems and the  private cloud. This link may be a dedicated leased line or a VPN 
over the Internet.

community cloud A community cloud shares characteristics of private and 
 public clouds. Like a private cloud, a community cloud has restricted access. Like 
a public cloud, the cloud resources are shared among a number of independent 
organizations. The organizations that share the community cloud have similar re-
quirements and, typically, a need to exchange data with each other. One example 
of an industry that is employing the community cloud concept is the health care 
industry. A community cloud can be implemented to comply with government pri-
vacy and other regulations. The community participants can exchange data in a 
controlled fashion.

The cloud infrastructure may be managed by the participating organiza-
tions or a third party and may exist on premise or off premise. In this deployment 
model, the costs are spread over fewer users than a public cloud (but more than a 
private cloud), so only some of the cost savings potential of cloud computing are 
realized.

Hybrid cloud The hybrid cloud infrastructure is a composition of two or more 
clouds (private, community, or public) that remain unique entities but are bound to-
gether by standardized or proprietary technology that enables data and application 
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portability (e.g., cloud bursting for load balancing between clouds). With a hybrid 
cloud solution, sensitive information can be placed in a private area of the cloud, 
and less sensitive data can take advantage of the benefits of the public cloud.

A hybrid public/private cloud solution can be particularly attractive for smaller 
businesses. Many applications for which security concerns are less can be offloaded 
at considerable cost savings without committing the organization to moving more 
sensitive data and applications to the public cloud.
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Table 22.1 lists some of the relative strengths and weaknesses of the four cloud 
deployment models.

Cloud Computing Reference Architecture

A cloud computing reference architecture depicts a generic high-level conceptual 
model for discussing the requirements, structures, and operations of cloud comput-
ing. NIST SP 500-292 (NIST Cloud Computing Reference Architecture) establishes a 
reference architecture, described as follows:

Table 22.1 Comparison of Cloud Deployment Models

Private Community Public Hybrid

Scalability Limited Limited Very high Very high

Security Most secure 
option

Very secure Moderately 
secure

Very secure

Performance Very good Very good Low to medium Good

Reliability Very high Very high Medium Medium to high

Cost High Medium Low Medium

The NIST cloud computing reference architecture focuses on the requirements 
of “what” cloud services provide, not a “how to” design solution and implemen-
tation. The reference architecture is intended to facilitate the understanding of 
the  operational intricacies in cloud computing. It does not represent the system 
 architecture of a specific cloud computing system; instead it is a tool for describing, 
 discussing, and developing a system-specific architecture using a common frame-
work of reference.

NIST developed the reference architecture with the following objectives 
in mind:

 ■ To illustrate and understand the various cloud services in the context of an 
overall cloud computing conceptual model

 ■ To provide a technical reference for consumers to understand, discuss, catego-
rize, and compare cloud services

 ■ To facilitate the analysis of candidate standards for security, interoperability, 
and portability and reference implementations

The reference architecture, depicted in Figure 22.5, defines five major actors in 
terms of the roles and responsibilities:

 ■ Cloud service customer (CSC): A person or organization that maintains a 
business relationship with, and uses service from, cloud providers.

 ■ Cloud service provider (CSP): A person, organization, or entity responsible 
for making a service available to interested parties.

 ■ Cloud auditor: A party that can conduct independent assessment of cloud ser-
vices, information system operations, performance, and security of the cloud 
implementation.
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 ■ Cloud broker: An entity that manages the use, performance, and delivery of 
cloud services, and negotiates relationships between CPs and cloud consumers.

 ■ Cloud carrier: An intermediary that provides connectivity and transport of 
cloud services from CPs to cloud consumers.

The roles of the CSC and CSP have already been discussed. To summarize, a 
CSP can provide one or more of the cloud services to meet IT and business require-
ments of CSCs. For each of the three service models (SaaS, PaaS, IaaS), the CSP 
provides the storage and processing facilities needed to support that service model, 
together with a cloud interface for cloud service consumers. For SaaS, the SCP de-
ploys, configures, maintains, and updates the operation of the software applications 
on a cloud infrastructure so that the services are provisioned at the expected service 
levels to cloud consumers. The CSCs of SaaS can be organizations that provide their 
members with access to software applications, end users who directly use software 
applications, or software application administrators who configure applications for 
end users.

For PaaS, the CSP manages the computing infrastructure for the platform and 
runs the cloud software that provides the components of the platform, such as run-
time software execution stack, databases, and other middleware components. Cloud 
consumers of PaaS can employ the tools and execution resources provided by CSPs 
to develop, test, deploy, and manage the applications hosted in a cloud environment.

For IaaS, the CSP acquires the physical computing resources underlying the 
service, including the servers, networks, storage, and hosting infrastructure. The IaaS 
CSC in turn uses these computing resources, such as a virtual computer, for their 
fundamental computing needs.

The cloud carrier is a networking facility that provides connectivity and trans-
port of cloud services between CSCs and CSPs. Typically, a CSP will set up SLAs 
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with a cloud carrier to provide services consistent with the level of SLAs offered to 
CSCs, and may require the cloud carrier to provide dedicated and secure connec-
tions between CSCs and CSPs.

A cloud broker is useful when cloud services are too complex for a cloud 
 consumer to easily manage. Three areas of support can be offered by a cloud broker:

 ■ Service intermediation: These are value-added services, such as identity 
 management, performance reporting, and enhanced security.

 ■ Service aggregation: The broker combines multiple cloud services to meet 
consumer needs not specifically addressed by a single CP, or to optimize 
 performance or minimize cost.

 ■ Service arbitrage: This is similar to service aggregation except that the ser-
vices being aggregated are not fixed. Service arbitrage means a broker has 
the flexibility to choose services from multiple agencies. The cloud broker, for 
example, can use a credit-scoring service to measure and select an agency with 
the best score.

A cloud auditor can evaluate the services provided by a CP in terms of secu-
rity controls, privacy impact, performance, and so on. The auditor is an independent 
entity that can assure that the CP conforms to a set of standards.

Figure 22.6 illustrates the interactions between the actors. A CSC may re-
quest cloud services from a CSP directly or via a cloud broker. A cloud auditor 
conducts independent audits and may contact the others to collect necessary in-
formation. This figure shows that cloud networking issues involve three separate 
types of networks. For a CSP, the network architecture is that of a typical large 
data center, which consists of racks of high-performance servers and storage de-
vices, interconnected with high-speed top-of-rack Ethernet switches. The concerns 
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Figure 22.6 Interactions Between Actors in Cloud Computing
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in this context focus on VM placement and movement, load balancing, and avail-
ability issues. The enterprise network is likely to have a quite different architec-
ture, typically including a number of LANs, servers, workstations, PCs, and mobile 
devices, with a broad range of network performance, security, and management 
issues. The concern of both CSP and CSC with respect to the cloud carrier, which 
is shared with many users, is the ability to create virtual networks, with appropri-
ate SLA and security guarantees.

22.2 CLOUD SECURITY CONCEPTS

There are numerous aspects to cloud security and numerous approaches to provid-
ing cloud security measures. A good example of the scope of cloud security concerns 
and issues is seen in the NIST guidelines for cloud security, specified in SP-800-144 
(Guidelines on Security and Privacy in Public Cloud Computing, December 2011) 
and listed in Table 22.2. Thus, a full discussion of cloud security is well beyond the 
scope of this chapter.

Security is important to any computing infrastructure. Companies go to great 
lengths to secure on-premises computing systems, so it is not surprising that security 
looms as a major consideration when augmenting or replacing on-premises systems 
with cloud services. Allaying security concerns is frequently a prerequisite for fur-
ther discussions about migrating part or all of an organization’s computing architec-
ture to the cloud. Availability is another major concern.

Generally speaking, such questions only arise when businesses contemplate 
moving core transaction processing, such as enterprise resource planning (ERP) sys-
tems, and other mission critical applications to the cloud. Companies have tradition-
ally demonstrated less concern about migrating high maintenance applications such 
as email and payroll to cloud service providers even though such applications hold 
sensitive information.

Auditability is another concern for many organizations, especially those who 
must comply with Sarbanes-Oxley and/or Health and Human Services Health 
Insurance Portability and Accountability Act (HIPAA) regulations. The audit-
ability of their data must be ensured whether it is stored on-premises or moved to  
the cloud.

Before moving critical infrastructure to the cloud, businesses should perform 
due diligence on security threats both from outside and inside the cloud. Many of 
the security issues associated with protecting clouds from outside threats are similar 
to those that have traditionally faced centralized data centers. In the cloud,  however, 
responsibility for assuring adequate security is frequently shared among users, ven-
dors, and any third-party firms that users rely on for security-sensitive software or 
configurations. Cloud users are responsible for application-level security. Cloud 
vendors are responsible for physical security and some software security such as 
enforcing external firewall policies. Security for intermediate layers of the software 
stack is shared between users and vendors.

A security risk that can be overlooked by companies considering a migra-
tion to the cloud is that posed by sharing vendor resources with other cloud users. 
Cloud providers must guard against theft or denial-of-service attacks by their users 
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Table 22.2 NIST Guidelines on Cloud Security and Privacy Issues and Recommendations

Governance

Extend organizational practices pertaining to the policies, procedures, and standards used for ap-
plication development and service provisioning in the cloud, as well as the design, implementation, 
testing, use, and monitoring of deployed or engaged services.

Put in place audit mechanisms and tools to ensure organizational practices are followed throughout 
the system lifecycle.

Compliance

Understand the various types of laws and regulations that impose security and privacy obligations on 
the organization and potentially impact cloud computing initiatives, particularly those involving data 
location, privacy and security controls, records management, and electronic discovery requirements.

Review and assess the cloud provider’s offerings with respect to the organizational requirements to 
be met and ensure that the contract terms adequately meet the requirements.

Ensure that the cloud provider’s electronic discovery capabilities and processes do not compromise 
the privacy or security of data and applications.

Trust

Ensure that service arrangements have sufficient means to allow visibility into the security and 
 privacy controls and processes employed by the cloud provider, and their performance over time.
Establish clear, exclusive ownership rights over data.

Institute a risk management program that is flexible enough to adapt to the constantly evolving and 
shifting risk landscape for the lifecycle of the system.

Continuously monitor the security state of the information system to support ongoing risk 
 management decisions.

Architecture

Understand the underlying technologies that the cloud provider uses to provision services, including 
the implications that the technical controls involved have on the security and privacy of the system, 
over the full system lifecycle and across all system components.

Identity and access management

Ensure that adequate safeguards are in place to secure authentication, authorization, and other 
identity and access management functions, and are suitable for the organization.

Software isolation

Understand virtualization and other logical isolation techniques that the cloud provider employs in 
its multi-tenant software architecture, and assess the risks involved for the organization.

Data protection

Evaluate the suitability of the cloud provider’s data management solutions for the organizational 
data concerned and the ability to control access to data, to secure data while at rest, in transit, and in 
use, and to sanitize data.

Take into consideration the risk of collating organizational data with those of other organizations 
whose threat profiles are high or whose data collectively represent significant concentrated value.

Fully understand and weigh the risks involved in cryptographic key management with the facilities 
available in the cloud environment and the processes established by the cloud provider.

Availability

Understand the contract provisions and procedures for availability, data backup and recovery, and 
disaster recovery, and ensure that they meet the organization’s continuity and contingency planning 
requirements.

Ensure that during an intermediate or prolonged disruption or a serious disaster, critical operations 
can be immediately resumed, and that all operations can be eventually reinstituted in a timely and 
organized manner.

M22_STAL7484_08_GE_C22.indd   710 05/04/22   10:45 PM



22.3 / Cloud SECuRity RiSkS And CountERmEASuRES 711

Incident response

Understand the contract provisions and procedures for incident response and ensure that they meet 
the requirements of the organization.

Ensure that the cloud provider has a transparent response process in place and sufficient mecha-
nisms to share information during and after an incident.

Ensure that the organization can respond to incidents in a coordinated fashion with the cloud 
provider in accordance with their respective roles and responsibilities for the computing 
 environment.

and users need to be protected from one another. Virtualization can be a powerful 
mechanism for addressing these potential risks because it protects against most 
attempts by users to attack one another or the provider’s infrastructure. However, 
not all resources are virtualized and not all virtualization environments are bug-
free. Incorrect virtualization may allow user code to access to sensitive portions 
of the provider’s infrastructure or the resources of other users. Once again, these 
security issues are not unique to the cloud and are similar to those involved in man-
aging non-cloud data centers, where different applications need to be protected 
from one another.

Another security concern that businesses should consider is the extent to 
which subscribers are protected against the provider, especially in the area of inad-
vertent data loss. For example, in the event of provider infrastructure improvements, 
what happens to hardware that is retired or replaced? It is easy to imagine a hard 
disk being disposed of without being properly wiped clean of subscriber data. It is 
also easy to imagine permissions bugs or errors that make subscriber data visible 
to unauthorized users. User-level encryption may be an important self-help mecha-
nism for subscribers, but businesses should ensure that other protections are in place 
to avoid inadvertent data loss.

22.3 CLOUD SECURITY RISKS AND COUNTERMEASURES

In general terms, security controls in cloud computing are similar to the  security 
controls in any IT environment. However, because of the operational models 
and technologies used to enable cloud service, cloud computing may present 
risks that are specific to the cloud environment. The essential concept in this 
regard is that the enterprise loses a substantial amount of control over resources, 
 services, and applications but must maintain accountability for security and 
 privacy policies.

The Cloud Security Alliance [CSA17] lists the following as the 12 top 
 cloud-specific security threats, in decreasing order of severity:

1. Data Breaches

2. Weak Identity, Credential and Access Management

3. Insecure APIs

4. System and Application Vulnerabilities

5. Account Hijacking
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6. Malicious Insiders

7. Advanced Persistent Threats (APTs)

8. Data Loss

9. Insufficient Due Diligence

10. Abuse and Nefarious Use of Cloud Services

11. Denial-of-Service

12. Shared Technology Vulnerabilities

The threat analysis conducted by CSA made use of the STRIDE threat model. 
This section first introduces the STRIDE model and then examines each of the  
12 threats.

The STRIDE Threat Model

STRIDE is a threat classification system developed by Microsoft that is a useful way 
of categorizing attacks that arise from deliberate actions [HERN06].

 ■ Spoofing identity: An example of identity spoofing is illegally accessing and 
then using another user’s authentication information, such as username 
and password. Security controls to counter such threats are in the area of 
authentication.

 ■ Tampering with data: Data tampering involves the malicious modification of 
data. Examples include unauthorized changes made to persistent data, such as 
that held in a database, and the alteration of data as it flows between two com-
puters over an open network, such as the Internet. Relevant security controls 
are in the area of integrity.

 ■ Repudiation: Repudiation threats are associated with users who deny perform-
ing an action without other parties having any way to prove otherwise—for 
example, a user performs an illegal operation in a system that lacks the ability 
to trace the prohibited operations. Relevant security controls are in the area of 
non-repudiation, which refers to the ability of a system to counter repudiation 
threats. For example, a user who purchases an item might have to sign for the 
item upon receipt. The vendor can then use the signed receipt as evidence that 
the user did receive the package.

 ■ Information disclosure: Information disclosure threats involve the exposure 
of information to individuals who are not supposed to have access to it—for 
example, the ability of users to read a file that they were not granted access 
to, or the ability of an intruder to read data in transit between two computers. 
Relevant security controls are in the area of confidentiality.

 ■ Denial-of-service: Denial-of-service (DoS) attacks deny service to valid 
users—for example, by making a Web server temporarily unavailable or unus-
able. Relevant security controls are in the area of availability.

 ■ Elevation of privilege: In this type of threat, an unprivileged user gains privi-
leged access and thereby has sufficient access to compromise or destroy the 
entire system. Elevation of privilege threats include those situations in which 
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an attacker has effectively penetrated all system defenses and become part of 
the trusted system itself, a dangerous situation indeed. Relevant security con-
trols are in the area of authorization.

Table 22.3 provides a mapping between cloud security threats and STRIDE 
categories.

Data Breaches

A data breach is an incident in which sensitive, protected, or confidential 
 information is released, viewed, stolen, or used by an individual who is not 
 authorized to do so. There are many ways to compromise data. Deletion or 
 alteration of records without a backup of the original content is an obvious 
 example. Unlinking a record from a larger context may render it unrecoverable, 
as can storage on unreliable media. Loss of an encoding key may result in effec-
tive destruction. Finally, unauthorized parties must be prevented from gaining 
access to sensitive data.

The threat of data compromise increases in the cloud, due to the number of, 
and interactions between, risks and challenges that are either unique to the cloud 
or more dangerous because of the architectural or operational characteristics of the 
cloud environment.

Table 22.3 Mapping Between Cloud Threats and the STRIDE Model

S T R I D E

Data Breaches ✓

Weak Identity, Credential 
and Access Management

✓ ✓ ✓ ✓ ✓ ✓

Insecure APIs ✓ ✓ ✓ ✓

System Vulnerabilities ✓ ✓ ✓ ✓ ✓ ✓

Account Hijacking ✓ ✓ ✓ ✓ ✓ ✓

Malicious Insiders ✓ ✓ ✓

Advanced Persistent 
Threats (APTs)

✓ ✓

Data Loss ✓ ✓

Insufficient Due Diligence ✓ ✓ ✓ ✓ ✓ ✓

Abuse and Nefarious Use 
of Cloud Services

✓

Denial of Service ✓

Shared Technology 
Vulnerabilities

✓ ✓

S = Spoofing identity; I = Information disclosure

T = Tampering with data; D = Denial-of-service

R = Repudiation; E = Elevation of privilege.
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Database environments used in cloud computing can vary significantly. Some 
providers support a multi-instance model, which provide a unique DBMS running 
on a VM instance for each cloud subscriber. This gives the subscriber complete con-
trol over role definition, user authorization, and other administrative tasks related 
to security. Other providers support a multi-tenant model, which provides a pre-
defined environment for the cloud subscriber that is shared with other tenants, typi-
cally through tagging data with a subscriber identifier. Tagging gives the appearance 
of exclusive use of the instance, but relies on the cloud provider to establish and 
maintain a sound secure database environment.

Data must be secured while at rest, in transit, and in use, and access to the 
data must be controlled. The client can employ encryption to protect data in transit, 
though this involves key management responsibilities for the CSP. The client can 
enforce access control techniques but, again, the CSP is involved to some extent 
depending on the service model used.

For data at rest, the ideal security measure is for the client to encrypt the 
database and only store encrypted data in the cloud, with the CSP having no 
access to the encryption key. So long as the key remains secure, the CSP has no 
ability to decipher the data, although corruption and other DoS attacks remain 
a risk.

Weak Identity, Credential, and Access Management

Identity and access management (IAM) includes people, processes, and systems 
that are used to manage access to enterprise resources by assuring that the identity 
of an entity is verified, and then granting the correct level of access based on this 
assured identity. One aspect of identity management is identity provisioning, which 
has to do with providing access to identified users and subsequently deprovision-
ing, or denying access, to users when the client enterprise designates such users 
as no longer having access to enterprise resources in the cloud. Another aspect of 
identity management is for the cloud to participate in the identity management 
scheme used by the client enterprise. Among other requirements, the cloud service 
provider must be able to exchange identity attributes with the enterprise’s chosen 
identity provider.

The access management portion of IAM involves authentication and access 
control services. For example, the CSP must be able to authenticate users in a trust-
worthy manner. The access control requirements in SPI environments include estab-
lishing trusted user profile and policy information, using it to control access within 
the cloud service, and doing this in an auditable way.

Insecure APIs

CSPs expose a set of software interfaces or APIs that customers use to manage 
and interact with cloud services. The security and availability of general cloud 
services are dependent upon the security of these basic APIs. From authentica-
tion and  access control to encryption and activity monitoring, these interfaces 
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must be designed to protect against both accidental and malicious attempts to 
circumvent policy.

Countermeasures include (1) analyzing the security model of CSP interfaces; 
(2) ensuring that strong authentication and access controls are implemented in con-
cert with encrypted transmission; and (3) understanding the dependency chain as-
sociated with the API.

System Vulnerabilities

In this context, the term system vulnerabilities refers to exploitable bugs or weak-
ness in operating system and other system software on platforms that constitute the 
cloud infrastructure. System vulnerabilities can be exploited by hackers and mali-
cious software across a shared cloud environment.

Countering system vulnerabilities is an ongoing technical and management 
process that involves risk analysis and management, regular vulnerability detection, 
patch management, and IT staff training. [STAL19] provides a thorough discussion 
of this topic.

Account Hijacking

Account or service hijacking, usually with stolen credentials, remains a top threat. 
With stolen credentials, attackers can often access critical areas of deployed cloud 
computing services, allowing them to compromise the confidentiality, integrity, and 
availability of those services. The concern is heightened in the context of cloud com-
puting because:

 ■ There is additional attack surface exposure due to increased complexity and 
dynamic infrastructure allocation;

 ■ New APIs/interfaces are emerging that are untested; and

 ■ The consumer’s account, if hijacked, may be used to steal information, ma-
nipulate data, and defraud others, or to attack other tenants as an insider in the 
multi-tenancy environment.

Countermeasures include the following: (1) prohibit the sharing of account 
credentials between users and services; (2) leverage strong two-factor authentica-
tion techniques where possible; (3) employ proactive monitoring to detect unau-
thorized activity; and (4) understand CSP security policies and SLAs.

Malicious Insiders

Under the cloud computing paradigm, an organization relinquishes direct 
 control over many aspects of security and, in doing so, confers an unprecedented 
level of trust onto the CSP. One grave concern is the risk of malicious insider 
 activity. Cloud architectures necessitate certain roles that are extremely high 
risk. Examples include CSP system administrators and managed security service 
providers.
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Countermeasures include the following: (1) enforce strict supply chain man-
agement and conduct a comprehensive supplier assessment; (2) specify human re-
source requirements as part of legal contract; (3) require transparency into overall 
information security and management practices, as well as compliance reporting; 
and (4) determine security breach notification processes.

Advanced Persistent Threats

An advanced persistent threat (APT) is a network attack in which an unau-
thorized person gains access to a network and stays there undetected for a long 
period of time. The intention of an APT attack is to steal data rather than to 
cause damage to the network or organization. APT attacks target organizations 
in sectors with high-value information, such as national defense, manufactur-
ing, and the financial industry. APTs differ from other types of attack by their 
careful target selection, and persistent, often stealthy, intrusion efforts over  
extended periods.

The principle countermeasure for such threats is the effective use of threat 
intelligence. Threat intelligence is helping organizations understand the risks of 
the most common and severe external threats, such as advanced persistent threats 
(APTs), exploits, and zero-day threats. Although threat actors also include in-
ternal (or insider) and partner threats, the emphasis is on the types of external 
threats that are most likely to affect a particular organization’s environment. 
Threat intelligence includes in-depth information about specific threats to help 
an organization protect itself from the types of attacks that could do them the 
most damage.

As an example of the importance of threat intelligence, Figure 22.7,  
based on one in [ISAC13] illustrates the impact of threat intelligence on an 
APT attack. A typical APT attack proceeds with the following steps (based on 
[ISAC13]):

 ■ Conduct background research. An APT attack begins with research on poten-
tial targets to identify vulnerabilities.

 ■ Execute initial attack. In most cases, the initial attack involves social  
engineering that persuades a target to take an action resulting in the down-
load of malware. For example, the action could be clicking on a link in an 
email.

 ■ Establish foothold. The APT inserts an initial malware package onto the 
target system. This initial package is designed to elude antimalware soft-
ware. There may be minimal functionality in this first package. However, 
it is able to connect back to the attack source to download more capable 
malware.

 ■ Enable persistence. Once a foothold is established, the APT seeks to make 
its presence more permanent. The two objectives are to maintain is presence 
through a device reboot and maintain a sustained ability to communicated 
 between the threat source and the target device.
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Figure 22.7 Threat Intelligence for Countering Advanced Persistent Threats

 ■ Conduct enterprise reconnaissance. The APT can now attempt to find the 
servers or storage facilities holding the targeted information. This can often be 
done using utility software on the compromised device. Alternatively, the APT 
installs its own scanning tools.

 ■ Move laterally to new systems. Once established in the target system, the APT 
will attempt to compromise other systems in the target environment by install-
ing additional malware on these systems.

 ■ Escalate privileges. The APT software on the target systems will look for ways 
to increase the privilege level of the software, enabling the software to access 
more resources on infected systems and to more easily gain privileged access 
to other systems.

 ■ Gather and encrypt data of interest. The APT typically creates a compressed, 
encrypted file of any targeted data to which it gains access. This tactic thwarts 
anti-malware software that looks for specific patterns in data or in packet 
transmissions.
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 ■ Exfiltrate data from victim systems. The APT may use a variety of tools and 
protocols to surreptitiously transfer data from the target systems.

 ■ Maintain persistent presence. The APT remains on the system for an extended 
period of time. There may be dormant periods, followed by activation from 
remote control software.

As Figure 22.7 indicates, threat intelligence may enable a security team to become 
aware of a threat well before the point of typical notification, which is often after the 
real damage is done. Even if an early opportunity is lost, threat intelligence can cut 
down the time it takes to discover that an attack has already succeeded and there-
fore speed up remediation actions to limit the damage.

Data Loss

Data loss refers to the permanent loss of CSC data that are stored in the cloud 
through accidental or malicious deletion of data and backup copies from cloud 
storage.

To counter this threat, the CSC should be assured that the CSP has a thorough 
redundancy scheme with regular backups, including geographic redundancy. This 
may be supplemented by a cloud-to-premise backup so that a recent copy is avail-
able at the customer site.

Insufficient Due Diligence

This category refers to the due diligence that should be performed by a CSC  before 
choosing a particular CSP. At a general level, the enterprise needs to  analyze the 
risks involved in moving to a cloud-based solution. Beyond that, the choice of 
CSP and the contractual terms with that CSP must be scrutinized  carefully to 
minimize risk.

[TIER15] lists the following general categories of due diligence:

 ■ Verify infrastructure: The CSPs infrastructure consists of facilities, hardware, 
system and application software, core connectivity, and external network in-
terfaces. The CSP should rely on standardized, enterprise-class equipment, and 
software with documented integration schemes.

 ■ Verify certification: At minimum, the CSP should demonstrate that it is in 
compliance with all relevant security and privacy laws and regulations. In ad-
dition, the CSP should follow industry best practices as documented in nu-
merous NIST documents, specifications from the Cloud Security Alliance, and 
various industry and standards organization specifications.

 ■ Verify the CSP’s due diligence: The CSP must document and, as appropriate, 
demonstrate that it is doing its own due diligence to ensure that its equipment, 
networks, and protocols actually work through a broad spectrum of scenarios, 
both ordinary and catastrophic.

 ■ Verify data protection: The CSP should be able to document a comprehen-
sive and integrated set of security controls to ensure against data breaches and 
data loss.
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Abuse and Nefarious Use of Cloud Services

For many CSPs, it is relatively easy for a CSC to register and begin using cloud 
 services, some even offering free limited trial periods. This enables attackers to get 
inside the cloud to conduct various attacks, such as spamming, malicious code attacks, 
and DoS. PaaS providers have traditionally suffered most from this kind of attacks; 
however, recent evidence shows that hackers have begun to target IaaS vendors as 
well. The burden is on the CSP to protect against such attacks, but CSCs must moni-
tor activity with respect to their data and resources to detect any malicious behavior.

Countermeasures include (1) stricter initial registration and validation 
 processes; (2) enhanced credit card fraud monitoring and coordination; (3) compre-
hensive introspection of customer network traffic; and (4) monitoring public black-
lists for one’s own network blocks.

Denial-of-Service

By the nature of the service it provides, a public CSP has to be exposed to the 
Internet and other public networks, its presence advertised, and its interfaces  
well-defined. These factors make CSPs a logical target for DoS attacks. Such attacks 
can prevent, for a time, a CSC from accessing their data or their applications.

The countermeasure for such attacks is for the CSP (1) to perform ongoing 
threat intelligence to be aware of the nature of potential attacks and the potential 
vulnerabilities in their cloud and (2) to deploy automated tools to spot and defend 
the core cloud services from such attacks.

Shared Technology Vulnerabilities

IaaS vendors deliver their services in a scalable way by sharing infrastructure. Often, 
the underlying components that make up this infrastructure (CPU caches, GPUs, 
etc.) were not designed to offer strong isolation properties for a multi-tenant archi-
tecture. CSPs typically approach this risk by the use of isolated virtual machines for 
individual clients. This approach is still vulnerable to attack, by both insiders and 
outsiders, and so can only be a part of an overall security strategy.

Countermeasures include the following: (1) implement security best practices 
for installation/configuration; (2) monitor environment for unauthorized changes/
activity; (3) promote strong authentication and access control for administrative ac-
cess and operations; (4) enforce SLAs for patching and vulnerability remediation; 
and (5) conduct vulnerability scanning and configuration audits.

22.4 CLOUD SECURITY AS A SERVICE

The term security as a service has generally meant a package of security services 
offered by a service provider that offloads much of the security responsibility from 
an enterprise to the security service provider. Among the services typically provided 
are authentication, antivirus, antimalware/spyware, intrusion detection, and security 
event management. In the context of cloud computing, cloud security as a service, 
designated SecaaS, is a segment of the SaaS offering of a CSP.
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The Cloud Security Alliance defines SecaaS as the provision of security ap-
plications and services via the cloud either to cloud-based infrastructure and soft-
ware or from the cloud to the customers’ on-premise systems [CSA11]. The Cloud 
Security Alliance has identified the following SecaaS categories of service:

 ■ Identity and access management
 ■ Data loss prevention
 ■ Web security
 ■ Email security
 ■ Security assessments
 ■ Intrusion management
 ■ Security information and event management
 ■ Encryption
 ■ Business continuity and disaster recovery
 ■ Network security

In this section, we examine these categories with a focus on security of the 
cloud-based infrastructure and services (Figure 22.8).

Cloud service clients and adversaries

Identity and access management
Network security

Data loss
prevention

Web security
Intrusion
management

Encryption

E-mail security

Security assessments
Security information and
 event management
Business continuity and
 disaster recovery

Figure 22.8 Elements of Cloud Security as a Service
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Identity and access management (IAM) is defined in Section 22.3.
Data loss prevention (DLP) is the monitoring, protecting, and verifying the 

security of data at rest, in motion, and in use. Much of DLP can be implemented by 
the cloud client, such as discussed in Section 13.3. The CSP can also provide DLP 
services, such as implementing rules about what functions can be performed on data 
in various contexts.

Web security is real-time protection offered either on premise through soft-
ware/appliance installation or via the Cloud by proxying or redirecting Web traffic 
to the CSP. This provides an added layer of protection on top of things like antivi-
ruses to prevent malware from entering the enterprise via activities such as Web 
browsing. In addition to protecting against malware, a cloud-based Web security ser-
vice might  include usage policy enforcement, data backup, traffic control, and Web 
access control.

A CSP may provide a Web-based email service, for which security  measures 
are needed. Email security provides control over inbound and outbound email, 
protecting the organization from phishing, malicious attachments, enforcing 
 corporate policies such as acceptable use and spam prevention. The CSP may 
also incorporate digital signatures on all email clients and provide optional email 
encryption.

Security assessments are third-party audits of cloud services. While this service 
is outside the province of the CSP, the CSP can provide tools and access points to 
facilitate various assessment activities.

Intrusion management encompasses intrusion detection, prevention, and re-
sponse. The core of this service is the implementation of intrusion detection systems 
(IDSs) and intrusion prevention systems (IPSs) at entry points to the cloud and on 
servers in the cloud. An IDS is a set of automated tools designed to detect unauthor-
ized access to a host system. An IPS incorporates IDS functionality but also includes 
mechanisms designed to block traffic from intruders.

Security information and event management (SIEM) aggregates (via push or 
pull mechanisms) log and event data from virtual and real networks, applications, 
and systems. This information is then correlated and analyzed to provide real-time 
reporting and alerting on information/events that may require intervention or other 
type of response. The CSP typically provides an integrated service that can put to-
gether information from a variety of sources both within the cloud and within the 
client enterprise network.

Encryption is a pervasive service that can be provided for data at rest in the 
cloud, email traffic, client-specific network management information, and identity 
information. Encryption services provided by the CSP involve a range of complex 
issues, including key management, how to implement VPN services in the cloud, ap-
plication encryption, and data content access.

Business continuity and disaster recovery comprise measures and mechanisms 
to ensure operational resiliency in the event of any service interruptions. This is 
an area where the CSP, because of economies of scale, can offer obvious benefits 
to a cloud service client. The CSP can provide backup at multiple locations, with 
reliable failover and disaster recovery facilities. This service must include a flex-
ible infrastructure, redundancy of functions and hardware, monitored  operations, 
 geographically distributed data centers, and network survivability.
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Network security consists of security services that allocate access, distribute, 
monitor, and protect the underlying resource services. Services include perimeter 
and server firewalls and DoS protection. Many of the other services listed in this 
section, including intrusion management, identity and access management, data loss 
protection, and Web security, also contribute to the network security service.

22.5 AN OPEN-SOURCE CLOUD SECURITY MODULE

This section provides an overview of an open-source security module that is part 
of the OpenStack cloud OS. OpenStack is an open source software project of the 
OpenStack Foundation that aims to produce an open source cloud operating system 
[ROSA14, SEFR12]. The principal objective is the enable creating and managing 
huge groups of virtual private servers in a cloud computing environment. OpenStack 
is embedded, to one degree or another, into data center infrastructure and cloud 
computing products offered by Cisco, IBM, Hewlett-Packard, and other vendors. It 
provides multi-tenant IaaS, and aims to meet the needs of public and private clouds 
regardless of size, by being simple to implement and massively scalable.

The OpenStack OS consists of a number of independent modules, each of which 
has a project name and a functional name. The modular structure is easy to scale out 
and provides a commonly used set of core services. Typically the components are con-
figured together to provide a comprehensive IaaS capability. However, the modular 
design is such that the components are generally capable of being used independently.

The security module for OpenStack is Keystone. Keystone provides the shared 
security services essential for a functioning cloud computing infrastructure. It pro-
vides the following main services:

 ■ Identity: This is user information authentication. This information defines a 
user’s role and permissions within a project, and is the basis for a role-based 
access control (RBAC) mechanism. Keystone supports multiple methods of 
authentication, including user name and password, Lightweight Directory 
Access Protocol (LDAP), and a means of configuring external authentication 
methods supplied by the CSC.

 ■ Token: After authentication, a token is assigned and used for access control. 
OpenStack services retain tokens and use them to query Keystone during 
operations.

 ■ Service catalog: OpenStack service endpoints are registered with Keystone to 
create a service catalog. A client for a service connects to Keystone, and deter-
mines an endpoint to call based on the returned catalog.

 ■ Policies: This service enforces different user access levels. Each OpenStack 
service defines the access policies for its resources in an associated policy file. 
A resource, for example, could be API access, the ability to attach to a volume, 
or to fire up instances. These policies can be modified or updated by the cloud 
administrator to control the access to the various resources.
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Figure 22.9 illustrates the way in which Keystone interacts with other OpenStack 
components to launch a new VM. Nova is the management software module that 
controls VMs within the IaaS cloud computing platform. It manages the lifecycle of 
compute instances in an OpenStack environment. Responsibilities include spawning, 
scheduling, and decommissioning of machines on demand. Thus, Nova enables enter-
prises and service providers to offer on-demand computing  resources, by  provisioning 
and managing large networks of VMs. Glance is a lookup and retrieval system for VM 
disk images. It provides services for discovering, registering, and retrieving  virtual 
 images through an API. Swift is a distributed object store that creates a redundant 
and scalable storage space of up to multiple petabytes of data. Object storage does 
not present a traditional file system, but rather a distributed storage system for static 
data such as VM images, photo storage, email storage, backups, and archives.
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Figure 22.9 Launching a Virtual Machine in OpenStack

22.6 KEY TERMS AND REVIEW QUESTIONS

Key Terms

cloud auditor
cloud broker
cloud carrier

cloud service consumer 
(CSC)

cloud service provider (CSP)

private cloud
public cloud
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Review Questions
 22.1 What are the essential characteristics of cloud computing?
 22.2 List and briefly define the deployment models of cloud computing.
 22.3 What is the cloud computing reference architecture?
 22.4 Describe some of the main cloud-specific security threats.
 22.5 What is OpenStack?
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This chapter begins with an overview of the concepts of the IoT, followed by a discus-
sion of IoT security.

23.1 THE INTERNET OF THINGS

The Internet of Things is the latest development in the long and continuing revolu-
tion of computing and communications. Its size, ubiquity, and influence on everyday 
lives, business, and government dwarf any technical advance that has gone before. 
This section provides a brief overview of the Internet of Things.

Things on the Internet of Things

The Internet of Things (IoT) is a term that refers to the expanding interconnection 
of smart devices, ranging from appliances to tiny sensors. A dominant theme is the 
embedding of short-range mobile transceivers into a wide array of gadgets and 
everyday items, enabling new forms of communication between people and things, 
and between things themselves. The Internet now supports the interconnection 
of billions of industrial and personal objects, usually through cloud systems. The 
objects deliver sensor information, act on their environment, and in some cases 
modify themselves, to create overall management of a larger system, like a factory 
or city.

The IoT is primarily driven by deeply embedded devices. These devices 
are low-bandwidth, low-repetition data capture and low-bandwidth data-usage 
appliances that communicate with each other and provide data via user inter-
faces. Embedded appliances, such as high-resolution video security cameras, video 
VoIP phones, and a handful of others, require high-bandwidth streaming capa-
bilities. Yet countless products simply require packets of data to be intermittently 
delivered.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

◆◆ Explain the scope of the Internet of Things.

◆◆ List and discuss the five principal components of IoT-enabled things.

◆◆ Understand the relationship between cloud computing and IoT.

◆◆ Define the patching vulnerability.

◆◆ Explain the IoT Security Framework.

◆◆ Understand the MiniSec security feature for wireless sensor networks.
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Evolution

With reference to the end systems supported, the Internet has gone through roughly 
four generations of deployment culminating in the IoT:

1. Information technology (IT): PCs, servers, routers, firewalls, and so on, bought 
as IT devices by enterprise IT people, primarily using wired connectivity.

2. Operational technology (OT): Machines/appliances with embedded IT built 
by non-IT companies, such as medical machinery, SCADA (supervisory con-
trol and data acquisition), process control, and kiosks, bought as appliances by 
enterprise OT people and primarily using wired connectivity.

3. Personal technology: Smartphones, tablets, and eBook readers bought as IT 
devices by consumers (employees) exclusively using wireless connectivity and 
often multiple forms of wireless connectivity.

4. Sensor/actuator technology: Single-purpose devices bought by consumers, IT, 
and OT people exclusively using wireless connectivity, generally of a single 
form, as part of larger systems.

It is the fourth generation that is usually thought of as the IoT, and which is marked 
by the use of billions of embedded devices.

Components of IoT-Enabled Things

The key components of an IoT-enabled device are the following (Figure 23.1):

◆■ Sensor: A sensor measures some parameter of a physical, chemical, or bio-
logical entity and delivers an electronic signal proportional to the observed 
characteristic, either in the form of an analog voltage level or a digital signal. 

Sensor

Non-volatile
memory

Transceiver

Battery

Actuator

Microcontroller

IoT Device

Figure 23.1 IoT Components
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In both cases, the sensor output is typically input to a microcontroller or other 
management element.

◆■ Actuator: An actuator receives an electronic signal from a controller and re-
sponds by interacting with its environment to produce an effect on some pa-
rameter of a physical, chemical, or biological entity.

◆■ Microcontroller: The “smart” in a smart device is provided by a deeply embed-
ded microcontroller.

◆■ Transceiver: A transceiver contains the electronics needed to transmit and re-
ceive data. Most IoT devices contain a wireless transceiver, capable of commu-
nication using Wi-Fi, ZigBee, or some other wireless scheme.

◆■ Power supply: Typically, this is a battery.

IoT devices also often contain a Radio-Frequency Identification (RFID) com-
ponent. RFID technology, which uses radio waves to identify items, is increasingly 
becoming an enabling technology for IoT. The main elements of an RFID system 
are tags and readers. RFID tags are small programmable devices used for object, an-
imal, and human tracking. They come in a variety of shapes, sizes, functionalities, and 
costs. RFID readers acquire and sometimes rewrite information stored on RFID 
tags that come within operating range (a few inches up to several feet). Readers 
are usually connected to a computer system that records and formats the acquired 
information for further uses.

IoT and Cloud Context

To better understand the function of an IoT, it is useful to view it in the context of a 
complete enterprise network that includes third-party networking and cloud com-
puting elements. Figure 23.2 provides an overview illustration.

EdgE At the edge of a typical enterprise network is a network of IoT-enabled de-
vices, consisting of sensors and perhaps actuators. These devices may communicate 
with one another. For example, a cluster of sensors may all transmit their data to 
one sensor that aggregates the data to be collected by a higher-level entity. At this 
level also there may also be a number of gateways. A gateway interconnects the 
IoT-enabled devices with the higher-level communication networks. It performs the 
necessary translation between the protocols used in the communication networks 
and those used by devices. It may also perform a basic data aggregation function.

Fog In many IoT deployments, massive amounts of data may be generated by 
a distributed network of sensors. For example, offshore oil fields and refineries 
can generate a terabyte of data per day. An airplane can create multiple terabytes 
of data per hour. Rather than store all of that data permanently (or at least for a 
long period) in central storage accessible to IoT applications, it is often desirable 
to do as much data processing close to the sensors as possible. Thus, the purpose 
of what is sometimes referred to as the fog computing level is to convert network 
data flows into information that is suitable for storage and higher level processing. 
Processing elements at this level may deal with high volumes of data and perform 
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data transformation operations, resulting in the storage of much lower volumes of 
data. The following are examples of fog computing operations:

◆■ Evaluation: Evaluating data for criteria as to whether it should be processed 
at a higher level.

◆■ Formatting: Reformatting data for consistent higher-level processing.

◆■ Expanding/decoding: Handling cryptic data with additional context (such as 
the origin).

◆■ Distillation/reduction: Reducing and/or summarizing data to minimize the im-
pact of data and traffic on the network and higher-level processing systems.

◆■ Assessment: Determining whether data represent a threshold or alert; this 
could include redirecting data to additional destinations.

Generally, fog computing devices are deployed physically near the edge of the IoT 
network; that is, near the sensors and other data-generating devices. Thus, some of 
the basic processing of large volumes of generated data is offloaded and outsourced 
from IoT application software located at the center.

Fog computing and fog services are expected to be a distinguishing character-
istic of the IoT. Fog computing represents an opposite trend in modern networking 
from cloud computing. With cloud computing, massive, centralized storage and pro-
cessing resources are made available to distributed customers over cloud networking 
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thousands
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Millions
of devices

Figure 23.2 The IoT/Cloud Context
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facilities to a relatively small number of users. With fog computing, massive numbers 
of individual smart objects are interconnected with fog networking facilities that 
provide processing and storage resources close to the edge devices in an IoT. Fog 
computing addresses the challenges raised by the activity of thousands or millions of 
smart devices, including security, privacy, network capacity constraints, and latency 
requirements. The term fog computing is inspired by the fact that fog tends to hover 
low to the ground whereas clouds are high in the sky.

CorE The core network, also referred to as a backbone network, connects geo-
graphically dispersed fog networks as well as provides access to other networks 
that are not part of the enterprise network. Typically, the core network will use 
very high performance routers, high-capacity transmission lines, and multiple in-
terconnected routers for increased redundancy and capacity. The core network 
may also connect to high-performance, high-capacity servers, such as large data-
base servers and private cloud facilities. Some of the core routers may be purely 
internal, providing redundancy and additional capacity without serving as edge 
routers.

Cloud The cloud network provides storage and processing capabilities for the 
massive amounts of aggregated data that originate in IoT-enabled devices at the 
edge. Cloud servers also host the applications that interact with and manage the IoT 
devices and that analyze the IoT-generated data.

Table 23.1 compares cloud and fog computing.

Table 23.1 Comparison of Cloud and Fog Features

Cloud Fog

Location of processing/storage 
resources

Center Edge

Latency High Low

Access Fixed or wireless Mainly wireless

Support for mobility Not applicable Yes

Control Centralized/hierarchical (full 
control)

Distributed/hierarchical 
 (partial control)

Service access Through core At the edge/on handheld 
device

Availability 99.99% Highly volatile/highly 
 redundant

Number of users/devices Tens/hundreds of millions Tens of billions

Main content generator Human Devices/sensors

Content generation Central location Anywhere

Content consumption End device Anywhere

Software virtual infrastructure Central enterprise servers User devices
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23.2 IOT SECURITY CONCEPTS AND OBJECTIVES

IoT is perhaps the most complex and undeveloped area of network security. To 
see this, consider Figure 23.3, which shows the main elements of interest for IoT 
security. At the center of the network are the application platforms, data storage 
servers, and network and security management systems. These central systems 
gather data from sensors, send control signals to actuators, and are responsible 
for managing the IoT devices and their communication networks. At the edge of 
the network are IoT-enable devices, some of which are quite simple, constrained 
devices and some of which are more intelligent, unconstrained devices. In addi-
tion, gateways may perform protocol conversion and other networking service on 
behalf of IoT devices.

Figure 23.3 illustrates a number of typical scenarios for interconnection and 
the inclusion of security features. The shading in Figure 23.3 indicates the systems 
that support at least some of these functions. Typically, gateways will implement 
secure functions, such as TLS and IPsec. Unconstrained devices may or may not 
implement some security capability. Constrained devices generally have limited or 
no security features. As suggested in the figure, gateway devices can provide secure 
communication between the gateway and the devices at the center, such as appli-
cation platforms and management platforms. However, any constrained or uncon-
strained devices attached to the gateway are outside the zone of security established 
between the gateway and the central systems. As shown, unconstrained devices can 
communicate directly with the center and support security functions. However, con-
strained devices that are not connected to gateways have no secure communications 
with central devices.
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Figure 23.3 IoT Security: Elements of Interest
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Unique Characteristics of the IoT Ecosystem

The European Union Agency For Network And Information Security (ENISA) 
Baseline Security Recommendations for IoT [ENIS17] lists the following issues that 
hinder the development of secure IoT ecosystems:

◆■ Very large attack surfaces: This topic is explored later in this section. In es-
sence, there are a wide variety of points of vulnerability within an IoT ecosys-
tem and a large variety of data that may be compromised.

◆■ Limited device resources: IoT devices are typically constrained devices, with 
limited memory, processing power, and power supply.

This makes it difficult to employ advanced security controls.

◆■ Complex ecosystem: The IoT involves not only a large number of devices, but 
the interconnections, communications, and dependencies among them and 
with cloud elements. This makes the task of assessing security risk extremely 
complex.

◆■ Fragmentation of standards and regulations: Comparatively little work has 
been done on security standards for IoT, as well as limited best practices docu-
mentation. Thus, there is a lack of comprehensive guidance for security man-
agers and implementers.

◆■ Widespread deployment: There is an ongoing rapid deployment of IoT ar-
rangements in commercial environments and, more importantly, critical infra-
structure environments. These deployments are attractive targets for security 
attacks and the rapid deployment is often without comprehensive risk assess-
ment and security planning.

◆■ Security integration: IoT devices use a wide variety of communications pro-
tocols, and when implemented, authentication schemes. In addition, there 
may be contractor viewpoints and requirements from all involved stakehold-
ers. Integrating security into an interoperable scheme is thus extraordinarily 
challenging.

◆■ Safety aspects: Because many IoT devices act on their physical environment, 
security threats can become safety threats, raising the bar for the effectiveness 
of security solutions.

◆■ Low cost: IoT devices are manufactured, purchased, and deployed in millions. 
This provides great incentive for all parties to minimize the cost of these de-
vices. Manufacturers might be inclined to limit security features to maintain a 
low cost, and customers might be inclined to accept these limitations.

◆■ Lack of expertise: IoT is still a relatively new and rapidly evolving technology. 
There are a limited number of people with suitable cybersecurity training and 
experience.

◆■ Security updates: In an often-quoted 2014 article, security expert Bruce 
Schneier stated that we are at a crisis point with regard to the security of 
embedded systems, including IoT devices [SCHN14]. The embedded devices 
are riddled with vulnerabilities and there is no good way to patch them. The 
chip manufacturers have strong incentives to produce their product with its 
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firmware and software as quickly and cheaply as possible. The device manu-
facturers choose a chip based on price and features and do very little if any-
thing to the chip software and firmware. Their focus is the functionality of the 
device itself. The end user may have no means of patching the system or, if so, 
little information about when and how to patch. The result is that the hundreds 
of millions of Internet-connected devices in the IoT are vulnerable to attack. 
This is certainly a problem with sensors, allowing attackers to insert false data 
into the network. It is potentially a graver threat with actuators, where the at-
tacker can affect the operation of machinery and other devices.

◆■ Insecure programming: Effective cybersecurity practice requires the integra-
tion of security planning and design throughout the software development 
lifecycle. But again, with cost pressure, developers of IoT products have an in-
centive to place more emphasis on functionality and usability than on security.

◆■ Unclear liabilities: A major IoT deployment involves a large and complex sup-
ply chain and complex interaction among numerous components. Because it is 
difficult under these circumstances to clearly assign liabilities, ambiguities and 
conflicts may arise in the event of a security incident.

IoT Security Objectives

NISTIR 8200 (Interagency Report on Status of International Cybersecurity 
Standardization for the Internet of Things) lists the following security objectives for IoT:

◆■ Restricting logical access to the IoT network. This may include: using unidirec-
tional gateways, using firewalls to prevent network traffic from passing directly 
between the corporate and IoT networks, and having separate authentication 
mechanisms and credentials for users of the corporate and IoT networks. An 
IoT system should also use a network topology that has multiple layers, with the 
most critical communications occurring in the most secure and reliable layer.

◆■ Restricting physical access to IoT network and components. A combination 
of physical access controls should be used, such as locks, card readers, and/or 
guards.

◆■ Protecting individual IoT components from exploitation. This includes de-
ploying security patches in as expeditious a manner as possible, after testing 
them under field conditions; disabling all unused ports and services and assur-
ing that they remain disabled; restricting IoT user privileges to only those that 
are required for each person’s role; tracking and monitoring audit trails; and 
using security controls such as antivirus software and file integrity checking 
software where technically feasible.

◆■ Preventing unauthorized modification of data. This includes data that are in 
transit (at least across the network boundaries) and at rest.

◆■ Detecting security events and incidents. The object is to detect security events 
early enough to break the attack chain before attackers attain their objectives. 
This includes the capability to detect failed IoT components, unavailable ser-
vices, and exhausted resources that are important to provide proper and safe 
functioning of an IoT system.
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◆■ Maintaining functionality during adverse conditions. This involves design-
ing IoT systems so that each critical component has a redundant counterpart. 
Additionally, if a component fails, it should fail in a manner that does not gen-
erate unnecessary traffic on IoT or other networks, or does not cause another 
problem elsewhere. IoT systems should also allow for graceful degradation 
such as moving from normal operation with full automation to emergency op-
eration with operators more involved and less automation to manual opera-
tion with no automation.

◆■ Restoring the system after an incident. Incidents are inevitable and an incident 
response plan is essential. A major characteristic of a good security program is 
how quickly the IoT system can be recovered after an incident has occurred.

Tamper Resistance and Detection

An IoT ecosystem involves a large number of devices deployed in the edge network 
and in the fog network. Typically these involve numerous manufacturers and mul-
tiple supply chains and often deployment in areas where physical security is difficult. 
Two essential security measures in such an environment are tamper resistance and 
tamper detection. We define the following terms:

◆■ Tampering: An unauthorized modification that alters the intended functioning 
of a system or device in a way that degrades the security it provides.

◆■ Tamper resistant: A characteristic of a system component that provides pas-
sive protection against an attack.

◆■ Tamper detection: Techniques to ensure that the overall system is made aware 
of unwanted physical access.

TampEr rEsisTanCE The common approach to tamper resistance is to use spe-
cialized physical construction materials to make tampering with a fog node dif-
ficult. Examples include hardened steel enclosures, locks, and security screws. 
Tightly packing components and circuit boards within an enclosure increases 
the difficulty of using fiber optics to probe inside the node without opening the 
enclosure.

A second category of tamper resistance is the deterrence of tampering by en-
suring that tampering leaves visible evidence behind. Examples include special seals 
and tapes that make it obvious when there has been physical tampering.

TampEr dETECTion Mechanisms for tamper detection include the following:

◆■ Switches: A variety of switches, such as mercury switches, magnetic switches, 
and pressure contacts can detect the opening of a device, the breach of a physi-
cal security boundary, or the movement of a device.

◆■ Sensors: Temperature and radiation sensors can detect environmental changes. 
Voltage and power sensors can detect electrical attacks.

◆■ Circuitry: It is possible to wrap components with flexible circuitry, resistance 
wire, or fiber optics so as to detect a puncture or break.
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Gateway Security

ITU-T Recommendation Y.2066 (Common Requirements of the Internet of Things, 
June 2014) includes a list of security requirements for the IoT. This list is a useful 
baseline for understand the scope of security implementation needed for an IoT de-
ployment. The requirements are defined as being the functional requirements dur-
ing capturing, storing, transferring, aggregating and processing the data of things, 
as well as to the provision of services which involve things. These requirements are 
related to all the IoT actors. The requirements are:

◆■ Communication security: Secure, trusted, and privacy-protected communica-
tion capability is required, so that unauthorized access to the content of data 
can be prohibited, integrity of data can be guaranteed, and privacy-related 
content of data can be protected during data transmission or transfer in IoT.

◆■ Data management security: Secure, trusted, and privacy-protected data man-
agement capability is required, so that unauthorized access to the content of 
data can be prohibited, integrity of data can be guaranteed, and  privacy-related 
content of data can be protected when storing or processing data in IoT.

◆■ Service provision security: Secure, trusted, and privacy-protected service pro-
vision capability is required, so that unauthorized access to service and fraudu-
lent service provision can be prohibited and privacy information related to 
IoT users can be protected.

◆■ Integration of security policies and techniques: The ability to integrate differ-
ent security policies and techniques is required, so as to ensure a consistent 
security control over the variety of devices and user networks in IoT.

◆■ Mutual authentication and authorization: Before a device (or an IoT user) can 
access the IoT, mutual authentication and authorization between the device 
(or the IoT user) and IoT is required to be performed according to predefined 
security policies.

◆■ Security audit: Security audit is required to be supported in IoT. Any data ac-
cess or attempt to access IoT applications are required to be fully transparent, 
traceable, and reproducible according to appropriate regulation and laws. In 
particular, IoT is required to support security audit for data transmission, stor-
age, processing, and application access.

A key element in providing security in an IoT deployment is the gateway. Y.2067 
(Common Requirements and Capabilities of a Gateway for Internet of Things 
Applications, June 2014) details specific security functions that the gateway should 
implement, some of which are illustrated in Figure 23.4. These consist of the 
following:

◆■ Support identification of each access to the connected devices.

◆■ Support authentication with devices. Based on application requirements and 
device capabilities, it is required to support mutual or one-way authentication 
with devices. With one-way authentication, either the device authenticates itself 
to the gateway or the gateway authenticates itself to the device, but not both.

◆■ Support mutual authentication with applications.
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Figure 23.4 IoT Gateway Security Functions

◆■ Support the security of the data that are stored in devices and the gateway, or 
transferred between the gateway and devices, or transferred between the gate-
way and applications. Support the security of these data based on security levels.

◆■ Support mechanisms to protect privacy for devices and the gateway.

◆■ Support self-diagnosis and self-repair as well as remote maintenance.

◆■ Support firmware and software update.

◆■ Support auto configuration or configuration by applications. The gateway is 
required to support multiple configuration modes, e.g., remote and local con-
figuration, automatic and manual configuration, and dynamic configuration 
based on policies.

Some of these requirements may be difficult to achieve when they involve providing 
security services for constrained devices. For example, the gateway should support 
security of data stored in devices. Without encryption capability at the constrained 
device, this may be impractical to achieve.

Note that the Y.2067 requirements make a number of references to privacy 
requirements. Privacy is an area of growing concern with the widespread deploy-
ment of IoT-enabled things in homes, retail outlets, and vehicles and humans. As 
more things are interconnected, governments and private enterprises will collect 
massive amounts of data about individuals, including medical information, location 
and movement information, and application usage.
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The IoT Security Environment

Figure 23.5 models the scope of key security capabilities across the four levels of the 
IoT ecosystem:

◆■ User authentication and access control: These functions span then entire IoT 
ecosystem. A common approach to access control is role-based access con-
trol (RBAC). RBAC systems assign access rights to roles instead of individual 
users. In turn, users are assigned to different roles, either statically or dynami-
cally, according to their responsibilities. RBAC enjoys widespread commercial 
use in cloud and enterprise systems and is a well-understood tool that can be 
used to manage access to IoT devices and the data they generate.

◆■ Tamper resistance and detection: This function is particularly important at the 
device and fog network levels but also extends to the core network level. All 
of these levels may involve components that are physically outside the area of 
the enterprise that is protected by physical security measures.

◆■ Data protection and confidentiality: These functions extend to all levels of the 
architecture.

◆■ Internet protocol and network security: Protection of data in motion from 
eavesdropping and snooping is essential between all levels.

23.3 AN OPEN-SOURCE IOT SECURITY MODULE

This section provides an overview of MiniSec, an open-source security module that 
is part of the TinyOS operating system. TinyOS is designed for small embedded 
systems with tight requirements on memory, processing time, real-time response, 
and power consumption. TinyOS takes the process of streamlining quite far, re-
sulting in a very minimal OS for embedded systems, with a typical configuration 
requiring 48 KB of code and 10 KB of RAM [LEVI12]. The main application of 
TinyOS is wireless sensor networks and it has become the de facto OS for such 
networks. With sensor networks, the primary security concerns relate to wireless 

Fog
network

Edge
network

Data center/
cloud

Core
network

User Authentication Access Control

Data Protection and Confidentialiy

IP and Network Security

Tamper  Resistance and Detection

Figure 23.5 IoT Security Environment
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communications. MiniSec is designed to be a link-level module that offers a high 
level of security, while simultaneously keeping energy consumption low and using 
very little memory [LUK07]. MiniSec provides confidentiality, authentication, and 
replay protection.

MiniSec has two operating modes, one tailored for single-source communica-
tion, and another tailored for multi-source broadcast communication. The latter does 
not require per-sender state for replay protection and thus scales to large networks.

MiniSec is designed to meet the following requirements:

◆■ Data authentication: Enables a legitimate node to verify whether a message 
originated from another legitimate node (i.e., a node with which it shares a 
secret key) and was unchanged during transmission.

◆■ Confidentiality: A basic requirement for any secure communications system.

◆■ Replay protection: Prevents an attacker from successfully recording a packet 
and replaying it at a later time.

◆■ Freshness: Because sensor nodes often stream time-varying measurements, 
providing guarantee of message freshness is an important property. There are 
two types of freshness: strong freshness and weak freshness. MiniSec  provides 
a mechanism to guarantee weak freshness, where a receiver can  determine a 
partial ordering over received messages without a local reference time point.

◆■ Low energy overhead: This is achieved by minimizing communication over-
head and by the use of only symmetric.

◆■ Resilient to lost messages: The relatively high occurrence of dropped packets 
in wireless sensor networks requires a design that can tolerate high message 
loss rates.

Cryptographic Algorithms

Two cryptographic algorithms used by MiniSec are worth noting. The first of these is 
the encryption algorithm Skipjack. Skipjack was developed in the 1990s by the U.S. 
National Security Agency (NSA). It is one of the simplest and fastest block cipher 
algorithms, which is critical to embedded systems. A study of eight possible candi-
date algorithms for wireless security networks [LAW06] concluded that Skipjack 
was the best algorithm in terms of code memory, data memory, encryption/decryp-
tion efficiency, and key setup efficiency.

Skipjack makes use of an 80-bit key. It was intended by NSA to provide a se-
cure system once it became clear that DES, with only a 56-bit key, was vulnerable. 
Contemporary algorithms, such as AES, employ a key length of at least 128 bits, and 
80 bits is generally considered inadequate. However, for the limited application of 
wireless sensor networks and other IoT devices, which provide large volumes of 
short data blocks over a slow data link, Skipjack may suffice. With its efficient com-
putation and low memory footprint, Skipjack is an attractive choice for IoT devices. 
However, going forward, it is advisable for any IoT security module to use one of 
the recently developed lightweight cryptographic algorithms, such as the Scalable 
Encryption Algorithm (SEA) described in Chapter 14.

The block cipher mode of operation chosen for MiniSec is the Offset Codebook 
Mode (OCB), described later in this section.
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MiniSec employs per-device keys; that is, each key is unique to a particular 
pair of devices, to prevent replay attacks.

Operating Modes

MiniSec has two operating modes: unicast (MiniSec-U) and broadcast (MiniSec-B). 
Both schemes use OCB with a counter, known as a nonce, that is input along with 
the plaintext into the encryption algorithm. The least significant bits of the counter 
are also sent as plaintext to enable synchronization. For both modes, data are trans-
mitted in packets. Each packet includes the encrypted data block, the OCB authen-
tication tag, and the MiniSec counter.

MiniSec-U employs synchronized counters, which require the receiver to keep 
a local counter for each sender. The strictly monotonically increasing counter guar-
antees semantic confidentiality.1 Even if the sender A repeatedly sends the same 
message, each ciphertext is different since a different counter value is used. Also, 
once a receiver observes a counter value, it rejects packets with an equal or smaller 
counter value. Therefore, an attacker cannot replay any packet that the receiver has 
previously received. If a number of packets are dropped, the sender and receiver 
engage in a resynchronization protocol.

MiniSec-U cannot be directly used to secure broadcast communication. First, 
it would be too expensive to run the counter resynchronization protocol among 
many receivers. Also, if a node were to simultaneously receive packets from a large 
group of sending nodes, it would need to maintain a counter for each sender, re-
sulting in high memory overhead. Instead, it uses two mechanisms, a timing-based 
approach and a bloom-filter approach, that defend against replay attacks. First, the 
time is divided into t-length epochs E1, E2,. . . . Using the current epoch or the previ-
ous epoch as nonce for OCB encryption, the replay of messages from older epochs 
is avoided. The timing approach is augmented with a bloom-filter approach in order 
to prevent replay attacks inside the current epoch. MiniSec-B uses as nonce element 
in OCB encryption and bloom-filter key the string nodeID.Ei.Cab, where nodeID is 
the sender node identifier, Ei is the current epoch, and Cab is a shared counter. Every 
time that a node receives a message, it checks if it belongs to its bloom filter. If the 
message is not replayed, it is stored in the bloom filter. Else, the node drops it.

For further details on the two operating modes, see [TOBA07].

Offset Codebook Mode

As mentioned in Chapter 7, a mode of operation must be specified when a plaintext 
source consists of multiple blocks of data to be encrypted with the same encryp-
tion key. OCB is an NIST proposed block cipher mode of operation [ROGA01], 
and is a proposed Internet Standard defined in RFC 7253 (The OCB Authenticated-
Encryption Algorithm, May 2014). OCB is also approved as an authenticated en-
cryption technique in the IEEE 802.11 wireless LAN standard. And, OCB is in-
cluded in MiniSec, an open-source IoT security module.

1Semantic confidentiality means that if the same plain-text is encrypted twice, the two resulting 
 ciphertexts are different.
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A key objective for OCB is efficiency. This is achieved by minimizing the num-
ber of encryptions required per message and by allowing for parallel operation on 
the blocks of a message. OCB mode is provably secure assuming the underlying 
block cipher is secure. OCB mode is a one-pass mode of operation making it highly 
efficient. Only one block cipher call is necessary for each plaintext block, with an 
additional two calls needed to complete the whole encryption process. OCB is espe-
cially well suited for the stringent energy constraints of sensor nodes.

Figure 23.6 shows the overall structure for OCB encryption and authentica-
tion. Typically, AES is used as the encryption algorithm. The message M to be en-
crypted and authenticated is divided into n-bit blocks, with the exception of the last 
block, which may be less than n bits. Typically, n = 128. Only a single pass through 
the message is required to generate both the ciphertext and the authentication code. 
The total number of blocks is m =<len1M2 >n= .

Note that the encryption structure for OCB is similar to that of electronic 
 codebook (ECB) mode. Each block is encrypted independently of the other blocks, 
so that it is possible to perform all m encryptions simultaneously. As was mentioned 
in Chapter 7, with ECB, if the same b-bit block of plaintext appears more than once 
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in the message, it always produces the same ciphertext. Because of this, for lengthy 
messages, the ECB mode may not be secure. OCB eliminates this property by using 
an offset Z[i] for each block M[i], such that each Z[i] is unique; the offset is XORed 
with the plaintext and XORed again with the encrypted output. Thus, with encryp-
tion key K we have

C3 i4 = EK1M3 i4 ⊕ Z3 i4 2 ⊕ Z3 i4
where EK1X2  is the encryption of plaintext X using key K, and { is the  exclusive-OR 
operation. Because of the use of the offset, two blocks in the same message that are 
identical will produce two different ciphertexts.

The upper part of Figure 23.6 indicates how the Z3 i4  are generated. An arbi-
trary n-bit value N called the nonce is chosen; the only requirement is that if mul-
tiple messages are encrypted with the same key, a different nonce must be used each 
time such that each nonce is only used once. Each different value of N will produce 
a different set of Z3 i4 . Thus, if two different messages have identical blocks in the 
same position in the message, they will produce different ciphertexts because the 
Z3 i4  will be different.

The calculation of the Z3 i4  is somewhat complex and is summarized in the 
following equations:

 L102 = L = EK(0n)                            where 0n is consists of n zero bits.

R = EK1N ⊕ L2
 L1 i2 = 2 # L1 i -  12                       1 … i … m 

Z314 = L ⊕ R

Z3 i4 = Z1 i - 12 ⊕ L1ntz1 i2 2   1 … i … m

The operator · refers to multiplication over the finite field GF12n2 . The operator 
ntz1 i2  denotes the number of trailing (least significant) zeros in i. The resulting 
Z3 i4  values are a maximal Hamming distance apart [WALK05].

Thus, the values Z3 i4are a function of both the nonce and the encryption key. 
The nonce does not need to be kept secret and is communicated to the recipient in a 
manner outside the scope of the specification.

Because the length of M may not be an integer multiple of n, the final block 
is treated differently, as shown in Figure 23.6. The length of M[m], represented as 
an n-bit integer, is used to calculate X3m4 = len1M3m4 2 ⊕ L1 -12 ⊕ Z3m4 .  
L1 -12 is defined as L/2 over the finite field or, equivalently, L # 2

- 1
. Next, 

Y3m4 = EK1X3m4 2 . Then, Y[m] is truncated to len(M[m]) bits (by deleting the 
necessary number of least significant bits) and XORed with M[m]. Thus, the final 
ciphertext C is the same length as the original plaintext M.

A checksum is produced from the message M as follows:

checksum = M314 ⊕ M324 ⊕ c ⊕ Y3m4 ⊕ C3m40*

where C[m]0* consists of C[m] padded with least significant bits to the length n. 
Finally, an authentication tag of length t is generated, using the same key as is used 
for encryption:

tag = first t bits of EK1checksum ⊕ Z3m4 2
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The bit length t of the tag varies according to the application. The size of the 
tag controls the level of authentication. To verify the authentication tag, the de-
cryptor can recompute the checksum, then recompute the tag, and finally check that 
is equal to the one that was sent. If the ciphertext passes the test, then OCB pro-
duces the plaintext normally.

Figure 23.7 summarizes the OCB algorithms for encryption and decryption. It 
is easy to see that decryption is the inverse of encryption. We have

EK1M3 i4 ⊕ Z3 i4 2 ⊕ Z3 i4 = C3 i4
EK1M3 i4 ⊕ Z3 i4 2 = C3 i4 ⊕ Z3 i4

DK1EK1M3 i4 ⊕ Z3 i4 2 2  =  DK1C3 i4 ⊕ Z3 i4 2
M3 i4 ⊕ Z3 i4 = DK1C3 i4 ⊕ Z3 i4 2
M3 i4 = DK1C3 i4 ⊕ Z3 i4 2 ⊕ Z3 i4

23.4 KEY TERMS AND REVIEW QUESTIONS

Key Terms

actuator
backbone network
cloud
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edge
fog
information technology (IT)
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transceiver

Figure 23.7 OCB Algorithms

algorithm OCB-EncryptK(N, M)
Partition M into M[1]…M[m]
L L(0) EK(0n)
R 

for i d 1 to m do L(i) d 2 ? L(i 21)     
L(21) = L ⋅ 221 
Z[1] d L R
for i 2 to m do Z[i] d Z[i 2 1]   L(ntz(i))
for i 1 to m 2 1 do

C[i] EK(M[i] Z[i]) Z[i]
X[m] d len(M[m]) L(21) Z[m]
Y[m] d EK(X[m])
C[m] d M[m] ⊕ (first len(M[m]) bits of Y[m])
Checksum d

M[1] ⊕ … ⊕ M[m 21]  ⊕ C[m]0* ⊕ Y[m]
Tag d EK(Checksum ⊕ Z[m]) [first t bits] 

algorithm OCB-DecryptK(N, M)
Partition M into M[1]…M[m]
L d L(0) d EK(0n)

EK(N R d ⊕ L)
for i d 1 to m do L(i) d 2 ⋅ L(i 21)
L(21) = L ⋅ 221 
Z[1] d L ⊕ R
for i d 2 to m do Z[i] ← Z[i 2 1]  ⊕ L(ntz(i))
for i d 1 to m – 1 do

M[i] d DK(C[i] ⊕ Z[i]) ⊕ Z[i]
X[m] d len(M[m]) ⊕ L(21) ⊕ Z[m]
Y[m] d EK(X[m])
M[m] d (first len(C[m]) bits of Y[m]) ⊕ C[m]
Checksum d

M[1] ⊕ … ⊕ M[m 2 1]  ⊕ C[m]0* ⊕ Y[m]
Tag' d EK(Checksum ⊕ Z[m]) [first t bits] 

dd
d

d
d

d

⊕
⊕

⊕⊕

⊕ ⊕

EK(N ⊕ L)
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Review Questions
 23.1 Define the Internet of Things (IoT).
 23.2 List and briefly define the principal components of an IoT-enabled thing.
 23.3 Define the patching vulnerability.
 23.4 Define tamper resistance and tamper detection.
 23.5 What is MiniSec?
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BAsic concepts from LineAr ALgeBrA
A.1 Operations on Vectors and Matrices

Arithmetic
Determinants
Inverse of a Matrix

A.2 Linear Algebra Operations over Zn
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A.1 OPERATIONS ON VECTORS AND MATRICES

We use the following conventions:

1x1 x2 g xm2 ±
y1

y2

f
yn

≤ ±
a11 a12 g a1n

a21 a22 g a11

f f f f
am1 an2 g amn

≤

row vector X column vector Y matrix A
Note that in a matrix, the first subscript of an element refers to the row and the 

second subscript refers to the column.

Arithmetic

Two matrices of the same dimensions can be added or subtracted element by  
element. Thus, for C = A + B, the elements of C are cij = aij + bij.

Example: °
1 -2 3
0 4 5
3 6 9

¢ + °
3 0 -6
2 -3 1
9 6 3

¢ = °
4 -2 -3
2 1 6
12 12 12

¢

To multiply a matrix by a scalar, every element of the matrix is multiplied by the 
scalar. Thus, for C = kA, we have cij = k * aij.

Example: 3°
1 - 2 3
0 4 5
3 6 9

¢ = °
3 - 6 9
0 12 15
9 18 27

¢

The product of a row vector of dimension m and a column vector of dimension m is 
a scalar:

1x1 x2 g xm2 * ±
y1

y2

f
ym

≤ = x1y1 + x2y2 + c + xmym

Two matrices A and B are conformable for multiplication, in that order, if the num-
ber of columns in A is the same as the number of rows in B. Let A be of order 
m * n (m rows and n columns) and B be of order n * p. The product is obtained 
by multiplying every row of A into every column of B, using the rules just defined 
for the product of a row vector and a column vector. Thus, for C = AB, we have 

cij = a
n

k=1
aikbkj, and the resulting matrix is of order m * p. Notice that, by these rules, 

we can multiply a row vector by a matrix that has the same number of rows as the 
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dimension of the vector; and we can multiply a matrix by a column vector if the 
 matrix has the same number of columns as the dimension of the vector. Thus, using 
the notation at the beginning of this section: For D = XA, we end up with a row 

vector with elements di = a
m

k=1
xkaki. For E = AY, we end up with a column vector 

with elements ei = a
m

k=1
aikyk.

Example:

 12 -5 32 °
1 -2 3
0 4 5
3 6 9

¢ = 12 +  3 *  3 2 * 1-22+ 1-52*  4 +  3 *  6   

2 *  3 +1-52*  5 +  3 *  92

 = 111 -6 82

Example: °
1 -2 3
0 4 5
3 6 9

¢ °
2

-5
3
¢ = °

1 *  2 +  1-22* 1-52+  3 *  3
4 *  1-52+  5 *  3

3 *  2 +  6 *  1-52+  9 *  3
¢ = °

21
-5
3
¢    

Determinants

The determinant of the square matrix A, denoted by det(A), is a scalar value repre-
senting sums and products of the elements of the matrix. For details, see any text on 
linear algebra. Here, we simply report the results.

For a 2 * 2 matrix A, det1A2 = a11a22 - a21a12.

For a 3 * 3 matrix A,  det1A2 = a11a22a33 + a12a23a31 + a13a21a32 - a31a22a13  
  -a32a23a11 - a33a21a12

In general, the determinant of a square matrix can be calculated in terms of its 
cofactors. A cofactor of A is denoted by cofij1A2 and is defined as the determinant 
of the reduced matrix formed by deleting the ith row and jth column of A and choos-
ing positive sign if i + j is even and the negative sign if i + j is odd. For example:

cof23°
2 4 3
6 1 5

-2 1 3
¢ = -deta 2 4

-2 1
b = -10

The determinant of an arbitrary n * n square matrix can be evaluated as:

det(A) = a
n

j=1
3aijcofij(A)4      for any i

or

det(A) = a
n

i=1
3aijcofij(A)4      for any j
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For example:

det°
2 4 3
6 1 5

-2 1 3
¢ = a21cof21 + a22cof22 + a23cof23

= 6 * a-deta4 3
1 3

bb + 1 * deta 2 3
-2 3

b + 5 * a-deta 2 4
-2 1

bb

= 61-92 + 11122 + 51-102 = -92

Inverse of a Matrix

If a matrix A has a nonzero determinant, then it has an inverse, denoted as A-1.  
The inverse has that property that AA-1 = A-1A = I, where I is the matrix that 
is all zeros except for ones along the main diagonal from upper left to lower right.  
I is known as the identity matrix because any vector or matrix multiplied by I  results 
in the original vector or matrix. The inverse of a matrix is calculated as follows.  
For B = A-1,

bij =
cofji1A2
det1A2

For example, if A is the matrix in the preceding example, then for the inverse ma-
trix B, we can calculate:

b32 =
cof231A2
det1A2 =

-10
-92

=
10
92

Continuing in the fashion, we can compute all nine elements of B. Using Sage, 
we can easily calculate the inverse:

sage: A =  Matrix1332, 4, 34, 36, 1, 54, 3-2, 1, 3442
sage: A

3 2 4 34
3 6 1 54
3-2 1 34
sage: An-1

3 1>46 9>92 -17>924
3 7>23 -3>23 -2>23 4
3-2>23 5>46 11>464
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And we have:

 °
2 4 3
6 1 5

-2 1 3
¢ °

2�92
9�92

-17�92
28�92

-12�92
-8�92

-8�92
10�92

22�92

¢ = °
2�92

9�92
-17�92

28�92
-12�92

-8�92
-8�92

10�92
22�92

¢ °
2 4 3
6 1 5

-2 1 3
¢

 = °
1 0 0
0 1 0
0 0 1

¢

A.2 LINEAR ALGEBRA OPERATIONS OVER Zn

Arithmetic operations on vectors and matrices can be carried out over Zn; that is, all 
operations can be carried out modulo n. The only restriction is that division is only 
allowed if the divisor has an multiplicative inverse in Zn. For our purposes, we are 
interested primarily in operations over Z26. Because 26 is not a prime, not every in-
teger in Z26 has a multiplicative inverse. Table A.1 lists all the multiplicative inverses 
modulo 26. For example 3 * 9 = 1 mod 26, so 3 and 9 are multiplicative inverses of 
each other.

Table A.1 Multiplicative Inverses mod 26

Value Inverse Value Inverse

1 1 15 7

3 9 17 23

5 21 19 11

7 15 21 5

9 3 23 17

11 19

As an example, consider the following matrix in Z26. A = a4 3
9 6

b . Then,

det1A2 = (4 * 6) - (3 * 9) mod 26 = -3 mod 26 = 23

From Table A.1, we have 1det1A2 2 - 1 = 17. We can now calculate the inverse 
matrix:

A-1 = 1det1A22 -1acof111A2 cof211A2
cof121A2 cof221A2 b = 17 * a 6 -3

-9 4
b  mod 26 = a24 1

3 16
b

To verify:

AA-1 = a4 3
9 6

b a24 1
3 16

b  mod 26 = a105 52
234 105

b  mod 26 = a1 0
0 1

b
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A-1A = a24 1
3 16

b a4 3
9 6

b  mod 26 = a105 78
156 105

b  mod 26 = a1 0
0 1

b

We now work out the details of the example of the Hill cipher from Section 3.2. First 
we encrypt the plaintext (15 0 24) using the encryption key

K = °
17 17 5
21 18 21
2 2 19

¢

The encryption equation is C = PK mod 26. Therefore,

C = 115 0 242 °
17 17 5
21 18 21
2 2 19

¢  mod 26

= 1(15 *  17 + 0 *  21 + 24 *  2)     (15 *  17 + 0 *  18 + 24 *  2)

115 * 5 + 0 * 21 + 24 * 192 2mod 26

= 1303 303 5312 mod 26

= 117 17 112
For decryption, we use the equation P = CK−1 mod 26. First, we compute the 
 inverse of the matrix K. From the earlier definition of determinants, we have:

det1K2 = k11k22k33 + k12k23k31 + k13k21k32 - k31k22k13 - k32k23k11
- k33k21k12 mod 26

det1K2 = (17 * 18 * 19) + (17 * 21 * 2) + (5 * 21 * 2)(2 * 18 * 5)
- (2 * 21 * 17) - (19 * 21 * 17) mod 26

det1K2 = 5814 + 714 + 210 - 180 - 714 - 6783  mod 26

det1K2 = -939 mod 26 = 1-37 * 262 + 23 mod 26 = 23

From Table A.1, 1det1K22-1 = 17. We can now calculate the inverse matrix. For 
convenience, we label the inverse of K as B = K-1. Using the results from Section 
E.1, the matrix elements of B are as follows:

bij =
cofji1K2
det1K2 mod 26 = 17 * cofji1K2mod 26

For the matrix of this example, we have:

 b11 = ` 18 21
2 19

` * 17 mod 26 = 118 * 19 - 21 * 22 * 17 mod 26

 = 5100 mod 26 = 4

 b12 = - ` 17 5
2 19

` * 17 mod 26 = - 117 * 19 - 5 * 22 * 17 mod 26

 = -5321 mod 26 = 9
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 b13 = ` 17 5
18 21

` * 17 mod 26 = 117 * 21 - 5 * 182 * 17 mod 26

 = 4539 mod 26 = 15

 b21 = - ` 21 21
2 19

` * 17 mod 26 = - 121 * 19 - 21 * 22 * 17 mod 26

 = -6069 mod 26 = 15

 b22 = ` 17 5
2 19

` * 17 mod 26 = 117 * 19 - 5 * 22 * 17 mod 26

 = 5321 mod 26 = 17

 b23 = - ` 17 5
21 21

` * 17 mod 26 = - 117 * 21 - 5 * 212 * 17 mod 26

 = -4284 mod 26 = 6

 b31 = ` 21 18
2 2

` * 17 mod 26 = 121 * 2 - 18 * 22 * 17 mod 26

 = 102 mod 26 = 24

 b32 = - ` 17 17
2 2

` * 17 mod 26 = - 117 * 2 - 17 * 22 * 17 mod 26

 = 0 mod 26 = 0

 b33 = ` 17 17
21 18

` * 17 mod 26 = 117 * 18 - 17 * 212 * 17 mod 26

 = -867 mod 26 = 17

This yields an inverse matrix of

K−1 = °
4 9 15
15 17 6
24 0 17

¢

The decryption equation is P = CK - 1 mod 26. Therefore,

P = 117 17 112 °
4 9 15
15 17 6
24 0 17

¢  mod 26

= 1 117 *  4 +  17 *  15 +  11 *  242 117 *  9 +  17 *  17 +  11 *  02
117 *  15 +  17 *  6 +  11 *  172 2mod 26

= 1587 442 5442 mod 26

= 115 0 42
which is the original plaintext.
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In this appendix, we look at measures of secrecy and security of cryptosystems from 
two different points of view. First, we use concepts of conditional probability to 
discuss the concept of perfect secrecy. We then reformulate the results obtained in 
terms of entropy, which in turn depends on concepts of conditional probability. For 
the reader who needs a refresher, the chapter opens with a brief introduction to 
conditional probability.

All of the concepts in this appendix were first introduced in Shannon’s land-
mark 1949 paper [SHAN49], which is included in the Document section at box.com/
Crypto8e.

B.1 CONDITIONAL PROBABILITY

We often want to know a probability that is conditional on some event. The effect of 
the condition is to remove some of the outcomes from the sample space. For example, 
what is the probability of getting a sum of 8 on the roll of two dice, if we know that the 
face of at least one die is an even number? We can reason as follows. Because one die 
is even and the sum is even, the second die must show an even number. Thus, there are 
three equally likely successful outcomes: (2, 6), (4, 4) and (6, 2), out of a total set of pos-
sibilities of [36 - 1number of events with both faces odd24 = 36 - (3 * 3) = 27. 
The resulting probability is 3>27 = 1>9.

Formally, the conditional probability of an event A assuming the event B has 
occurred, denoted by Pr3A �B4, is defined as the ratio

Pr3A �B4 =
Pr3AB4
Pr3B4

where we assume Pr[B] is not zero.
In our example, A = 5sum of 86 and B = 5at least one die even6. The quantity  

Pr[AB] encompasses all of those outcomes in which the sum is 8 and at least one die is 
even. As we have seen, there are three such outcomes. Thus, Pr3AB4 = 3>36 = 1>12.  
A moment’s thought should convince you that Pr3B4 = 3>4. We can now calculate

Pr3A �B4 =
1>12

3>4
=

1
9

This agrees with our previous reasoning.
Two events A and B are called independent if Pr3AB4 = Pr3A4Pr3B4.  

It can easily be seen that if A and B are independent, Pr3A �B4 = Pr3A4 and  
Pr3B �A4 = Pr3B4.

B.2 PERFECT SECRECY

What does it mean that a crypto system is secure? Of course, if the adversary finds 
the entire plaintext or the entire secret key, that would be a severe failure. But even 
if the adversary finds a small part of the plaintext or the key, or even if the adversary 
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determines that, say, the first letter of the plaintext is more likely to be an A than 
the usual frequency of an A at the beginning of a word in a typical English text, that 
would also be a weakness.

A cryptosystem is secure against an attack if the adversary does not learn any-
thing after the attack compared to what he/she knew before the attack. In this sec-
tion, we consider the case of the ciphertext-only attack. The other types of attacks 
can be formalized similarly. We define two types of secrecy:

 ■ Perfect secrecy: The adversary does not learn anything, no matter his/her com-
putational power and how much time the attack takes. This is the ideal, but 
cannot be realized by practical cryptosystems.

 ■ Computational secrecy: The adversary does not learn anything unless he/she 
is performing more than N operations, where N is some huge number (so that 
the attack takes thousands of years). This is good enough and may be achieved 
by practical cryptosystems.

To formally define the notion of secrecy we first introduce some notation:

 ■ M is a random variable that denotes a message chosen from the set of messages M. 
M is characterized by its distribution (see example below).

 ■ K is a random variable that denotes the encryption key chosen from the set of  
keys K. The key K is chosen uniformly at random (i.e., all the keys are equally likely).

 ■ C is the encryption of M, i.e., C = E1K, M2
Simple example: Suppose the message comes from a  military base. Assume  

that the base sends only three messages: “nothing to report,” “attack with 5 planes,” 
and “attack with 10 planes.” Then M =  {“nothing to report,” “attack with 5 planes,” 
“attack with 10 planes”}

This is called the set of messages. We can endow a set of messages with a prob-
ability distribution (in short, just distribution), indicating how likely each message is. 
For example, one possible distribution of M can be

anothing to report attack with 5 planes attack with 10 planes
0.6 0.3 0.1

b

We should assume that the attacker knows the distribution of M (similar to knowing 
the frequency of letters in English).

We are now in a position to formally define the term perfect secrecy, or perfect 
security. Before doing so, it is instructive to quote Shannon’s description.

“Perfect Secrecy” is defined by requiring of a system that after a 
cryptogram is intercepted by the enemy the a posteriori probabili-
ties of this cryptogram representing various messages be identi-
cally the same as the a priori probabilities of the same messages 
before the interception. It is shown that perfect secrecy is possible 
but requires, if the number of messages is finite, the same number 
of possible keys. If the message is thought of as being constantly 
generated at a given “rate” R, key must be generated at the same 
or a greater rate.
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We develop two different versions or the definition of perfect secrecy.

Definition 1. An encryption scheme over message space M is perfectly 
 secure—version 1.

If for all distributions M over M, for any fixed message m and for any 
fixed ciphertext c, we have

Pr3M = m �  E1K, M2 = c4 = Pr3M = m4
Here the probabilities are taken over the distribution of M and over choos-
ing the key K uniformly at random in the space of all keys. We can make the 
following observations.

1. The definition is equivalent to saying that M and E1K, M2 are  
independent.

2. What the definition is saying: The distribution on M is supposed to be 
known by the adversary. We require that the cryptosystem does not leak 
any additional information. This is captured in the definition by saying 
that knowing the ciphertext c does not change the distribution M.

3. We have argued intuitively (Section 3.2) that the one-time pad has the 
above property. Now we can prove this assertion rigorously.

Theorem 1. A one-time pad is perfectly secure.

Proof of a special case (the general case is similar): Let M= 50, 16 – just  
two messages. Let us denote C = E1K, M2 = K ⊕ M. We first observe that

Pr3M = 0 �C = 04 =
Pr3(M = 0) ¨ (C = 0)4

Pr3C = 04 =
Pr3(M = 0) ¨  (M ⊕ K = 0)4

Pr3C = 04

=
Pr3(M = 0) ¨ ( K = 0)4

Pr3C = 04 =
Pr3M = 04Pr3K = 04

Pr3C = 04
Now we show that Pr3K = 04 = Pr3C = 04 = 1/2. Therefore,  

these two terms cancel in the above equation yielding 
Pr3M = 0 �C = 04 = Pr3M = 04. The same argument applies for the oth-
er combinations of M and C.

Pr3K = 04 = 1>2 is obvious, because there are two equally likely keys 
(namely 0 and 1).

 Pr3C = 04 = Pr3M = 0 ¨ K = 04 + Pr3M = 1 ¨ K = 14
 = Pr3M = 04 * Pr3K = 04 + Pr3M = 14 * Pr3K = 14
 = Pr3M = 04 * 1>2 + Pr3M = 14 * 1>2

 = 1>2 * 1Pr3M = 04 + Pr3M = 142
 = 1>2

In the case of the one-time pad cryptosystem, the key is as long as the 
message, which means that the space of keys is as large as the space of 
messages. The next theorem shows that this is the case for any encryption 
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scheme that is perfectly secure—version 1. In other words, any encryption 
scheme that is perfectly secure—version 1 suffers from the same impracti-
cality issue as the one-time pad.

Notation: � �A � �  denotes the number of elements of the finite set A.

Theorem 2. If an encryption scheme is perfectly secure—version 1 over 
message space M, then the set of keys K must satisfy � �K � � Ú � �M � � .

Proof. Let c be a ciphertext. Suppose � �K � � 6 � �M � � . Then when we de-
crypt c with all possible keys, we obtain at most � �K � �  possible plaintexts. 
So there is a message m that is not obtained. Then Pr3M = m �C = c4 = 0.  
But clearly we can make a distribution with P1M = m2 7 0, so this prob-
ability relation violates the definition of perfectly secure—version 1.

For example, if we look at messages that are 1000 bits long, there are 
21000 possible messages, and we need at least 21000 keys, so a key on aver-
age must be at least 1000 bits long. So, a perfectly secure—version 1 is too 
much to ask, because it can be achieved only by very impractical encryption 
schemes (such as one-time pad).

The definition of an encryption that is perfectly secure—version 1 may 
seem to be too abstract and not be very convincing. Let us try another attempt 
for defining secrecy. This definition has the merit that it models the fact that 
the adversary does not get anything if she is doing a ciphertext-only attack.

Definition 2. An encryption scheme over message set M is perfectly  
secure—version 2 if for any two messages m1 and m2 in M and for any  
algorithm A, we have

Pr3A1C2 = m1 �C = E(K,  m1)4 = Pr3A1C2 = m1 �C = E(K,  m2)4
We can make the following observations.

1. Think of A as an attacker that wants to guess whether C is the encryption 
of m1 or of m2.

2. The definition assumes that the enemy does a ciphertext-only attack, be-
cause A has as input only C. Security against the other kind of attacks can 
be defined (more or less) similarly.

3. The probabilities are taken over the random choice of the key from K 
(and the random decisions of A if A is a probabilistic algorithm).

4. Instead of equality, suppose that the left-hand side of the above equation 
is greater than the right-hand side. A successful attacker would have the 
left-hand side big (ideally 1) and the right-hand side small (ideally 0).

5. The definition says that A is not doing any better at guessing the message 
when it is given an encryption of m1 than when it is given an encryption 
of m2.

Theorem 3. Perfectly secure—version 2 = perfectly secure—version 1. (this 
means that an encryption scheme is secure according to version 1 if and only 
if it is secure according to version 2).

We omit the proof. It is not hard, but it is long.
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Thus, perfectly secure—version 2 cannot be achieved by practical 
 encryption schemes either. So we adopt a more relaxed definition, which is 
computational secrecy.

Definition 3. Let e be a small parameter (e.g., e = 0:0001) and N be a large 
parameter (e.g., N = 1080). An encryption scheme over message space M is 
computationally secure (with parameters e and N) if for any two messages 
m1 and m2 in M and for any algorithm A that performs N operations, we 
have:

�Pr3A1C2 = m1 �C = E1K,  m124 - Pr3A1C2 = m1 �C = E1K,  m224 � 6 e

We can make the following observations.

1. There are two relaxations compared with “perfectly secure—version 2.”

 ■ We don’t require equality between the two probabilities, just closeness 
within e.

 ■ And it is acceptable if the attacker can break the system by doing a 
huge number of operations: if an attacker must spend billions of year 
to break the cryptosystem, then the cryptosystem is considered secure.

2. The above definition only defines security against ciphertext-only at-
tacks. In the same spirit, we can define computational secrecy against 
stronger types of attacks, such as chosen plaintext attack, or chosen ci-
phertext attack.

3. What should be the concrete values for N (the number of operation 
we allow the adversary to do) and e (the bias we allow the adversary 
to achieve)? A common recommendations is that it is acceptable if no 
adversary running for at most N = 280 CPU cycles can break the system 
with probability greater than 2 - 64.

Let’s get a feel for these values. Computation on the order of N = 260 is 
barely within reach today. Running on a 3-GHz computer (that executes 
3 * 109 cycles per second), 260 cycles require 260> 13 * 1092 seconds or 
about 12 years. 280 is 220 ≈ 106 times longer than that. The number of sec-
onds since the Big Bang is estimated to be in the order of 258.

An event that occurs once every hundred years can be roughly esti-
mated to occur with probability 2 - 30 in any given second. Something that 
occurs with probability 2 - 60 in any given second is 230 times less likely and 
might be expected to occur roughly once every 100 billion years.

B.3 INFORMATION AND ENTROPY

At the heart of information theory are two mathematical concepts with names that 
can be misleading: information and entropy. Typically, one thinks of information as 
having something to do with meaning; entropy is a term familiar from the second 
law of thermodynamics. In the discipline of information theory, information has to 
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do with the reduction in the uncertainty about an event and entropy is an averaging 
of information values that happens to have a mathematical form identical to that for 
thermodynamic entropy.

Let us approach this new definition of information by way of an example. Imag-
ine an investor who needs information (advice) about the status of certain securities, 
and who consults a broker with special information (knowledge) in that area. The 
broker informs (tells) the investor that, by coincidence, a federal investigator had 
come by just that morning seeking information about (evidence of) possible fraud by 
the corporation issuing that particular stock. In response to this information (data), 
the investor decides to sell, and so informs (notifies) the broker.

Put another way, being uncertain how to evaluate a portion of his/her portfo-
lio, the client consults someone more certain than he/she about this aspect of the 
market. The broker relieves his/her client’s uncertainty about relevant happenings 
by recounting the visit of the federal investigator, who had uncertainties to resolve of 
a professional nature. As an upshot of his/her increased certainty about the state of 
her securities, the client removes any uncertainty in the mind of the broker about her 
intention to sell.

Although the term information may signify notification, knowledge, or simply 
data, in each case the imparting of information is equivalent to the reduction in un-
certainty. Information thus signifies the positive difference between two uncertainty 
levels.

Information

If we are to deal with information mathematically, then we need some quantity that is 
appropriate for measuring the amount of information. This problem was first raised, 
and solved, by Hartley in 1928 while studying telegraph communication [HART28]. 
Hartley observed that if the probability that an event will occur is high (close to 1), 
there is little uncertainty that it will occur. If we subsequently learn that it has oc-
curred, then the amount of information gained is small. Thus, one plausible measure 
is the reciprocal of the probability of the occurrence of an event: 1>p. For example, 
an event that has an initial probability of occurrence of 0.25 conveys more informa-
tion by its occurrence than one with an initial probability of 0.5. If the measure of 
information is 1>p, then the occurrence of the first event conveys an information 
value of 4 (1/0.25) and the occurrence of the second event conveys an information 
value of 2 (1/0.5). But there are two difficulties in using this measure of information:

1. This measure does not seem to “work” for sequences of events. Consider a bi-
nary source that issues a stream of ones and zeros with equal probability of a 
one or zero for each bit. Thus, each bit has an information value of 2 (1/0.5).  
But if bit b1 conveys a value of 2, what is the information conveyed by the string 
of two bits b1b2? This string can take on one of four possible outcomes, each with 
probability 0.25; therefore, by the 1>p measure, an outcome conveys an informa-
tion value of 4. Similarly, the information value of 3 bits 1b1b2b32 is eight. This 
means that b2 adds two units of information to the two of b1, which is reasonable 
because the 2 bits have the same information value. But b3 will add an additional 
four units of information. Extending the sequence, b4 will add eight units of in-
formation, and so on. This does not seem reasonable as a measure of information.
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2. Consider an event that gives rise to two or more independent variables. An 
example is a phase-shift-keying (PSK) signal that uses four possible phases 
and two amplitudes. A single signal element yields two units of information for 
the amplitude and four for the phase, for a total of six units by our measure. 
Yet each signal element is one of eight possible outcomes and hence ought to 
yield eight units of information by our measure.

Hartley overcame these problems by proposing that the measure of information for 
the occurrence of an event x be log11>P1x22, where P1x2 denotes the probability of 
occurrence of event x. Formally,

 I1x2 =  log11>P1x22= - log P1x2 (B.1)

This measure “works” and leads to many useful results. The base of the logarithm  
is arbitrary but is invariably taken to the base 2, in which case the unit of measure is 
referred to as a bit. The appropriateness of this designation should be obvious as we 
proceed. Base 2 logarithms are assumed in the rest of this discussion. We can make 
the following observations:

1. A single bit that takes on the values 0 and 1 with equal probability conveys 
one bit of information 1log11>0.52 = 12. A string of two such bits takes on 
one of four equally likely outcomes with probability 0.25 and conveys two bits 
of information 1log11>0.252 = 22. Therefore, the second bit adds one bit of 
information. In a sequence of three independent bits, the third bit also adds 
one bit of information 1log11>0.1252 = 32, and so on.

2. In the example of the PSK signal, a single signal element yields one bit of 
information for the amplitude and two for the phase, for a total of 3 bits, which 
agrees with the observation that there are eight possible outcomes.

Figure B.1 shows the information content for a single outcome as a function of 
the probability p of that outcome. As the outcome approaches certainty 1p = 12,  
the information conveyed by its occurrence approaches zero. As the outcome  
approaches impossibility 1p = 02, its information content approaches infinity.

Entropy

The other important concept in information theory is entropy, or uncertainty,1 which 
was proposed in 1948 by Shannon, the founder of information theory. Shannon de-
fined the entropy H as the average amount of information obtained from the value 
of a random variable. Suppose we have a random variable X, which may take on the 
values x1, x2, c, xN , and that the corresponding probabilities of each outcome are 
P(x1), P(x2), c, P(xN) . In a sequence of K occurrences of X, the outcome xj will 
on average be selected KP(xj) times. Therefore, the average amount of information 
obtained from K outcomes is [using Pj as an abbreviation for P(xj)]:

KP1 log(1>P1) + c + KPN log(1>PN)

1 Shannon used the term entropy because the form of the function H is the same as the form of the en-
tropy function in statistical thermodynamics. Shannon interchangeably called H the uncertainty function.
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Dividing by K yields the average amount of information per outcome for the ran-
dom variable, referred to as the entropy of X, and designated by H1X2:

 H(X) = a
N

j=1
Pj log (1/Pj) =  - a

N

j=1
Pj log (Pj) (B.2)

The function H is often expressed as an enumeration of the probabilities of the 
possible outcomes: H(P1, P2, c , PN).

As an example, consider a random variable X that takes on two possible values 
with respective probabilities p and 1 - p. The entropy associated with X is

H( p, 1 - p) = -plog1p2 - (1 - p)log(1 - p)

Figure B.2 plots H1X2 for this case as a function of p. Several important features 
of entropy are evident from this figure. First, if one of the two events is certain 
1p = 1 or p = 02, then the entropy is zero.2 One of the two events has to occur 
and no information is conveyed by its occurrence. Second, the maximum value of 
H1X2 = 1 is reached when the two outcomes are equally likely. This seems reason-
able: the uncertainty of the outcome is maximum when the two outcomes are equal-
ly likely. This result generalizes to a random variable with N outcomes: its entropy is 
maximum when the outcomes are equally likely:

max H(P1, P2 , c , PN) = H11>N, 1>N, c , 1>N2

1.00.50.0
Probability p
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/p

)

Figure B.1 Information Measure for a Single Outcome

2 Strictly speaking, the formula for H1X2 is undefined at p = 0. The value is assumed to be 0 for p = 0. 
This is justified because the limit of H1X2 as p goes to 0 is 0.
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For example:

H11>3, 1>3, 1>32 = 1>3 log 3 + 1>3 log 3 + 1>3 log 3 = 1.585

whereas

 H11>2, 1>3, 1>62 = 1>2 log 2 + 1>3 log 3 + 1>6 log 6 = 0.5 + 0.528 + 0.43 
 = 1.458

Properties of the Entropy Function

We have developed the entropy formula H1X2 by an intuitive line of reasoning. 
Another approach is to define the properties that an entropy function should have 
and then prove that the formula - a

j
Pj log Pj is the only formula that has these  

properties. These properties, or axioms, can be stated as follows:

1. H is continuous over the range of probabilities. Thus, small changes in the 
probability of one of the occurrences only cause small changes in the uncer-
tainty. This seems a reasonable requirement.

2. If there are N possible outcomes and they are equally likely, so that Pj = 1>N,  
then H1X2 is a monotonically increasing function of N. This is also a reason-
able property because it says that the more equally likely outcomes, the larger 
the uncertainty.

3. If some of the outcomes of X are grouped, then H can be expressed as a 
weighted sum of entropies in the following fashion:
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Probability of first outcome p

Figure B.2 Entropy Function for Random Variable with Two 
Outcomes
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H1P1, P2, P3, c , PN2 = H1P1 + P2, P3, c , PN2+  1P1 + P22H a P1

P1 + P2
,

P2

P1 + P2
b

The reasoning is as follows. Before the outcome is known, the average uncer-
tainty associated with the outcome is H(P1, P2, P3, c , PN). If we reveal which out-
come has occurred, except that the first two outcomes are grouped together, then the 
average amount of uncertainty removed is H(P1 + P2, P3, c , PN). With probability 
(P1 + P2), one of the first two outcomes occurs and the remaining uncertainty is 
H3P1>(P1 + P2) + P2>(P1 + P2)4.

The only definition of H1X2 that satisfies all three properties is the one that we 
have given. To see property (1), consider Figure B.2, which is clearly continuous in p. 
It is more difficult to depict H1X2 when there are more than two possible outcomes, 
but the fact of continuity should be clear.

For property (2), if there are N equally likely outcomes, then H1X2 becomes

H(X) = - a
N

j=1

1
N

 log a 1
N
b  =  - log a 1

N
b  =  log(N)

The function log1N2 is a monotonically increasing function of N. Note that with 
four possible outcomes, the entropy is 2 bits; with eight possible outcomes, the en-
tropy is 3 bits, and so on.

As a numerical example of property (3), we may write

 H a 1
2

, 
1
3

, 
1
6
b = H a 5

6
, 

1
6
b +  

5
6

H a 3
5

, 
2
5
b

 1.458 = 0.219 + 0.43 +
5
6
10.442 + 0.52882

 = 0.649 + 0.809

Conditional Entropy

Shannon defines the conditional entropy of Y given X, expressed as H1Y �X2, as 
the uncertainty about Y given knowledge of X. This conditional entropy is defined 
as follows:

H(Y �X) = -a
x,y

Pr1x, y2 log Pr1y � x2

where

x = a value contained in the set X

y = a value contained in the set Y
Pr1x, y2 = probability of the joint occurrence of x for the value in X and y for the 
value in Y.

Conditional uncertainties obey intuitively pleasing rules, such as:

H1X, Y2 = H1X2 + H1Y �X2
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B.4 ENTROPY AND SECRECY

For a symmetric encryption system, the basic equations are C = E1K, M2 
and M = E1K, C2. These equations can be written equivalently, in terms of  
uncertainties as

H1C �K, M2 = 0

and

 H1M �K, C2 = 0 (B.3)

respectively, because, for instance H1C �K, M2 is zero if and only if, M and K unique-
ly determine C, which is a basic requirement of symmetric encryption.

Shannon’s definition of perfect secrecy can then be written as:

 H1M �C2 = H1M2 (B.4)

because this equality holds if and only if M is statistically independent of C.
For any secret key cryptosystem, we can write

H1M �C2 … H1M, K �C2

= H1K �C2 + H1M �K, C2

= H1K �C2

 … H1K2 (B.5)

where we have used Equation (B.3) and the fact that removal of given knowledge 
can only increase uncertainty. If the cryptosystem provides perfect secrecy, it follows 
from Equations (B.4) and (B.5) that

 H1K2 Ú H1M2 (B.6)

Inequality (B.6) is Shannon’s fundamental bound for perfect secrecy. The uncer-
tainty of the secret key must be at least as great as the uncertainty of the plaintext 
that it is concealing. Let us assume we are dealing with binary values; that is, the 
plaintext, key, and ciphertext are represented as binary strings. Then we can say that 
for a key of length k bits,

 H1K2 … - log(2 - k) = k (B.7)

with equality if and only if the key is completely random. Similarly, if the length of 
the plaintext is q, then

 H1M2 … - log(2 - q) = q (B.8)

with equality if and only if the plaintext is completely random, which means each 
q-bit plaintext is equally likely to occur. Combining inequalities (B.6, B.7, B.8), the 
requirement for perfect secrecy if the plaintext is completely random is k Ú q.  
That is, the key must be at least as long as the plaintext. For the one-time pad, we 
have k = q.
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B.5 MIN-ENTROPY

A concept that is increasingly significant in cryptographic applications is  min-entropy. 
Before looking at a mathematical definition, it will be useful in understanding the 
significance of min-entropy to look at two definitions from NIST.

NIST 800-90C (Recommendation for Random Bit Generator Constructions, 
 August 2012) gives the following definition:

A measure of the difficulty that an Attacker has to guess the most commonly chosen 
password used in a system. In this document, entropy is stated in bits. When a pass-
word has n bits of min-entropy, then an Attacker requires as many trials to find a 
user with that password as is needed to guess an n-bit random quantity. The Attacker 
is assumed to know the most commonly used password(s).

The min-entropy (in bits) of a random variable X is the largest value m having the 
property that each observation of X provides at least m bits of information (i.e., the 
min-entropy of X is the greatest lower bound for the information content of poten-
tial observations of X). The min-entropy of a random variable is a lower bound on 
its entropy. Min-entropy is often used as a worst-case measure of the unpredictabil-
ity of a random variable.

NIST800-63-1 (Electronic Authentication Guideline, December 2008) defines 
min-entropy as follows:

Let us now define min-entropy mathematically and confine ourselves to crypto-
graphic keys of length k bits. Thus, the key K can take on one of N = 2k values in the 
range 0 … K … (2k - 1). If each value of K is equally likely, then each value occurs 
with probability 2 - k = 1>N and the uncertainty, or entropy, associated with K can 
be expressed as:

H(K) = a
N

j = 1
Pj log (1/ Pj) =  a

N

j = 1
2 - k log a2kb = ka

N

j = 1
2-k = ka

N

j = 1

1
N

= k

where

Pj = probability that the key value = j - 1 (e.g., P1 = Pr3K = 04; 
 PN = Pr3K = 2k - 14)
N = 2k

In this situation, there are k bits of information and an adversary would have 
to try an average of half the values, or 2k - 1, before correctly guessing the key value.

Now, suppose that the key value is generated by a pseudorandom number gen-
erator. If the PRNG exhibits perfect randomness, then each possible key value is 
equally likely. However, if the PRNG has some bias or skew, then at least some of 
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the key values will have a probability that is greater or less than 2 - k, with the proviso 

that a
N

j = 1
Pj = 1.

For this circumstance, it is useful to define the min-entropy H∞ 1K2 as follows:

H∞ 1K2 = min a log a 1
Pj
b b = log amin a 1

Pj
b b = - log1max1Pj22

Another way of wording this is as follows:

A k-bit random key K has min-entropy at least n, if for every j, 0 … j 6 2k, it holds 
that Pr3K = j4 … 2 - n. Note that we must have n … k.

If all of the outcomes are equally likely (i.e., if Pj = 2 - k for 0 … j 6 2k),  
then H ∞ 1K2 = H1K2 = k. But if not all outcomes are equally likely, then 
H ∞ 1K2 6 H1K2, and the value of H ∞ 1K2 is determined by the most likely out-
come. So, for example, if outcome j is twice is as likely to occur as the  average  outcome 
(Pj = 2 - k + 1), and is the most likely outcome, then H ∞ 1K2 = k - 1.  Another way 
to describe this formulation is that if K has min-entropy m, then the probability of 
observing any particular value is no greater than 2 - m.

Let us look at a simple example of a 3-bit key. If all of the outcomes are equally 
likely, then H1K2 = 3, so that a key value provides 3 bits of information. Now sup-
pose the probability distribution is not uniform, as indicated in the following table:

I Pi log(1>Pi) Pi log (1>Pi)

0 1/16 4 1/4

1 1/4 2 1/2

2 1/8 3 3/8

3 1/8 3 3/8

4 1/16 4 1/4

5 1/16 4 1/4

6 1/8 3 3/8

7 3/16 log1162 - log132 ≈ 2.415 ≈ 0.453

Then we have:

 H1K2 = a
8

i = 1
Pi log11>Pi2 =

1
4

+
1
2

+
3
8

+
3
8

+
1
4

+
1
4

+
3
8

+ 0.453 = 2.828

 H∞ 1K2 = min a log a 1
Pi
b b = 2

Thus, the average entropy of a sample is 2.828 bits, and every sample has at least 
2 bits of entropy.

How does all this relate to the security of a key? We have stated that if all of the 
2k possible values of a k-bit key are equally likely, then an adversary would have to 
attempt, on average, 2k>2 = 2k - 1 values to successfully guess the actual key value. 
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That is, the adversary has a level of effort of 2k - 1 = 2H1K2 - 1. If, however, the PRNG 
source that produced the key is not truly random, then the key variable will have an 
entropy H1K2 6 2k. It will still take, on average, a level of effort of 2H1K2 - 1 to dis-
cover a key. More importantly, the worst-case level of effort is just 2H ∞ 1K2 - 1.

A simple example may help to make this clear. Suppose the PRNG used to 
generate a key has a bias so that it produces, on average, more 1s than 0s. If the ad-
versary knows this, then the adversary can proceed to first guess keys with more 1s 
than 0s and thus find the actual key more quickly than if everything were completely 
random. The same argument applies to a hardware RNG, which is assumed to be a 
true RNG but which in fact has some bias or skew. This is why RNGs such as Intel 
use cryptographic algorithms on the output of a hardware RNG to eliminate bias 
and maximize entropy. More specifically, such schemes are designed to maximize 
min-entropy.
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The overall scheme for DES encryption is illustrated in Figure C.1, which repeats 
Figure 4.5. As with any encryption scheme, there are two inputs to the encryption 
function: the plaintext to be encrypted and the key. In this case, the plaintext must be 
64 bits in length and the key is 56 bits in length.1

Appendix C

dAtA enCryption StAndArd

1Actually, the function expects a 64-bit key as input. However, only 56 of these bits are ever used; the 
other 8 bits can be used as parity bits or simply set arbitrarily.

Initial Permutation

Permuted Choice 2Round 1

32-bit Swap

Inverse Initial
Permutation

Permuted Choice 1

Round 2

Round 16

 •  •  •  •  •  •  •  •  •

64-bit plaintext

 •  •  •  •  •  •  •  •  •

64-bit key

K1

K2

K16

 •  •  •  •  •  •  •  •  •

64-bit ciphertext

Left circular shift

Permuted Choice 2 Left circular shift

Permuted Choice 2 Left circular shift

64 56

56

56

56

48

48

48

56 64

64 bits 

Figure C.1 General Depiction of DES Encryption Algorithm
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Table C.1 Permutation Tables for DES

(a) Initial Permutation (IP)

58 50 42 34 26 18 10 2

60 52 44 36 28 20 12 4

62 54 46 38 30 22 14 6

64 56 48 40 32 24 16 8

57 49 41 33 25 17 9 1

59 51 43 35 27 19 11 3

61 53 45 37 29 21 13 5

63 55 47 39 31 23 15 7

Looking at the left-hand side of the figure, we can see that the processing of 
the plaintext proceeds in three phases. First, the 64-bit plaintext passes through an 
initial permutation (IP) that rearranges the bits to produce the permuted input. 
This is followed by a phase consisting of 16 rounds of the same function, which 
involves both permutation and substitution functions. The output of the last (six-
teenth) round consists of 64 bits that are a function of the input plaintext and the 
key. The left and right halves of the output are swapped to produce the preoutput. 
Finally, the preoutput is passed through a permutation (IP-1) that is the inverse of 
the initial permutation function, to produce the 64-bit ciphertext. With the excep-
tion of the initial and final permutations, DES has the exact structure of a Feistel 
cipher, as shown in Figure 4.3.

The right-hand portion of Figure C.1 shows the way in which the 56-bit key 
is used. Initially, the key is passed through a permutation function. Then, for 
each of the 16 rounds, a subkey (Ki) is produced by the combination of a left 
circular shift and a permutation. The permutation function is the same for each 
round, but a different subkey is produced because of the repeated shifts of the 
key bits.

Initial Permutation

The initial permutation and its inverse are defined by tables, as shown in Tables C.1a 
and C.1b, respectively. The tables are to be interpreted as follows. The input to a table 
consists of 64 bits numbered from 1 to 64. The 64 entries in the permutation table 
contain a permutation of the numbers from 1 to 64. Each entry in the permutation 
table indicates the position of a numbered input bit in the output, which also consists 
of 64 bits.
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(b) Inverse Initial Permutation (IP-1)

40 8 48 16 56 24 64 32

39 7 47 15 55 23 63 31

38 6 46 14 54 22 62 30

37 5 45 13 53 21 61 29

36 4 44 12 52 20 60 28

35 3 43 11 51 19 59 27

34 2 42 10 50 18 58 26

33 1 41 9 49 17 57 25

(c) Expansion Permutation (E)

32 1 2 3 4 5

4 5 6 7 8 9

8 9 10 11 12 13

12 13 14 15 16 17

16 17 18 19 20 21

20 21 22 23 24 25

24 25 26 27 28 29

28 29 30 31 32 1

(d) Permutation Function (P)

16 7 20 21 29 12 28 17

1 15 23 26 5 18 31 10

2 8 24 14 32 27 3 9

19 13 30 6 22 11 4 25

To see that these two permutation functions are indeed the inverse of each  
other, consider the following 64-bit input M:

M1 M2 M3 M4 M5 M6 M7 M8

M9 M10 M11 M12 M13 M14 M15 M16

M17 M18 M19 M20 M21 M22 M23 M24

M25 M26 M27 M28 M29 M30 M31 M32

M33 M34 M35 M36 M37 M38 M39 M40

M41 M42 M43 M44 M45 M46 M47 M48

M49 M50 M51 M52 M53 M54 M55 M56

M57 M58 M59 M60 M61 M62 M63 M64
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where Mi is a binary digit. Then the permutation X = IP(M) is as follows:

M58 M50 M42 M34 M26 M18 M10 M2

M60 M52 M44 M36 M28 M20 M12 M4

M62 M54 M46 M38 M30 M22 M14 M6

M64 M56 M48 M40 M32 M24 M16 M8

M57 M49 M41 M33 M25 M17 M9 M1

M59 M51 M43 M35 M27 M19 M11 M3

M61 M53 M45 M37 M29 M21 M13 M5

M63 M55 M47 M39 M31 M23 M15 M7

If we then take the inverse permutation Y = IP-11X2 = IP-11IP1M22, it can 
be seen that the original ordering of the bits is restored.

Details of Single Round

Figure C.2 shows the internal structure of a single round. Again, begin by focusing 
on the left-hand side of the diagram. The left and right halves of each 64-bit inter-
mediate value are treated as separate 32-bit quantities, labeled L (left) and R (right).  

Li21 Ri21

Expansion/
permutation (E table)

Ci21 Di21

Left shift(s)

Permutation/contraction
(Permuted Choice 2)XOR

48

48

Substitution/choice
(S-box)

Permutation
(P)

32

XOR

Left shift(s)

Li Ri C i Di

48

32

KiF

28 bits32 bits 32 bits 28 bits

Figure C.2 Single Round of DES Algorithm
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As in any classic Feistel cipher, the overall processing at each round can be summa-
rized in the following formulas:

Li = Ri-1
Ri = Li-1 ⊕ F(Ri-1, Ki)

The round key Ki is 48 bits. The R input is 32 bits. This R input is first expanded 
to 48 bits by using a table that defines a permutation plus an expansion that involves 
duplication of 16 of the R bits (Table C.1c). The resulting 48 bits are XORed with Ki. 
This 48-bit result passes through a substitution function that produces a 32-bit output, 
which is permuted as defined by Table C.1d.

The role of the S-boxes in the function F is illustrated in Figure C.3. The substitu-
tion consists of a set of eight S-boxes, each of which accepts 6 bits as input and produces 
4 bits as output. These transformations are defined in Table C.2, which is interpreted 
as follows: The first and last bits of the input to box Si form a 2-bit binary number 
to select one of four substitutions defined by the four rows in the table for Si. The 
middle four bits select one of the 16 columns. The decimal value in the cell selected 
by the row and column is then converted to its 4-bit representation to produce the 
output. For example, in S1, for input 011001, the row is 01 (row 1) and the column  
is 1100 (column 12). The value in row 1, column 12 is 9, so the output is 1001.

Each row of an S-box defines a general reversible substitution. Figure 4.2 may 
be useful in understanding the mapping. The figure shows the substitution for row 
0 of box S1.

S1 S2 S3 S4 S5 S6 S7 S8

R (32 bits)

48 bits

E

1
K (48 bits)

P

32 bits

Figure C.3 Calculation of F(R, K)
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Table C.2 Definition of DES S-Boxes

14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

S1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8

4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10

S2 3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5

0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15

13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8

S3 13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1

13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7

1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15

S4 13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9

10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4

3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9

S5 14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6

4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14

11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11

S6 10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8

9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6

4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1

S7 13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6

1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2

6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7

S8 1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2

7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8

2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11
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The operation of the S-boxes is worth further comment. Ignore for the moment 
the contribution of the key (Ki). If you examine the expansion table, you see that 
the 32 bits of input are split into groups of 4 bits and then become groups of 6 bits 
by taking the outer bits from the two adjacent groups. For example, if part of the  
input word is

... efgh ijkl mnop ...

this becomes

... defghi hijklm lmnopq ...

The outer two bits of each group select one of four possible substitutions (one 
row of an S-box). Then a 4-bit output value is substituted for the particular 4-bit  
input (the middle four input bits). The 32-bit output from the eight S-boxes is then 
permuted, so that on the next round, the output from each S-box immediately affects 
as many others as possible.

Key Generation Returning to Figures C.1 and C.2, we see that a 64-bit key is 
used as input to the algorithm. The bits of the key are numbered from 1 through 
64; every eighth bit is ignored, as indicated by the lack of shading in Table C.3a. 
The key is first subjected to a permutation governed by a table labeled Permuted 
Choice One (Table C.3b). The resulting 56-bit key is then treated as two 28-bit 
quantities, labeled C0 and D0. At each round, Ci-1 and Di-1 are separately subjected 
to a circular left shift, or rotation, of 1 or 2 bits, as governed by Table C.3d. These 
shifted values serve as input to the next round. They also serve as input to Permuted 
Choice Two (Table C.3c), which produces a 48-bit output that serves as input to the  
function F(Ri-1, Ki).

Table C.3 DES Key Schedule Calculation

(a) Input Key

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

Z03_STAL7484_08_GE_APPC.indd   772 06/04/22   12:20 PM



Appendix C / dAtA enCryption StAndArd 773

(b) Permuted Choice One (PC-1)

57 49 41 33 25 17 9

1 58 50 42 34 26 18

10 2 59 51 43 35 27

19 11 3 60 52 44 36

63 55 47 39 31 23 15

7 62 54 46 38 30 22

14 6 61 53 45 37 29

21 13 5 28 20 12 4

(c) Permuted Choice Two (PC-2)

14 17 11 24 1 5 3 28

15 6 21 10 23 19 12 4

26 8 16 7 27 20 13 2

41 52 31 37 47 55 30 40

51 45 33 48 44 49 39 56

34 53 46 42 50 36 29 32

(d) Schedule of Left Shifts

Round 
Number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bits 
Rotated

1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1

DES Decryption

As with any Feistel cipher, decryption uses the same algorithm as encryption, except 
that the application of the subkeys is reversed.
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Simplified AES (S-AES) was developed by Professor Edward Schaefer of Santa 
Clara University and several of his students [MUSA03]. It is an educational rather 
than a secure encryption algorithm. It has similar properties and structure to AES 
with much smaller parameters. The reader might find it useful to work through an 
example by hand while following the discussion in this appendix. A good grasp of 
S-AES will make it easier for the student to appreciate the structure and workings 
of AES.

D.1 OVERVIEW

Figure D.1 illustrates the overall structure of S-AES. The encryption algorithm takes 
a 16-bit block of plaintext as input and a 16-bit key and produces a 16-bit block of ci-
phertext as output. The S-AES decryption algorithm takes an 16-bit block of cipher-
text and the same 16-bit key used to produce that ciphertext as input and produces 
the original 16-bit block of plaintext as output.

The encryption algorithm involves the use of four different functions, or trans-
formations: add key 1AK2 , nibble substitution (NS), shift row (SR), and mix column 
(MC), whose operation is explained subsequently.

add round key

w[2, 3]

w[0, 1]

nibble substitution expand key

shift row

mix columnsR
ou

nd
 1

R
ou

nd
 2

add round key

nibble substitution

shift row

add round key

16-bit ciphertext

add round key

16-bit plaintext 16-bit key 16-bit plaintext

ENCRYPTION DECRYPTION 

inverse nibble sub

inverse shift row

inverse mix cols
R

ou
nd

 2
R

ou
nd

 1add round key

inverse nibble sub

inverse shift row

add round key

16-bit ciphertext

w[4, 5]

Figure D.1 S-AES Encryption and Decryption

1Definition: If f and g are two functions, then the function F with the equation y = F1x2 = g3 f1x2 4  is 
called the composition of f and g and is denoted as F = g o f.
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We can concisely express the encryption algorithm as a composition1 of  functions:

AK2
∘ SR ∘ NS ∘ AK1

∘ MC ∘ SR ∘ NS ∘ AK0

so that AK0
 is applied first.

The encryption algorithm is organized into three rounds. Round 0 is simply an 
add key round; round 1 is a full round of four functions; and round 2 contains only 
three functions. Each round includes the add key function, which makes use of 16 
bits of key. The initial 16-bit key is expanded to 48 bits, so that each round uses a 
distinct 16-bit round key.

Each function operates on a 16-bit state, treated as a 2 * 2 matrix of nibbles, 
where one nibble equals 4 bits. The initial value of the State matrix is the 16-bit plain-
text; State is modified by each subsequent function in the encryption process, produc-
ing after the last function the 16-bit ciphertext. As Figure D.2a shows, the ordering 
of nibbles within the matrix is by column. So, for example, the first 8 bits of a 16-bit 
plaintext input to the encryption cipher occupy the first column of the matrix, and 
the second 8 bits occupy the second column. The 16-bit key is similarly organized, but 
it is somewhat more convenient to view the key as two bytes rather than four nibbles 
(Figure D.2b). The expanded key of 48 bits is treated as three round keys, whose bits 
are labeled as follows: K0 = k0 c k15;  K1 = k16 c k31; and K2 = k32 c k47.

Figure D.3 shows the essential elements of a full round of S-AES.
Decryption is also shown in Figure D.1 and is essentially the reverse of  

encryption:

AK0
∘ INS ∘ ISR ∘ IMC ∘ AK1

∘ INS ∘ ISR ∘ AK2

in which three of the functions have a corresponding inverse function: inverse nibble 
substitution (INS), inverse shift row (ISR), and inverse mix column (IMC).

S1,0 S1,1

S0,0 S0,1b0b1b2b3 b8b9b10b11

b4b5b6b7 b12b13b14b15

bit representation
nibble representation

(a) State matrix

(b) Key

bit representation

byte representation

k0k1k2k3k4k5k6k7 k8k9k10k11k12k13k14k15

original key key expansion

w0

K0

w1 w2 w3 w4 w5

K1 K2

Figure D.2 S-AES Data Structures
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7 9

A 4

D 5

2 5
5

A C

8 1

State matrix     Key

D.2 S-AES ENCRYPTION AND DECRYPTION

We now look at the individual functions that are part of the encryption algorithm.

Add Key

The add key function consists of the bitwise XOR of the 16-bit State matrix and the 
16-bit round key. Figure D.4 depicts this as a columnwise operation, but it can also be 
viewed as a nibble-wise or bitwise operation. The following is an example.

S
M

r0

State State State State State

nibble
substitution

shift
row

mix
column

add key

S

S

S
M

r1

r2

r3

S0,0

S1,0

S0,1

S1,1

S0,0

S1,0

S0,1

S1,1

S0,0

S1,0

S0,1

S1,1

S0,0

S1,0

S0,1

S1,1

S0,0

S1,0

S0,1

S1,1

Figure D.3 S-AES Encryption Round

The inverse of the add key function is identical to the add key function, because the 
XOR operation is its own inverse.

Nibble Substitution

The nibble substitution function is a simple table lookup (Figure D.4). AES  defines a 
4 * 4 matrix of nibble values, called an S-box (Table D.1a), that contains a permuta-
tion of all possible 4-bit values. Each individual nibble of State is mapped into a new 
nibble in the following way: The leftmost 2 bits of the nibble are used as a row value 
and the rightmost 2 bits are used as a column value. These row and column values 
serve as indexes into the S-box to select a unique 4-bit output value. For example, 
the hexadecimal value A references row 2, column 2 of the S-box, which contains the 
value 0. Accordingly, the value A is mapped into the value 0.

Here is an example of the nibble substitution transformation.

A C

8 1

0 C

6 4
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The inverse nibble substitution function makes use of the inverse S-box shown 
in Table D.1b. Note, for example, that the input 0 produces the output A, and the 
input A to the S-box produces 0.

Shift Row

The shift row function performs a one-nibble circular shift of the second row of 
State; the first row is not altered (Figure D.4). The following is an example.

s0,0 s0,1

s1,0

x
nibble

substitution

shift
row

mix
column

add
key

s1,1

s0,0

s1,0

s0,1

s1,1

s0,0 s0,1

s1,0 s1,1

s0,0 s0,1

s1,1 s1,0

s0,0 s0,1

s1,0 s1,1

1  4
4  1

5¥

s0,0 s0,1

s1,0 s1,1

'

' '

wi wi11 5
s0,0

s1,1

s0,1

s1,0

s0,0 s0,1

s1,0 s1,1

'

'

' '

'

'

'

'

'

Figure D.4 S-AES Transformations

Table D.1 S-AES S-Boxes

Note: Hexadecimal numbers in shaded boxes; binary numbers in unshaded boxes.

j j

00 01 10 11 00 01 10 11

i

00 9 4 A B

i

00 A 5 9 B

01 D 1 8 5 01 1 7 8 F

10 6 2 0 3 10 6 0 2 3

11 C E F 7 11 C 4 D E

(a) S-Box (b) Inverse S-Box
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0 C

6 4

C 0

6 4

The inverse shift row function is identical to the shift row function, because it 
shifts the second row back to its original position.

Mix Column

The mix column function operates on each column individually. Each nibble of a 
column is mapped into a new value that is a function of both nibbles in that column. 
The transformation can be defined by the following matrix multiplication on State 
(Figure D.4):

c1 4
4 1

d c s0,0 s0,1

s1,0 s1,1
d = c s′0,0 s′0,1

s′1,0 s′1,1
d

Performing the matrix multiplication, we get

s′0,0 = s0,0 ⊕ 14•s1,02
s′1,0 = 14•s0,02 ⊕ s1,0

s′0,1 = s0,1 ⊕ 14•s1,12
s′1,1 = 14•s0,12 ⊕ s1,1

Where arithmetic is performed in GF(24), and the symbol • refers to multipli-
cation in GF(24). Annex D.1 provides the addition and multiplication tables. The  
following is an example.

c1 4
4 1

d c 6 4
C 0

d = c3 4
7 3

d

The inverse mix column function is defined as

c9 2
2 9

d c s0,0 s0,1

s1,0 s1,1
d = c s′0,0 s′0,1

s′1,0 s′1,1
d

We demonstrate that we have indeed defined the inverse in the following fashion.

c9 2
2 9

d c1 4
4 1

d c s0,0 s0,1

s1,0 s1,1
d = c1 0

0 1
d c s0,0 s0,1

s1,0 s1,1
d = c s0,0 s0,1

s1,0 s1,1
d

The preceding matrix multiplication makes use of the following results in 
GF(24): 9 + 12 • 42 = 9 + 8 = 1 and 19 • 42 + 2 = 2 + 2 = 0 . These operations 
can be verified using the arithmetic tables in Annex D.1 or by polynomial arithmetic.

The mix column function is the most difficult to visualize. Accordingly, we pro-
vide an additional perspective on it in Annex D.2.
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D.3 KEY EXPANSION

For key expansion, the 16 bits of the initial key are grouped into a row of two 8-bit 
words. Figure D.5 shows the expansion into six words, by the calculation of four new 
words from the initial two words. The algorithm is as follows:

 w2 = w0 ⊕ g(w1) = w0 ⊕ RCON112 ⊕ SubNib(RotNib(w1))

 w3 = w2 ⊕ w1

 w4 = w2 ⊕ g(w3) = w2 ⊕ RCON122 ⊕ SubNib(RotNib(w3))

 w5 = w4 ⊕ w3

RCON is a round constant, defined as follows: RC3 i4 = xi+ 2, so that 
RC314 = x3 = 1000 and RC324 = x4 mod ((x4 + x + 1) = x + 1 = 0011. RC[i] 
forms the leftmost nibble of a byte, with the rightmost nibble being all zeros. Thus, 
RCON112 = 10000000 and RCON122 = 00110000.

For example, suppose the key is 2D55 = 0010 1101 0101 0101 = w0w1. Then

 w2 = 00101101 ⊕ 10000000 ⊕ SubNib1010101012
= 00101101 ⊕ 10000000 ⊕ 00010001 = 10111100

 w3 = 10111100 ⊕ 01010101 = 11101001

(a) Overall algorithm (b) Function g

g

N0 N1

w

wr

N1 N0

xi12 0

w0 w1
g

w2 w3 g

w4 w5

S S

N1r N0r

Figure D.5 S-AES Key Expansion
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 w4 = 10111100 ⊕ 00110000 ⊕ SubNib1100111102
= 10111100 ⊕ 00110000 ⊕ 00101111 = 10100011

 w5 = 10100011 ⊕ 11101001 = 01001010

D.4 THE S-BOX

The S-box is constructed as follows:

1. Initialize the S-box with the nibble values in ascending sequence row by row. 
The first row contains the hexadecimal values (0, 1, 2, 3); the second row con-
tains (4, 5, 6, 7); and so on. Thus, the value of the nibble at row i, column j is 
4i + j.

2. Treat each nibble as an element of the finite field GF(24) modulo x4 + x + 1. 
Each nibble a0a1a2a3 represents a polynomial of degree 3.

3. Map each byte in the S-box to its multiplicative inverse in the finite field 
GF(24) modulo x4 + x + 1; the value 0 is mapped to itself.

4. Consider that each byte in the S-box consists of 4 bits labeled 1b0, b1, b2, b32 . 
Apply the following transformation to each bit of each byte in the S-box. The 
AES standard depicts this transformation in matrix form:

≥
b′0
b′1
b′2
b′3

¥ = ≥
1 0 1 1
1 1 0 1
1 1 1 0
0 1 1 1

¥ ≥
b0

b1

b2

b3

¥ ⊕ ≥
1
0
0
1

¥

Here prime (′) indicates that the variable is to be updated by the value on the 
right. Remember that addition and multiplication are being calculated modulo 2.

Table D.1a shows the resulting S-box. This is a nonlinear, invertible matrix. The 
inverse S-box is shown in Table D.1b.

D.5 S-AES STRUCTURE

We can now examine several aspects of interest concerning the structure of AES. 
First, note that the encryption and decryption algorithms begin and end with the add 
key function. Any other function, at the beginning or end, is easily reversible without 
knowledge of the key and so would add no security but just a processing overhead. 
Thus, there is a round 0 consisting of only the add key function.

The second point to note is that round 2 does not include the mix column 
 function. The explanation for this in fact relates to a third observation, which 
is  that although the decryption algorithm is the reverse of the encryption 
 algorithm, as clearly seen in Figure D.1, it does not follow the same sequence of 
functions. Thus,
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Encryption: AK2
∘ SR ∘ NS ∘ AK1

∘ MC ∘ SR ∘ NS ∘ AK0

Decryption: AK0
∘ INS ∘ ISR ∘ IMC ∘ AK1

∘ INS ∘ ISR ∘ AK2

From an implementation point of view, it would be desirable to have the 
 decryption function follow the same function sequence as encryption. This allows 
the  decryption algorithm to be implemented in the same way as the encryption 
 algorithm, creating opportunities for efficiency.

Note that if we were able to interchange the second and third functions, the 
fourth and fifth functions, and the sixth and seventh functions in the decryption 
 sequence, we would have the same structure as the encryption algorithm. Let’s see if 
this is possible. First, consider the interchange of INS and ISR. Given a state N con-
sisting of the nibbles (N0, N1, N2, N3), the transformation INS(ISR(N)) proceeds as

aN0 N2

N1 N3
b S aN0 N2

N3 N1
b S aIS3N04 IS3N24

IS3N34 IS3N14 b

where IS refers to the inverse S-Box. Reversing the operations, the transformation 
ISR(INS(N) proceeds as

aN0 N2

N1 N3
b S aIS3N04 IS3N24

IS3N14 IS3N34 b
S aIS3N04 IS3N24

IS3N34 IS3N14 b

which is the same result. Thus, INS1ISR1N22 = ISR1INS1N22 .
Now consider the operation of inverse mix column followed by add key: 

IMC1AK1
1N22  where the round key K1 consists of the nibbles (k0,0, k1,0, k0,1, k1,1).  

Then

a9 2
2 9

baak0,0 k0,1

k1,0 k1,1
b ⊕ aN0 N2

N1 N3
bb = a9 2

2 9
bak0,0 ⊕ N0 k0,1 ⊕ N2

k1,0 ⊕ N1 k1,1 ⊕ N3
b

= a91k0,0 ⊕ N02 ⊕ 21k1,0 ⊕ N12 91k0,1 ⊕ N22 ⊕ 21k1,1 ⊕ N32
21k0,0 ⊕ N02 ⊕ 91k1,0 ⊕ N12 21k0,1 ⊕ N22 ⊕ 91k1,1 ⊕ N32 b

= a 19k0,0 ⊕ 2k1,02 ⊕ 19N0 ⊕ 2N12 19k0,1 ⊕ 2k1,12 ⊕ 19N2 ⊕ 2N32
12k0,0 ⊕ 9k1,02 ⊕ 12N0 ⊕ 9N12 12k0,1 ⊕ 9k1,12 ⊕ 12N2 ⊕ 9N32 b

= a 19k0,0 ⊕ 2k1,02 19k0,1 ⊕ 2k1,12
12k0,0 ⊕ 9k1,02 12k0,1 ⊕ 9k1,12 b ⊕ a 19N0 ⊕ 2N12 19N2 ⊕ 2N32

12N0 ⊕ 9N12 12N2 ⊕ 9N32 b

= a9 2
2 9

bak0,0 k0,1

k1,0 k1,1
b ⊕ a9 2

2 9
baN0 N2

N1 N3
b

All of these steps make use of the properties of finite field arithmetic. The result 
is that IMC1AK1

1N2 2 = IMC1K12 ⊕ IMC1N2 . Now let us define the inverse 
round key for round 1 to be IMC1K12  and the inverse add key operation IAK1

 to 
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be the bitwise XOR of the inverse round key with the state vector. Then we have 
IMC1AK1

1N2 2 = IAK1
1IMC1N2 2 . As a result, we can write the following:

Encryption: AK2
∘ SR ∘ NS ∘ AK1

∘ MC ∘ SR ∘ NS ∘ AK0

Decryption: AK0
∘ INS ∘ ISR ∘ IMC ∘ AK1

∘ INS ∘ ISR ∘ AK2

Decryption: AK0
∘ ISR ∘ INS ∘ AIMC1K12 ∘ IMC ∘ ISR ∘ INS ∘ AK2

Both encryption and decryption now follow the same sequence. Note that this 
derivation would not work as effectively if round 2 of the encryption algorithm in-
cluded the MC function. In that case, we would have

Encryption: AK2
∘ MC ∘ SR ∘ NS ∘ AK1

∘ MC ∘ SR ∘ NS ∘ AK0
s

Decryption: AK0
∘ INS ∘ ISR ∘ IMC ∘ AK1

∘ INS ∘ ISR ∘ IMC ∘ AK2

There is now no way to interchange pairs of operations in the decryption 
 algorithm so as to achieve the same structure as the encryption algorithm.

ANNEX D.1 ARITHMETIC IN GF(24)

Table D.2 shows the addition and multiplication tables in GF(24) modulo x4 +  x + 1.  
For example, consider the product 14 • C2 = 10100 • 11002 . In terms of polyno-
mials, this is the product 3x2 * (x3 + x2)4  mod (x4 +  x + 1) = (x5 + x4) mod 
(x4 +  x + 1). Because the degree of the polynomial to the right of the mod opera-
tor is greater than or equal to the modulus, a division is required to determine the 
remainder:

x5

x 11

1 x4

x5 1 x2

x4

1 x

1 1

x2 11

x2 x

x4 1 x 1 1

x4 x 11 1

In binary, the remainder is expressed as 0101, or 5 in hexadecimal. Thus 
14 • C2 = 5, which agrees with the multiplication table in Table D.2.

Table D.2 Arithmetic in GF(24) modulo x4 + x + 1

(a) Addition

+ 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 0 1 2 3 4 5 6 7 8 9 A B C D E F

1 1 0 3 2 5 4 7 6 9 8 B A D C F E

2 2 3 0 1 6 7 4 5 A B 8 9 E F C D

3 3 2 1 0 7 6 5 4 B A 9 8 F E D C

4 4 5 6 7 0 1 2 3 C D E F 8 9 A B
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5 5 4 7 6 1 0 3 2 D C F E 9 8 B A

6 6 7 4 5 2 3 0 1 E F C D A B 8 9

7 7 6 5 4 3 2 1 0 F E D C B A 9 8

8 8 9 A B C D E F 0 1 2 3 4 5 6 7

9 9 8 B A D C F E 1 0 3 2 5 4 7 6

A A B 8 9 E F C D 2 3 0 1 6 7 4 5

B B A 9 8 F E D C 3 2 1 0 7 6 5 4

C C D E F 8 9 A B 4 5 6 7 0 1 2 3

D D C F E 9 8 B A 5 4 7 6 1 0 3 2

E E F C D A B 8 9 6 7 4 5 2 3 0 1

F F E D C B A 9 8 7 6 5 4 3 2 1 0

(b) Multiplication

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9 A B C D E F

2 0 2 4 6 8 A C E 3 1 7 5 B 9 F D

3 0 3 6 5 C F A 9 B 8 D E 7 4 1 2

4 0 4 8 C 3 7 B F 6 2 E A 5 1 D 9

5 0 5 A F 7 2 D 8 E B 4 1 9 C 3 6

6 0 6 C A B D 7 1 5 3 9 F E 8 2 4

7 0 7 E 9 F 8 1 6 D A 3 4 2 5 C B

8 0 8 3 B 6 E 5 D C 4 F 7 A 2 9 1

9 0 9 1 8 2 B 3 A 4 D 5 C 6 F 7 E

A 0 A 7 D E 4 9 3 F 5 8 2 1 B 6 C

B 0 B 5 E A 1 F 4 7 C 2 9 D 6 8 3

C 0 C B 7 5 9 E 2 A 6 1 D F 3 4 8

D 0 D 9 4 1 C 8 5 2 F B 6 3 E A 7

E 0 E F 1 D 3 2 C 9 7 6 8 4 A B 5

F 0 F D 2 9 6 4 B 1 E C 3 8 7 5 A

ANNEX D.2 THE MIX COLUMN FUNCTION

The mix column function operates on each column individually. Each nibble of a col-
umn is mapped into a new value that is a function of both nibbles in that column. The 
transformation is defined by the following matrix multiplication on State (Figure D.4).

c1 4
4 1

d c s0,0 s0,1

s1,0 s1,1
d = c s′0,0 s′0,1

s′1,0 s′1,1
d
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We can recast this in terms of polynomials as follows. The value 1 corresponds 
to the polynomial 1 and the value 4 (binary 100) corresponds to the polynomial x2. 
Thus, we have

c 1 x2

x2 1
d c s0,0 s0,1

s1,0 s1,1
d = c s′0,0 s′0,1

s′1,0 s′1,1
d

Remember that multiplication is performed modulo (x4 +  x + 1). Using the 
polynomial formulation allows us to develop a simple explanation of the arithmetic 
involved. Referring back to the representation of the state matrix in Figure D.2a, we 
can recast the mix column multiplications as follows:

c 1 x2

x2 1
d cb0 

x3 + b1x
2 + b2x + b3 b8x

3 + b9x
2 + b10x + b11

b4x
3 + b5x

2 + b6x + b7 b12x
3 + b13x

2 + b14x + b15
d

Let’s perform the multiplication of the first row of the left-hand matrix with the 
first column of the right-hand matrix to get the entry in the upper left-hand corner 
of the target matrix; that is, the polynomial value for s′0,0. We have

s′0,0 = (b0 

x3 + b1x
2 + b2x + b3) + (x2) (b4x

3 + b5x
2 + b6 

x + b7)
= b4x

5 + b5x
4 + (b0 ⊕ b6)x3 + (b1 ⊕ b7)x2 + b2x + b3

It can easily be shown that

x5mod (x4 +  x +  1) = (x2 + x)

x4mod (x4 +  x +  1) = 1x +  12
The reader is invited to do the polynomial division to demonstrate these 

 equalities. Using these results, we have

s′0,0 = b4(x2 + x) + b51x +  12 + (b0 ⊕ b6)x3 + (b1 ⊕ b7)x2 + b2x + b3

= (b0 ⊕ b6)x3 + (b1 ⊕ b4 ⊕ b7)x2 + (b2 ⊕ b4 ⊕ b5)x + (b3 ⊕ b5)

Expressed in terms of bits, the four bits of s′0,0 are

s′0,0 =  3(b0 ⊕ b6), (b1 ⊕ b4 ⊕ b7), (b2 ⊕ b4 ⊕ b5), (b3 ⊕ b5)4
Similarly, we can show that

 s′1,0 = 3(b2 ⊕ b4), (b0 ⊕ b3 ⊕ b5), (b0 ⊕ b1 ⊕ b6), (b1 ⊕ b7)4
 s′0,1 = 3(b8 ⊕ b14), (b9 ⊕ b12 ⊕ b15), (b10 ⊕ b12 ⊕ b13), (b11 ⊕ b13)4
 s′1,1 = 3(b10 ⊕ b12), (b8 ⊕ b11 ⊕ b13), (b8 ⊕ b9 ⊕ b14), (b9 ⊕ b15)4

Z04_STAL7484_08_GE_APPD.indd   785 06/04/22   12:20 PM



786

Appendix e

MAtheMAticAl BAsis of the BirthdAy AttAck
E.1 Related Problem
E.2 The Birthday Paradox
E.3 Useful Inequality
E.4 The General Case of Duplications
E.5 Overlap Between Two Sets

Z05_STAL7484_08_GE_APPE.indd   786 06/04/22   12:19 PM



Appendix e / MAtheMAticAl BAsis of the BirthdAy AttAck 787

In this appendix, we derive the mathematical justification for the birthday attack. 
We begin with a related problem and then look at the problem from which the name 
“birthday attack” is derived.

E.1 RELATED PROBLEM

A general problem relating to hash functions is the following. Given a hash function 
H, with n possible outputs and a specific value H1x2,  if H is applied to k random 
inputs, what must be the value of k so that the probability that at least one input y 
satisfies H1y2 = H1x2  is 0.5?

For a single value of y, the probability that H1y2  =  H1x2  is just 1>n. Conversely,  
the probability that H1y2 ≠ H1x2  is 31- 11>n24 .  If we generate k random 
 values of y, then the probability that none of them match is just the product of the 
 probabilities that each individual value does not match, or 31- 11>n24k.  Thus, the 
probability that there is at least one match is 1- 31- 11>n24k.

The binomial theorem can be stated as

11-a2 k = 1 - ka +
k1k - 12

2!
 a2 -

k1k - 12 1k - 22
3!

 a3 c

For very small values of a, this can be approximated as 11 - ka2 . Thus, the proba-
bility of at least one match is approximated as 1 - 31- 11>n24k ≈ 1- 31- 1k>n24  =
k>n. For a probability of 0.5, we have k = n>2.

In particular, for an m-bit hash code, the number of possible codes is 2m and the 
value of k that produces a probability of one-half is

k = 21m-12 (E.1)

E.2 THE BIRTHDAY PARADOX

The birthday paradox is often presented in elementary probability courses to dem-
onstrate that probability results are sometimes counterintuitive. The problem can be 
stated as follows: What is the minimum value of k such that the probability is greater 
than 0.5 that at least two people in a group of k people have the same birthday? 
 Ignore February 29 and assume that each birthday is equally likely.

We can reason to the answer as follows. The probability that the birthdays of 
any two people are not alike is clearly 364/365 (since there is only one chance in 365 
that one person’s birthday will coincide with another’s). The probability that a third 
person’s birthday will differ from the other two is 363/365; a fourth person’s, 362/365; 
and so on, until we reach the 24th person (342/365). We thus obtain a series of 23 
fractions which must be multiplied together to reach the probability that all 24 birth-
days are different. The product is a fraction that reduces to about 0.507, or slightly 
better than 1/2, for a coincidence among 23 people.
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To derive this answer formally, let us define

P1n, k2 = Pr [at least one duplicate in k items, with each item able  
to take on one of n equally likely values between 1 and n]

Thus, we are looking for the smallest value of k such that P1365,  k2 Ú 0.5. It is 
easier first to derive the probability that there are no duplicates, which we designate as 
Q(365, k). If k 7 365, then it is impossible for all values to be different. So we assume 
k … 365. Now consider the number of different ways, N, that we can have k values with 
no duplicates. We may choose any of the 365 values for the first item, any of the remain-
ing 364 numbers for the second item, and so on. Hence, the number of different ways is

N = 365 * 364 * c1365 -  k + 12 =
365!

1365 -  k2 !  (E.2)

If we remove the restriction that there are no duplicates, then each item can be any 
of 365 values, and the total number of possibilities is 365k. So the probability of no 
duplicates is simply the fraction of sets of values that have no duplicates out of all 
possible sets of values:

Q1365, k2 =
365!> 1365 -  k2 !

13652 k =
365!

1365 -  k2 !13652 k

and

P1365, k2 = 1 - Q1365, k2 = 1-
365!

1365 -  k2 !13652k  (E.3)

This function is plotted in Figure E.1. The probabilities may seem surprisingly large to 
anyone who has not considered the problem before. Many people would guess that 
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Figure E.1 The Birthday Paradox
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to have a probability greater than 0.5 that there is at least one duplicate, the number 
of people in the group would have to be about 100. In fact, the number is 23, with 
P1365, 232 = 0.5073. For k  =  100, the probability of at least one duplicate is 0.9999997.

Perhaps the reason that the result seems so surprising is that if you consider a par-
ticular person in a group, the probability that some other person in the group has the 
same birthday is small. But the probability that we are concerned with is the probabil-
ity that any pair of people in the group has the same birthday. In a group of 23, there 
are (23(23 - 1))>2 = 253 different pairs of people. Hence the high probabilities.

E.3 USEFUL INEQUALITY

Before developing a generalization of the birthday problem, we derive an inequality 
that will be needed:

(1 - x) … e- x for all x Ú 0 (E.4)

Figure E.2 illustrates the inequality. To see that the inequality holds, note that the 
lower line is tangent to e- x at x = 0. The slope of that line is just the derivative of 
e- x at x = 0:

f1x2 = e-x

f′1x2 =
d
dx

 e-x = -e-x

f′102 = -1

1.0

0.8

0.6

0.4

0.2

0.0
1.00.80.60.40.20.0

e2x

1 2 x

Figure E.2 A Useful Inequality
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The tangent is a straight line of the form ax + b with a = -1, and the tangent at 
x = 0 must equal e- 0 = 1. Thus, the tangent is the function (1 -  x), confirming the 
inequality of Equation (11.4). Further, note that for small x, we have (1 -  x) ≈ e- x.

E.4 THE GENERAL CASE OF DUPLICATIONS

The birthday problem can be generalized to the following problem. Given a random 
variable that is an integer with uniform distribution between 1 and n and a selection 
of k instances 1k … n2  of the random variable, what is the probability, P1n,  k2 , that 
there is at least one duplicate? The birthday problem is just the special case with 
n = 365. By the same reasoning as before, we have the following generalization of 
Equation (3):

P1n, k2 = 1 -
n!

1n - k2 !nk (E.5)

We can rewrite this as

P1n, k2 = 1 -
n * 1n - 12 * c * 1n - k + 12

nk

= 1 - c n - 1
n

*
n - 2

n
* c *

n - k + 1
n

d

= 1 - c a1 -
1
n
b * a1 -

2
n
b * c * a1 -

k - 1
n

b d

Using the inequality of Equation (4),

P1n, k2 7 1 - 31e-1>n2 * 1e-2>n2 * c * 1e-1k - 12>n24
7 1 - e-311>n2+ 12>n2+  c+ 11k - 12>n24

7 1 - e-1k * 1k - 122>2n

Now let us pose the question: What value of k is required such that P1n, k2  7  0.5?  
To satisfy the requirement, we have

1>2 = 1-e-1k * 1k - 122>2n

2 = e1k * 1k - 122>2n

ln 2 =
k * 1k -  12

2n

For large k, we can replace k *  1k - 12  by k2, and we get

k = 221 ln 22n = 1.182n ≈ 2n (E.6)

As a reality check, for n = 365, we get k = 1.18 * 2365 = 22.54, which is very 
close to the correct answer of 23.
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We can now state the basis of the birthday attack in the following terms. Sup-
pose we have a function H, with 2m possible outputs (i.e., an m-bit output). If H is 
applied to k random inputs, what must be the value of k so that there is the prob-
ability of at least one duplicate [i.e., H1x2 = H1y2  for some inputs x, y)]? Using 
the approximation in Equation (6),

k = 22m = 2m>2 (E.7)

E.5 OVERLAP BETWEEN TWO SETS

There is a problem related to the general case of duplications that is also of rel-
evance for our discussions. The problem is this: Given an integer random variable 
with uniform distribution between 1 and n and two sets of k instances 1k … n2  of 
the random variable, what is the probability, R1n,  k2 , that the two sets are not dis-
joint; that is, what is the probability that there is at least one value found in both sets?

Let us call the two sets X and Y, with elements {x1, x2, c, xk} and {y1, y2, c, yk},  
respectively. Given the value of x1, the probability that y1 = x1 is just 1>n, and therefore 
the probability that y1 does not match x1 is 31- 11>n24 . If we generate the k random 
values in Y, the probability that none of these values is equal to x1 is 31- 11>n24k. 
Thus, the probability that there is at least one match to x1 is 1- 31- 11>n24k.

To proceed, let us assume that all the elements of X are distinct. If n is large and 
if k is also large (e.g., on the order of 2n), then this is a good approximation. In fact, 
there may be a few duplications, but most of the values will be distinct. With that as-
sumption, we can make the following derivation:

Pr3no match in Y to x14 = a1 -
1
n
b

k

Pr3no match in Y to X4 = aa1 -
1
n
b

k

b
k

= a1 -
1
n
b

k2

R1n, k2 = Pr3at least one match in Y to X4 = 1 - a1 -
1
n
b

k2

Using the inequality of Equation (4),

R1n, k2 7 1 - 1e-1>n2 k2

R1n, k2 7 1 - 1e-k2>n2
Let us pose the question: What value of k is required such that R1n,  k2  7  0.5? To 
satisfy the requirement, we have

1>2 = 1 - 1e-k2>n2
2 = ek2>n

ln122 =
k2

n

k = 21 ln1222n   =  0.832n ≈ 2n

 (E.8)
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We can state this in terms related to birthday attacks as follows. Suppose we 
have a function H, with 2m possible outputs (i.e., an m-bit output). Apply H to k 
random inputs to produce the set X and again to k additional random inputs to pro-
duce the set Y. What must be the value of k so that there is the probability of at least 
0.5 that there is a match between the two sets (i.e., H1x2 = H1y2  for some inputs 
x ∈ X,  y ∈ Y )? Using the approximation in Equation (8):

k = 22m = 2m>2
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Glossary

access control The process of granting or denying specific requests: 1) for obtaining and using infor-
mation and related information processing services; and 2) to enter specific physical facilities.

active attack An attempt to alter system resources or affect their operation

actuator A device that receives an electronic signal from a controller and responds by interacting 
with its environment to produce an effect on some parameter of a physical, chemical, or biological 
entity

Advanced Encryption Standard (AES) Specifies a U.S. government- approved cryptographic 
algorithm that can be used to protect electronic data. The AES algorithm is a symmetric block cipher 
that can encrypt (encipher) and decrypt (decipher) information. This standard specifies the Rijndael 
algorithm, a symmetric block cipher that can process data blocks of 128 bits, using cipher keys with 
lengths of 128, 192, and 256 bits.

anomaly detection An intrusion detection technique that searches for activity that is different from 
the normal behavior of system entities and system resources

application proxy A system that acts as a relay of application-level traffic

asymmetric encryption A form of cryptosystem in which encryption and decryption are performed 
using two different keys, one of which is referred to as the public key and one of which is referred to 
as the private key. Also known as public-key encryption.

attack Any kind of malicious activity that attempts to collect, disrupt, deny, degrade, or destroy 
information system resources or the information itself.

authentication The process of verifying an identity claimed by or for a system entity.

authentication exchange An exchange of information between two parties over a network that veri-
fies the identity of a user, process, or device, often as a prerequisite to allowing access to resources in 
an information system

authentication server A centralized server whose function is to authenticate users to servers and 
servers to users

authenticator Additional information appended to a message to enable the receiver to verify that 
the message should be accepted as authentic. The authenticator may be functionally independent of 
the content of the message itself (e.g., a nonce or a source identifier) or it may be a function of the 
message contents (e.g., a hash value or a cryptographic checksum).

authenticity The property of being genuine and being able to be verified and trusted; confidence in 
the validity of a transmission, a message, or message originator.

availability The property of a system or a system resource being accessible and usable upon demand 
by an authorized system entity, according to performance specifications for the system; i.e., a system is 
available if it provides services according to the system design whenever users request them.

avalanche effect A characteristic of an encryption algorithm in which a small change in the plaintext 
or key gives rise to a large change in the ciphertext. For a hash code, the avalanche effect is a charac-
teristic in which a small change in the message gives rise to a large change in the message digest.

backbone network A network that connects geographically dispersed fog networks as well as pro-
viding access to other networks that are not part of the enterprise network

backward unpredictability In a pseudorandom number stream, it is not feasible to determine the 
seed from knowledge of any generated values.

bacteria Program that consumes system resources by replicating itself.
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base64 transfer encoding A binary-to-text encoding scheme that represent binary data in an ASCII 
string format by translating 6 bits of data into an 8-bit representation of a character.

big endian A byte format in which the most significant byte of a word is in the low-address  
(leftmost) byte position.

Bijection A one-to-one correspondence.

birthday attack This cryptanalytic attack attempts to find two values in the domain of a function 
that map to the same value in its range.

block chaining A procedure used during symmetric block encryption that makes an output block 
dependent not only on the current plaintext input block and key, but also on earlier input and/or out-
put. The effect of block chaining is that two instances of the same plaintext input block will produce 
different ciphertext blocks, making cryptanalysis more difficult.

block cipher A symmetric encryption algorithm in which a block of plaintext bits (typically 64 or 
128) is transformed as a whole into a ciphertext block of the same length.

block cipher mode of operation A technique for enhancing the effect of a cryptographic algorithm 
or adapting the algorithm for an application, such as applying a block cipher to a sequence of data 
blocks or a data stream

botnet A collection of systems, each of which has malware to launch attacks on other systems.

brute force attack A cryptanalysis technique or other kind of attack method involving an exhaustive 
procedure that tries all possibilities, one-by-one.

byte A sequence of 8 bits. Also referred to as an octet.

cipher An algorithm for encryption and decryption. A cipher replaces a piece of information (an 
element in plaintext) with another object with the intent to conceal meaning. Typically, the replace-
ment rule is governed by a secret key.

ciphertext The output of an encryption algorithm; the encrypted form of a message or data.

ciphertext stealing A block cipher mode of operation technique in which the processing of the last 
block “steals” a temporary ciphertext of the penultimate block to complete the cipherblock.

circuit-level proxy A system that acts as a relay between two TCP connections.

cloud A collection of computing resources made available to a set of users over a network or the 
Internet.

cloud auditor A party that can conduct independent assessment of cloud services, information  
system operations, performance, and security of the cloud implementation

cloud broker An entity that manages the use, performance and delivery of cloud services, and nego-
tiates relationships between CPs and cloud consumers

cloud carrier An intermediary that provides connectivity and transport of cloud services from CPs 
to cloud consumers

cloud service consumer (CSC) A person or organization that maintains a business relationship with, 
and uses service from, cloud providers

cloud service provider (CSP) A person, organization, or entity responsible for making a service 
available to interested parties

code An unvarying rule for replacing a piece of information (e.g., letter, word, phrase) with another 
object, not necessarily of the same sort. Generally, there is no intent to conceal meaning. Examples 
include the ASCII character code (each character is represented by 7 bits) and frequency-shift keying 
(each binary value is represented by a particular frequency).

commutative A binary operation in which changing the order of the operands does not change 
the result.
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composite number An integer that is not prime

compression function A function used repeatedly in a hash algorithm.

computationally secure Secure because the time and/or cost of defeating the security are too high to 
be feasible.

confidentiality Preserving authorized restrictions on information access and disclosure, including 
means for protecting personal privacy and proprietary information. A loss of confidentiality is the 
unauthorized disclosure of information.

confusion A cryptographic technique that seeks to make the relationship between the statistics of 
the ciphertext and the value of the encryption key as complex as possible. This is achieved by the use 
of a complex scrambling algorithm that depends on the key and the input.

constrained device A device with limited volatile and nonvolatile memory, limited processing 
power, and a low data rate transceiver

conventional encryption Symmetric encryption.

core A network that connects geographically dispersed fog networks as well as providing access to 
other networks that are not part of the enterprise network

covert channel A communications channel that enables the transfer of information in a way unin-
tended by the designers of the communications facility.

cryptanalysis The branch of cryptology dealing with the breaking of a cipher to recover information 
or forging encrypted information that will be accepted as authentic.

cryptographic algorithm An algorithm that uses the science of cryptography, including (a) encryp-
tion algorithms, (b) cryptographic hash algorithms, (c) digital signature algorithms, and (d) key-
agreement algorithms.

cryptographic checksum An authenticator that is a cryptographic function of both the data to be 
authenticated and a secret key. Also referred to as a message authentication code (MAC).

cryptographic hash function An an algorithm for which it is computationally infeasible (because no 
attack is significantly more efficient than brute force) to find either (a) a data object that maps to a 
pre-specified hash result (the one-way property) or (b) two data objects that map to the same hash 
result (the collision-free property).

cryptography The branch of cryptology dealing with the design of algorithms for encryption and 
decryption, intended to ensure the secrecy and/or authenticity of messages.

cryptology The study of secure communications, which encompasses both cryptography and crypt-
analysis.

cryptoperiod Time span during which a specific cryptographic key is authorized for use for its 
defined purpose.

cybersecurity Prevention of damage to, protection of, and restoration of computers, electronic 
communications systems, electronic communications services, wire communication, and electronic 
communication, including information contained therein, to ensure its availability, integrity, authenti-
cation, confidentiality, and nonrepudiation.

cryptosystem (cryptographic system) A set of cryptographic algorithms together with the key man-
agement processes that support use of the algorithms in some application context.

data authenticity The property of a digital object that it is indeed what it claims to be.

data confidentiality The property that information is not made available or disclosed to unauthor-
ized individuals, entities, or processes

data integrity The property that data has not been changed, destroyed, or lost in an unauthorized or 
accidental manner.
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data origin authentication Provides for the corroboration of the source of a data unit. It does not 
provide protection against the duplication or modification of data units. This type of service supports 
applications like electronic mail, where there are no ongoing interactions between the communicating 
entities.

deciphering Decryption

decryption The translation of encrypted text or data (called ciphertext) into original text or data 
(called plaintext). Also called deciphering.

deeply embedded system A system that has a processor whose behavior is difficult to observe both 
by the programmer and the user. A deeply embedded system uses a microcontroller, is not program-
mable once the program logic for the device has been burned into ROM (read-only memory), and 
has no interaction with a user.

denial of service The prevention of authorized access to resources or the delaying of time-critical 
operations.

deskewing algorithm A technique to add additional randomness to a random bit stream.

detached signature A digital signature that may be stored and transmitted separately from the mes-
sage it signs

differential cryptanalysis A technique in which chosen plaintexts with particular XOR difference 
patterns are encrypted. The difference patterns of the resulting ciphertext provide information that 
can be used to determine the encryption key.

diffusion A cryptographic technique that seeks to obscure the statistical structure of the plaintext by 
spreading out the influence of each individual plaintext digit over many ciphertext digits.

Digital Signature Algorithm (DSA) An authentication mechanism that enables the creator of a 
message to attach a code that acts as a signature. The signature is formed by taking the hash of the 
message and encrypting the message with the creator’s private key. The signature guarantees the 
source and integrity of the message.

digram A two-letter sequence. In English and other languages, the relative frequency of various 
digrams in plaintext can be used in the cryptanalysis of some ciphers. Also called digraph.

direct digital signature Refers to a digital signature scheme that involves only the communicating 
parties (source, destination). It is assumed that the destination knows the public key of the source

discrete logarithm In the expression b K ai1mod  p2 , the exponent i is referred to as the discrete 
logarithm of the number b for the base a (mod p).

discretionary access control An access control service that enforces a security policy based on the 
identity of system entities and their authorizations to access system resources. This service is termed 
“discretionary” because an entity might have access rights that permit the entity, by its own volition, 
to enable another entity to access some resource.

divisor One integer is said to be a devisor of another integer if there is no remainder on division.

eavesdropping Monitoring of, transmissions

edge In the context of IoT, the network of IoT devices.

electronic mail (email) A method of exchanging messages (“mail”) between people using electronic 
devices.

ElGamal digital signature A digital signature algorithm used by a number of applications

elliptic curve Defined by an equation in two variables with coefficients

Elliptic Curve Digital Signature Algorithm (ECDSA) A public-key encryption algorithm based on 
elliptic curves.

elliptic curve cryptography The use of cryptographic algorithms based on elliptic curves.
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embedded system Refers to the use of electronics and software within a product that has a specific 
function or set of functions, as opposed to a general-purpose computer, such as a laptop or desktop 
system. We can also define an embedded system as any device that includes a computer chip, but that 
is not a general-purpose workstation, desktop or laptop computer.

enciphering Encryption

encryption The conversion of plaintext or data into unintelligible form by means of a reversible 
translation, based on a translation table or algorithm. Also called enciphering.

end-to-end encryption Continuous protection of data that flows between two points in a network, 
effected by encrypting data when it leaves its source, keeping it encrypted while it passes through any 
intermediate computers (such as routers), and decrypting it only when it arrives at the intended final 
destination.

entropy source A source of random bits.

error-correction code A code in which each character or signal conforms to specific rules of con-
struction so that deviations from these rules indicate the presence of an error and in which some or 
all of the detected errors can be corrected automatically.

false negative A test that returns negative when the actual result is positive.

false positive A test that returns positive when the actual result is negative.

federated identity management A system that involves the use of a common identity management 
scheme across multiple enterprises and numerous applications and supporting many thousands, even 
millions, of users.

Feistel cipher A classic, and still common, structure for symmetric encryption.

field A set of elements on which addition, subtraction, multiplication, and division are defined, and 
behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental 
algebraic structure, which is widely used in algebra, number theory and many other areas of mathematics.

finite field A field with a finite number of elements

firewall A dedicated computer that interfaces with computers outside a network and has special 
security precautions built into it in order to protect sensitive files on computers within the network. It 
is used to service outside networks connections, especially the Internet and dial-in lines.

fog A collection of devices deployed physically near the edge of an IoT network; that is, near the 
sensors and other data-generating devices. Thus, some of the basic processing of large volumes of 
generated data is offloaded and outsourced from IoT application software located at the center

forward unpredictability In a pseudorandom number stream, if the seed is unknown, the next 
output bit in the sequence should be unpredictable in spite of any knowledge of previous bits in the 
sequence

greatest common divisor The greatest common divisor of two integers, a and b, is the largest positive 
integer that divides both a and b. One integer is said to divide another integer if there is no remainder 
on division.

group key A key used by multiple entities.

hash code Output of a hash function.

hash function A function that maps a variable-length data block or message into a fixed-length 
value called a hash code. The function is designed in such a way that, when protected, it provides an 
authenticator to the data or message. Also referred to as a message digest.

hash value Output of a hash function.

honeypot A decoy system designed to lure a potential attacker away from critical systems. A form 
of intrusion detection.
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identity element An element of a set with respect to a binary operation on that set, which leaves 
other elements unchanged when combined with them

IEEE 802.11 A standard for wireless local area networks.

index Another name for discrete logarithm.

information security Preservation of confidentiality, integrity, and availability of information In ad-
dition, other properties, such as authenticity), accountability, non-repudiation, and reliability can also 
be involved.

information technology (IT) Applied computer systems, both hardware and software, and often 
including networking and telecommunications, usually in the context of a business or other enterprise. 
Often the name of the part of an enterprise that deals with all things electronic.

initialization vector A random block of data that is used to begin the encryption of multiple 
blocks of plaintext, when a block-chaining encryption technique is used. The IV serves to foil 
known-plaintext attacks.

internet of things A networked collection of sensors and actuators owned by and operated on be-
half of an organization.

intruder An individual who gains, or attempts to gain, unauthorized access to a computer system or 
to gain unauthorized privileges on that system.

intrusion detection system The detection of unauthorized access to a host system.

intrusion detection system A set of automated tools designed to detect unauthorized access to a 
host system.

intrusion prevention The prevention unauthorized access to a host system.

IP Security (IPsec) A security enhancement to IPv4 and IPv6

IPv4 The Internet Protocol version that was universally used until the advent of IPv6

IPv6 The Internet Protocol version intended to replace IPv6. Its most notable improvement over 
IPv4 is the use of longer address lengths.

irreversible mapping A transformation of data such that the original data cannot be recovered from 
the transformed data.

Kerberos The name given to Project Athena’s code authentication service.

key distribution The distribution of encryption keys to two or more parties.

key distribution center A system that is authorized to transmit temporary session keys to principals. 
Each session key is transmitted in encrypted form using a master key that the key distribution center 
shares with the target principal.

key exchange A procedure whereby two communicating parties can cooperate to acquire a shared 
cryptographic key.

key expansion The generation of subkeys from a key

key management A mechanism or set of mechanisms for managing the creation, storage, distribu-
tion, and disposal of cryptographic keys.

key wrapping A method of securely exchanging a symmetric key to be shared by two parties, using a 
symmetric key already shared by those parties.

keyless algorithm A cryptographic algorithm, such as a hash algorithm, that does not use a key.

keystream A stream of bits used as the key for a stream encryption algorithm.

lightweight cryptographic algorithm A cryptographic algorithm designed for resource-constrained 
devices
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lightweight cryptography A subfield of cryptography concerned with the development of crypto-
graphic algorithms for resource-constrained devices

little endian A byte format in which the least significant byte of a word is in the low-address (left-
most) byte position.

logic bomb Logic embedded in a computer program that checks for a certain set of conditions to be 
present on the system. When these conditions are met, it executes some function resulting in unau-
thorized actions.

malware Software that exploits vulnerabilities in a computing system to create an attack.

mandatory access control A means of restricting access to objects based on fixed security attributes 
assigned to users and to files and other objects. The controls are mandatory in the sense that they can-
not be modified by users or their programs.

man-in-the-middle attack A form of active wiretapping attack in which the attacker intercepts 
and selectively modifies communicated data in order to masquerade as one or more of the entities 
involved in a communication.

masquerade A type of attack in which one system entity illegitimately poses as (assumes the iden-
tity of) another entity.

master key A long-lasting key that is used between a key distribution center and a principal for the 
purpose of encoding the transmission of session keys. Typically, the master keys are distributed by 
noncryptographic means. Also referred to as a key-encrypting key.

media access control (MAC) For broadcast networks, the method of determining which device has 
access to the transmission medium at any time.

meet-in-the-middle attack This is a cryptanaltytic attack that attempts to find a value in each of the 
range and domain of the composition of two functions such that the forward mapping of one through 
the first function is the same as the inverse image of the other through the second function – quite 
literally meeting in the middle of the composed function.

message authentication A process used to verify the integrity of a message.

message authentication code (MAC) Cryptographic checksum.

message digest Hash function.

microcontroller A single chip that contains the processor, non-volatile memory for the program 
(ROM or flash), volatile memory for input and output (RAM), a clock, and an I/O control unit.

misuse detection An intrusion detection technique based on rules that specify system events, 
sequences of events, or observable properties of a system that are believed to be symptomatic of 
security incidents

modular arithmetic A kind of integer arithmetic that reduces all numbers to one of a fixed set  
[0, ..., n – 1] for some number n. Any integer outside this range is reduced to one in this range by tak-
ing the remainder after division by n.

mode of operation A technique for enhancing the effect of a cryptographic algorithm or adapting the 
algorithm for an application, such as applying a block cipher to a sequence of data blocks or a data stream.

modulus If a is an integer and n is a positive integer, we define a mod n to be the remainder when a 
is divided by n. The integer n is called the modulus.

monoalphabetic substitution cipher A single cipher alphabet (mapping from plain alphabet to 
cipher alphabet) is used per message.

multilevel security A capability that enforces access control across multiple levels of classification of 
data.
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multiple encryption Repeated use of an encryption function with different keys to produce a more 
complex mapping from plaintext to ciphertext.

network security Protection of networks and their service from unauthorized modification, destruc-
tion, or disclosure, and provision of assurance that the network performs its critical functions correctly 
and there are no harmful side effects.

nibble A sequence of four bits.

non-repudiation Assurance that the sender of information is provided with proof of delivery and 
the recipient is provided with proof of the sender’s identity, so neither can later deny having pro-
cessed the information.

nonce An identifier or number that is used only once.

notarization The use of a trusted third party to assure certain properties of a data exchange

one-time pad An encryption scheme in which the key length is equal to the message length, with 
each element (bit or character) of the key used to encrypt/decrypt each element of the message (e.g., 
by XOR). The key is randomly chosen and used only once, for a single message. If the key is secure, 
this scheme is impossible to break.

one-way function A function that is easily computed, but the calculation of its inverse is infeasible.

operational technology Machines/appliances with embedded IT built by non-IT companies, such as 
medical machinery, SCADA (supervisory control and data acquisition), process control, and kiosks, 
bought as appliances by enterprise OT people and primarily using wired connectivity

order The exponent to which a belongs (mod n)

OSI security architecture A management-oriented security standard that focuses on the OSI model 
and on networking and communications aspects of security.

pairwise keys Cryptographic keys used for communication between a pair of devices, typically be-
tween an STA and an AP. These keys form a hierarchy beginning with a master key from which other 
keys are derived dynamically and used for a limited period of time.

passive attack An attempt to learn or make use of information from the system that does not affect 
system resources.

password A secret data value, usually a character string, that is used as authentication information. 
A password is usually matched with a user identifier that is explicitly presented in the authentication 
process, but in some cases, the identity may be implicit.

peer entity authentication Provides for the corroboration of the identity of a peer entity in an as-
sociation. Two entities are considered peers if they implement the same protocol in different systems; 
e.g., two TCP modules in two communicating systems.

permutation An ordered sequence of all the elements of a finite set of elements S, with each ele-
ment appearing exactly once

plaintext The input to an encryption function or the output of a decryption function.

polyalphabetic substitution cipher The use different monoalphabetic substitutions as one proceeds 
through the plaintext message.

post-quantum cryptographic algorithm A cryptographic algorithm designed using the principles of 
post-quantum cryptography.

post-quantum cryptography Concerned with the development of cryptographic algorithms that are 
secure against the potential development of quantum computers.

Post Office Protocol (POP3) An email protocol

prime number An integer p 7  1 is a prime number if and only if its only divisors are {1 and {p.
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primitive root If r and n are relatively prime integers with n 7  0. and if f(n) is the least positive 
exponent m such that r m ° 1 mod n, then r is called a primitive root modulo n.

privacy The right of individuals to control or influence what information related to them may be 
collected and stored and by whom, and to whom that information may be disclosed

private cloud A cloud that is implemented within the internal IT environment of the  
organization

private key One of the two keys used in an asymmetric encryption system. For secure communica-
tion, the private key should only be known to its creator.

product cipher The execution of two or more simple ciphers in sequence in such a way that the final 
result or product is cryptographically stronger than any of the component ciphers

pseudorandom function (PRF) A function that produces a pseudorandom string of bits of some 
fixed length

pseudorandom number generator A function that deterministically produces a sequence of num-
bers that are apparently statistically random.

public cloud A cloud infrastructure made available to the general public or a large industry group 
and is owned by an organization selling cloud services

public key One of the two keys used in an asymmetric encryption system. The public key is made 
public and is to be used in conjunction with a corresponding private key.

public-key certificate Consists of a public key plus a User ID of the key owners with the whole 
block signed by a trusted third party. Typically, the third party is a certificate authority (CA) that is 
trusted by the user community, such as a government agency or a financial institution.

public-key encryption Asymmetric encryption.

public-key infrastructure (PKI) The set of hardware, software, people, policies, and procedures 
needed to create, manage, store, distribute, and revoke digital certificates based on asymmetric cryp-
tography.

quantum computing A form of computing is based on the representation of information in a form 
analogous to the behavior of elementary particles in quantum physics

quantum safety Refers to cryptographic algorithms that are safe, or secure, against quantum com-
puting algorithms

relatively prime Two numbers are relatively prime if they have no prime factors in common; that is, 
their only common divisor is 1.

replay An attack in which a service already authorized and completed is forged by another, dupli-
cate request in an attempt to repeat authorized commands.

replay attack An attack in which a service already authorized and completed is forged by another 
“duplicate request” in an attempt to repeat authorized commands.

residue When the integer a is divided by the integer n, the remainder r is referred to as the residue. 
Equivalently, r = a mod n.

residue class All the integers that have the same remainder when divided by n form a residue class 
(mod n). Thus, for a given remainder r, the residue class (mod n) to which it belongs consists of the 
integers r, r { n, r { 2n, c .

reversible mapping A transformation of data such that the original data can be recovered from the 
transformed data.

round An sub-algorithm in a cryptographic algorithm that is repeated multiple times.

round function The function performed by a round.
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routing control Enables selection of particular physically or logically secure routes for certain data 
and allows routing changes, especially when a breach of security is suspected.

RSA algorithm A public-key encryption algorithm based on exponentiation in modular arithmetic. 
It is the only algorithm generally accepted as practical and secure for public-key encryption.

S-box A matrix structure that is used as part of some block cipher algorithms to perform substitu-
tion.

secret key The key used in a symmetric encryption system. Both participants must share the same 
key, and this key must remain secret to protect the communication.

security attack An assault on system security that derives from an intelligent threat; that is, an 
intelligent act that is a deliberate attempt (especially in the sense of a method or technique) to evade 
security services and violate the security policy of a system.

security mechanism A process (or a device incorporating such a process) that is designed to detect, 
prevent, or recover from a security attack.

security service A processing or communication service that enhances the security of the data pro-
cessing systems and the information transfers of an organization. The services are intended to counter 
security attacks, and they make use of one or more security mechanisms to provide the service.

security threat A potential for violation of security, which exists when there is a circumstance, capa-
bility, action, or event that could breach security and cause harm. That is, a threat is a possible danger 
that might exploit a vulnerability.

seed The input to a pseudorandom number generator.

sensor A device that measures some parameter of a physical, chemical, or biological entity and de-
livers an electronic signal proportional to the observed characteristic, either in the form of an analog 
voltage level or a digital signal. In both cases, the sensor output is typically input to a microcontroller 
or other management element

session key A temporary encryption key used between two principals.

single-key algorithm A cryptographic algorithm that uses a single secret key.

single-key encryption Encryption that uses a single secret key.

Simple Mail Transfer Protocol (SMTP) An email protocol

skew Bias in a random or pseudorandom bit stream.

steganography Methods of hiding the existence of a message or other data. This is different than 
cryptography, which hides the meaning of a message but does not hide the message itself.

stream cipher A symmetric encryption algorithm in which ciphertext output is produced bit-by-bit 
or byte-by-byte from a stream of plaintext input.

subkey A key derived from the main key of an encryption algorithm, generally used for only one 
round.

substitution A basic mechanism of encryption in which one bit or block of data is substituted for 
another.

symmetric encryption A form of cryptosystem in which encryption and decryption are performed 
using the same key. Also known as conventional encryption.

system integrity Assures that a system performs its intended function in an unimpaired manner, free 
from deliberate or inadvertent unauthorized manipulation of the system.

threat A potential security harm to an asset.

timestamp A sequence of characters or encoded information identifying when a certain event  
occurred, usually giving date and time of day

timing attack An attack that depends on the running time of the decryption algorithm
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transceiver A device that contains the electronics needed to transmit and receive data. Most IoT 
devices contain a wireless transceiver, capable of communication using Wi-Fi, ZigBee, or some other 
wireless scheme

transport mode A mode of operation of IPsec that provides protection to the payload of an IP 
packet.

trapdoor Secret undocumented entry point into a program used to grant access without normal 
methods of access authentication.

trapdoor one-way function A function that is easily computed, and the calculation of its inverse is 
infeasible unless certain privileged information is known.

triple DES (3DES) Multiple encryption using three instances of DES, with either two or three dif-
ferent keys

Trojan horse A computer program that appears to have a useful function, but also has a hidden and 
potentially malicious function that evades security mechanisms, sometimes by exploiting legitimate 
authorizations of a system entity that invokes the program.

true random number generator Produces bits non-deterministically using some physical source that 
has produces some sort of random output.

trust the willingness of a party to be vulnerable to the actions of another party based on the ex-
pectation that the other will perform a particular action important to the trustor, irrespective of the 
ability to monitor or control that other party

trust relationship A relationship between two different domains or areas of authority that makes it 
possible for users in one domain to be authenticated by a domain controller in the other domain.

trusted system A computer and operating system that can be verified to implement a given security 
policy.

trustworthiness A characteristic of an entity that reflects the degree to which that entity is deserving 
of trust

tunnel mode A mode of operation of IPsec that provides protection to both the payload and header 
of an IP packet

tweakable block cipher  A cipher that has three inputs: a plaintext P, a symmetric key K, and a 
tweak T; and produces a ciphertext output C.

two-key algorithm A cryptographic algorithm that uses a public key and a private key.

user authentication The process of verifying an identity claimed by or for a system entity.

unconditionally secure Secure even against an opponent with unlimited time and unlimited comput-
ing resources.

unpredictability The property of a stream of bits that future bits are not predictable from pre-
ceding bits.

virtual private network Consists of a set of computers that interconnect by means of a relatively 
unsecure network and that make use of encryption and special protocols to provide security.

virus Code embedded within a program that causes a copy of itself to be inserted in one or more 
other programs. In addition to propagation, the virus usually performs some unwanted function.

Wi-Fi A commercial specification of IEEE 802.11

worm Program that can replicate itself and send copies from computer to computer across network 
connections. Upon arrival, the worm may be activated to replicate and propagate again. In addition to 
propagation, the worm usually performs some unwanted function.

zombie A program that secretly takes over another Internet-attached computer and then uses that 
computer to launch attacks that are difficult to trace to the zombie’s creator.
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Absorbing phase, 364, 365
Access control, 31, 33, 576, 581, 586
Access point (AP), 568, 569, 575, 577
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Active attacks, 29–30

data modification, 29
denial of service, 29
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replay, 29
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Ad hoc networks, 568
Adaptive chosen message attack, 419
Adaptive Proportion Test, 277
Addition, 139, 140, 158

algebraic description of, 326
geometric description of, 324–326

Additive inverse, 54
AddRoundKey, 171, 172, 174, 192–194

forward add round key  
transformation, 183

inputs for single AES round, 184
inverse add round key  

transformation, 183
Administrative management domain 

(ADMD), 600, 631
Advanced Encryption Standard (AES), 

113, 123, 136, 154, 166
AddRoundKey and InvMixColumns, 

192–193
avalanche effect, 188–191
byte-level operations, 174
data structures, 170
detailed structure, 171–173

AddRoundKey, 171
MixColumns, 171
ShiftRows, 171
substitute bytes, 171

encryption
and decryption, 172
process, 169
round, 173

equivalent inverse cipher, 191–193
example, 187–191
vs. FPE, 225
general structure, 168–171

State, 168
implementation, 191–195

8-bit processor, 193–194
32-bit processor, 194–195

inputs for, 184
InvShiftRows and InvSubByte, 192
key expansion, 184–186
parameters, 170

row and column operations, 180
State array, 168
transformation functions (See  

Transformation functions, AES)
Advanced persistent threat (APT), 

717–720
encrypt data, 719
enterprise reconnaissance, 719
exfiltrate data, 720
foothold, 719
initial attack, 719
maintaining, 720
moving to new systems, 719
persistence, 719
privileges, 719
research, 719

AEAD. See Authenticated encryption 
with additional data (AEAD)

Agricultural sensors, 443
AH. See Authentication Header (AH)
Alert protocol, 541
Algorithm

decryption, 289
design, 251–252

cryptographic algorithms, 251–252
hash functions, 252
message authentication codes, 252
purpose-built algorithms, 251
symmetric block ciphers, 252

encryption, 288
negotiation, 556

Analyzers, 682
Anomaly detection, 683–684

false negatives, 684
false positives, 684
profile based, 685
strategies, 685
threshold, 685

Anti-replay service, 651–652
receiver, 652
replay attack, 651–652
sender, 652

AP. See Access point (AP)
Application-level gateway, 679–680
Application proxy. See Application-level 

gateway
Arbitrary reversible substitution  

cipher, 116
Associative group, 137, 323
Associative laws, 54
Associativity of multiplication, 139
Asymmetric cryptographic  

algorithms, 456
Asymmetric encryption, 35–36

algorithms, 35
keys, 290
PKI, 287
public key certificate, 287
public key cryptographic  

algorithm, 287
terminology related to, 287

Attack, 27
Attack that consumes data transmission 

resources, 692

Authenticated encryption (AE), 399–405
architecture strategies, 448–449
block ciphers, 449–451
CMAC, 399–402
GCM, 402–405

authentication and encryption  
functions, 403

message authentication code, 404
stream ciphers, 451

Authenticated encryption with  
additional data (AEAD), 445

Authentication
data origin, 31
ESP, 658
exchange, 33
Grain-128a, 272
IEEE 802.11i wireless LAN  

security, 586–588
IKE key determination, 663
payload, 667
peer entity, 31
public-key cryptography, 292, 293
S/MIME, 610–613
STRIDE threat model, 714

Authentication Header (AH), 644, 646
Authentication service exchange, 522
Authenticator, 292, 380
Authenticity, 25
Authenticity-related threats, 607
Authority key identifier, 492
Authorization security controls, 715
Autokey system, 102
Automated key management, 661
Automobiles, 444
Availability, 24, 714
Availability service, 32–33
Availability-related threats, 607
Avalanche effect, 188–191

DES, 125–127

B
Backbone network, 732
Backward unpredictability, 250
Barrier security, 574
Base64 transfer encoding, 606
Basic service set (BSS), 575, 577, 578
Benevolence, 38
BIC. See Bit independence  

criterion (BIC)
Big-endian format, 355
Bijection, 69
Binary curve, 326
Binary operator, 51
Binary operator mod, 81
Birthday attack. See Mathematical  

basis of birthday attack
Birthday paradox, 349, 789–791
Bit independence criterion (BIC), 130
56-bit keys, 128
Bit length, 232
8-bit processor, 193–194
32-bit processor, 194–195
Bitrate, 362, 363
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Block cipher, 113–114

advantage of, 261–262
authenticated encryption, 449–451
CBC mode, 210–212
CFB mode, 212–214

CTR mode, 212, 216–218
encryption, 212
OFB mode, 212, 214–216
s-bit, 213
segments, 212

CTR mode, 212, 216–218
advantages of, 217–218
hardware efficiency, 217
preprocessing, 218
provable security, 218
random access, 218
simplicity, 218
software efficiency, 218

design principles, 129–131
BIC, 130
design of function F, 130
key schedule algorithm, 131
number of rounds, 130
SAC, 130

double DES, 202–204
ECB, 207–210

diffusion, 210
error propagation, 209
error recovery, 209
modes of operation, 207
overhead, 209

security, 210
FPE, 225–239

AES vs., 225
difficulties in designing an,  

226–227
Feistel structure for, 227–232
motivation, 225–226
NIST methods for, 233–239
notation in, 230
parameters in, 230

MAC on, 396–398
CMAC, 397–398
DAA, 396–397

modes of operation, 208
multiple encryption, 202–207
OFB mode, 212, 214–216
PRNGs, 255–260

mechanisms, 256
NIST CTR_DRBG, 257–260

processes, 87
symmetric, 252
symmetric encryption algorithms, 35
triple DES

known-plaintext attack on, 206
with three keys, 207
with two keys, 204–207

TRNG, 275
tweakable, 219–220
XTS-AES mode, 218–225

ciphertext-stealing technique, 223
definition, 224
feedback characteristic of modes  

of operation, 219
operation on sector, 223–225
operation on single block, 221–223
storage encryption requirements, 

220–221
tweakable block ciphers, 219–220

Block size, 120
Blum Blum Shub (BBS) generator, 

254–255
Botnet, 687
Bring-your-own-device (BYOD)  

policy, 572
Broad network access, 702
Brute-force approach, 247
Brute-force attacks, 87, 89, 249, 302, 

348–351, 459
birthday paradox, 349
collision resistant attacks,  

349–351
cryptanalysis, 351–352
MAC, 390–391
preimage and second preimage  

attacks, 349
BSS. See Basic service set (BSS)
Business continuity and disaster  

recovery, 723
BYOD policy. See Bring-your-own-

device (BYOD) policy

C
Caesar cipher, 90–92, 100–101
Canonical form, 606-567
Capacity, 364
CBC mode. See Cipher block chaining 

(CBC) mode
CBC-MAC/CMAC, 278–279
CCA. See Chosen ciphertext attack 

(CCA)
CCMP. See Counter Mode-CBC MAC 

Protocol (CCMP)
Certificate Association Data, 624
Certificate payload, 667
Certificate policies, 493
Certificate Request payload, 667
Certification authority (CA)

forward certificates, 490
reverse certificates, 490

CFB mode. See Cipher feedback  
(CFB) mode

Change Cipher Spec protocol, 540
Character strings, 229–231
Chi step function, 369, 372–373
Chinese remainder theorem (CRT), 

69–71, 302
bijection, 69
first assertion, 69–70

second assertion, 70
Chip area, 442
Chosen ciphertext attack (CCA),  

88, 304, 308–309
Chosen text attack, 88
Chosen-plaintext approach, 205
Chosen-plaintext attack, 88
CIA triad, 24

accountability, 25
authenticity, 24
availability, 24
confidentiality, 24
integrity, 24

Cipher, 84
block (See Block cipher)
design principles, 129–131

design of function F, 130
key schedule algorithm, 131
number of rounds, 130
SAC, 130

Cipher block chaining (CBC) mode, 
210–212, 345

Cipher feedback (CFB) mode, 212–214
CTR mode, 212, 216–218
encryption, 212
OFB mode, 212, 214–216
s-bit, 213
segments, 212

Cipher spec, 538
Cipher-Based Message Authentication 

Code (CMAC), 397–402
Ciphertext, 84, 85, 289

plaintext transforming to, 87
Ciphertext only attack, 88
Ciphertext-stealing technique, 223
Circuit-level gateway, 680
Circuit-level proxy. See Circuit-level 

gateway
Claimant, 503
Classical encryption, 84–106
Client write key, 538
Client write MAC secret, 538
Client/server authentication exchange, 523
Closure, 137

under multiplication, 139
Closure group, 323
Cloud auditor, 708, 709, 710
Cloud broker, 708, 710

service aggregation, 710
service arbitrage, 710
service intermediation, 710

Cloud carrier, 709, 710
Cloud computing, 701–711

characteristics of, 701–703
broad network access, 702
measured service, 702
on-demand self-service, 702
rapid elasticity, 702
resource pooling, 702–703

definition, 701
deployment models

community cloud, 706
comparison of, 708
hybrid cloud, 706–708
private cloud, 706, 707
public cloud, 704–705
elements, 701–703

elements, 701–703
broad network access, 702
measured service, 702
on-demand self-service, 702
rapid elasticity, 702
resource pooling, 702–703

reference architecture, 708–711
cloud auditor, 708, 709, 710
cloud broker, 709, 710
cloud carrier, 709, 710
cloud service customer (CSC), 708
cloud service provider (CSP), 708
roles and responsibilities, 708–711

service models
IaaS, 703–704
PaaS, 703
SaaS, 703
separation of responsibilities in, 704

Cloud network, 732
Cloud security

computing, 701–711
deployment models, 704–708
elements, 701–703
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concepts, 711–713
guidelines, 712–713
open-source module, 724–725
privacy issues and recommendations, 

712–713
risk and countermeasures, 713–721

abuse and nefarious use of, 721
account hijacking, 717
advanced persistent threats, 717–720
data breaches, 715–716
data loss, 720
denial-of-service, 721
insecure APIs, 716
insufficient due diligence, 720
malicious insiders, 717
shared technology  

vulnerabilities, 721
STRIDE threat model, 714–715
system vulnerabilities, 717
weak identity, credential, and  

access management, 716
as service, 721–724 (See also SecaaS)

business continuity and disaster 
recovery, 723

DLP, 723
elements, 722
email security, 723
encryption, 723
IAM, 723
intrusion management, 723
network security, 724
security assessments, 723
SIEM, 723
web security, 723

Cloud service customer (CSC), 708
Cloud service provider (CSP), 708
CMAC. See Cipher-Based Message 

Authentication Code (CMAC)
Coefficient set, 145
Codeword, 466
Collision, 346
Collision resistant, 347

attacks, 349–351
brute-force attacks, 349–351

Communications security, 36, 737
Communications transmission  

rate, 442
Community cloud, 706
Commutative, 53, 138
Commutative group, 323
Commutative laws, 54
Commutative ring, 139
Commutativity of multiplication, 139
Composite number, 67
Composition, 367
Comprehensive email security,  

607–609
Compression

function, 351
method, 538
S/MIME, 613

Computation resistance, MAC, 396
Computational aspects, 299–304
Computational secrecy, 755
Computationally secure encryption 

scheme, 89
Conditional probability, 754
Conditioning algorithms, 274

Confidentiality, 23, 24, 538
data, 31–32
MiniSec, 740
public-key cryptosystem, 291
S/MIME, 611–613
security controls, 714

Confidentiality-related  
threats, 607

Configuration payload, 667
Confusion, 118–119
Congruences

properties of, 51
relation, 51
relation mod, 81–82

Congruent modulo n, 51
Connection protocol, 560–564

channel mechanism, 560
close a channel, 560
data transfer, 560
open a new channel, 560

channel types, 561
direct-tcpip, 561
forwarded-tcpip, 561
session, 561
x11, 561

port forwarding, 562–564
Consistency, 249
Constant exponentiation  

time, 307
Constant polynomial, 145
Constrained device, 441

categories of
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communications transmission  

rate, 442
energy consumption, 442
execution time, 442
program code size and RAM  

size, 442
Content types, 604–605

application type, 605
message type, 605
message/external-body  

subtype, 605
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message/rfc822 subtype, 605
multipart type, 605
multipart/alternative subtype, 605
multipart/digest subtype, 605
multipart/mixed subtype, 605
multipart/parallel subtype, 605
text type, 605

Content-Description header fields, 604
Content-ID header fields, 604
Content-Transfer-Encoding header 

fields, 604
Content-Type header fields, 603
Conventional encryption, 84, 87, 291

attacking, 87
secure use of, 85

Cookie exchange, 662
Core network, 732
Counter (CTR) mode, 212, 216–218

advantages of, 217–218
hardware efficiency, 217
preprocessing, 218
provable security, 218
random access, 218
simplicity, 218
software efficiency, 218

Counter Mode-CBC MAC Protocol 
(CCMP), 592

CREATE_CHILD_SA  
exchange, 664

Credential, 503
Credential service provider (CSP), 502
CRT. See Chinese remainder  

theorem (CRT)
Cryptanalysis, 84, 351–352, 459

and brute-force attack, 87–89
computationally secure, 89
types of attacks on encrypted  

messages, 88
unconditionally secure, 89

compression function, 351
computational effort for, 334
MAC, 391
public-key, 296
RSA algorithm, 305
strong encryption, 89
structure of secure hash code, 351

Cryptographic algorithms, 33, 643, 
738–739

keyless algorithms, 34
cryptographic hash function, 34
pseudorandom number genera-

tor, 34
lightweight, 442, 448–456

asymmetric, 456
authenticated encryption,  

448–451
hash functions, 451–454
message authentication codes, 

454–456
single round encryption, 450

post-quantum
code-based, 463, 464, 466–467
digital signatures, 462
encryption, 463
hash-based digital signature, 463, 

464, 469–472
KEMs, 463
multivariate-based, 463, 464, 

467–469
security mechanisms, 33
single-key algorithms, 34–35

message authentication code, 35
symmetric encryption  

algorithms, 35
Skipjack, 738
two-key algorithms, 34, 35–36

asymmetric encryption  
algorithms, 35

digital signature algorithm, 36
key exchange, 36
user authentication, 36

Cryptographic checksum, 385
Cryptographic hash functions, 34, 

338–373, 411
applications of, 339–344
collision resistant, 347
digital signatures, 342–343
intrusion detection, 344
message authentication, 349–342
one-way password file, 343
preimage resistant, 347
PRF, 344
PRNG, 344
properties, relationship, 348
pseudorandomness, 348
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Cryptographic hash functions (Continued)
requirements and security, 346–352

brute-force attacks, 348–351
collision, 346
cryptanalysis, 351–352
preimage, 346
second preimage resistant, 347

resistance properties, 348
virus detection, 344

Cryptographic system, 84
Cryptographically secure  

pseudorandom bit  
generator (CSPRBG), 254

Cryptography, 33–36, 84, 87
number of keys used, 87

conventional encryption, 87
secret-key, 87
single-key, 87
symmetric key, 87

plaintext, 87
block cipher, 87
stream cipher, 87

transforming plaintext to  
ciphertext, 87

product systems, 87
Cryptology, 84
Cryptoperiod, 459–460
Cryptosystem, 461–462
CSPRBG. See Cryptographically  

secure pseudorandom bit  
generator (CSPRBG)

CTR mode. See Counter (CTR)  
mode

CTR_DRBG, 256, 257–260
Cubic equation, 324, 326,  

329–330
Cybersecurity

availability, 24
objectives, 23–25
confidentiality

data, 23
privacy, 24

integrity, 24
Cyclic group, 139

D
DANE. See DNS-based authentication 

of named entities (DANE)
Data aggregation, 689
Data authentication, 740
Data authenticity, 24
Data Authentication Algorithm (DAA), 

396–397
Data breaches, 715–716
Data collection, 689
Data confidentiality, 23, 31–32

CCMP, 593
TKIP, 592

Data encryption algorithm (DEA), 123
Data Encryption Standard (DES), 121, 

123–125, 286
avalanche effect, 125–127
DAA, 396–397
decryption, 125, 775
double, 202–204

meet-in-the-middle attack, 204
reduction to single stage, 203–204

encryption, 124–125
encryption algorithm, 768
example, 125–127

initial permutation, 769–771
key generation, 774
key schedule calculation, 774–775
permutation tables, 769–771
permuted input, 124
preoutput, 125
s-boxes, 773–774
single round, 771–775
strength of, 128–129

nature of DES algorithm, 128–129
timing attacks, 129
use of 56-bit keys, 128

subkey, 125
triple

known-plaintext attack on, 206
with three keys, 207
with two keys, 204–207

Data integrity, 24, 32, 33
Data loss prevention (DLP), 723
Data management security, 735
Data modification, 29
Data normalization, 689
Data origin authentication, 31
Database, 619–620

distributed, 619
SAD (See Security association  

database (SAD))
DEA. See Data encryption algorithm 

(DEA)
Deciphering, 84
Decryption, 84, 294

algorithm, 85, 289
DES, 125
elliptic curve, 332–334
Feistel cipher, 120, 121–123
FPE, 227–229
signature verification, 433
tables for substitution, 116

Deeply embedded systems, 440–441
Delete payload, 667
Demilitarized zone (DMZ) networks, 

680–681
Denial of service (DoS), 29, 569
Denial-of-service (DoS) attack

cloud security, 721
construction, 692–694
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countermeasures

detection and filtering, 694
prevention and preemption, 694
traceback and identification, 694

description, 690–692
direct, 692
example, 691
flooding-based, 693
internal resource, 690–691
reflector, 692
scanning process, 692–694

hit list, 694
local subnet, 694
random, 694
topological, 694

STRIDE threat model, 714
SYN flood attack, 690–691

DES. See Data Encryption Standard 
(DES)

Deskewing algorithms, 274
Determinant, 97
Deterministic primality algorithm, 68
Device security, 36–37, 572–574

DH. See Diffie-Hellman (DH)
Diffie-Hellman (DH)

key exchange, 315–316
algorithm, 316–317, 661–662
analog, 332
discrete logarithm, 316
key exchange protocols, 318
man-in-the-middle attack,  

318–319
values, 664

Diffusion, 118–119
Digital random number generator 

(DRNG), 277–280
hardware architecture, 278–279

CBC-MAC/CMAC, 278–279
Intel DRNG logical structure, 280
Intel processor chip, 278

logical structure, 279–280
Digital Signature Algorithm (DSA), 417, 

423–427
approach, 423–425
signing and verifying, 426

Digital signatures, 33, 288, 292, 294, 663
algorithm, 36
attacks and forgeries

adaptive chosen message attack, 419
directed chosen message attack, 419
existential forgery, 420
generic chosen message attack, 419
key-only attack, 419
known message attack, 419
selective forgery, 420
total break, 420
universal forgery, 420

cryptographic hash functions,  
342–343

definition, 417
direct, 420–421
ECDSA, 427–430
Elgamal signature scheme,  

421–422
essential elements, 418
NIST digital signature algorithm, 

423–427
properties, 418–419
requirements, 420
quantum computing, 462
Schnorr signature scheme,  

422–423
simplified examples, 343

Digrams, 94–96
Direct DDoS, 692
Direct digital signature, 420–421
Direct historical trust, 41
Directed chosen message attack, 419
Discrete logarithms, 71–76, 316

calculation of, 75–76
for modular arithmetic, 73–75
powers of integer, 71–73

Disk drives, 272–273
Distributed database, 619
Distribution system (DS),  

575, 577, 579
Distributive laws, 54, 139
Divides, 45, 148
Divisibility, 45–46
Division algorithm, 46–47
Divisor, 45, 148
DMZ. See Demilitarized zone (DMZ) 

networks
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DNSSEC. See DNS Security  
Extensions (DNSSEC)
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name servers, 619
operation, 620–621
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functional flow, 637
identifier alignment, 634
on receiver side, 636
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on sender side, 634–636
tag and value descriptions, 635
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608, 628–633

deployment example, 631
email threats, 628–630
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functional flow, 631–633
strategy, 630–631

DoS. See Denial of service (DoS)
Double encryption, 522

E
EAP. See Extensible Authentication 

Protocol (EAP)
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Eavesdropping, 27
ECB. See Electronic codebook (ECB)
ECC. See Error correction code (ECC)
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740–741
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diffusion, 210
error propagation, 209
error recovery, 209
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security, 210
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Electronic mail security,  
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Secure/Multipurpose Internet  
Mail Extension, 625

Simple Mail Transfer Protocol, 
624–625

TLSA record, 623–624
DKIM, 608, 628–633

email threats, 628–630
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operation, 622
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generation and authentication, 
428–430

global domain parameters, 428
key generation, 428
process involved in, 427
signing and verifying, 429

Email
compatibility, 613
components, 599–600

ADMD, 600
DNS, 600
MDA, 599
MHS, 599
MS, 599
MSA, 599
MTA, 599
MUA, 599

format, 601–607
MIME, 602–607
RFC 5,342, 602

protocols, 600–601
IMAP, 601
POP3, 601
SMTP, 599–601

security, 723
thr eats, 607–609, 628–630
capabilities, 629
characteristics, 629
location, 630

Encapsulating Security Payload (ESP), 
644, 649–657

anti-replay service, 651–652
receiver, 652
replay attack, 651–652
sender, 652

encryption and authentication  
algorithms, 650, 653

format, 650
information, 646
padding, 651
protocol operation, 657
transport and tunnel modes,  

652–657
Enciphering, 84
Encoded message (EM) verification, 

433–435
Encrypted messages, types of  

attacks on, 88
chosen ciphertext, 88
chosen plaintext, 88
chosen text, 88
ciphertext only, 88
known plaintext, 88

Encrypted payload, 667
Encryption, 84, 294, 723

algorithm, 84, 288
asymmetric, 35–36
CFB mode, 212
cloud security as service, 723
conventional, 291
and decryption tables for  

substitution, 116
DES, 124–125
elliptic curve, 332–334
Feistel cipher, 120
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Encryption (Continued)
FPE, 227–229
Grain-128a, 272
message (See Message encryption)
public-key, 290, 291
scheme

computationally secure, 89
unconditionally secure, 89

storage requirements, 220–221
symmetric, 35
symmetric keys, 463
wireless security measures, 569

End-to-end encryption, 475
End-to-end IPsec Transport-Mode 

Encryption, 654
Energy consumption, 442
Enhanced nondeterministic  

random number generator  
(ENRNG), 279

Enhanced security services, 618–619
secure mailing lists, 619
security labels, 618
signed receipts, 618
signing certificates, 619

ENRNG. See Enhanced  
nondeterministic random  
number generator (ENRNG)

Entanglement, 457
Entropy, 760–762

conditional, 763
function, 762–763
and secrecy, 764

Entropy rate, 273
Entropy source, 248

NIST CTR_DRBG, 258–259
TRNG, 272–273

disk drives, 272–273
sound/video input, 272

Equivalent inverse cipher, 191–193
Error control

external, 383
internal, 383

Error correction code (ECC), 466–467
Error propagation, 209
Error recovery, 209
ESMTP. See Extended SMTP (ESMTP)
ESS. See Extended service set (ESS)
Euclidean algorithm, 47–50

example, 50
extended, 57–59
greatest common divisor, 47–48
for polynomials, 150, 157
relatively prime, 47
revisited, 56–57

Euler’s theorem, 64–65
Euler’s totient function, 63–64
Execution time, 442
Existential forgery, 420
Extended Euclidean algorithm, 57–59
Extended service set (ESS), 575, 578
Extended SMTP (ESMTP), 601
Extensible Authentication Protocol 

(EAP), 84
payload, 667

External error control, 383

F
Factor, 148
Factoring problem, 304–306
False negatives, 684

False positives, 684
Fast software encryption/decryption, 121
Fault-based attack, 307–308
FCS. See Frame check sequence (FCS)
Federal Information Processing  

Standards (FIPS), 41
Federated identity management, 526

identity federation, 528–530
identity management, 526–528

Feedback characteristic of modes of 
operation, 219

Feistel cipher, 117–123
confusion, 118–119
decryption, 120, 121–123
design features, 120–121
diffusion, 118–119
encryption, 120
example, 123
parameters, 120–121
structure, 115–117, 119–121

Feistel structure for FPE, 227–232
bit length, 232
character strings, 229–231
encryption and decryption, 227–229
function FK, 231–232
message length, 232
radix, 232

Fermat’s theorem, 62–63
Fields, 136, 140–141, 167

multiplicative inverse, 140
types of, 142

Finite fields, 136, 329
abelian group, 138–139
arithmetic, 167–168

irreducible, 167
cyclic group, 139
fields, 140–141
of form GF(2n), 151–162

computational considerations, 
157–159

generator, 160–162
modular polynomial arithmetic, 

153–155
motivation, 151–153
multiplicative inverse, 155–157

of form GF(p),141–144
multiplicative inverse, 143–144
order p, 141–143

groups, 137–138
polynomial arithmetic

with coefficients in Zp, 146–149
greatest common divisor, 150–151
ordinary, 145–146

rings, 139–140
Finite group, 138
FIPS. See Federal Information  

Processing Standards (FIPS)
Firewall, 36, 573, 574

capabilities, 673–674
characteristics, 673–674

behavior control, 673
direction control, 673
service control, 673
user control, 673

configuration example, 681
internal and external, 680–681
limitations, 674
types of, 674–681

application-level, 679–680
circuit-level, 680

packet filtering, 674–678
stateful inspection, 678–679

First assertion, 69–70
Fog, 730–732
Forensics, 690
Format-preserving encryption (FPE), 

225–239
AES vs., 225
applications, 225–226
difficulties in designing an, 226–227
Feistel structure for, 227–232

bit length, 232
character strings, 229–231
encryption and decryption,  

227–229
function FK, 231–232
message length, 232
radix, 232

motivation, 225–226
NIST methods for, 233–239

FF1 algorithm, 233–236
FF2 algorithm, 237–238
FF3 algorithm, 238–239

notation in, 230
parameters in, 230

Forward add round key transformation 
(AddRoundKey), 183

Forward mix column transformation 
(MixColumns), 180

Forward shift row transformation  
(ShiftRows), 179

Forward substitute byte transformation 
(SubBytes), 174

Forward unpredictability, 250
4-way handshake, 591
FPE. See Format-preserving  

encryption (FPE)
Frame check sequence (FCS), 383, 577
Frequency test, 250

G
Galois/counter mode (GCM), 402–405

authentication and encryption  
functions, 403

message authentication code, 404
Generalized number field  

sieve (GNFS), 305
Generate function, 259
Generator, 139, 160–162
Generic chosen message attack, 419
GMK. See Group master key (GMK)
GNFS. See Generalized number field 

sieve (GNFS)
Grain stream cipher, 265
Grain-128a, 269–272

authentication, 272
encryption, 272
key and IV initialization, 270–271
output for encryption, 269–270
Stream Cipher, 271

Greatest common divisor, 47–48
finding, 48–50, 150–151

Group master key (GMK),  
588, 589, 590

Group temporal key (GTK), 590
Groups, 137–138

associative, 137
closure, 137
commutative, 138
cyclic, 139
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distribution, 592
finite, 138
generate, 139
generator, 139
identity element, 138
infinite, 138
inverse element, 138
keys, 590–591
order of, 138
permutation, 138

Grover’s algorithm, 458

H
Handshake protocol

action, 543
CipherSpec

Cipher algorithm, 544
Cipher type, 544
hash size, 544
is exportable, 544
IV size, 544
key material, 544
MAC algorithm, 544

CipherSuite parameter
anonymous Diffie-Hellman, 544
ephemeral Diffie-Hellman, 544
fixed Diffie-Hellman, 544
RSA, 544

client authentication and key  
exchange, 546

certificate message, 546
ephemeral or anonymous  

Diffie-Hellman, 546
fixed Diffie-Hellman, 546
RSA, 546

finished message, 547
security capabilities, 542–544

cipher suite, 542
compression method, 542–544
random, 542
session ID, 542
version, 542

server authentication and key  
exchange, 544–546

anonymous Diffie-Hellman, 545
ephemeral Diffie-Hellman, 545

RSA key exchange, 545
Hardware fault-based attack, 304
Hash code, 338

digital signature, 343
message authentication, 341–342
secure, general structure of, 351

Hash functions, 338, 381
attack against, 340
cryptographic, 338–373

applications of, 339–344
brute-force attacks, 348–351
collision, 346
collision resistant, 347
cryptanalysis, 351–352
digital signatures, 342–343
intrusion detection, 344
message authentication, 339–342
one-way password file, 343
preimage, 346
preimage resistant, 347
PRF, 344
PRNG, 344
properties, relationship, 348
pseudorandomness, 348

requirements and security,  
346–352

resistance properties, 348
second preimage resistant, 347
virus detection, 344

internal state and output sizes, 451
keyed, 342
and message authentication codes, 

252, 391–395
message size, 451
PHOTON permutation, 452–453
PHOTON sponge structure,  

451–452
PRNG on, 410–411
resistance properties, 348
strong, 347
TRNG, 274–275
two simple, 344–346

Hash tree, 470
Hash-based digital signature,  

463, 464, 469–472
Hash value, 347, 349, 353
Header fields, 603–604

Content-Description, 604
Content-ID, 604
Content-Transfer-Encoding, 604
Content-Type, 603
MIME-Version, 603

Health testing, 275–277
on conditioning function, 277
on noise source, 275–277

Hill cipher, 97–100
algorithm, 98–100
concepts from linear algebra,  

97–98
determinant, 97

Hit list, 694
HMAC, 391–395

algorithm, 392–395
design objectives, 392
efficient implementation  

of, 394
security of, 395
structure, 393

Host-based IDS, 682, 684–685
HTTPS (Hyper Text Transfer  

Protocol Secure), 550–552
connection closure, 552
connection initiation, 552

Human resource security, 39
Hybrid cloud, 706–707

I
IAB. See Internet Architecture Board 

(IAB)
IaaS. See Infrastructure as a service 

(IaaS)
Ideal block cipher, 115–117
Identification payload, 667
Identification string exchange, 555
Identities, 54
Identity and access management (IAM), 

716, 723
Identity element, 54, 138, 323
Identity federation, 528–530

examples, 529
Identity management system

administrators, 527
attribute service, 527
authorization, 527

data consumers, 528
identity provider, 527
identity services, 527
key services, 527
management, 527
point of contact, 527
principal, 527
provisioning, 527
SSO protocol services, 527
trust services, 527

Identity provider, 527
Identity theft (MAC spoofing), 568
IEEE 802.11 wireless LAN, 574–580

association-related services, 579–580
association, 580
BSS transition, 580
disassociation, 580
ESS transition, 580
no transition, 580
reassociation, 580

MPDU format, 576
network components and  

architectural model, 577–578
ESS, 578

protocol architecture, 575–577
logical link control, 577
media access control, 576–577
physical layer, 575

protocol stack, 576
services, 578–580

association-related services,  
579–580

distribution of messages within  
a DS, 579

terminology, 575
Wi-Fi alliance, 575

IEEE 802.11i wireless LAN security, 
580–594

authentication phase, 586–588
access control approach, 586
EAP exchange, 587–588
MPDU exchange, 587

discovery phase, 584–586
MPDU exchange, 585–586
security capabilities, 585

elements of, 582
key management phase, 588–592

group key distribution, 592
group keys, 590–591
pairwise key distribution,  

591–592
pairwise keys, 590

phases of operation, 581–584
authentication, 583
connection termination, 584
discovery, 583
key generation and distribution, 583
protected data transfer, 583

protected data transfer phase, 592–593
CCMP, 593
TKIP, 592–593

pseudorandom function, 593–594
services, 581

access control, 581
authentication, 581
privacy with message integrity, 581

IETF. See Internet Engineering Task 
Force (IETF)

IKE. See Internet Key Exchange (IKE)
IKEv2 Exchanges, 664
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IMAP. See Internet Mail Access  
Protocol (IMAP)

Incident management, 689–690
alerting, 689
correlation, 689
data aggregation, 689
data collection, 689
data normalization, 689
reporting/compliance, 689

Independent BSS (IBSS), 577
Indeterminate, 145
Index, 74
Industrial systems, 443–444
Infinite field, 141
Infinite group, 138
Information, 758, 759–760
Information and entropy, 758–763
Information disclosure, 714
Information security, 23

challenges of, 25–26
Information technology (IT), 729
Informational exchange, 664
Infrastructure as a service (IaaS), 

703–704
Initialization value (IV), 650
Initialization vectors, 538
Inputs

for single AES round, 184
sound/video, 272

Insecure programming, 735
Insufficient due diligence

certification, 720
CSP’s, 720
data protection, 720
infrastructure, 720

Integral domain, 140
Integration, 579, 734
Integrity, 24, 25

data, 24
system, 24
trustworthiness, 38

Integrity-related threats, 607
Intel digital random number  

generator, 277–280
hardware architecture, 278–279
logical structure, 279–280

Internal error control, 383
Internal resource attack, 690–691
International Organization for  

Standardization (ISO), 42
International Telecommunication  

Union (ITU), 42
Internet Architecture Board (IAB), 

41, 642
Internet Key Exchange (IKE), 644, 

660–667
header and payload formats, 665–667
key determination

authentication, 663
cookie exchange, 662
features, 662–663
IKEv2 Exchanges, 664
nonces, 663
protocol, 661–663

payload types, 666–667
requirements, 662–663

Internet Engineering Task  
Force (IETF), 41

Internet Mail Access Protocol  
(IMAP), 601

Internet mail architecture, 599–601
email components, 599–600

ADMD, 600
DNS, 600
MDA, 599
MHS, 599
MS, 599
MSA, 599
MTA, 599
MUA, 599

email protocols, 600–601
IMAP, 601
POP3, 601
SMTP, 601

Internet of Things (IoT), 728
and cloud context, 730–732
components, 729–730
evolution

information technology, 729
operational technology, 729
personal technology, 729
sensor/actuator technology, 729

security concepts, 733–736
ecosystems, 734–735
environment, 739
gateway, 737–738
tamper resistance and  

detection, 736
things on, 728

Internet security. See Network security
Internet Security Association and 

Key Management Protocol 
(ISAKMP), 661

Internet Service Provider (ISP), 628, 643
Internet Society (ISOC), 41
Intrusion, 682
Intrusion detection system (IDS), 37, 344, 

682–686, 723
approaches, 683–684

anomaly detection, 683–684
misuse detection, 683

components
analyzers, 682
sensors, 682
user interface, 682

definition, 682
host-based, 682
host-based techniques, 684–685
network-based, 682, 685–686
principles, 683

Intrusion management, 722, 723
Intrusion prevention systems (IPSs), 

36, 723
Inverse add round key  

transformation, 183
Inverse element, 53, 138, 323
Inverse mix column transformation 

(InvMixColumns), 181
Inverse shift row transformation  

(InvShiftRows), 179
Inverse substitute byte transformation 

(InvSubBytes), 178
InvMixColumns, 192–193
InvShiftRows, 192
InvSubByte, 192
Iota step function, 373
IoT ecosystems

attack surfaces, 734
deployment, 734
device resources, 734

insecure programming, 735
integration, 734
lack of expertise, 734
low cost, 734
safety aspects, 734
security updates, 734–735
standards and regulations, 734
unclear liabilities, 735

IOT gateway security
communication, 737
data management, 737
functions, 737–738
mutual authentication and  

authorization, 737
policies and techniques, 737
security audit, 737
service provision, 737

IoT security
concepts, 733–736

elements, 733
environment

data protection and  
confidentiality, 739

internet protocol and network 
security, 739

tamper resistance and detection, 739
user authentication and access 

control, 739
objectives, 733–736

detecting security events and 
incidents, 735

logical access, 735
maintaining functionality, 736
physical access, 735
preventing data, 735
protecting IoT components, 735
restoring system, 736

IoT/cloud context, 730–732
cloud, 732
comparison of cloud and  

fog features, 732
core, 732
edge, 730
fog, 730–732
gateways, 730

IoT-enabled device
components

actuator, 730
microcontroller, 730
power supply, 730
sensor, 729–730
transceiver, 730

IP security (IPsec), 642–667
applications, 643
architecture, 645
authentication plus confidentiality, 

658–659
destination address, 645
documents, 643–644

AH, 644
architecture, 643
cryptographic algorithms, 644
ESP, 644
IKE, 644

ESP, 649–657
anti-replay service, 651–652
encryption and authentication 

algorithms, 650, 653
format, 650, 651
information, 646
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padding, 651
protocol operation, 657
transport and tunnel modes, 652–657

IKE, 644
header and payload formats, 665–667
key determination protocol, 661–664

SA, 645
combinations of, 659–660
IP destination address, 645
Security Protocol Identifier, 645
SPI, 645

SAD, 645–646
AH information, 646
Anti-Replay Window, 646
ESP information, 646
IPsec Protocol Mode, 646
Lifetime of this Security  

Association, 646
Path MTU, 646
Sequence Counter Overflow, 646
Sequence Number Counter, 646
SPI, 645

services, 644
SPD, 645, 646–647

local and remote ports, 647
local IP address, 647
name, 647
next layer protocol, 647
remote IP address, 647

traffic processing, 648–649
inbound packets, 649
outbound packets, 648

transport and tunnel modes, 652–657
VPN with tunnel mode, 656

IPv4, 643
IPv6, 643, 647
Iris images, 504
Irreducible polynomial, 148, 154
Irreversible mapping, 115
ISAKMP. See Internet Security  

Association and Key  
Management Protocol 
(ISAKMP)

IS-Box, 176
ISO. See International Organization for 

Standardization (ISO)
ISOC. See Internet Society (ISOC)
ISP. See Internet Service Provider (ISP)
Iteration function, 362
ITU Telecommunication  

Standardization Sector  
(ITU-T), 42

K
Keccak, 362, 364, 366, 368, 370
KEK. See Key encryption key (KEK)
KEMs. See Key-establishment  

mechanisms (KEMs)
Kerberos, 510–524

environmental shortcomings
authentication forwarding, 521
encryption system dependence, 521
internet protocol dependence, 521
interrealm authentication, 521
message byte ordering, 521
ticket lifetime, 521

exchanges, 518
motivation, 511–512

reliable, 511
scalable, 511

secure, 511
transparent, 511

overview of, 517
principal, 519
technical deficiencies

double encryption, 522
password attacks, 522
PCBC encryption, 522
session keys, 522

Version 4, 512–520
authentication dialogue, 512–513
authentication service  

exchange, 516
client/server authentication  

exchange, 516
message exchanges, 516
protocol, 517
secure authentication dialogue, 

513–515
simple authentication dialogue, 

512–513
ticket-granting service exchange, 

516
Version 5, 521–524

authentication dialogue, 522–524
authentication service  

exchange, 522
message exchanges, 523
nonce, 522
options, 522
realm, 522
ticket-granting service  

exchange, 523
times, 522

Kerberos realm, 519–520
Key

asymmetric encryption, 290
determination protocol, 660–664
expansion algorithm, 184–186
generation, 303–304
length, 258
schedule algorithm, 131
size, 121
3DES, 204–207
unwrapping, 407–410

Key distribution center (KDC), 476, 
507–509, 524–525

Key distribution, symmetric
using asymmetric encryption, 478–480

secret key distribution, 480
simple secret key distribution, 

478–480
using symmetric encryption, 474–477

key distribution option, 474–477
Key distribution technique, 474–475
Key encryption key (KEK), 405
Key exchange, 36, 294, 556

Diffie-Hellman, 315–319
algorithm, 316–317, 661–662
analog, 332
discrete logarithm, 316
key exchange protocols, 318
man-in-the-middle attack, 318–319

payload, 667
Key expansion, 780–781
Key hierarchy, 477
Key management and distribution

hierarchy, 477
public keys distribution, 481–485
public-key infrastructure, 494–496

symmetric key distribution
using asymmetric encryption, 

478–480
using symmetric encryption, 

474–477
X.529 certificates, 485–493

Key translation center (KTC), 476
Key usage, 492
Key Wrap (KW) mode, 405–406
Key wrapping

algorithm, 406–407
KEK, 405
operation for 256-bit key, 408, 409
and unwrapping, 407–410

Keyed hash function, 342
Key-establishment mechanisms  

(KEMs), 463
Keyless algorithms, 34

cryptographic hash function, 34
pseudorandom number generator, 34

Key-only attack, 419
Keystream, 260–261
Known message attack, 419
Known-plaintext, 88

attack on triple Data Encryption 
Standard, 205, 206

KW mode. See Key Wrap (KW) mode

L
Lanes, 366, 367
Lattice, 464
Lattice-based cryptography, 463–466
Lightweight, 439
Lightweight cryptographic algorithms, 

442, 448–456
asymmetric, 456
authenticated encryption, 448–451
hash functions, 451–454
message authentication codes, 454–456
SipHash, 455
single round encryption, 450

Lightweight cryptography, 439
AEAD, 445–447
algorithms, 442, 448–456
constrained devices, 441

categories of, 442
classes of, 441

deeply embedded systems, 440–441
microcontroller, 440
profiles for, 445
security considerations, 442–444

agricultural sensors, 443
automobiles, 444
home appliances, 443
industrial systems, 443–444
medical sensors, 443
RFID, 442–443
smart agricultural sensors, 443

security requirements, 445–448
trade-offs, 444–445

Lightweight Directory Access  
Protocol (LDAP), 724

Linear algebra operations over Zn, 
750–752

Linear congruential generators, 252–253
Linear feedback shift registers, 265–268
Local forwarding, 563
Local subnet, 694
Low energy overhead, 738
Lucifer cipher, 227
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M
MAC. See Message authentication  

codes (MAC)
MAC protocol data unit (MPDU),  

575, 576
CRC, 577
destination MAC address, 576
exchange, 585–586

AS, 587
association, 585–586
EAP exchange, 587
network and security capability 

discovery, 585
open system authentication, 585
secure key delivery, 587

format, 577
MAC Control, 576
MAC header, 577
MAC trailer, 577
MSDU, 576
source MAC address, 576

MAC service data unit (MSDU), 575, 
576, 579

Mail Delivery Agent (MDA), 599
Mail Submission Agent (MSA), 599
Malicious association, 568
Malicious insiders, 717
Malicious software, 687–690. See also 

Malware
Malware

defense, 688–690
elements of, 688
endpoint behavior analysis, 689
forensics, 690
incident management, 689–690
network traffic analysis, 688–689
payload analysis, 689
post-compromise, 688
real-time and near-real-time, 688

types, 687–688
backdoor, 687
bot, 688
mobile code, 688
rootkit, 687
spyware, 687
Trojan horse, 687
virus, 687
worm, 687

Management information base (MIB) 
content, 644

Mandated trust, 41
Man-in-the-middle attacks, 29, 318–319, 

478, 479, 568
Manual key management, 660
Mapping

definition, 117
irreversible, 115
nonsingular, 115
policy, 493
reversible, 115

Mask generation function (MGF), 
308–309, 430–431

Masquerade, 29, 380
Master key, 476, 507–508
Master secret, 538, 546

Diffie-Hellman, 546
RSA, 546

Master session key (MSK), 590
Matching Type field, 624
Mathematical attacks, 304

Mathematical basis of birthday attack
birthday paradox, 789–791
duplications, 792–793
inequality, 791–792
overlapping two sets, 793–794
related problem, 789

Maurer’s universal statistical test, 250
MD4, 352
MD5, 351, 362
MDA. See Mail Delivery Agent (MDA)
Measured service, 702
Media access control (MAC), 576–577
Mediated trust, 41
Medical sensors, 443
Meet-in-the-middle attack, 204
Merkle root, 470
Message authentication, 339–342

attack against hash function, 340
functions, 380–387

hash function, 381
MAC, 385–387
message encryption, 381–385

hash code, 341–342
keyed hash function, 342
message digest, 339
requirements, 379–380

content modification, 380
destination repudiation, 380
disclosure, 379
masquerade, 380
sequence modification, 380
source repudiation, 380
timing modification, 380
traffic analysis, 380

simplified examples, 341
Message authentication code (MAC), 

342, 379, 539
authenticated encryption, 399–405

CMAC, 399–402
GCM, 402–405

basic uses of, 386
on block ciphers, 396–398

CMAC, 397–398
DAA, 396–397

HMAC, 391–395
algorithm, 392–395
design objectives, 392
efficient implementation of, 394
security of, 395
structure, 393

key wrapping, 405–410
algorithm, 406–407
KEK, 405
operation for 256-bit key, 408
and unwrapping, 407–410

PRNG using, 412
requirements for, 388–390
security of, 390–391

brute-force attacks, 390–391
computation resistance, 390
cryptanalysis, 391

SipHash, 455
characteristics of, 454
design of, 454
variants, 454

Message digest, 339
generation using SHA-492, 354

Message encryption, 381–385
basic uses of, 381
public-key encryption, 384–385

symmetric encryption, 381–384
external error control, 383
internal error control, 383

TCP segment, 384
Message Handling Service (MHS), 599
Message integrity, 538

CCMP, 593
TKIP, 592

Message integrity code (MIC), 592
Message length, 232
Message Store (MS), 599–600
Message Transfer Agent (MTA), 599
Message type, 605
Message User Agents (MUA),  

599–601
Message/external-body subtype, 605
Message/partial subtype, 605
Message/rfc822 subtype, 605
MIC. See Message integrity code (MIC)
Michael, 592, 593
Microcontroller, 440
Miller-Rabin algorithm, 66–68

details of, 67
properties of prime numbers,  

66–67
first property, 66
second property, 66

repeated use of, 68
MIME. See Multipurpose Internet  

Mail Extension (MIME)
MIME-Version header fields, 603
Min-entropy, 765–767
MiniSec, 740

confidentiality, 740
data authentication, 740
freshness, 740
lost messages, 740
low energy overhead, 740
replay protection, 740

Misuse detection, 683
MixColumns, 171, 173, 194

transformation, 180–183, 199–200
Mobile device security, 570–574

cloud-based applications, 570
de-perimeterization, 571
external business requirements, 571
growing use of new devices, 570
strategy, 572–574

barrier security, 574
device security, 572–574
elements, 572, 573
traffic security, 574

threats, 571–572
interaction with other  

systems, 572
lack of physical security  

controls, 571
location services, 572
by unknown parties, 572
untrusted content, 572
untrusted mobile devices, 571
untrusted networks, 572

Modification of messages, 29
Modular arithmetic, 51–59,  

143, 151, 155
congruences, 51
congruent modulo n, 51
Euclidean algorithm

extended, 57–59
revisited, 56–57
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exponentiation in, 300–301
modulus, 51
operations, 52–53
properties of, 53–56, 300

reducing k modulo n, 54
set of residues/residue classes, 54

Modular polynomial arithmetic, 153–155
Modulus, 51, 81
Monic polynomial, 145
Monoalphabetic ciphers, 92–95

digrams, 94
permutation, 92
relative frequency, 93, 94
substitution cipher, 92

Multifactor authentication, 505
Multi-instance model, 715–716
Multipart type, 605
Multipart/alternative subtype, 605
Multipart/digest subtype, 605
Multipart/mixed subtype, 605
Multipart/parallel subtype, 605
Multiple encryption, 202–207

double DES, 202–204
meet-in-the-middle attack, 204
reduction to single stage, 203–204

triple DES
known-plaintext attack on, 206
with three keys, 207
with two keys, 204–207

Multiplication, 140–141, 158–159, 200
Multiplicative identity, 140
Multiplicative inverse, 140, 143–144, 

155–157
Multipurpose Internet Mail Extension 

(MIME), 602–607
canonical form, 606–607
content types, 604–605

application type, 605
message type, 605
message/external-body subtype, 605
message/partial subtype, 605
Message/rfc822 subtype, 605
multipart type, 605
multipart/alternative subtype, 605
multipart/digest subtype, 605
multipart/mixed subtype, 605
multipart/parallel subtype, 605
text type, 605

header fields, 603–604
Content-Description, 604
Content-ID, 604
Content-Transfer-Encoding, 604
Content-Type, 603
MIME-Version, 603

native form, 606
specification, 603
transfer encodings, 605–606

base64 transfer encoding, 606
quoted-printable, 606

use of, 603
Multirate padding, 363
Multi-tenant model, 716
Multivariate polynomial, 467
Multivariate-based algorithms,  

467–469
Multivariate-based cryptography, 

463–464, 467–469
Mutual authentication, 505–507

asymmetric encryption, 524–525
and authorization, 737

challenge/response, 506
remote user-authentication  

principles, 505–507
symmetric encryption, 507–510
timestamps, 506

N
National Institute of Standards  

and Technology (NIST),  
41, 123, 166

digital signature algorithm, 423–427
for electronic user authentication, 

501–503
FPE, 233–239

FF1 algorithm, 233–236
FF2 algorithm, 236–238
FF3 algorithm, 238–239

Native form, 606
Network injection attack, 569
Network protocols security  

components, 462
Network security, 23, 36–37. See also 

Cryptography
cloud security as service, 724
communications security, 36
denial-of-service (DoS) attack, 690

construction, 692–694
countermeasures, 694
description, 690–692
flooding-based, 693

device security, 36–37
elements of, 36
firewall, 36, 672–681

application-level, 679–680
characteristics, 673–674
circuit-level, 680
DMZ networks, 680–681
packet filtering, 674–678
stateful inspection, 678–679
types of, 674–680

intrusion detection system,  
36, 682

approaches, 683–684
host-based, 684–685
network-based, 685–686
principles, 682

intrusion prevention, 36
malicious software, 687

types of, 687–688
malware defense, 688–690

Network traffic analysis, 688–689
Network-based IDS, 682
Network-Based Intrusion Detection 

Systems (NIDS), 685–686
deployment example, 686
function, 685
placement, 685–686

NIDS. See Network-Based Intrusion 
Detection Systems (NIDS)

NIDS function, 685
NIDS placement, 685–686
Next-bit test, 254
NIST. See National Institute  

of Standards and  
Technology (NIST)

NIST CTR_DRBG, 257–260
entropy source, 257
functions, 259
generate, 258
initialize, 258

key length, 258
output block length, 258
parameters, 258
reseed interval, 258
seed length, 258
update, 259–260

No zero divisors, 140
Nonce, 211, 506, 522, 663

payload, 667
Non-deterministic random bit  

generators (NRBGs)  
model, 276

Nonlinear feedback shift registers, 
268–269

Nonrepudiation, 24, 32, 714
Nonsingular mapping, 115
Nontraditional networks, 568
Notarization, 33
Notify payload, 667
NRBGs model. See Non-deterministic 

random bit generators  
(NRBGs) model

Number of rounds, 121, 130
Number theory, 45–76

Chinese remainder theorem,  
69–71

discrete logarithms, 71–76
calculation of, 75–76
for modular arithmetic, 73–75
powers of integer, 71–73

divisibility, 45–46
division algorithm, 46–47
Euclidean algorithm, 47–50
Euler’s theorem, 64–65
Euler’s totient function, 63–64
Fermat’s theorem, 62–63
modular arithmetic, 51–59

Euclidean algorithm revisited, 
56–57

extended Euclidean algorithm, 
57–59

modular arithmetic operations, 
52–53

modulus, 51
properties of, 53–56
properties of congruences, 51

primality, testing for, 66–68
algorithm, 68
distribution of primes, 68
Miller-Rabin algorithm, 66–68

prime numbers, 59–62

O
OAEP. See Optimal asymmetric  

encryption padding (OAEP)
Oakley Key Determination Protocol, 

661
OCB. See Offset Codebook (OCB) 

Mode
OFB mode. See Output feedback  

(OFB) mode
Offset Codebook (OCB) Mode,  

740–744
encryption and authentication, 742

On-demand self-service, 702
One-time pad, 103–104
One-way authentication

asymmetric encryption, 525–526
One-way function, 295
One-way password file, 343
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Open-source cloud security module, 
724–725

identity, 724
OpenStack, 724
policies, 724
service catalog, 724
token, 724
virtual machine, 725

Open-source IOT security module, 
739–744

cryptographic algorithms, 740–741
data authentication, 740
MiniSec, 740
Offset Codebook Mode, 741–744
operating modes, 741
TinyOS, 739

OpenStack, 724
Operational technology (OT), 729
Operations on vectors and matrices, 

747–750
arithmetic, 747–748
determinants, 748–749
inverse of matrix, 749–750

Optimal asymmetric encryption  
padding (OAEP), 308–309

Order, 71, 72
Order of group, 138
Ordinary polynomial arithmetic,  

145–146
OSI security architecture

attacks, 29
ITU-T Recommendation X.800, 26–27
security attack, 27
security mechanism, 27
security service, 27
threats, 27

Output, 235, 257
Output block length, 258
Output feedback (OFB) mode,  

212, 214–216

P
PaaS. See Platform as a service (PaaS)
Packet filtering firewall

attacks and countermeasures, 678
IP address spoofing, 678
source routing, 678
tiny fragment, 678

destination IP address, 674
example, 676
interface, 674–676
IP protocol field, 674
rule sets, 676–677
source and destination  

transport-level address, 674
source IP address, 674
weaknesses, 677–678

Pairwise master key (PMK), 590
Pairwise transient key (PTK), 590
Parameters

SHA, 353
SHA-3, 366

Passive attack, 27
release of message contents, 27
traffic analysis, 28

Password attacks, 522
Path MTU, 646
Peer certificate, 537
Peer entity authentication, 31
Perfect secrecy, 104, 754–758

Permutation, 92, 117, 119, 138
Permuted input, 124
Personal identification  

number (PIN), 504
Personal technology, 729
Pi step function, 371–372
PIN. See Personal identification  

number (PIN)
PKI. See Public key infrastructure (PKI)
Plaintext, 84, 288

transforming to ciphertext, 87
Plaintext–ciphertext pair, 204
Platform as a service (PaaS), 703
Playfair cipher, 95–97

monarchy, 95
plaintext, 96
relative frequency of letters, 96

PMK. See Pairwise master key (PMK)
Point at infinity, 324
Policy mappings, 493
Pollard rho method, 334
Polyalphabetic ciphers, 100–103

autokey system, 102
one-time pad, 103–104
polyalphabetic substitution  

cipher, 100
substitution cipher, 100
Vernam cipher, 102–103
Vigenère cipher, 100–102

Polynomial
arithmetic

coefficient set, 145
with coefficients in Zp, 146–149
constant polynomial, 145
Euclidean algorithm for, 150, 157
examples of, 147, 149
greatest common divisor, 150–151
indeterminate, 145
modular, 153–155
monic polynomial, 145
ordinary, 145–146
treatment of, 145

with coefficients in GF(28), 197–200
ring, 146
root of, 160

Port, 562–564
Post Office Protocol (POP3), 601
Post-quantum cryptographic algorithms

code-based, 463–464, 466–467
digital signatures, 462
encryption, 463
hash-based digital signature, 463–464, 

469–472
hash tree, 470
Lamport’s scheme, 469–470
Merkle hash tree, 471–472
Merkle root, 470

KEMs, 463
multivariate-based, 463–464,  

467–469
arithmetic in GF (42), 469
polynomial, 467
public key, 469
quadratic polynomial, 467–468

Post-quantum cryptography, 456
algorithms, 459–472
computing, 456–457

entanglement, 457
qubits, 456
superposition, 456–457

cryptoperiods, 459–460
algorithms, 459
brute-force attacks, 459
cryptanalysis, 459
quantum safety timeline, 460
security threats, 459
from SP 820-37, 461

Grover’s algorithm, 458
safety, 460–462

cryptosystems, 461–462
network protocols, 462
products, 462
security protocols, 462

Shor’s factoring algorithm, 457–458
RSA key length, 458

Power supply, 730
Preimage, 346

attacks, 349
brute-force attacks, 348

Preimage resistant, 347
Preoutput, 125
Pre-shared key (PSK), 590
PRF. See Pseudorandom function (PRF)
Primality, testing for, 66–68

algorithm, 68
distribution of primes, 68
Miller–Rabin algorithm, 66–68

details of, 67
repeated use of, 68
two properties of prime numbers, 

66–67
Prime curve, 326
Prime number, 59–62, 143, 152
Prime polynomial, 148
Primitive polynomial, 160
Primitive root, 72, 315
Privacy, 24
Privacy of electronic product  

code (EPC), 443
Private cloud, 706
Private keys, 288, 289

certificate, 287
RSA algorithm, 302–303

Private-key usage period, 493
PRNG. See Pseudorandom number 

generator (PRNG)
Product cipher, 117, 118
Product systems, 87
Program code size and RAM size, 442
Propagating cipher block chaining 

(PCBC) encryption, 522
Pseudorandom function (PRF),  

247–249, 344, 410, 549
Pseudorandom number generator 

(PRNG), 34, 247–249,  
252–255, 344

Blum Blum Shub generator,  
254–255

on hash function, 410–411
linear congruential generators, 

252–253
MAC function, 412
next-bit test, 254
principles of, 246–252

algorithm design, 251–252
requirements, 249–251
TRNGs, PRNGs, and PRFs,  

247–249
use of random numbers,  

246–247
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randomness, 249–250
consistency, 249
frequency test, 250
Maurer’s universal statistical  

test, 250
runs test, 250
scalability, 249
uniformity, 249

requirements, 249–251
seed requirements, 250–251
unpredictability

backward, 250
forward, 250

using block cipher, 255–260
mechanisms, 256
NIST CTR_DRBG, 257–260

Pseudorandom numbers, 247
Pseudorandomness, 348
PSK. See Pre-shared key (PSK)
PTK. See Pairwise transient key (PTK)
Public cloud, 704–705
Public key infrastructure (PKI), 287, 

494–496
Public keys, 288, 289, 481–485

(asymmetric) cryptographic  
algorithm, 287

authority, 482–483
certificates, 484–485
cryptanalysis, 296
public announcement of, 481
publicly available directory,  

481–482
RSA algorithm, 301–302
uncontrolled distribution, 481

Public-key cryptography, 285–309
applications for, 293–294

decryption, 294
digital signature, 294
encryption, 294
key exchange, 294

authentication, 292, 293
characteristics, 288–289
ciphertext, 289
confidentiality, 291
conventional encryption, 291
decryption algorithm, 289
digital signature, 292
encryption algorithm, 288
misconception, 286
plaintext, 288
principles of, 287–296
public and private keys, 288, 289
public-key cryptanalysis, 296
public-key encryption, 288–290
requirements for, 294–296

one-way function, 295
trap-door one-way function, 295

secrecy, 293
secret key, 290

Public-key encryption, 288–291,  
384–385, 663

Public-key infrastructure (PKI)
components

certification authority, 494
end entity, 494
registration authority, 494
repository, 494

Publicly available directory,  
481–482

Purpose-built algorithms, 251

Q
Quadratic polynomial, 467–468
Quantum computing, 456–457
Quantum safety, 460–462
Quantum-safe cryptography, 461
Qubits, 456
Quoted-printable transfer  

encodings, 606

R
Radio-frequency identification (RFID), 

442–443
antitheft, 443
counterfeit goods, 443
environmental logging, 443
privacy of electronic product  

code (EPC), 443
returns, 443

Radix, 230, 232
Rail fence cipher, 105
Random, scanning process, 694
Random delay, 307
Random numbers

generator, 212, 248
randomness, 246–247

independence, 246–247
uniform distribution, 246

unpredictability, 247
use of, 246–247

Randomization approach, 247
Randomness, 246–247

characteristics, 249
consistency, 249
frequency test, 250
independence, 246
Maurer’s universal statistical  

test, 250
runs test, 250
scalability, 249
tests, 250
uniform distribution, 246
uniformity, 249

Rapid elasticity, 702
RC4, 262–264

initialization of S,  
262–263

stream generation, 263
strength of, 263–264

Read-only memory (ROM), 440
Realm, 519
Reflector DDoS, 692
Registration authority (RA), 494
Relatively prime, 47, 55, 142
Release of message contents, 27
Relying party (RP), 495, 503
Remote forwarding, 563
Remote user-authentication

principles
challenge/response, 506
mutual authentication,  

505–507
NIST model, 501–503
something the individual does 

(dynamic biometrics), 504
something the individual is  

(static biometrics), 504
something the individual  

knows, 504
something the individual  

possesses, 504

using asymmetric encryption
mutual authentication, 524–525
one-way authentication, 525–526

using symmetric encryption
mutual authentication, 507–510

Repetition Count Test, 276–277
Replay, 29
Replay attack, 506, 651
Replay protection, 740
Repudiation, 714
Reseed interval, 258, 259
Residue, 47, 81, 142, 155
Residue classes, 54, 82
Resource pooling, 702–703
Resource records (RRs), 619, 620
Reversible mapping, 115
RFC 4,706, 628–629

capabilities, 629
characteristics, 629
location, 630

RFC 5,342, 602
Rho step function, 370–371
Rijndael, 166, 168, 179, 186,  

193, 195
Rings, 139–140

associativity of multiplication, 139
closure under multiplication, 139
commutativity of multiplication, 139
distributive laws, 139
integral domain, 140
multiplicative identity, 140
no zero divisors, 140

Rivest-Shamir-Adleman (RSA)  
algorithm, 288, 289, 296–309

computational aspects, 299–304
exponentiation in modular  

arithmetic, 300–301
key generation, 303–304
private key, 302–303
public key, 301–302

description of, 297–299
example of, 299
processing of multiple  

blocks, 300
security of, 304–309

CCA, 304, 308–309
factoring problem, 304–306
fault-based attack, 307–308
hardware fault-based  

attack, 304
mathematical attacks, 304
OAEP, 308–309
timing attacks, 304, 306–307

Robust Security Network (RSN), 581
Role-based access control (RBAC), 724
Round, 125, 126

constants in SHA-3, 373
function, 119, 121, 357–359

Routing control, 33
RRs. See Resource records (RRs)
RSA algorithm. See Rivest-Shamir-

Adleman (RSA) algorithm
RSA-PSS digital signature algorithm

mask generation function,  
430–431

signature verification, 433–435
signing operation, 431–433

RSN. See Robust Security  
Network (RSN)

Runs test, 250
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S
SaaS. See Software as a service (SaaS)
S-AES

arithmetic in GF(44), 785–786
data structures, 778
encryption and decryption

add key, 779
mix column, 781
nibble substitution, 779–781
shift row, 780–781

encryption round, 779
key expansion, 782
mix column function, 786–787
S-boxes, 780, 783
structure of, 783–785
transformations, 780

S-AES structure, 783–785
S-Box, 174, 175, 179, 780, 783
Scalability, 249
Schnorr digital signature scheme, 422–423
SecaaS. See Security as a service 

(SecaaS)
Second assertion, 70
Second preimage

attacks, 349
brute-force attacks, 349

Second preimage resistant, 347
Secret information, 26
Secret key, 84–85, 290
Secret-key encryption, 87
Secure Hash Algorithm (SHA), 352–361
Secure shell (SSH)

connection protocol, 560–564
transport layer security, 553–564
User Authentication Protocol, 558–559

Secure/Multipurpose Internet Mail Ex-
tension (S/MIME), 607, 609–619

certificate processing, 618
DANE, 624–625
enhanced security services, 618–619

secure mailing lists, 619
security labels, 618
signed receipts, 618
signing certificates, 619

messages, 614–618
certificates-only message, 618
clear signing, 617
compressedData, 614
envelopedData, 614, 615–616
registration request, 617
signedData, 614, 616

operational description, 610–613
authentication, 610–612
compression, 613
confidentiality, 611–612
email compatibility, 613

simplified functional flow, 612
user agent role, 618

Security as a service (SecaaS), 721–722
Security assessments, 723
Security association database (SAD), 

644, 645–646
AH information, 646
Anti-Replay Window, 646
ESP information, 646
IPsec Protocol Mode, 646
Lifetime of this Security  

Association, 646
Path MTU, 646
Sequence Counter Overflow, 646

Sequence Number Counter, 646
SPI, 645

Security associations (SA), 645
authentication plus confidentiality, 

658–659
ESP with authentication option, 658
transport adjacency, 658–659
transport-tunnel bundle, 659

combinations of, 659–660
IP destination address, 645
lifetime of, 646
payload, 666

attribute, 667
proposal, 667
transform, 667

Security Protocol Identifier, 645
SPI, 645

Security assurance, 40
Security attacks, 27–30

active attacks, 29–30
data modification, 30
denial of service, 29
masquerade, 29
replay, 29

passive attack, 27–29
release of message contents, 27
traffic analysis, 28

Security awareness and training, 39
Security considerations, 442–444

agricultural sensors, 443
automobiles, 444
home appliances, 443
industrial systems, 443–444
medical sensors, 443
RFID, 442–443
smart agricultural sensors, 443

Security functionality, 40
“Security in the Internet Architecture” 

(RFC 1636), 642
Security information and event  

management (SIEM), 723
Security label, 618
Security mechanisms

access control, 33
authentication exchange, 33
cryptographic algorithms, 33
cryptographic hash functions, 346–348

collision resistant, 347
preimage resistant, 347
pseudorandomness, 348
second preimage resistant, 347

data integrity, 33
digital signature, 33
ECB, 210
MAC, 390–391

based on hash functions, 400
brute-force attacks, 390–391
computation resistance, 390
cryptanalysis, 391

RSA algorithm, 304–309
brute force attacks, 304
CCA, 304, 308–309
factoring problem, 304–306
fault-based attack, 307–308
hardware fault-based attack, 304
mathematical attacks, 304
OAEP, 308–309
timing attacks, 304, 306–307

services, 30–33
access control, 31

availability service, 32–33
data confidentiality, 31–32
data integrity, 32, 33
nonrepudiation, 32

specific
access control, 33
authentication exchange, 33
data integrity, 33
digital signature, 33
notarization, 33
routing control, 33
traffic padding, 33

Security Parameter Index (SPI), 645, 646
Security policies and techniques, 737
Security policy database (SPD), 644, 

646–647
local and remote ports, 647
local IP address, 647
name, 647
next layer protocol, 647
remote IP address, 647

Security protocols, 462
Security Protocol Identifier, 645
Security requirements,  

445–448
AEAD, 446–447
side-channel attack, 446

Security services
access control, 31
authentication, 31
availability service, 32–33
data confidentiality, 31–32
data integrity, 32
nonrepudiation, 32

Security services (X.800), 30–33
Security threats, 459
Security updates, 734–735
Seed, 248, 258

input to PRNG, 251
requirements, 250–251

Seed length, 258
Selective forgery, 420
Selector field, 624
Selectors, 646
Sender Policy Framework  

(SPF), 607, 625–628
mechanisms, 627
modifiers, 627
operation, 628
on receiver side, 627–628
on sender side, 626

Sensor/actuator technology, 729
Sensors

IDS component, 682
IoT-enabled device component, 

729–730
tamper detection, 736

Sequence Counter Overflow, 646
Sequence Number Counter, 646
Sequence numbers, 523, 538, 605
Server and client random, 538
Server write key, 538
Server write MAC secret, 538
Service aggregation, 710
Service arbitrage, 710
Service intermediation, 710
Service provision security, 737
Session identifier, 537
Session key, 522, 611–612
Set of residues, 54
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SHA. See Secure Hash  
Algorithm (SHA)

SHA-0, 352
SHA-1, 352
SHA-2, 353
SHA-3, 362–373

iteration function f, 366–373
Chi step function, 372–373
composition, 367
constants in SHA-3, 373
Iota step function, 373
Pi step function, 371–372
Rho step function, 370–371
structure of, 367–368
theta step function, 368–370

parameters, 366
sponge construction, 362–366

absorbing phase, 364, 365
bitrate, 362
capacity, 364
iteration function, 362
multirate padding, 363
simple padding, 363
sponge function input  

and output, 363
squeezing phase, 365

state matrix, 367
step functions in, 368

SHA-224, 353
SHA-256, 353
SHA-384, 353
SHA-512, 353

constants, 356
logic, 353–356

big-endian format, 355
step 1 append padding bits, 354
step 2 append length, 354
step 3 initialize hash buffer, 354–355
step 4 process message in  

1024-bit (128-byte)  
blocks, 355–356

step 5 output, 356
message digest generation using, 354
round function, 357–361

Shared technology vulnerabilities, 721
ShiftRows, 171, 173, 194

AES row and column operations, 180
forward shift row transformation, 179
inverse shift row transformation, 179

Shor’s factoring algorithm, 457–458
Side-channel attack, 446
SIEM. See Security information and 

event management (SIEM)
Signal-hiding techniques, 569
Signature verification

decryption, 433
EM verification, 433–435

Signing operation
forming the signature, 433
message encoding, 431–433

Simple Mail Transfer Protocol (SMTP), 
599, 601

Simple Network Management Protocol 
Version 3 (SNMPv3), 387

Simple padding, 363
Simple Mail Transfer Protocol  

(SMTP), 678
Simplified AES (S-AES), 777–781. See 

also S-AES
Single sign-on (SSO), 527

Single-key algorithms, 34–35
message authentication code, 35
symmetric encryption algorithms, 35

Single-key encryption, 84, 87
SipHash message authentication  

code, 455
Skipjack, 740
S/MIME. See Secure/Multipurpose In-

ternet Mail Extension (S/MIME)
SMTP. See Simple Mail Transfer Proto-

col (SMTP)
Software as a service (SaaS), 703
Sound/video input, 272
SPD. See Security policy database (SPD)
Special number field sieve (SNFS), 305
Sponge construction, 362–366

absorbing phase, 364, 365
bitrate, 362
capacity, 364
iteration function, 362
multirate padding, 363
simple padding, 363
sponge function input and  

output, 363
squeezing phase, 365

Sponge function input and output, 363
Spoofing identity, 714
Squeezing phase, 364, 365
Standards, 41–42

Internet Society (ISOC), 41
National Institute of Standards  

and Technology (NIST), 41
STARTTLS, 607, 624
State, 168
State array, 168
State matrix, 367
Stateful inspection firewalls, 678–679
Static biometrics, 504
Stream ciphers, 35, 87, 113–115,  

260–262, 451
advantage of, 261–262
design considerations for, 261
processes, 87
RC4, 262–264

initialization of S, 262–263
stream generation, 263
strength of, 263

using feedback shift registers, 264–272
Grain-128a, 269–272
linear, 265–268
nonlinear, 268–269

Stream generation, 263
Strict avalanche criterion (SAC), 130
STRIDE threat model

authorization, 715
availability, 714
confidentiality, 714
elevation of privilege, 714–715
information disclosure, 714
repudiation, 714
spoofing identity, 714
tampering with data, 714

Strong encryption, 89
SubBytes, 171, 174, 194
Subject key identifier, 492
Subkey, 119, 125, 523
Subscriber, 503
Substitute bytes, 171, 174–179

AES byte-level operations, 174
constuction of S-Box and IS-Box, 176

forward substitute byte  
transformation, 174

inverse substitute byte  
transformation, 178

Substitution techniques, 90–104,  
116, 117, 119

Caesar cipher, 90–92
Hill cipher, 97–100
monoalphabetic ciphers,  

92–95
one-time pad, 103–104
playfair cipher, 95–97
polyalphabetic ciphers, 100–103

Substitution-permutation network 
(SPN), 119

Superposition, 456–457
Supplicants, 586
Suppress-replay attacks, 509
Symmetric block ciphers, 252
Symmetric cipher model, 84–89

ciphertext, 85
cryptanalysis and brute-force  

attack, 87–89
attacks on encrypted messages, 88
computationally secure encryption 

scheme, 89
cryptanalysis, 87
unconditionally secure encryption 

scheme, 89
cryptography

keys used, 87
plaintext, processed, 87
plaintext to ciphertext, 87

decryption algorithm, 85
encryption algorithm, 84
model of symmetric cryptosystem, 86
plaintext, 84
secret key, 84
secure use of conventional  

encryption, 85
simplified model of symmetric  

encryption, 85
Symmetric cryptosystem, 86
Symmetric encryption, 35, 84–89, 

381–384
external error control, 383
internal error control, 383
remote user-authentication using

mutual authentication, 507–510
Symmetric encryption algorithms, 35
Symmetric key encryption, 87, 663
System integrity, 24
System vulnerabilities, 717

T
Tag, 388, 627, 635
Tamper detection

circuitry, 736
sensors, 736
switches, 736

Tamper resistance, 736
Tampering, 36
TDEA. See Triple Data Encryption 

Algorithm (TDEA)
Temporal Key Integrity Protocol 

(TKIP), 592–593
Text type, 605
TFC. See Traffic flow  

confidentiality (TFC)
Theta step function, 368–370
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Third-party key distribution options, 
476–477

Threats, 27
mobile device security, 571–572

interaction with other systems, 572
lack of physical security  

controls, 571
location services, 572
by unknown parties, 572
untrusted content, 572
untrusted mobile devices, 571
untrusted networks, 572

wireless network security, 568–569
Threshold detection, 685
Ticket, 513
Ticket-granting server (TGS), 513
Ticket-granting service exchange, 523
Time complexity, 293, 295
Timestamp, 421, 477, 506
Timing attacks, 304, 306–307

blinding, 307
constant exponentiation  

time, 307
DES, 129
random delay, 307

TinyOS, 739
TKIP. See Temporal Key Integrity  

Protocol (TKIP)
TKIP sequence counter (TSC), 593
Topological, scanning process, 694
Total break, 420
Traditional block cipher structure, 

113–123
arbitrary reversible substitution 

cipher, 116
block cipher, 114–115
confusion, 118–119
diffusion, 118–119
encryption and decryption tables  

for substitution, 116
Feistel cipher, 117–123

block size, 120
ease of analysis, 121
fast software encryption/ 

decryption, 121
key size, 121
number of rounds, 121
round function, 121
structure, 115–117, 119–121
subkey generation algorithm, 121

ideal block cipher, 115–117
motivation for Feistel cipher  

structure, 115–117
permutation, 117, 119
reversible or nonsingular, 115
round function, 119
SPN, 119
stream cipher, 113–115
substitution, 117, 119

Traffic analysis, 28, 380
Traffic flow confidentiality (TFC), 650
Traffic padding, 33
Traffic processing, IP security (IPsec), 

648–649
inbound packets, 649
outbound packets, 648

Traffic security, 574
Traffic Selector payload, 667
Traffic-flow confidentiality, 651
Transceiver, 730

Transfer encodings, 605–606
base64 transfer encoding, 606
quoted-printable, 606

Transformation functions, AES, 174–184
AddRoundKey transformation

forward add round key  
transformation, 183

inputs for single AES round, 184
inverse add round key  

transformation, 183
MixColumns transformation,  

180–183
forward mix column  

transformation, 180
inverse mix column  

transformation, 181
ShiftRows transformation

AES row and column  
operations, 180

forward shift row  
transformation, 179

inverse shift row transformation, 179
substitute bytes transformation, 

174–179
AES byte-level operations, 174
constuction of S-Box and  

IS-Box, 176
forward substitute byte  

transformation, 174
inverse substitute byte  

transformation, 178
Transport layer protocol

host keys, 554–555
key generation, 558
packet exchange, 554–558

algorithm negotiation, 555
key exchange, 556
message authentication  

code, 554
packet length, 554
padding length, 554
payload, 554
random padding, 554

Transport Layer Security (TLS),  
533–564

alert protocol, 541
architecture, 536–538

cipher spec, 538
compression method, 538
connection, 537
is resumable, 538
master secret, 538
peer certificate, 537
session, 537
session identifier, 537

attacks
categories, 550–551
TLSv1.3, 551

Change Cipher Spec protocol, 540
connection state

client write key, 538
client write MAC secret, 538
initialization vectors, 538
sequence numbers, 538
server and client random, 538
server write key, 538
server write MAC secret, 538

cryptographic computations, 547–549
generation, 548
master secret creation, 547

handshake protocol, 541–547
HTTPS, 551–552

connection closure, 552
connection initiation, 552

message authentication code, 554
padding, 554
pseudorandom function, 548–549
record protocol, 538–540

compressed length (16 bits), 540
compression, 538–539
confidentiality, 538
content type (8 bits), 540
fragmentation, 538
MAC, 540
major version (8 bits), 540
message integrity, 538
minor version (8 bits), 540

secure shell, 553–564
connection protocol, 560–564
transport layer protocol, 553, 

554–558
user authentication protocol, 558

session state
Cipher spec, 538
compression method, 538
is resumable, 538
master secret, 538
peer certificate, 537
session identifier, 537

web security considerations,  
534–536

Transport modes, 652–654
Transposition cipher, 105
Trap-door one-way function, 295
Triple Data Encryption Algorithm 

(TDEA), 118
Triple Data Encryption Standard 

(3DES)
known-plaintext attack on, 206
with three keys, 207
with two keys, 204–207

Trojan horse, 687
True random number generator 

(TRNG), 247–248, 272–280
block cipher, 276
entropy sources, 273–274

disk drives, 273–274
sound/video input, 273

hash function, 274–275
health testing, 276–278

on conditioning function, 278
on noise source, 276–278

Intel digital random number  
generator, 277–280

hardware architecture,  
278–279

logical structure, 279–280
PRNGs vs., 274

Trust
concepts, 37
direct historical, 41
mandated, 41
mediated, 41
model, 38–39

and information security, 38–40
risk, 38
trustworthiness, 38

propensity to, 38
relationships, 40–41
validated, 41
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Trust relationship, 40–41
Trustworthiness, 38

ability, 38
benevolence, 38
of individual, 39–40

human resource security, 39
security awareness and training, 39

of information systems, 40
security assurance, 40
security functionality, 40

integrity, 38
of organization, 40

TSC. See TKIP sequence  
counter (TSC)

Tunnel modes, 560, 652–657
Tweakable block ciphers,  

219–220
Two simple hash function, 344–346
Two-key algorithms, 34–36

asymmetric encryption  
algorithms, 35

digital signature algorithm, 36
key exchange, 36
user authentication, 36

U
Unconditionally secure  

encryption scheme, 89
Uniform distribution, 246
Uniformity, 249
Universal forgery, 420
Unpredictability, 247

backward, 250
forward, 250

Update function, 259–260
U.S. National Security Agency  

(NSA), 459, 740
User authentication, 36

and access control, 739
federated identity management

identity federation, 528–530
identity management,  

526–528
Kerberos, 510–524

motivation, 511–512
Version 4, 512–520
Version 5, 521–524

remote user-authentication  
principles

mutual authentication,  
505–507

NIST model, 501–503
something the individual does 

(dynamic biometrics), 504
something the individual is  

(static biometrics), 504
something the individual  

knows, 504
something the individual  

possesses, 504
using asymmetric encryption

mutual authentication, 524–525
one-way authentication,  

525–526

using symmetric encryption
mutual authentication, 507–510

User Authentication Protocol
authentication methods, 559
message exchange, 559
message types and formats,  

558–559
User interface, 682

V
Validated trust, 41
Vendor ID payload, 667
Verifier, 502
Vernam cipher, 102–103
Vigenère cipher, 100–102
Virtual private networks (VPNs),  

574, 655
Virus detection, 344
Viruses, 687

W
WAN. See Wide area network (WAN)
Weak collision resistant, 347
Web security, 723

considerations, 534–536
threats, 535
traffic security approaches, 535–536

Weierstrass equation, 324
WEP. See Wired Equivalent Privacy 

(WEP)
Wide area network (WAN), 680
Wi-Fi, 575
Wi-Fi Protected Access (WPA), 575, 581
Wired Equivalent Privacy (WEP),  

581, 592
Wireless network security, 567–594

components, 568
02.11 wireless LAN,  

574–580
association-related services,  

579–580
MPDU format, 577
network components and  

architectural model, 574–578
protocol architecture, 575–577
services, 578–580
terminology, 575
Wi-Fi alliance, 575

IEEE 802.11i wireless LAN security, 
580–594

authentication phase, 586–588
discovery phase, 584–586
elements of, 582
key management phase, 588–592
phases of operation, 581–584
protected data transfer phase, 

592–593
pseudorandom function,  

593–594
services, 581

measures, 569–570
securing wireless access points, 569
securing wireless networks, 570
securing wireless transmissions, 569

mobile device security, 570–574
strategy, 572–574
threats, 571–572

threats, 568–569
wireless security, 567–570

Worms, 687
WPA. See Wi-Fi Protected  

Access (WPA)

X
X.509 certificates, 485–493

certificate subject and issuer  
attributes

issuer alternative name, 493
subject alternative name, 493
subject directory attributes, 493

certification authority
forward certificates, 490
reverse certificates, 490

certification path constraints
basic constraints, 493
name constraints, 493
policy constraints, 493

formats
extensions, 488
issuer name, 487
issuer unique identifier, 488
period of validity, 488
serial number, 487
signature, 488
signature algorithm identifier, 487
subject name, 488
subject unique identifier, 488
subject’s public-key  

information, 488
version, 487

hierarchy, 490
key and policy information,  

492–493
authority key identifier, 492
certificate policies, 493
key usage, 492–493
policy mappings, 493
private-key usage period, 493
subject key identifier, 492

revocation of, 491
user’s, 489–491
Version 3, 491–492

XTS-AES mode, 218–225
ciphertext-stealing technique, 223
definition, 224
feedback characteristic of modes of 

operation, 219
operation on sector, 223–225
operation on single block,  

221–223
storage encryption requirements, 

220–221
tweakable block ciphers,  

219–220

Z
Zero point, 324
ZIP, 92
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Acronyms

IV Initialization Vector
KDC Key Distribution Center
LAN Local Area Network
MAC Message Authentication Code
MD5 Message Digest, Version 5
MIC Message Integrity Code
MIME Multipurpose Internet Mail  

Extension
MTU Maximum Transmission Unit
NIST National Institute of Standards and 

Technology
NSA National Security Agency
OFB Output Feedback
PCBC Propagating Cipher Block Chaining
PGP Pretty Good Privacy
PIV Personal Identity Verification
PKI Public Key Infrastructure
PRNG Pseudorandom Number Generator
RFC Request for Comments
RNG Random Number Generator
RSA Rivest–Shamir–Adelman
RSA-PSS RSA Probabilistic Signature Scheme
SET Secure Electronic Transaction
SHA Secure Hash Algorithm
SHS Secure Hash Standard
S/MIME Secure MIME
SNMP Simple Network Management  

Protocol
SNMPv3 Simple Network Management 

Protocol Version 3
SSL Secure Sockets Layer
TCP Transmission Control Protocol
TDEA Triple DEA
TLS Transport Layer Security
UDP User Datagram Protocol
WAN Wide Area Network

3DES Triple DES
AES Advanced Encryption Standard
AH Authentication Header
ANSI American National Standards  

Institute
CBC Cipher Block Chaining
CC Common Criteria
CESG Communications-Electronics Security 

Group
CFB Cipher Feedback
CMAC Cipher-Based Message Authentication 

Code
CRT Chinese Remainder Theorem
DDoS Distributed Denial of Service
DEA Data Encryption Algorithm
DES Data Encryption Standard
DoS Denial of Service
DSA Digital Signature Algorithm
DSS Digital Signature Standard
ECB Electronic Codebook
ECC Elliptic Curve Cryptography
ECDSA Elliptic Curve Digital Signature 

Algorithm
ESP Encapsulating Security Payload
FIPS Federal Information Processing  

Standard
IAB Internet Architecture Board
IETF Internet Engineering Task Force
IP Internet Protocol
IPsec IP Security
ISO International Organization for  

Standardization
ITU International Telecommunication 

Union
ITU-T ITU Telecommunication 

Standardization Sector
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