
CRYPTOGRAPHY AND
NETWORK SECURITY

Principles and Practice

EIGHTH EDITION

WILLIAM STALLINGS

GLOBAL
EDITION

C
ryptography and N

etw
ork Security

Principles and Practice
Stallings

EIG
H

T
H

ED

IT
IO

N

Cryptography and
network SeCurity
PrinciPles and Practice

eighth edition

global edition

William Stallings

A01_STAL7484_08_GE_FM.indd 1 03/05/22 8:35 AM

Product Management: Gargi Banerjee and Paromita Banerjee
Content Strategy: Shabnam Dohutia, Aurko Mitra, Afshaan Khan, and Sharon Thekkekara
Product Marketing: Wendy Gordon, Ashish Jain, and Ellen Harris
Supplements: Bedasree Das
Digital Studio: Vikram Medepalli and Naina Singh
Rights and Permissions: Rimpy Sharma and Akanksha Bhatti
Cover Art: Gorodenkoff / Shutterstock

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook
appear on the appropriate page within text.

Pearson Education Limited
KAO Two
KAO Park
Hockham Way
Harlow
CM17 9SR
United Kingdom

and Associated Companies throughout the world

Visit us on the World Wide Web at: www.pearsonglobaleditions.com

Please contact https://support.pearson.com/getsupport/s/contactsupport with any queries on this content.

© Pearson Education Limited 2023

The right of William Stallings to be identified as the author of this work has been asserted by him in accordance with
the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Cryptography and Network Security: Principles and
Practice, ISBN 978-0-13-670722-6 by William Stallings published by Pearson Education © 2020.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written
permission of the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright
Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS. For information regarding
permissions, request forms and the appropriate contacts within the Pearson Education Global Rights & Permissions
department, please visit www.pearsoned.com/permissions/.

Attributions of third-party content appear on the appropriate page within the text.

Unless otherwise indicated herein, any third-party trademarks that may appear in this work are the property of their
respective owners and any references to third-party trademarks, logos or other trade dress are for demonstrative or
descriptive purposes only. Such references are not intended to imply any sponsorship, endorsement, authorization, or
promotion of Pearson’s products by the owners of such marks, or any relationship between the owner and Pearson
Education, Inc. or its affiliates, authors, licensees, or distributors.

This eBook is a standalone product and may or may not include all assets that were part of the print version. It also
does not provide access to other Pearson digital products like Revel. The publisher reserves the right to remove any
material in this eBook at any time.

ISBN 10: 1-292-43748-0 (print)
ISBN 13: 978-1-292-43748-4 (print)
eBook ISBN 13: 978-1-292-43749-1

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

1 22

Typeset in Times Ten LT Std by B2R Technologies Pvt. Ltd.

http://www.pearsonglobaleditions.com
https://support.pearson.com/getsupport/s/contactsupport
http://www.pearsoned.com/permissions/

For Tricia: never dull, never boring,
the smartest and bravest person I know

A01_STAL7484_08_GE_FM.indd 3 03/05/22 8:35 AM

A01_STAL7484_08_GE_FM.indd 4 03/05/22 8:35 AM

This page is intentionally left blank

5

ContentS

Notation 10

Preface 12

About the Author 19

PART ONE: BACKGROUND 21

Chapter 1 Information and Network Security Concepts 21

 1.1 Cybersecurity, Information Security, and Network Security 23
 1.2 The OSI Security Architecture 26
 1.3 Security Attacks 27
 1.4 Security Services 30
 1.5 Security Mechanisms 33
 1.6 Cryptography 33
 1.7 Network Security 36
 1.8 Trust and Trustworthiness 37
 1.9 Standards 41

1.10 Key Terms, Review Questions, and Problems 42

Chapter 2 Introduction to Number Theory 44

 2.1 Divisibility and the Division Algorithm 45
 2.2 The Euclidean Algorithm 47
 2.3 Modular Arithmetic 51
 2.4 Prime Numbers 59
 2.5 Fermat’s and Euler’s Theorems 62
 2.6 Testing for Primality 66
 2.7 The Chinese Remainder Theorem 69
 2.8 Discrete Logarithms 71
 2.9 Key Terms, Review Questions, and Problems 76

Appendix 2A The Meaning of Mod 80

PART TWO: SYMMETRIC CIPHERS 83

Chapter 3 Classical Encryption Techniques 83

3.1 Symmetric Cipher Model 84
3.2 Substitution Techniques 90
3.3 Transposition Techniques 105

 3.4 Key Terms, Review Questions, and Problems 106

Chapter 4 Block Ciphers and the Data Encryption Standard 112
 4.1 Traditional Block Cipher Structure 113
 4.2 The Data Encryption Standard 123
 4.3 A DES Example 125
 4.4 The Strength of DES 128

A01_STAL7484_08_GE_FM.indd 5 03/05/22 8:35 AM

 4.5 Block Cipher Design Principles 129
 4.6 Key Terms, Review Questions, and Problems 131

Chapter 5 Finite Fields 135

 5.1 Groups 137
 5.2 Rings 139
 5.3 Fields 140
 5.4 Finite Fields of the Form GF(p) 141
 5.5 Polynomial Arithmetic 145
 5.6 Finite Fields of the Form GF(2n) 151
 5.7 Key Terms, Review Questions, and Problems 163

Chapter 6 Advanced Encryption Standard 165

 6.1 Finite Field Arithmetic 167
 6.2 AES Structure 168
 6.3 AES Transformation Functions 174
 6.4 AES Key Expansion 184
 6.5 An AES Example 187
 6.6 AES Implementation 191
 6.7 Key Terms, Review Questions, and Problems 196

Appendix 6A Polynomials with Coefficients in GF(28) 197

Chapter 7 Block Cipher Operation 201

 7.1 Multiple Encryption and Triple DES 202
 7.2 Electronic CodeBook 207
 7.3 Cipher Block Chaining Mode 210
 7.4 Cipher Feedback Mode 212
 7.5 Output Feedback Mode 214
 7.6 Counter Mode 216
 7.7 XTS-AES Mode for Block-Oriented Storage Devices 218
 7.8 Format-Preserving Encryption 225
 7.9 Key Terms, Review Questions, and Problems 239

Chapter 8 Random Bit Generation and Stream Ciphers 244

8.1 Principles of Pseudorandom Number Generation 246
8.2 Pseudorandom Number Generators 252
8.3 Pseudorandom Number Generation Using a Block Cipher 255
8.4 Stream Ciphers 260
8.5 RC4 262
8.6 Stream Ciphers Using Feedback Shift Registers 264
8.7 True Random Number Generators 272

 8.8 Key Terms, Review Questions, and Problems 281

PART THREE: ASYMMETRIC CIPHERS 285

Chapter 9 Public-Key Cryptography and RSA 285

 9.1 Principles of Public-Key Cryptosystems 287
 9.2 The RSA Algorithm 296
 9.3 Key Terms, Review Questions, and Problems 309

6 CONTENTS

A01_STAL7484_08_GE_FM.indd 6 03/05/22 8:35 AM

Chapter 10 Other Public-Key Cryptosystems 314

 10.1 Diffie–Hellman Key Exchange 315
 10.2 Elgamal Cryptographic System 319
 10.3 Elliptic Curve Arithmetic 322
 10.4 Elliptic Curve Cryptography 331
 10.5 Key Terms, Review Questions, and Problems 335

PART FOUR: CRYPTOGRAPHIC DATA INTEGRITY ALGORITHMS 337

Chapter 11 Cryptographic Hash Functions 337

 11.1 Applications of Cryptographic Hash Functions 339
 11.2 Two Simple Hash Functions 344
 11.3 Requirements and Security 346
 11.4 Secure Hash Algorithm (SHA) 352
 11.5 SHA-3 362
 11.6 Key Terms, Review Questions, and Problems 374

Chapter 12 Message Authentication Codes 378

 12.1 Message Authentication Requirements 379
 12.2 Message Authentication Functions 380
 12.3 Requirements for Message Authentication Codes 388
 12.4 Security of MACs 390
 12.5 MACs Based on Hash Functions: HMAC 391
 12.6 MACs Based on Block Ciphers: DAA and CMAC 396
 12.7 Authenticated Encryption: CCM and GCM 399
 12.8 Key Wrapping 405
 12.9 Pseudorandom Number Generation Using Hash Functions and MACs 410
 12.10 Key Terms, Review Questions, and Problems 413

Chapter 13 Digital Signatures 416

 13.1 Digital Signatures 418
 13.2 ElGamal Digital Signature Scheme 421
 13.3 Schnorr Digital Signature Scheme 422
 13.4 NIST Digital Signature Algorithm 423
 13.5 Elliptic Curve Digital Signature Algorithm 427
 13.6 RSA-PSS Digital Signature Algorithm 430
 13.7 Key Terms, Review Questions, and Problems 435

Chapter 14 Lightweight Cryptography and Post-Quantum Cryptography 438

 14.1 Lightweight Cryptography Concepts 439
 14.2 Lightweight Cryptographic Algorithms 448
 14.3 Post-Quantum Cryptography Concepts 456
 14.4 Post-Quantum Cryptographic Algorithms 462
 14.5 Key Terms and Review Questions 472

PART FIVE: MUTUAL TRUST 473

Chapter 15 Cryptographic Key Management and Distribution 473

 15.1 Symmetric Key Distribution Using Symmetric Encryption 474
 15.2 Symmetric Key Distribution Using Asymmetric Encryption 478

CONTENTS 7

A01_STAL7484_08_GE_FM.indd 7 03/05/22 8:35 AM

 15.3 Distribution of Public Keys 481
 15.4 X.509 Certificates 485
 15.5 Public-Key Infrastructure 494
 15.6 Key Terms, Review Questions, and Problems 496
Chapter 16 User Authentication 500

 16.1 Remote User-Authentication Principles 501
 16.2 Remote User-Authentication Using Symmetric Encryption 507
 16.3 Kerberos 510
 16.4 Remote User-Authentication Using Asymmetric Encryption 524
 16.5 Federated Identity Management 526
 16.6 Key Terms, Review Questions, and Problems 530

PART SIX: NETWORK AND INTERNET SECURITY 533

Chapter 17 Transport-Level Security 533

 17.1 Web Security Considerations 534
 17.2 Transport Layer Security 536
 17.3 HTTPS 551
 17.4 Secure Shell (SSH) 553
 17.5 Review Questions and Problems 564
Chapter 18 Wireless Network Security 566

 18.1 Wireless Security 567
 18.2 Mobile Device Security 570
 18.3 IEEE 802.11 Wireless Lan Overview 574
 18.4 IEEE 802.11i Wireless Lan Security 580
 18.5 Key Terms, Review Questions, and Problems 595
Chapter 19 Electronic Mail Security 597

 19.1 Internet Mail Architecture 599
 19.2 Email Formats 601
 19.3 Email Threats and Comprehensive Email Security 607
 19.4 S/MIME 609
 19.5 DNSSEC 619
 19.6 DNS-Based Authentication of Named Entities 622
 19.7 Sender Policy Framework 625
 19.8 DomainKeys Identified Mail 628
 19.9 Domain-Based Message Authentication, Reporting, and Conformance 634
 19.10 Key Terms, Review Questions, and Problems 639
Chapter 20 IP Security 640

 20.1 IP Security Overview 641
 20.2 IP Security Policy 643
 20.3 Encapsulating Security Payload 648
 20.4 Combining Security Associations 656
 20.5 Internet Key Exchange 659
 20.6 Key Terms, Review Questions, and Problems 667
Chapter 21 Network Endpoint Security 669

 21.1 Firewalls 670
 21.2 Intrusion Detection Systems 680

8 CONTENTS

A01_STAL7484_08_GE_FM.indd 8 03/05/22 8:35 AM

 21.3 Malicious Software 685
 21.4 Distributed Denial of Service Attacks 688
 21.5 Key Terms, Review Questions, and Problems 693

Chapter 22 Cloud Security 698

 22.1 Cloud Computing 699
 22.2 Cloud Security Concepts 709
 22.3 Cloud Security Risks and Countermeasures 711
 22.4 Cloud Security as a Service 719
 22.5 An Open-Source Cloud Security Module 722
 22.6 Key Terms and Review Questions 723

Chapter 23 Internet of Things (IoT) Security 725

 23.1 The Internet of Things 726
 23.2 IoT Security Concepts and Objectives 731
 23.3 An Open-Source IoT Security Module 737
 23.4 Key Terms and Review Questions 742

Appendix A Basic Concepts from Linear Algebra 744

 A.1 Operations on Vectors and Matrices 745
 A.2 Linear Algebra Operations over Zn 748
Appendix B Measures of Secrecy and Security 751

B.1 Conditional Probability 752
B.2 Perfect Secrecy 752
B.3 Information and Entropy 756
B.4 Entropy and Secrecy 762
B.5 Min-Entropy 763

Appendix C Data Encryption Standard 766

Appendix D Simplified AES 774

D.1 Overview 775
D.2 S-AES Encryption and Decryption 777
D.3 Key Expansion 780
D.4 The S-Box 781
D.5 S-AES Structure 781

 ANNEX D.1 Arithmetic in GF(24) 783
 ANNEX D.2 The Mix Column Function 784
Appendix E Mathematical Basis of the Birthday Attack 786

E.1 Related Problem 787
E.2 The Birthday Paradox 787
E.3 Useful Inequality 789
E.4 The General Case of Duplications 790
E.5 Overlap Between Two Sets 791

Glossary 793

References 804

Index 815

Acronyms 832

CONTENTS 9

A01_STAL7484_08_GE_FM.indd 9 03/05/22 8:35 AM

10

Symbol Expression Meaning

D, K D(K, Y) Symmetric decryption of ciphertext Y using secret key K

D, PRa D(PRa, Y)
Asymmetric decryption of ciphertext Y using A’s private
key PRa

D, PUa D(PUa, Y)
Asymmetric decryption of ciphertext Y using A’s public
key PUa

E, K E(K, X) Symmetric encryption of plaintext X using secret key K

E, PRa E(PRa, X)
Asymmetric encryption of plaintext X using A’s private
key PRa

E, PUa E(PUa, X)
Asymmetric encryption of plaintext X using A’s public
key PUa

K Secret key

PRa Private key of user A

PUa Public key of user A

MAC, K MAC(K, X)
Message authentication code of message X using secret
key K

GF(p)
The finite field of order p, where p is prime.The field is
defined as the set Zp together with the arithmetic opera-
tions modulo p.

GF(2n) The finite field of order 2n

Zn Set of nonnegative integers less than n

gcd gcd(i, j)
Greatest common divisor; the largest positive integer
that divides both i and j with no remainder on division.

mod a mod m Remainder after division of a by m

mod, K a K b (mod m) a mod m = b mod m

mod, [a [b (mod m) a mod m ≠ b mod m

dlog dloga,p(b) Discrete logarithm of the number b for the base a (mod p)

w f(n)
The number of positive integers less than n and relatively
prime to n. This is Euler’s totient function.

a a
n

i = 1
ai

a1 + a2 + g + an

q q
n

i = 1
ai

a1 * a2 * g * an

notation

A01_STAL7484_08_GE_FM.indd 10 03/05/22 8:35 AM

Symbol Expression Meaning

� i � j
i divides j, which means that there is no remainder when
j is divided by i

� , � � a � Absolute value of a

} x } y x concatenated with y

≈ x ≈ y x is approximately equal to y

⊕ x ⊕ y
Exclusive-OR of x and y for single-bit variables;
Bitwise exclusive-OR of x and y for multiple-bit vari-
ables

:, ; :x; The largest integer less than or equal to x

∈ x ∈ S The element x is contained in the set S.

· A · (a1, a2,
c ak)

The integer A corresponds to the sequence of integers
(a1, a2, c ak)

NOTATION 11

A01_STAL7484_08_GE_FM.indd 11 03/05/22 8:35 AM

12

What’s New in The Eighth Edition 12
Objectives 13
Support of ACM/IEEE Computer Science Curricula 2013 13
Plan of The Text 14
Instructor Support Materials 14
Projects and Other Student Exercises 15
The Sage Computer Algebra System 16
Acknowledgments 17
Acknowledgments for the Global Edition 18

WHAT’S NEW IN THE EIGHTH EDITION

Since the seventh edition of this book was published, the field has seen continued innova-
tions and improvements. In this new edition, I try to capture these changes while maintaining
a broad and comprehensive coverage of the entire field. To begin this process of revision, the
seventh edition of this book was extensively reviewed by a number of professors who teach
the subject and by professionals working in the field. The result is that, in many places, the
narrative has been clarified and tightened, and illustrations have been improved.

Beyond these refinements to improve pedagogy and user-friendliness, there have been
substantive changes throughout the book. Roughly the same chapter organization has been
retained, but much of the material has been revised and new material has been added. The
most noteworthy changes are as follows:

■■ Trust and trustworthiness: Chapter 1 includes a new section describing these two con-
cepts, which are key concepts in computer and network security.

■■ Stream ciphers: With the growing importance of stream ciphers, the treatment of
stream ciphers has been significantly expanded. There is a new section on stream
ciphers based on linear feedback shift registers (LFSRs), and several examples of con-
temporary stream ciphers are provided.

■■ Lightweight cryptography: The Internet of Things and other small embedded systems
require new approaches to cryptography to accommodate the low power requirements,
minimum memory, and limited processing power of IoT devices. Two new sections
cover this rapidly emerging topic.

■■ Post-quantum cryptography: In anticipation of the potential threat posed by quantum
computers, there has been considerable research and development of cryptographic
algorithms that are resistant to the threat. Two new sections cover this rapidly emerging
topic.

prefaCe

A01_STAL7484_08_GE_FM.indd 12 03/05/22 8:35 AM

■■ Cloud security: The discussion of cloud security has been expanded, and an entire
chapter is devoted to this topic in the new edition.

■■ IoT network security: Similarly, IoT networks have resulted in new requirements for
network security protocols, which are covered.

OBJECTIVES

It is the purpose of this book to provide a practical survey of both the principles and practice
of cryptography and network security. In the first part of the book, the basic issues to be
addressed by a network security capability are explored by providing a tutorial and survey
of cryptography and network security technology. The latter part of the book deals with the
practice of network security: practical applications that have been implemented and are in
use to provide network security.

The subject, and therefore this book, draws on a variety of disciplines. In particular, it
is impossible to appreciate the significance of some of the techniques discussed in this book
without a basic understanding of number theory and some results from probability theory.
Nevertheless, an attempt has been made to make the book self-contained. The book not
only presents the basic mathematical results that are needed but provides the reader with an
intuitive understanding of those results. Such background material is introduced as needed.
This approach helps to motivate the material that is introduced, and the author considers
this preferable to simply presenting all of the mathematical material in a lump at the begin-
ning of the book.

SUPPORT OF ACM/IEEE COMPUTER SCIENCE
CURRICULA 2013

The book is intended for both academic and professional audiences. As a textbook, it is
intended as a one-semester undergraduate course in cryptography and network security for
computer science, computer engineering, and electrical engineering majors. This edition sup-
ports the recommendations of the ACM/IEEE Computer Science Curricula 2013 (CS2013).
CS2013 adds Information Assurance and Security (IAS) to the curriculum recommendation
as one of the Knowledge Areas in the Computer Science Body of Knowledge. The document
states that IAS is now part of the curriculum recommendation because of the critical role of
IAS in computer science education. CS2013 divides all course work into three categories:
Core-Tier 1 (all topics should be included in the curriculum), Core-Tier-2 (all or almost all
topics should be included), and elective (desirable to provide breadth and depth). In the IAS
area, CS2013 recommends topics in Fundamental Concepts and Network Security in Tier
1 and Tier 2, and Cryptography topics as elective. This text covers virtually all of the topics
listed by CS2013 in these three categories.

The book also serves as a basic reference volume and is suitable for self-study.

PREFACE 13

A01_STAL7484_08_GE_FM.indd 13 03/05/22 8:35 AM

PLAN OF THE TEXT

The book is divided into six parts.

■■ Background

■■ Symmetric Ciphers

■■ Asymmetric Ciphers

■■ Cryptographic Data Integrity Algorithms

■■ Mutual Trust

■■ Network and Internet Security

The book includes a number of pedagogic features, including the use of the computer
algebra system Sage and numerous figures and tables to clarify the discussions. Most chap-
ters include a list of key words, review questions, suggestions for further reading, and recom-
mended Web sites. Most chapters also include homework problems. The book also includes
an extensive glossary, a list of frequently used acronyms, and a bibliography. In addition, a test
bank is available to instructors.

INSTRUCTOR SUPPORT MATERIALS

The major goal of this text is to make it as effective a teaching tool for this exciting and fast-
moving subject as possible. This goal is reflected both in the structure of the book and in the
supporting material. The text is accompanied by the following supplementary material that
will aid the instructor:

■■ Solutions manual: Solutions to all end-of-chapter Review Questions and Problems.

■■ Projects manual: Suggested project assignments for all of the project categories listed
below.

■■ PowerPoint slides: A set of slides covering all chapters, suitable for use in lecturing.

■■ PDF files: Reproductions of all figures and tables from the book.

■■ Test bank: A chapter-by-chapter set of questions with a separate file of answers.

■■ Supplemental homework problems and solutions: To aid the student in understanding
the material, a separate set of homework problems with solutions are available.

All of these support materials are available at the Instructor Resource Center
(IRC) for this textbook, which can be reached through the publisher’s Web site
www.pearsonglobaleditions.com.

14 PREFACE

A01_STAL7484_08_GE_FM.indd 14 03/05/22 8:35 AM

http://www.pearsonglobaleditions.com

PROJECTS AND OTHER STUDENT EXERCISES

For many instructors, an important component of a cryptography or network security course
is a project or set of projects by which the student gets hands-on experience to reinforce
concepts from the text. This book provides an unparalleled degree of support, including a
project’s component in the course. The IRC not only includes guidance on how to assign and
structure the projects, but also includes a set of project assignments that covers a broad range
of topics from the text:

■■ Sage projects: Described in the next section.

■■ Hacking project: Exercise designed to illuminate the key issues in intrusion detection
and prevention.

■■ Block cipher projects: A lab that explores the operation of the AES encryption algo-
rithm by tracing its execution, computing one round by hand, and then exploring the
various block cipher modes of use. The lab also covers DES. In both cases, an online
Java applet is used (or can be downloaded) to execute AES or DES.

■■ Lab exercises: A series of projects that involve programming and experimenting with
concepts from the book.

■■ Research projects: A series of research assignments that instruct the student to research
a particular topic on the Internet and write a report.

■■ Programming projects: A series of programming projects that cover a broad range of
topics and that can be implemented in any suitable language on any platform.

■■ Practical security assessments: A set of exercises to examine current infrastructure and
practices of an existing organization.

■■ Firewall projects: A portable network firewall visualization simulator, together with
exercises for teaching the fundamentals of firewalls.

■■ Case studies: A set of real-world case studies, including learning objectives, case
description, and a series of case discussion questions.

■■ Writing assignments: A set of suggested writing assignments, organized by chapter.

■■ Reading/report assignments: A list of papers in the literature—one for each chapter—
that can be assigned for the student to read and then write a short report.

■■ Discussion topics: These topics can be used in a classroom, chat room, or message
board environment to explore certain areas in greater depth and to foster student
collaboration.

This diverse set of projects and other student exercises enables the instructor to use the
book as one component in a rich and varied learning experience and to tailor a course plan
to meet the specific needs of the instructor and students.

PREFACE 15

A01_STAL7484_08_GE_FM.indd 15 03/05/22 8:35 AM

THE SAGE COMPUTER ALGEBRA SYSTEM

One of the most important features of this book is the use of Sage for cryptographic
examples and homework assignments. Sage is an open-source, multiplatform, freeware
package that implements a very powerful, flexible, and easily learned mathematics and
computer algebra system. Unlike competing systems (such as Mathematica, Maple, and
MATLAB), there are no licensing agreements or fees involved. Thus, Sage can be made
available on computers and networks at school, and students can individually download the
software to their own personal computers for use at home. Another advantage of using Sage
is that students learn a powerful, flexible tool that can be used for virtually any mathematical
application, not just cryptography.

The use of Sage can make a significant difference to the teaching of the mathematics
of cryptographic algorithms. Two documents available at the IRC support student use of
Sage. The first document provides a large number of examples of the use of Sage covering
many cryptographic concepts. The second document provides exercises in each of these topic
areas to enable the student to gain hands-on experience with cryptographic algorithms. This
appendix is available to instructors at the IRC for this book. It also includes a section on how
to download and get started with Sage, a section on programming with Sage, and exercises
that can be assigned to students in the following categories:

■■ Chapter 2—Introduction to Number Theory: Euclidean and extended Euclidean
algorithms, polynomial arithmetic, GF(24), Euler’s Totient function, Miller Rabin,
factoring, modular exponentiation, discrete logarithm, and Chinese remainder
theorem.

■■ Chapter 3—Classical Encryption Techniques: Affine ciphers and the Hill cipher.

■■ Chapter 4—Block Ciphers and the Data Encryption Standard: Exercises based on
SDES.

■■ Chapter 6—Advanced Encryption Standard: Exercises based on SAES.

■■ Chapter 8—Random Bit Generation and Stream Ciphers: Blum Blum Shub, linear
congruential generator, and ANSI X9.17 PRNG.

■■ Chapter 9—Public-Key Cryptography and RSA: RSA encrypt/decrypt and signing.

■■ Chapter 10—Other Public-Key Cryptosystems: Diffie-Hellman, elliptic curve.

■■ Chapter 11—Cryptographic Hash Functions: Number-theoretic hash function.

■■ Chapter 13—Digital Signatures: DSA.

16 PREFACE

A01_STAL7484_08_GE_FM.indd 16 03/05/22 8:35 AM

ACKNOWLEDGMENTS

This new edition has benefited from review by a number of people who gave generously of
their time and expertise. The following people reviewed all or a large part of the manuscript:
Hossein Beyzavi (Marymount University), Donald F. Costello (University of Nebraska
Lincoln), James Haralambides (Barry University), Tenette Prevatte (Fayetteville Technical
Community College), Anand Seetharam (California State University Monterey Bay), Ten-
ette Prevatte (Fayetteville Technical Community College), Marius C. Silaghi (Florida Insti-
tute of Technology), Shambhu Upadhyaya (University at Buffalo), Rose Volynskiy (Howard
Community College), Katherine Winters (University of Tennessee at Chattanooga), Zheng-
ping Wu (California State University at San Bernardino), Liangliang Xiao (Frostburg State
University), Seong-Moo (Sam) Yoo (The University of Alabama in Huntsville), and Hong
Zhang (Armstrong State University).

Thanks also to the people who provided detailed technical reviews of one or more
chapters: Amaury Behague, Olivier Blazy, Dhananjoy Dey, Matt Frost, Markus Koskinen,
Manuel J. Martínez, Veena Nayak, Pritesh Prajapati, Bernard Roussely, Jim Sweeny, Jim Tun-
nicliffe, and Jose Rivas Vidal.

In addition, I was fortunate to have reviews of individual topics by “subject-area gurus,”
including Jesse Walker of Intel (Intel’s Digital Random Number Generator), Russ Housley
of Vigil Security (key wrapping), Joan Daemen (AES), Edward F. Schaefer of Santa Clara
University (Simplified AES), Tim Mathews, formerly of RSA Laboratories (S/MIME), Al-
fred Menezes of the University of Waterloo (elliptic curve cryptography), William Sutton,
Editor/Publisher of The Cryptogram (classical encryption), Avi Rubin of Johns Hopkins
University (number theory), Michael Markowitz of Information Security Corporation (SHA
and DSS), Don Davis of IBM Internet Security Systems (Kerberos), Steve Kent of BBN
Technologies (X.509), and Phil Zimmerman (PGP).

Nikhil Bhargava (IIT Delhi) developed the set of online homework problems and so-
lutions. Dan Shumow of Microsoft and the University of Washington developed all of the
Sage examples and assignments. Professor Sreekanth Malladi of Dakota State University
developed the hacking exercises. Lawrie Brown of the Australian Defence Force Academy
provided the AES/DES block cipher projects and the security assessment assignments.

Sanjay Rao and Ruben Torres of Purdue University developed the laboratory exercises
that appear in the IRC. The following people contributed project assignments that appear in
the instructor’s supplement: Henning Schulzrinne (Columbia University); Cetin Kaya Koc
(Oregon State University); and David Balenson (Trusted Information Systems and George
Washington University). Kim McLaughlin developed the test bank.

Finally, I thank the many people responsible for the publication of this book, all of
whom did their usual excellent job. This includes the staff at Pearson, particularly my editor
Tracy Johnson and production manager Carole Snyder. Thanks also to the marketing and
sales staffs at Pearson, without whose efforts this book would not be in front of you.

PREFACE 17

A01_STAL7484_08_GE_FM.indd 17 03/05/22 8:35 AM

18 PREFACE

ACKNOWLEDGMENTS FOR THE GLOBAL EDITION

Pearson would like to acknowledge and thank the following for their work on the Global
 Edition.

Contributors

Issteffany Araujo (London Metropolitan University)
George Petrides
Somitra Sanadhya (IIT Jodhpur)
Wen-Nung Tsai (National Yang Ming Chiao Tung University)

Reviewers

Avik Chakraborti (University of Exeter)
Basel Halak (University of Southampton)
Erik Mårtensson (University of Bergen)
Vincent Rijmen (KU Leuven)

A01_STAL7484_08_GE_FM.indd 18 03/05/22 8:35 AM

about the author

Dr. William Stallings has authored 18 textbooks, and, counting revised editions, over 70 books on
computer security, computer networking, and computer architecture. His writings have appeared in
numerous ACM and IEEE publications, including the Proceedings of the IEEE and ACM Computing
Reviews. He has received the award 13 times for the best Computer Science textbook of the year from
the Text and Academic Authors Association.

In over 30 years in the field, he has been a technical contributor, technical manager, and an ex-
ecutive with several high-technology firms. He has designed and implemented both TCP/IP-based and
OSI-based protocol suites on a variety of computers and operating systems, ranging from microcom-
puters to mainframes. Currently he is an independent consultant whose clients have included computer
and networking manufacturers and customers, software development firms, and leading-edge govern-
ment research institutions.

He created and maintains the Computer Science Student Resource Site at http://www.computer-
sciencestudent.com/. This site provides documents and links on a variety of subjects of general interest
to computer science students and professionals. He is a member of the editorial board of Cryptologia,
a scholarly journal devoted to all aspects of cryptology.

Dr. Stallings holds a PhD from the Massachusetts Institute of Technology in Computer Science
and a B.S. from Notre Dame in electrical engineering.

19

A01_STAL7484_08_GE_FM.indd 19 03/05/22 8:35 AM

http://www.computer-sciencestudent.com/
http://www.computer-sciencestudent.com/

A01_STAL7484_08_GE_FM.indd 20 03/05/22 8:35 AM

This page is intentionally left blank

21

1.1 Cybersecurity, Information Security, and Network Security

Security Objectives
The Challenges of Information Security

1.2 The OSI Security Architecture

1.3 Security Attacks

Passive Attacks
Active Attacks

1.4 Security Services

Authentication
Access Control
Data Confidentiality
Data Integrity
Nonrepudiation
Availability Service

1.5 Security Mechanisms

1.6 Cryptography

Keyless Algorithms
Single-Key Algorithms
Two-Key Algorithms

1.7 Network Security

Communications Security
Device Security

Information and Network
Security Concepts

Part One: BackgrOund

1CHAPTER

M01_STAL7484_08_GE_C01.indd 21 04/04/22 7:48 PM

22 CHAPTER 1 / INfoRmATIoN ANd NETwoRk SECuRITy CoNCEPTS

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

 ◆ Describe the key security requirements of confidentiality, integrity, and
availability.

 ◆ Discuss the types of security threats and attacks that must be dealt with
and give examples of the types of threats and attacks that apply to different
categories of computer and network assets.

 ◆ Provide an overview of keyless, single-key, and two-key cryptographic
algorithms.

 ◆ Provide an overview of the main areas of network security.

 ◆ Describe a trust model for information security.

 ◆ List and briefly describe key organizations involved in cryptography
standards.

This book focuses on two broad areas: cryptography and network security. This
 overview chapter first looks at some of the fundamental principles of security, encom-
passing both information security and network security. These include the concepts of
security attacks, security services, and security mechanisms. Next, the chapter intro-
duces the two areas of cryptography and network security. Finally, the concepts of trust
and trustworthiness are examined.

1.8 Trust and Trustworthiness

A Trust Model
The Trust Model and Information Security
Establishing Trust Relationships

1.9 Standards

1.10 Key Terms, Review Questions, and Problems

M01_STAL7484_08_GE_C01.indd 22 04/04/22 7:48 PM

1.1 / CybERSECuRITy, INfoRmATIoN SECuRITy, ANd NETwoRk SECuRITy 23

1.1 CYBERSECURITY, INFORMATION SECURITY,
AND NETWORK SECURITY

It would be useful to start this chapter with a definition of the terms cybersecurity, infor-
mation security, and network security. A reasonably comprehensive definition of cyber-
security is:

Cybersecurity is the protection of information that is stored, transmitted, and pro-
cessed in a networked system of computers, other digital devices, and network devices
and transmission lines, including the Internet. Protection encompasses confidentiality,
integrity, availability, authenticity, and accountability. Methods of protection include
organizational policies and procedures, as well as technical means such as encryption
and secure communications protocols.

As subsets of cybersecurity, we can define the following:

 ■ Information security: This term refers to preservation of confidentiality,
integrity, and availability of information. In addition, other properties, such
as authenticity, accountability, nonrepudiation, and reliability can also be
involved.

 ■ Network security: This term refers to protection of networks and their service
from unauthorized modification, destruction, or disclosure, and provision of
assurance that the network performs its critical functions correctly and there
are no harmful side effects.

Cybersecurity encompasses information security, with respect to electronic
information, and network security. Information security also is concerned with phys-
ical (e.g., paper-based) information. However, in practice, the terms cybersecurity
and information security are often used interchangeably.

Security Objectives

The cybersecurity definition introduces three key objectives that are at the heart of
information and network security:

 ■ Confidentiality: This term covers two related concepts:

 — Data1 confidentiality: Assures that private or confidential information is
not made available or disclosed to unauthorized individuals.

1We can define information as communication or representation of knowledge such as facts, data, or
opinions in any medium or form, including textual, numerical, graphic, cartographic, narrative, or au-
diovisual; and data as information with a specific representation that can be produced, processed, or
stored by a computer. Security literature typically does not make much of a distinction, nor does this
book.

M01_STAL7484_08_GE_C01.indd 23 04/04/22 7:48 PM

24 CHAPTER 1 / INfoRmATIoN ANd NETwoRk SECuRITy CoNCEPTS

 — Privacy: Assures that individuals control or influence what information
related to them may be collected and stored and by whom and to whom
that information may be disclosed.

 ■ Integrity: This term covers two related concepts:

 — Data integrity: Assures that data (both stored and in transmitted packets)
and programs are changed only in a specified and authorized manner. This
concept also encompasses data authenticity, which means that a digital object
is indeed what it claims to be or what it is claimed to be, and nonrepudiation,
which is assurance that the sender of information is provided with proof of
delivery and the recipient is provided with proof of the sender’s identity, so
neither can later deny having processed the information.

 — System integrity: Assures that a system performs its intended function in
an unimpaired manner, free from deliberate or inadvertent unauthorized
manipulation of the system.

 ■ Availability: Assures that systems work promptly and service is not denied to
authorized users.

These three concepts form what is often referred to as the CIA triad. The three
concepts embody the fundamental security objectives for both data and for informa-
tion and computing services. For example, the NIST standard FIPS 199 (Standards
for Security Categorization of Federal Information and Information Systems) lists
confidentiality, integrity, and availability as the three security objectives for infor-
mation and for information systems. FIPS 199 provides a useful characterization
of these three objectives in terms of requirements and the definition of a loss of
security in each category:

 ■ Confidentiality: Preserving authorized restrictions on information access
and disclosure, including means for protecting personal privacy and propri-
etary information. A loss of confidentiality is the unauthorized disclosure of
information.

 ■ Integrity: Guarding against improper information modification or destruc-
tion, including ensuring information nonrepudiation and authenticity. A loss
of integrity is the unauthorized modification or destruction of information.

 ■ Availability: Ensuring timely and reliable access to and use of information.
A loss of availability is the disruption of access to or use of information or an
information system.

Although the use of the CIA triad to define security objectives is well estab-
lished, some in the security field feel that additional concepts are needed to pres-
ent a complete picture (Figure 1.1). Two of the most commonly mentioned are as
follows:

 ■ Authenticity: The property of being genuine and being able to be verified and
trusted; confidence in the validity of a transmission, a message, or message
originator. This means verifying that users are who they say they are and that
each input arriving at the system came from a trusted source.

M01_STAL7484_08_GE_C01.indd 24 04/04/22 7:48 PM

1.1 / CybERSECuRITy, INfoRmATIoN SECuRITy, ANd NETwoRk SECuRITy 25

 ■ Accountability: The security goal that generates the requirement for actions
of an entity to be traced uniquely to that entity. This supports nonrepudiation,
deterrence, fault isolation, intrusion detection and prevention, and after-action
recovery and legal action. Because truly secure systems are not yet an achiev-
able goal, we must be able to trace a security breach to a responsible party.
Systems must keep records of their activities to permit later forensic analysis
to trace security breaches or to aid in transaction disputes.

The Challenges of Information Security

Information and network security are both fascinating and complex. Some of the
reasons follow:

1. Security is not as simple as it might first appear to the novice. The require-
ments seem to be straightforward; indeed, most of the major requirements for
security services can be given self-explanatory, one-word labels: confidential-
ity, authentication, nonrepudiation, and integrity. But the mechanisms used to
meet those requirements can be quite complex, and understanding them may
involve rather subtle reasoning.

2. In developing a particular security mechanism or algorithm, one must always
consider potential attacks on those security features. In many cases, successful
attacks are designed by looking at the problem in a completely different way,
therefore exploiting an unexpected weakness in the mechanism.

3. Because of point 2, the procedures used to provide particular services are
often counterintuitive. Typically, a security mechanism is complex, and it is not
obvious from the statement of a particular requirement that such elaborate
measures are needed. It is only when the various aspects of the threat are con-
sidered that elaborate security mechanisms make sense.

4. Having designed various security mechanisms, it is necessary to decide where
to use them. This is true both in terms of physical placement (e.g., at what points

Information
and Network

Security

Availability

Integrity

(plus data authenticity,

non-repudiation)A
ccountability

A
ut

he
nt

ic
ity

Confidentiality

(plus p
riva

cy)

Figure 1.1 Essential Information and Network Security Objectives

M01_STAL7484_08_GE_C01.indd 25 04/04/22 7:48 PM

26 CHAPTER 1 / INfoRmATIoN ANd NETwoRk SECuRITy CoNCEPTS

in a network are certain security mechanisms needed) and in a logical sense
[e.g., at what layer or layers of an architecture such as TCP/IP (Transmission
Control Protocol/Internet Protocol) should mechanisms be placed].

5. Security mechanisms typically involve more than a particular algorithm or
protocol. They also require that participants be in possession of some secret
information (e.g., an encryption key), which raises questions about the cre-
ation, distribution, and protection of that secret information. There also may
be a reliance on communications protocols whose behavior may complicate
the task of developing the security mechanism. For example, if the proper
functioning of the security mechanism requires setting time limits on the tran-
sit time of a message from sender to receiver, then any protocol or network
that introduces variable, unpredictable delays may render such time limits
meaningless.

6. Information and network security are essentially a battle of wits between a
perpetrator who tries to find holes and the designer or administrator who tries
to close them. The great advantage that the attacker has is that he or she need
only find a single weakness, while the designer must find and eliminate all
weaknesses to achieve perfect security.

7. There is a natural tendency on the part of users and system managers to per-
ceive little benefit from security investment until a security failure occurs.

8. Security requires regular, even constant, monitoring, and this is difficult in
today’s short-term, overloaded environment.

9. Security is still too often an afterthought to be incorporated into a system after
the design is complete rather than being an integral part of the design process.

10. Many users and even security administrators view strong security as an imped-
iment to efficient and user-friendly operation of an information system or use
of information.

The difficulties just enumerated will be encountered in numerous ways as we
examine the various security threats and mechanisms throughout this book.

1.2 THE OSI SECURITY ARCHITECTURE

To assess effectively the security needs of an organization and to evaluate and
choose various security products and policies, the manager responsible for security
needs some systematic way of defining the requirements for security and character-
izing the approaches to satisfying those requirements. This is difficult enough in a
centralized data processing environment; with the use of local and wide area net-
works, the problems are compounded.

ITU-T Recommendation X.800, Security Architecture for OSI, defines
such a systematic approach. The open systems interconnection (OSI) security
architecture is useful to managers as a way of organizing the task of providing
security. Furthermore, because this architecture was developed as an interna-
tional standard, computer and communications vendors have developed security

M01_STAL7484_08_GE_C01.indd 26 04/04/22 7:48 PM

1.3 / SECuRITy ATTACkS 27

features for their products and services that relate to this structured definition of
services and mechanisms.

For our purposes, the OSI security architecture provides a useful, if abstract,
overview of many of the concepts that this book deals with. The OSI security archi-
tecture focuses on security attacks, mechanisms, and services. These can be defined
briefly as:

 ■ Security attack: Any action that compromises the security of information
owned by an organization.

 ■ Security mechanism: A process (or a device incorporating such a process) that
is designed to detect, prevent, or recover from a security attack.

 ■ Security service: A processing or communication service that enhances the
security of the data processing systems and the information transfers of an
organization. The services are intended to counter security attacks, and they
make use of one or more security mechanisms to provide the service.

In the literature, the terms threat and attack are commonly used, with the
following meanings:

 ■ Threat: Any circumstance or event with the potential to adversely impact
organizational operations (including mission, functions, image, or reputation),
organizational assets, individuals, other organizations, or the Nation through
an information system via unauthorized access, destruction, disclosure, modifi-
cation of information, and/or denial of service.

 ■ Attack: Any kind of malicious activity that attempts to collect, disrupt, deny,
degrade, or destroy information system resources or the information itself.

The following three sections provide an overview of the concepts of attacks,
services, and mechanisms. The key concepts that are covered are summarized in
Figure 1.2.

1.3 SECURITY ATTACKS

A useful means of classifying security attacks, used both in X.800, is in terms of
passive attacks and active attacks (Figure 1.2a). A passive attack attempts to learn or
make use of information from the system but does not affect system resources. An
active attack attempts to alter system resources or affect their operation.

Passive Attacks

Passive attacks are in the nature of eavesdropping on, or monitoring of, transmis-
sions. The goal of the attacker is to obtain information that is being transmitted. Two
types of passive attacks are the release of message contents and traffic analysis.

The release of message contents is easily understood. A telephone conver-
sation, an electronic mail message, and a transferred file may contain sensitive or
confidential information. We would like to prevent an opponent from learning the
contents of these transmissions.

M01_STAL7484_08_GE_C01.indd 27 04/04/22 7:48 PM

28 CHAPTER 1 / INfoRmATIoN ANd NETwoRk SECuRITy CoNCEPTS

A second type of passive attack, traffic analysis, is subtler. Suppose that we
had a way of masking the contents of messages or other information traffic so that
opponents, even if they captured the message, could not extract the information
from the message. The common technique for masking contents is encryption. If we
had encryption protection in place, an opponent might still be able to observe the
pattern of these messages. The opponent could determine the location and identity
of communicating hosts and could observe the frequency and length of messages
being exchanged. This information might be useful in guessing the nature of the
communication that was taking place.

Passive attacks are very difficult to detect because they do not involve any
alteration of the data. Typically, the message traffic is sent and received in an appar-
ently normal fashion and neither the sender nor receiver is aware that a third party

(a) Attacks

Release of
message
contents

Passive Attacks Active Attacks

Replay Data
modification

Traffic
analysis Masquerade Denial of

service

(b) Services

Access
control

Data
confidentiality

Nonrepudiation

Authentication

Data
integrity

Availability
service

(c) Mechanisms

Authentication
exchange

Digital
signature

Notarization

Data
integrity

Routing
control

Cryptographic
algorithms

Traffic padding Access
control

Figure 1.2 Key Concepts in Security

M01_STAL7484_08_GE_C01.indd 28 04/04/22 7:48 PM

1.3 / SECuRITy ATTACkS 29

has read the messages or observed the traffic pattern. However, it is feasible to pre-
vent the success of these attacks, usually by means of encryption. Thus, the emphasis
in dealing with passive attacks is on prevention rather than detection.

Active Attacks

Active attacks involve some modification of the data stream or the creation of a
false stream and can be subdivided into four categories: replay, masquerade, modifi-
cation of messages, and denial of service.

A masquerade takes place when one entity pretends to be a different entity.
A masquerade attack usually includes one of the other forms of active attack. For
example, authentication sequences can be captured and replayed after a valid
authentication sequence has taken place, thus enabling an authorized entity with
few privileges to obtain extra privileges by impersonating an entity that has those
privileges.

Replay involves the passive capture of a data unit and its subsequent retrans-
mission to produce an unauthorized effect.

Data modification simply means that some portion of a legitimate message
is altered, or that messages are delayed or reordered, to produce an unauthorized
effect. For example, a message stating, “Allow John Smith to read confidential file
accounts” is modified to say, “Allow Fred Brown to read confidential file accounts.”

The denial of service prevents or inhibits the normal use or management of
communication facilities. This attack may have a specific target; for example, an
entity may suppress all messages directed to a particular destination (e.g., the secu-
rity audit service). Another form of service denial is the disruption of an entire net-
work, either by disabling the network or by overloading it with messages so as to
degrade performance.

Active attacks present the opposite characteristics of passive attacks. Whereas
passive attacks are difficult to detect, measures are available to prevent their success.
On the other hand, it is quite difficult to prevent active attacks absolutely, because
to do so would require physical protection of all communication facilities and paths
at all times. Instead, the goal is to detect them and to recover from any disruption
or delays caused by them. Because the detection has a deterrent effect, it may also
contribute to prevention.

Figure 1.3 illustrates the types of attacks in the context of a client/server inter-
action. A passive attack (Figure 1.3b) does not disturb the information flow between
the client and server, but is able to observe that flow.

A masquerade can take the form of a man-in-the-middle attack (Figure 1.3c).
In this type of attack, the attacker intercepts masquerades as the client to the server
and as the server to the client. We see specific applications of this attack in defeat-
ing key exchange and distribution protocols (Chapters 10 and 14) and in message
authentication protocols (Chapter 11). More generally, it can be used to imperson-
ate the two ends of a legitimate communication. Another form of masquerade is
illustrated in Figure 1.3d. Here, an attacker is able to access server resources by mas-
querading as an authorized user.

Data modification may involve a man-in-the middle attack, in which the
attacker selectively modifies communicated data between a client and server

M01_STAL7484_08_GE_C01.indd 29 04/04/22 7:48 PM

30 CHAPTER 1 / INfoRmATIoN ANd NETwoRk SECuRITy CoNCEPTS

(Figure 1.3c). Another form of data modification attack is the modification of data
residing on a serve or other system after an attacker gains unauthorized access
(Figure 1.3d).

Figure 1.3e illustrates the replay attack. As in a passive attack, the attacker
does not disturb the information flow between client and server, but does capture
client message. The attacker can then subsequently replay any client message to the
server.

Figure 1.3d also illustrates denial of service in the context of a client/server
environment. The denial of service can take two forms: (1) flooding the server with
an overwhelming amount of data; and (2) triggering some action on the server that
consumes substantial computing resources.

1.4 SECURITY SERVICES

A security service is a capability that supports one or more of the security require-
ments (confidentiality, integrity, availability, authenticity, and accountability). Security
services implement security policies and are implemented by security mechanisms.

Client Server

(a) Normal flow

Client Server

Attacker

(b) Passive attack (eavesdrop,
traffic analysis)

Client Server

Attacker

(e) Active attack (replay)

Client Server

Attacker

(c) Active attack (masquerade,
data modification)

Client Server

Attacker

(d) Active attack (masquerade, data
modification, denial of service)

Figure 1.3 Security Attacks

M01_STAL7484_08_GE_C01.indd 30 04/04/22 7:48 PM

1.4 / SECuRITy SERvICES 31

The most important security services are shown in Figure 1.2b. We look at each
category in turn.2

Authentication

The authentication service is concerned with assuring that a communication is
authentic. In the case of a single message, such as a warning or alarm signal, the
function of the authentication service is to assure the recipient that the message is
from the source that it claims to be from. In the case of an ongoing interaction, such
as the connection of a client to a server, two aspects are involved. First, at the time
of connection initiation, the service assures that the two entities are authentic, that
is, that each is the entity that it claims to be. Second, the service must assure that the
connection is not interfered with in such a way that a third party can masquerade as
one of the two legitimate parties for the purposes of unauthorized transmission or
reception.

Two specific authentication services are defined in X.800:

 ■ Peer entity authentication: Provides for the corroboration of the identity of a
peer entity in an association. Two entities are considered peers if they imple-
ment the same protocol in different systems; for example, two TCP modules in
two communicating systems. Peer entity authentication is provided for use at
the establishment of, or at times during the data transfer phase of, a connec-
tion. It attempts to provide confidence that an entity is not performing either a
masquerade or an unauthorized replay of a previous connection.

 ■ Data origin authentication: Provides for the corroboration of the source of
a data unit. It does not provide protection against the duplication or modifi-
cation of data units. This type of service supports applications like electronic
mail, where there are no ongoing interactions between the communicating
entities.

Access Control

In the context of network security, access control is the ability to limit and control
the access to host systems and applications via communications links. To achieve
this, each entity trying to gain access must first be identified, or authenticated, so
that access rights can be tailored to the individual.

Data Confidentiality

Confidentiality is the protection of transmitted data from passive attacks. With
respect to the content of a data transmission, several levels of protection can be
identified. The broadest service protects all user data transmitted between two users

2There is no universal agreement about many of the terms used in the security literature. For example,
the term integrity is sometimes used to refer to all aspects of information security. The term authentication
is sometimes used to refer both to verification of identity and to the various functions listed under
 integrity in this chapter. Our usage here agrees with X.800.

M01_STAL7484_08_GE_C01.indd 31 04/04/22 7:48 PM

32 CHAPTER 1 / INfoRmATIoN ANd NETwoRk SECuRITy CoNCEPTS

over a period of time. For example, when a TCP connection is set up between two
systems, this broad protection prevents the release of any user data transmitted over
the TCP connection. Narrower forms of this service can also be defined, including
the protection of a single message or even specific fields within a message. These
refinements are less useful than the broad approach and may even be more complex
and expensive to implement.

The other aspect of confidentiality is the protection of traffic flow from analy-
sis. This requires that an attacker not be able to observe the source and destination,
frequency, length, or other characteristics of the traffic on a communications facility.

Data Integrity

As with confidentiality, integrity can apply to a stream of messages, a single mes-
sage, or selected fields within a message. Again, the most useful and straightforward
approach is total stream protection.

A connection-oriented integrity service, one that deals with a stream of mes-
sages, assures that messages are received as sent with no duplication, insertion,
modification, reordering, or replays. The destruction of data is also covered under
this service. Thus, the connection-oriented integrity service addresses both message
stream modification and denial of service. On the other hand, a connectionless integ-
rity service, one that deals with individual messages without regard to any larger
context, generally provides protection against message modification only.

We can make a distinction between service with and without recovery. Because
the integrity service relates to active attacks, we are concerned with detection rather
than prevention. If a violation of integrity is detected, then the service may simply
report this violation, and some other portion of software or human intervention is
required to recover from the violation. Alternatively, there are mechanisms avail-
able to recover from the loss of integrity of data, as we will review subsequently. The
incorporation of automated recovery mechanisms is, in general, the more attractive
alternative.

Nonrepudiation

Nonrepudiation prevents either sender or receiver from denying a transmitted mes-
sage. Thus, when a message is sent, the receiver can prove that the alleged sender in
fact sent the message. Similarly, when a message is received, the sender can prove
that the alleged receiver in fact received the message.

Availability Service

Availability is the property of a system, or a system resource being accessible and
usable upon demand by an authorized system entity, according to performance
specifications for the system (i.e., a system is available if it provides services accord-
ing to the system design whenever users request them). A variety of attacks can
result in the loss of or reduction in availability. Some of these attacks are amenable
to automated countermeasures, such as authentication and encryption, whereas oth-
ers require some sort of physical action to prevent or recover from loss of availabil-
ity of elements of a distributed system.

M01_STAL7484_08_GE_C01.indd 32 04/04/22 7:48 PM

1.6 / CRyPTogRAPHy 33

X.800 treats availability as a property to be associated with various security
services. However, it makes sense to call out specifically an availability service. An
availability service is one that protects a system to ensure its availability. This service
addresses the security concerns raised by denial-of-service attacks. It depends on
proper management and control of system resources and thus depends on access
control service and other security services.

1.5 SECURITY MECHANISMS

Figure 1.2c lists the most important security mechanisms discussed in this book.
These mechanisms will be covered in the appropriate places in the book. So, we do
not elaborate now, except to provide the following brief definitions.

 ■ Cryptographic algorithms: We can distinguish between reversible crypto-
graphic mechanisms and irreversible cryptographic mechanisms. A reversible
cryptographic mechanism is simply an encryption algorithm that allows data
to be encrypted and subsequently decrypted. Irreversible cryptographic mech-
anisms include hash algorithms and message authentication codes, which are
used in digital signature and message authentication applications.

 ■ Data integrity: This category covers a variety of mechanisms used to assure the
integrity of a data unit or stream of data units.

 ■ Digital signature: Data appended to, or a cryptographic transformation of,
a data unit that allows a recipient of the data unit to prove the source and
integrity of the data unit and protect against forgery.

 ■ Authentication exchange: A mechanism intended to ensure the identity of an
entity by means of information exchange.

 ■ Traffic padding: The insertion of bits into gaps in a data stream to frustrate
traffic analysis attempts.

 ■ Routing control: Enables selection of particular physically or logically secure
routes for certain data and allows routing changes, especially when a breach of
security is suspected.

 ■ Notarization: The use of a trusted third party to assure certain properties of a
data exchange.

 ■ Access control: A variety of mechanisms that enforce access rights to
resources.

1.6 CRYPTOGRAPHY

Cryptography is a branch of mathematics that deals with the transformation of
data. Cryptographic algorithms are used in many ways in information security and
network security. Cryptography is an essential component in the secure storage
and transmission of data, and in the secure interaction between parties. Parts Two
through Five are devoted to this topic. Here we provide a very brief overview.

M01_STAL7484_08_GE_C01.indd 33 04/04/22 7:48 PM

34 CHAPTER 1 / INfoRmATIoN ANd NETwoRk SECuRITy CoNCEPTS

Cryptographic algorithms can be divided into three categories (Figure 1.4):

 ■ Keyless: Do not use any keys during cryptographic transformations.

 ■ Single-key: The result of a transformation is a function of the input data and a
single key, known as a secret key.

 ■ Two-key: At various stages of the calculation, two different but related keys
are used, referred to as a private key and a public key.

Keyless Algorithms

Keyless algorithms are deterministic functions that have certain properties useful
for cryptography.

One important type of keyless algorithm is the cryptographic hash function. A
hash function turns a variable amount of text into a small, fixed-length value called
a hash value, hash code, or digest. A cryptographic hash function is one that has
additional properties that make it useful as part of another cryptographic algorithm,
such as a message authentication code or a digital signature.

A pseudorandom number generator produces a deterministic sequence
of numbers or bits that has the appearance of being a truly random sequence.
Although the sequence appears to lack any definite pattern, it will repeat after a cer-
tain sequence length. Nevertheless, for some cryptographic purposes this apparently
random sequence is sufficient.

Single-Key Algorithms

Single-key cryptographic algorithms depend on the use of a secret key. This key may
be known to a single user; for example, this is the case for protecting stored data that
is only going to be accessed by the data creator. Commonly, two parties share the

Asymmetric
encryption

Digital
signature

Key
exchange

User
authentication

Two-Key

Cryptographic
hash function

Keyless

Pseudo-
random number

generator

Single-Key

Block cipher
symmetric
encryption

Stream cipher
symmetric
encryption

Message
authentication

code

Figure 1.4 Cryptographic Algorithms

M01_STAL7484_08_GE_C01.indd 34 04/04/22 7:48 PM

1.6 / CRyPTogRAPHy 35

secret key so that communication between the two parties is protected. For certain
applications, more than two users may share the same secret key. In this last case, the
algorithm protects data from those outside the group who share the key.

Encryption algorithms that use a single key are referred to as symmetric
encryption algorithms. With symmetric encryption, an encryption algorithm takes
as input some data to be protected and a secret key and produces an unintelligi-
ble transformation on that data. A corresponding decryption algorithm takes the
transformed data and the same secret key and recovers the original data. Symmetric
encryption takes the following forms:

 ■ Block cipher: A block cipher operates on data as a sequence of blocks. A typi-
cal block size is 128 bits. In most versions of the block cipher, known as modes
of operation, the transformation depends not only on the current data block
and the secret key but also on the content of preceding blocks.

 ■ Stream cipher: A stream cipher operates on data as a sequence of bits. Typically,
an exclusive-OR operation is used to produce a bit-by-bit transformation. As
with the block cipher, the transformation depends on a secret key.

Another form of single-key cryptographic algorithm is the message authen-
tication code (MAC). A MAC is a data element associated with a data block or
message. The MAC is generated by a cryptographic transformation involving a
secret key and, typically, a cryptographic hash function of the message. The MAC
is designed so that someone in possession of the secret key can verify the integ-
rity of the message. Thus, the MAC algorithm takes as input a message and secret
key and produces the MAC. The recipient of the message plus the MAC can per-
form the same calculation on the message; if the calculated MAC matches the
MAC accompanying the message, this provides assurance that the message has
not been altered.

Two-Key Algorithms

Two-key algorithms involve the use of two related keys. A private key is known only
to a single user or entity, whereas the corresponding public key is made available
to a number of users. Encryption algorithms that use two keys are referred to as
asymmetric encryption algorithms. Asymmetric encryption can work in two ways:

1. An encryption algorithm takes as input some data to be protected and the
private key and produces an unintelligible transformation on that data. A
corresponding decryption algorithm takes the transformed data and the
 corresponding public key and recovers the original data. In this case, only the
possessor of the private key can have performed the encryption and any pos-
sessor of the public key can perform the decryption.

2. An encryption algorithm takes as input some data to be protected and a
 public key and produces an unintelligible transformation on that data. A cor-
responding decryption algorithm takes the transformed data and the corre-
sponding private key and recovers the original data. In this case, any possessor
of the public key can have performed the encryption and only the possessor of
the private key can perform the decryption.

M01_STAL7484_08_GE_C01.indd 35 04/04/22 7:48 PM

36 CHAPTER 1 / INfoRmATIoN ANd NETwoRk SECuRITy CoNCEPTS

Asymmetric encryption has a variety of applications. One of the most impor-
tant is the digital signature algorithm. A digital signature is a value computed with
a cryptographic algorithm and associated with a data object in such a way that any
recipient of the data can use the signature to verify the data’s origin and integrity.
Typically, the signer of a data object uses the signer’s private key to generate the
signature, and anyone in possession of the corresponding public key can verify that
validity of the signature.

Asymmetric algorithms can also be used in two other important applica-
tions. Key exchange is the process of securely distributing a symmetric key to
two or more parties. User authentication is the process of authenticating that a
user attempting to access an application or service is genuine and, similarly, that
the application or service is genuine. These concepts are explained in detail in
subsequent chapters.

1.7 NETWORK SECURITY

Network security is a broad term that encompasses security of the communications
pathways of the network and the security of network devices and devices attached
to the network (Figure 1.5).

Communications Security

In the context of network security, communications security deals with the protec-
tion of communications through the network, including measures to protect against
both passive and active attacks (Figure 1.3).

Communications security is primarily implemented using network protocols.
A network protocol consists of the format and procedures that governs the trans-
mitting and receiving of data between points in a network. A protocol defines the
structure of the individual data units (e.g., packets) and the control commands that
manage the data transfer.

With respect to network security, a security protocol may be an enhancement
that is part of an existing protocol or a standalone protocol. Examples of the former
are IPsec, which is part of the Internet Protocol (IP) and IEEE 802.11i, which is
part of the IEEE 802.11 Wi-Fi standard. Examples of the latter are Transport Layer
Security (TLS) and Secure Shell (SSH). Part Six examines these and other secure
network protocols.

One common characteristic of all of these protocols is that they use a number
of cryptographic algorithms as part of the mechanism to provide security.

Device Security

The other aspect of network security is the protection of network devices, such as
routers and switches, and end systems connected to the network, such as client sys-
tems and servers. The primary security concerns are intruders that gain access to
the system to perform unauthorized actions, insert malicious software (malware), or
overwhelm system resources to diminish availability. Three types of device security
are noteworthy:

M01_STAL7484_08_GE_C01.indd 36 04/04/22 7:48 PM

1.8 / TRuST ANd TRuSTwoRTHINESS 37

 ■ Firewall: A hardware and/or software capability that limits access between a
network and devices attached to the network, in accordance with a specific
security policy. The firewall acts as a filter that permits or denies data traffic,
both incoming and outgoing, using a set of rules based on traffic content and/
or traffic pattern.

 ■ Intrusion detection: Hardware or software products that gather and analyze
information from various areas within a computer or a network for the pur-
pose of finding, and providing real-time or near-real-time warning of, attempts
to access system resources in an unauthorized manner.

 ■ Intrusion prevention: Hardware or software products designed to detect intru-
sive activity and attempt to stop the activity, ideally before it reaches its target.

These device security capabilities are more closely related to the field of
computer security than network security. Accordingly, they are dealt with more
briefly than communications security in Part Six. For a more detailed treatment, see
[STAL18].

1.8 TRUST AND TRUSTWORTHINESS

The concepts of trust and trustworthiness are key concepts in computer and network
security [SCHN91]. It will be useful to look first at a generalized model of trust and
trustworthiness, and then apply these concepts to the topic of information security.

(a) Communications Security

Intrusion
detection

(b) Device Security

Intrusion
preventionFirewall

CryptographyNetwork Protocols

IPsec TLS

SSH IEEE 802.11i

HTPPS

S//MIME

Keyless

Single-key

Two-key

Figure 1.5 Key Elements of Network Security

M01_STAL7484_08_GE_C01.indd 37 04/04/22 7:48 PM

38 CHAPTER 1 / INfoRmATIoN ANd NETwoRk SECuRITy CoNCEPTS

A Trust Model

One of the most widely accepted and most cited definitions of trust in the organi-
zational science literature is from [MAYE95], which defines trust as follows: the
willingness of a party to be vulnerable to the actions of another party based on the
expectation that the other will perform a particular action important to the truster,
irrespective of the ability to monitor or control that other party.

Three related concepts are relevant to a trust model:

 ■ Trustworthiness: A characteristic of an entity that reflects the degree to which
that entity is deserving of trust.

 ■ Propensity to trust: A tendency to be willing to trust others across a broad
spectrum of situations and trust targets. This suggests that every individual has
some baseline level of trust that will influence the person’s willingness to rely
on the words and actions of others.

 ■ Risk: A measure of the extent to which an entity is threatened by a poten-
tial circumstance or event, and typically a function of 1) the adverse impacts
that would arise if the circumstance or event occurs; and 2) the likelihood of
occurrence.

Figure 1.6, adapted from [MAYE95], illustrates the relationship among these
concepts. Trust is a function of the truster’s propensity to trust and the perceived
trustworthiness of the trustee. Propensity can also be expressed as the level of risk
that an entity (individual or organization) is prepared to tolerate.

Typically, a truster uses a number of factors to establish the trustworthiness of
an entity. Three general factors are commonly cited:

 ■ Ability: Also referred to as competence, this relates to the potential ability of
the evaluated entity to do a given task or be entrusted with given information.

 ■ Benevolence: This implies a disposition of goodwill towards the trusting party.
That is, a trustworthy party does not intend to cause harm to the trusting party.

 ■ Integrity: This can be defined as the truster’s perception that the trustee
adheres to a set of principles that the truster finds acceptable. Integrity implies
that a benevolent party takes such measures are necessary to assure that it in
fact does not cause harm to the trusting party.

The goal of trust, in the model of Figure 1.6, is to determine what course of
action, if any, the trusting party is willing to take in relation to the trusted party.
Based on the level of trust, and the perceived risk, the trusting party may decide to
take some action that involves some degree of risk taking. The outcome of the risk
taking could be a reliance on the trusted party to perform some action or the disclo-
sure of information to the trusted party with the expectation that the information
will be protected as agreed between the parties.

The Trust Model and Information Security

Trust is confidence that an entity will perform in a way the will not prejudice the
security of the user of the system of which that entity is a part. Trust is always
restricted to specific functions or ways of behavior and is meaningful only in the

M01_STAL7484_08_GE_C01.indd 38 04/04/22 7:48 PM

1.8 / TRuST ANd TRuSTwoRTHINESS 39

context of a security policy. Generally, an entity is said to trust a second entity when
the first entity assumes that the second entity will behave exactly as the first entity
expects. This trust may apply only for some specific function. In this context, the
term entity may refer to a single hardware component or software module, a piece
of equipment identified by make and model, a site or location, or an organization.

TrusTworThiness of an individual Organizations need to be concerned about both
internal users (employees, on-site contractors) and external users (customers, suppli-
ers) of their information systems. With respect to internal users, an organization de-
velops a level of trust in individuals by policies in the following two areas [STAL19]:

 ■ Human resource security: Sound security practice dictates that information
security requirements be embedded into each stage of the employment life
cycle, specifying security-related actions required during the induction of each
individual, their ongoing management, and termination of their employment.
Human resource security also includes assigning ownership of information
(including responsibility for its protection) to capable individuals and obtain-
ing confirmation of their understanding and acceptance.

 ■ Security awareness and training: This area refers to disseminating security
information to all employees, including IT staff, IT security staff, and manage-
ment, as well as IT users and other employees. A workforce that has a high
level of security awareness and appropriate security training for each indi-
vidual’s role is as important, if not more important, than any other security
countermeasure or control.

For external users, trust will depend on the context. In general terms, the fac-
tors of perceived trustworthiness and the truster’s propensity, as depicted in Figure 1.6,
determine the level of trust. Further, the issue of trust is mutual. That is, not only must
an organization determine a level of trust towards external users, but external users

Reliance

Disclosure

Ability

Factors of perceived
trustworthiness

Outcomes

Benevolence Risk taking in
relationshipTrust

Integrity

Truster’s
propensity

Perceived risk

Figure 1.6 Trust Model

M01_STAL7484_08_GE_C01.indd 39 04/04/22 7:48 PM

40 CHAPTER 1 / INfoRmATIoN ANd NETwoRk SECuRITy CoNCEPTS

need to be concerned about the degree to which they can trust an information resource
that they use. This mutual trust involves a number a practical consequences, including
the use of a public-key infrastructure and user authentication protocols. These matters
are explored in Part Five.

TrusTworThiness of an organizaTion Most organizations rely, to a greater or
lesser extent, on information system service and information provided by external
organizations, as well as partnerships to accomplish missions and business functions.
Examples are cloud service providers and companies that form part of the supply
chain for the organization. To manage risk to the organization, it must establish
trust relationships with these external organizations. NIST SP 800-39 (Managing
Information Security Risk, March 2011) indicates that such trust relationships can be:

 ■ Formally established, for example, by documenting the trust-related informa-
tion in contracts, service-level agreements, statements of work, memoranda of
agreement/understanding, or interconnection security agreements;

 ■ Scalable and inter-organizational or intra-organizational in nature; and/or

 ■ Represented by simple (bilateral) relationships between two partners or more
complex many-to-many relationships among many diverse partners.

The requirements for establishing and maintaining trust depend on mis-
sion/business requirements, the participants involved in the trust relationship, the
 criticality/sensitivity of the information being shared or the types of services being
rendered, the history between the organizations, and the overall risk to the organiza-
tions participating in the relationship.

As with individuals, trust related to organizations can involve the use of
 public-key infrastructure and user authentication, as well as the network security
measures described in Part Six.

TrusTworThiness of informaTion sysTems SP 800-39 defines trustworthiness for
information systems as the degree to which information systems (including the in-
formation technology products from which the systems are built) can be expected
to preserve the confidentiality, integrity, and availability of the information being
processed, stored, or transmitted by the systems across the full range of threats. Two
factors affecting the trustworthiness of information systems are:

 ■ Security functionality: The security features/functions employed within the
system. These include cryptographic and network security technologies dis-
cussed throughout this book.

 ■ Security assurance: The grounds for confidence that the security functionality
is effective in its application. This area is addressed by security management
techniques, such as auditing and incorporating security considerations into the
system development life cycle [STAL19].

Establishing Trust Relationships

The methods used by an organization to establish a trust relationship with various enti-
ties will depend on a variety of factors, such as laws and regulations, risk tolerance, and the
criticality and sensitivity of the relationship. SP 800-39 describes the following methods:

M01_STAL7484_08_GE_C01.indd 40 04/04/22 7:48 PM

1.9 / STANdARdS 41

 ■ Validated trust: Trust is based on evidence obtained by the trusting organization
about the trusted organization or entity. The information may include informa-
tion security policy, security measures, and level of oversight. An example would
be for one organization to develop an application or information system and pro-
vide evidence (e.g., security plan, assessment results) to a second organization that
supports the claims by the first organization that the application/system meets
certain security requirements and/or addresses the appropriate security controls.

 ■ Direct historical trust: This type of trust is based on the security-related track
record exhibited by an organization in the past, particularly in interactions
with the organization seeking to establish trust.

 ■ Mediated trust: Mediated trust involves the use of a third party that is mutu-
ally trusted by two parties, with the third party providing assurance or guar-
antee of a given level of trust between the first two parties. An example of
this form of trust establishment is the use of public-key certificate authorities,
described in Chapter 14.

 ■ Mandated trust: An organization establishes a level of trust with another orga-
nization based on a specific mandate issued by a third party in a position of
authority. For example, an organization may be given the responsibility and
the authority to issue public key certificates for a group of organizations.

An organization is likely to use a combination of these methods to establish
relationships with a number of other entities.

1.9 STANDARDS

Many of the security techniques and applications described in this book have
been specified as standards. Additionally, standards have been developed to cover
management practices and the overall architecture of security mechanisms and
services. Throughout this book, we describe the most important standards in use
or being developed for various aspects of cryptography and network security.
Various organizations have been involved in the development or promotion of
these standards. The most important (in the current context) of these organiza-
tions are as follows:

 ■ National Institute of Standards and Technology: NIST is a U.S. federal agency
that deals with measurement science, standards, and technology related to
U.S. government use and to the promotion of U.S. private-sector innovation.
Despite its national scope, NIST Federal Information Processing Standards
(FIPS) and Special Publications (SP) have a worldwide impact.

 ■ Internet Society: ISOC is a professional membership society with worldwide
organizational and individual membership. It provides leadership in address-
ing issues that confront the future of the Internet and is the organization home
for the groups responsible for Internet infrastructure standards, including the
Internet Engineering Task Force (IETF) and the Internet Architecture Board
(IAB). These organizations develop Internet standards and related specifica-
tions, all of which are published as Requests for Comments (RFCs).

M01_STAL7484_08_GE_C01.indd 41 04/04/22 7:48 PM

42 CHAPTER 1 / INfoRmATIoN ANd NETwoRk SECuRITy CoNCEPTS

 ■ ITU-T: The International Telecommunication Union (ITU) is an international
organization within the United Nations System in which governments and
the private sector coordinate global telecom networks and services. The ITU
Telecommunication Standardization Sector (ITU-T) is one of the three sectors of
the ITU. ITU-T’s mission is the development of technical standards covering all
fields of telecommunications. ITU-T standards are referred to as Recommendations.

 ■ ISO: The International Organization for Standardization (ISO) is a worldwide
federation of national standards bodies from more than 140 countries, one from
each country. ISO is a nongovernmental organization that promotes the devel-
opment of standardization and related activities with a view to facilitating the
international exchange of goods and services and to developing cooperation in
the spheres of intellectual, scientific, technological, and economic activity. ISO’s
work results in international agreements that are published as International
Standards.

1.10 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Review Questions
 1.1 What is the OSI security architecture?
 1.2 List and briefly define the three key objectives of computer security.
 1.3 List and briefly define categories of passive and active security attacks.
 1.4 List and briefly define categories of security services.
 1.5 List and briefly define categories of security mechanisms.
 1.6 List and briefly define the fundamental security design principles.

Key Terms

access control
active attack
asymmetric encryption

algorithms
attack
authentication
authentication exchange
authenticity
availability
block cipher
confidentiality
cryptographic hash function
cryptography
cybersecurity
data authenticity
data confidentiality
data integrity
data origin authentication
denial of service

digital signature algorithms
eavesdropping
encryption
firewall
information security
intrusion detection
intrusion prevention
key exchange
keyless algorithm
man-in-the-middle attack
masquerade
message authentication

code
network security
notarization
OSI security architecture
passive attack
peer entity authentication
privacy

pseudorandom number
generator

replay
routing control
security attack
security mechanism
security service
single-key algorithm
stream cipher
symmetric encryption

algorithms
system integrity
threat
trust
trust relationship
trustworthiness
two-key algorithm
user authentication

M01_STAL7484_08_GE_C01.indd 42 04/04/22 7:48 PM

1.10 / Key Terms, review QuesTions, and Problems 43

 1.7 Provide an overview of the three types of cryptographic algorithms.
 1.8 Provide an overview of the two major elements of network security.
 1.9 Briefly explain the concepts of trust and trustworthiness.

Problems
 1.1 Consider an automated cash deposit machine in which users provide a card or an

account number to deposit cash. Give examples of confidentiality, integrity, and avail-
ability requirements associated with the system, and, in each case, indicate the degree
of importance of the requirement.

 1.2 Repeat Problem 1.1 for a payment gateway system where a user pays for an item using
their account via the payment gateway.

 1.3 Consider a financial report publishing system used to produce reports for various
organizations.
a. Give an example of a type of publication for which confidentiality of the stored

data is the most important requirement.
b. Give an example of a type of publication in which data integrity is the most impor-

tant requirement.
c. Give an example in which system availability is the most important requirement.

 1.4 For each of the following assets, assign a low, moderate, or high impact level for the
loss of confidentiality, availability, and integrity, respectively. Justify your answers.
a. A student maintaining a blog to post public information.
b. An examination section of a university that is managing sensitive information

about exam papers.
c. An information system in a pathological laboratory maintaining the patient’s data.
d. A student information system used for maintaining student data in a university

that contains both personal, academic information and routine administrative
information (not privacy related). Assess the impact for the two data sets sepa-
rately and the information system as a whole.

e. A university library contains a library management system, which controls the
distribution of books among the students of various departments. The library
management system contains both the student data and the book data. Assess
the impact for the two data sets separately and the information system as a whole.

 1.5 It is useful to read some of the classic tutorial papers on computer security; these pro-
vide a historical perspective from which to appreciate current work and thinking. The
following are good examples:

— Browne, P. “Computer Security—A Survey.” ACM SIGMIS Database, Fall 1972.
— LAMP04 Lampson, B. “Computer Security in the Real World,” Computer, June 2004.
— Saltzer, J., and Schroeder, M. “The Protection of Information in Computer

 Systems.” Proceedings of the IEEE, September 1975.
— Shanker, K. “The Total Computer Security Problem: An Overview.” Computer,

June 1977.
— Summers, R. “An Overview of Computer Security.” IBM Systems Journal, Vol. 23,

No. 4, 1984.
— Ware, W., ed. Security Controls for Computer Systems. RAND Report 609-1. October

1979.
Read all of these papers. The papers are available at box.com/Crypto8e. Compose
a 500–1000 word paper (or 8–12 slide PowerPoint presentation) that summarizes
the key concepts that emerge from these papers, emphasizing concepts that are
common to most or all of the papers.

M01_STAL7484_08_GE_C01.indd 43 12/04/22 10:48 AM

http://box.com/Crypto8e

2.1 Divisibility and The Division Algorithm
Divisibility
The Division Algorithm

2.2 The Euclidean Algorithm
Greatest Common Divisor
Finding the Greatest Common Divisor

2.3 Modular Arithmetic
The Modulus
Properties of Congruences
Modular Arithmetic Operations
Properties of Modular Arithmetic
Euclidean Algorithm Revisited
The Extended Euclidean Algorithm

2.4 Prime Numbers

2.5 Fermat’s and Euler’s Theorems

Fermat’s Theorem
Euler’s Totient Function
Euler’s Theorem

2.6 Testing for Primality

Miller–Rabin Algorithm
A Deterministic Primality Algorithm
Distribution of Primes

2.7 The Chinese Remainder Theorem

2.8 Discrete Logarithms

The Powers of an Integer, Modulo n
Logarithms for Modular Arithmetic
Calculation of Discrete Logarithms

2.9 Key Terms, Review Questions, and Problems

Appendix 2A The Meaning of Mod

CHAPTER2
Introduction to Number Theory

44

M02_STAL7484_08_GE_C02.indd 44 20/04/22 08:59

2.1 / DIvIsIbIlITy aND The DIvIsIoN algorIThm 45

Number theory is pervasive in cryptographic algorithms. This chapter provides
 sufficient breadth and depth of coverage of relevant number theory topics for under-
standing the wide range of applications in cryptography. The reader familiar with these
topics can safely skip this chapter.

The first three sections introduce basic concepts from number theory that are
needed for understanding finite fields; these include divisibility, the Euclidian algo-
rithm, and modular arithmetic. The reader may study these sections now or wait until
ready to tackle Chapter 5 on finite fields.

Sections 2.4 through 2.8 discuss aspects of number theory related to prime num-
bers and discrete logarithms. These topics are fundamental to the design of asymmetric
(public-key) cryptographic algorithms. The reader may study these sections now or
wait until ready to read Part Three.

The concepts and techniques of number theory are quite abstract, and it is often
difficult to grasp them intuitively without examples. Accordingly, this chapter includes a
number of examples, each of which is highlighted in a shaded box.

 2.1 DIVISIBILITY AND THE DIVISION ALGORITHM

Divisibility

We say that a nonzero b divides a if a = mb for some m, where a, b, and m are in-
tegers. That is, b divides a if there is no remainder on division. The notation b � a is
commonly used to mean b divides a. Also, if b � a, we say that b is a divisor of a.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

◆◆ Understand the concept of divisibility and the division algorithm.

◆◆ Understand how to use the Euclidean algorithm to find the greatest com-
mon divisor.

◆◆ Present an overview of the concepts of modular arithmetic.

◆◆ Explain the operation of the extended Euclidean algorithm.

◆◆ Discuss key concepts relating to prime numbers.

◆◆ Understand Fermat’s theorem.

◆◆ Understand Euler’s theorem.

◆◆ Define Euler’s totient function.

◆◆ Make a presentation on the topic of testing for primality.

◆◆ Explain the Chinese remainder theorem.

◆◆ Define discrete logarithms.

M02_STAL7484_08_GE_C02.indd 45 20/04/22 08:59

46 ChaPTer 2 / INTroDuCTIoN To Number Theory

Subsequently, we will need some simple properties of divisibility for integers,
which are as follows:

◆■ If a � 1, then a = {1.

◆■ If a � b and b � a, then a = {b.

◆■ Any b ≠ 0 divides 0.

◆■ If a � b and b � c, then a � c:

 The positive divisors of 24 are 1, 2, 3, 4, 6, 8, 12, and 24.

13 � 182; -5 � 30; 17 � 289; -3 � 33; 17 � 0

11 � 66 and 66 � 198 1 11 � 198

 b = 7; g = 14; h = 63; m = 3; n = 2

7 � 14 and 7 � 63.

To show 7 � (3 * 14 + 2 * 63),

we have (3 * 14 + 2 * 63) = 7(3 * 2 + 2 * 9),
and it is obvious that 7 � (7(3 * 2 + 2 * 9)).

◆■ If b � g and b � h, then b � (mg + nh) for arbitrary integers m and n.

To see this last point, note that

◆■ If b � g, then g is of the form g = b * g1 for some integer g1.

◆■ If b � h, then h is of the form h = b * h1 for some integer h1.

So

mg + nh = mbg1 + nbh1 = b * (mg1 + nh1)

and therefore b divides mg + nh.

The Division Algorithm

Given any positive integer n and any nonnegative integer a, if we divide a by n,
we get an integer quotient q and an integer remainder r that obey the following
relationship:

 a = qn + r 0 … r 6 n; q = :a/n; (2.1)

where :x; is the largest integer less than or equal to x. Equation (2.1) is referred to
as the division algorithm.1

1Equation (2.1) expresses a theorem rather than an algorithm, but by tradition, this is referred to as the
division algorithm.

M02_STAL7484_08_GE_C02.indd 46 20/04/22 08:59

2.2 / The euClIDeaN algorIThm 47

Figure 2.1a demonstrates that, given a and positive n, it is always possible to
find q and r that satisfy the preceding relationship. Represent the integers on the
number line; a will fall somewhere on that line (positive a is shown, a similar dem-
onstration can be made for negative a). Starting at 0, proceed to n, 2n, up to qn, such
that qn … a and (q + 1)n 7 a. The distance from qn to a is r, and we have found
the unique values of q and r. The remainder r is often referred to as a residue.

a = 11; n = 7; 11 = 1 * 7 + 4; r = 4 q = 1
a = -11; n = 7; -11 = (-2) * 7 + 3; r = 3 q = -2

Figure 2.1b provides another example.

Figure 2.1 The Relationship a = qn + r; 0 … r 6 n

0

n 2n 3n qn (q 1 1)na

n

r(a) General relationship

0 15

15

10

30
5 2 3 15

70

(b) Example: 70 5 (4 3 15) 1 10

45
5 3 3 15

60
5 4 3 15

75
5 5 3 15

 2.2 THE EUCLIDEAN ALGORITHM

One of the basic techniques of number theory is the Euclidean algorithm, which is a
simple procedure for determining the greatest common divisor of two positive inte-
gers. First, we need a simple definition: Two integers are relatively prime if and only
if their only common positive integer factor is 1.

Greatest Common Divisor

Recall that nonzero b is defined to be a divisor of a if a = mb for some m, where
a, b, and m are integers. We will use the notation gcd(a, b) to mean the greatest
 common divisor of a and b. The greatest common divisor of a and b is the largest
integer that divides both a and b. We also define gcd(0, 0) = 0.

M02_STAL7484_08_GE_C02.indd 47 20/04/22 08:59

48 ChaPTer 2 / INTroDuCTIoN To Number Theory

More formally, the positive integer c is said to be the greatest common divisor
of a and b if

1. c is a divisor of a and of b.

2. any divisor of a and b is a divisor of c.

An equivalent definition is the following:

gcd(a, b) = max[k, such that k � a and k � b]

Because we require that the greatest common divisor be positive, gcd(a, b) =
gcd(a, -b) = gcd(-a, b) = gcd(-a, -b). In general, gcd(a, b) = gcd(� a � , � b �).

gcd(60, 24) = gcd(60, -24) = 12

8 and 15 are relatively prime because the positive divisors of 8 are 1, 2, 4, and 8, and
the positive divisors of 15 are 1, 3, 5, and 15. So 1 is the only integer on both lists.

Also, because all nonzero integers divide 0, we have gcd(a, 0) = � a � .
We stated that two integers a and b are relatively prime if and only if their

only common positive integer factor is 1. This is equivalent to saying that a and b are
relatively prime if gcd(a, b) = 1.

Finding the Greatest Common Divisor

We now describe an algorithm credited to Euclid for easily finding the greatest com-
mon divisor of two integers (Figure 2.2). This algorithm has broad significance in
cryptography. The explanation of the algorithm can be broken down into the follow-
ing points:

1. Suppose we wish to determine the greatest common divisor d of the integers
a and b; that is determine d = gcd(a, b). Because gcd(� a � , � b �) = gcd(a, b),
there is no harm in assuming a Ú b 7 0.

2. Dividing a by b and applying the division algorithm, we can state:

 a = q1b + r1 0 … r1 6 b (2.2)

3. First consider the case in which r1 = 0. Therefore b divides a and clearly no
larger number divides both b and a, because that number would be larger
than b. So we have d = gcd(a, b) = b.

4. The other possibility from Equation (2.2) is r1 ≠ 0. For this case, we can state
that d � r1. This is due to the basic properties of divisibility: the relations d � a
and d � b together imply that d � (a - q1b), which is the same as d � r1.

5. Before proceeding with the Euclidian algorithm, we need to answer the ques-
tion: What is the gcd(b, r1)? We know that d � b and d � r1. Now take any arbi-
trary integer c that divides both b and r1. Therefore, c � (q1b + r1) = a. Because
c divides both a and b, we must have c … d, which is the greatest common
 divisor of a and b. Therefore d = gcd(b, r1).

M02_STAL7484_08_GE_C02.indd 48 20/04/22 08:59

2.2 / The euClIDeaN algorIThm 49

Let us now return to Equation (2.2) and assume that r1 ≠ 0. Because b 7 r1,
we can divide b by r1 and apply the division algorithm to obtain:

b = q2r1 + r2 0 … r2 6 r1

As before, if r2 = 0, then d = r1 and if r2 ≠ 0, then d = gcd(r1, r2). Note that the
remainders form a descending series of nonnegative values and so must terminate
when the remainder is zero. This happens, say, at the (n + 1)th stage where rn - 1 is
divided by rn. The result is the following system of equations:

a = q1b + r1 0 6 r1 6 b
b = q2r1 + r2 0 6 r2 6 r1

r1 = q3r2 + r3 0 6 r3 6 r2

~ ~
 ~ ~
~ ~

rn - 2 = qnrn - 1 + rn 0 6 rn 6 rn - 1

rn - 1 = qn + 1rn + 0
d = gcd(a, b) = rn

w (2.3)

At each iteration, we have d = gcd(ri, ri+ 1) until finally d = gcd(rn, 0) = rn.
Thus, we can find the greatest common divisor of two integers by repetitive appli-
cation of the division algorithm. This scheme is known as the Euclidean algorithm.
Figure 2.3 illustrates a simple example.

We have essentially argued from the top down that the final result is the
gcd(a, b). We can also argue from the bottom up. The first step is to show that rn
divides a and b. It follows from the last division in Equation (2.3) that rn divides
rn - 1. The next to last division shows that rn divides rn - 2 because it divides both

Figure 2.2 Euclidean Algorithm

No

No Yes

Yes

a + b?

r + 0?
Swap

a and b

Replace
b with r

Replace
a with b

Divide a by b,
calling the

remainder r

GCD is
the final

value of b

START

END Figure 2.3 Euclidean
Algorithm Example:
gcd(710, 310)

710 5 2 3 310 1 90

 310 5 3 3 90 1 40

90 5 2 3 40 1 10

40 5 4 310

GCDGCD

Same GCD

M02_STAL7484_08_GE_C02.indd 49 20/04/22 08:59

50 ChaPTer 2 / INTroDuCTIoN To Number Theory

terms on the right. Successively, one sees that rn divides all ri>s and finally a and b.
It remains to show that rn is the largest divisor that divides a and b. If we take any
arbitrary integer that divides a and b, it must also divide r1, as explained previously.
We can follow the sequence of equations in Equation (2.3) down and show that c
must divide all ri>s. Therefore c must divide rn, so that rn = gcd(a, b).

Let us now look at an example with relatively large numbers to see the power
of this algorithm:

To find d = gcd(a, b) = gcd(1160718174, 316258250)

a = q1b + r1 1160718174 = 3 * 316258250 + 211943424 d = gcd(316258250, 211943424)

b = q2r1 + r2 316258250 = 1 * 211943424 + 104314826 d = gcd(211943424, 104314826)

r1 = q3r2 + r3 211943424 = 2 * 104314826 + 3313772 d = gcd(104314826, 3313772)

r2 = q4r3 + r4 104314826 = 31 * 3313772 + 1587894 d = gcd(3313772, 1587894)

r3 = q5r4 + r5 3313772 = 2 * 1587894 + 137984 d = gcd(1587894, 137984)

r4 = q6r5 + r6 1587894 = 11 * 137984 + 70070 d = gcd(137984, 70070)

r5 = q7r6 + r7 137984 = 1 * 70070 + 67914 d = gcd(70070, 67914)

r6 = q8r7 + r8 70070 = 1 * 67914 + 2156 d = gcd(67914, 2156)

r7 = q9r8 + r9 67914 = 31 * 2156 + 1078 d = gcd(2156, 1078)

r8 = q10r9 + r10 2156 = 2 * 1078 + 0 d = gcd(1078, 0) = 1078

Therefore, d = gcd(1160718174, 316258250) = 1078

In this example, we begin by dividing 1160718174 by 316258250, which gives 3
with a remainder of 211943424. Next we take 316258250 and divide it by 211943424.
The process continues until we get a remainder of 0, yielding a result of 1078.

It will be helpful in what follows to recast the above computation in tabular
form. For every step of the iteration, we have ri- 2 = qiri- 1 + ri, where ri- 2 is the
dividend, ri- 1 is the divisor, qi is the quotient, and ri is the remainder. Table 2.1 sum-
marizes the results.

Dividend Divisor Quotient Remainder

a = 1160718174 b = 316258250 q1 = 3 r1 = 211943424

b = 316258250 r1 = 211943434 q2 = 1 r2 = 104314826

r1 = 211943424 r2 = 104314826 q3 = 2 r3 = 3313772

r2 = 104314826 r3 = 3313772 q4 = 31 r4 = 1587894

r3 = 3313772 r4 = 1587894 q5 = 2 r5 = 137984

r4 = 1587894 r5 = 137984 q6 = 11 r6 = 70070

r5 = 137984 r6 = 70070 q7 = 1 r7 = 67914

r6 = 70070 r7 = 67914 q8 = 1 r8 = 2156

r7 = 67914 r8 = 2156 q9 = 31 r9 = 1078

r8 = 2156 r9 = 1078 q10 = 2 r10 = 0

Table 2.1 Euclidean Algorithm Example

M02_STAL7484_08_GE_C02.indd 50 20/04/22 08:59

2.3 / moDular arIThmeTIC 51

 2.3 MODULAR ARITHMETIC

The Modulus

If a is an integer and n is a positive integer, we define a mod n to be the remainder
when a is divided by n. The integer n is called the modulus. Thus, for any integer a,
we can rewrite Equation (2.1) as follows:

 a = qn + r 0 … r 6 n; q = :a/n;
 a = :a/n; * n + (a mod n)

11 mod 7 = 4; -11 mod 7 = 3

73 K 4 (mod 23); 21 K -9 (mod 10)

Two integers a and b are said to be congruent modulo n, if (a mod n) =
(b mod n). This is written as a K b (mod n).2

2We have just used the operator mod in two different ways: first as a binary operator that produces a re-
mainder, as in the expression a mod b; second as a congruence relation that shows the equivalence of two
integers, as in the expression a K b (mod n). See Appendix 2A for a discussion.

Note that if a K 0 (mod n), then n � a.

Properties of Congruences

Congruences have the following properties:

1. a K b (mod n) if n � (a - b).

2. a K b (mod n) implies b K a (mod n).

3. a K b (mod n) and b K c (mod n) imply a K c (mod n).

To demonstrate the first point, if n � (a - b), then (a - b) = kn for some k.
So we can write a = b + kn. Therefore, (a mod n) = (remainder when b +
kn is divided by n) = (remainder when b is divided by n) = (b mod n).

23 K 8 (mod 5) because 23 - 8 = 15 = 5 * 3
-11 K 5 (mod 8) because -11 - 5 = -16 = 8 * (-2)
81 K 0 (mod 27) because 81 - 0 = 81 = 27 * 3

The remaining points are as easily proved.

M02_STAL7484_08_GE_C02.indd 51 20/04/22 08:59

52 ChaPTer 2 / INTroDuCTIoN To Number Theory

Modular Arithmetic Operations

Note that, by definition (Figure 2.1), the (mod n) operator maps all integers into
the set of integers {0, 1, c , (n - 1)}. This suggests the question: Can we perform
arithmetic operations within the confines of this set? It turns out that we can; this
technique is known as modular arithmetic.

Modular arithmetic exhibits the following properties:

1. [(a mod n) + (b mod n)] mod n = (a + b) mod n

2. [(a mod n) - (b mod n)] mod n = (a - b) mod n

3. [(a mod n) * (b mod n)] mod n = (a * b) mod n

We demonstrate the first property. Define (a mod n) = ra and (b mod n) = rb.
Then we can write a = ra + jn for some integer j and b = rb + kn for some integer k.
Then

 (a + b) mod n = (ra + jn + rb + kn) mod n

 = (ra + rb + (k + j)n) mod n

 = (ra + rb) mod n

 = [(a mod n) + (b mod n)] mod n

The remaining properties are proven as easily. Here are examples of the three
properties:

11 mod 8 = 3; 15 mod 8 = 7

[(11 mod 8) + (15 mod 8)] mod 8 = 10 mod 8 = 2

(11 + 15) mod 8 = 26 mod 8 = 2

[(11 mod 8) - (15 mod 8)] mod 8 = -4 mod 8 = 4

(11 - 15) mod 8 = -4 mod 8 = 4

[(11 mod 8) * (15 mod 8)] mod 8 = 21 mod 8 = 5

(11 * 15) mod 8 = 165 mod 8 = 5

To find 117 mod 13, we can proceed as follows:

 112 = 121 K 4 (mod 13)

 114 = (112)2 K 42 K 3 (mod 13)

 117 = 11 * 112 * 114

 117 K 11 * 4 * 3 K 132 K 2 (mod 13)

Exponentiation is performed by repeated multiplication, as in ordinary
arithmetic.

Thus, the rules for ordinary arithmetic involving addition, subtraction, and
multiplication carry over into modular arithmetic.

M02_STAL7484_08_GE_C02.indd 52 20/04/22 08:59

2.3 / moDular arIThmeTIC 53

Table 2.2 provides an illustration of modular addition and multiplication
modulo 8. Looking at addition, the results are straightforward, and there is a reg-
ular pattern to the matrix. Both matrices are symmetric about the main diagonal
in conformance to the commutative property of addition and multiplication. As in
ordinary addition, there is an additive inverse, or negative, to each integer in modu-
lar arithmetic. In this case, the negative of an integer x is the integer y such that
(x + y) mod 8 = 0. To find the additive inverse of an integer in the left-hand col-
umn, scan across the corresponding row of the matrix to find the value 0; the integer
at the top of that column is the additive inverse; thus, (2 + 6) mod 8 = 0. Similarly,
the entries in the multiplication table are straightforward. In modular arithmetic mod
8, the multiplicative inverse of x is the integer y such that (x * y) mod 8 = 1 mod 8.
Now, to find the multiplicative inverse of an integer from the multiplication table,
scan across the matrix in the row for that integer to find the value 1; the integer at
the top of that column is the multiplicative inverse; thus, (3 * 3) mod 8 = 1. Note
that not all integers mod 8 have a multiplicative inverse; more about that later.

Properties of Modular Arithmetic

Define the set Zn as the set of nonnegative integers less than n:

Zn = {0, 1, c , (n - 1)}

Table 2.2 Arithmetic Modulo 8
+ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7 0

2 2 3 4 5 6 7 0 1

3 3 4 5 6 7 0 1 2

4 4 5 6 7 0 1 2 3

5 5 6 7 0 1 2 3 4

6 6 7 0 1 2 3 4 5

7 7 0 1 2 3 4 5 6

(a) Addition modulo 8

* 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7

2 0 2 4 6 0 2 4 6

3 0 3 6 1 4 7 2 5

4 0 4 0 4 0 4 0 4

5 0 5 2 7 4 1 6 3

6 0 6 4 2 0 6 4 2

7 0 7 6 5 4 3 2 1

(b) Multiplication modulo 8

w -w w-1

0 0 —

1 7 1

2 6 —

3 5 3

4 4 —

5 3 5

6 2 —

7 1 7

(c) Additive and multiplicative
inverse modulo 8

M02_STAL7484_08_GE_C02.indd 53 20/04/22 08:59

54 ChaPTer 2 / INTroDuCTIoN To Number Theory

This is referred to as the set of residues, or residue classes (mod n). To be more pre-
cise, each integer in Zn represents a residue class. We can label the residue classes
(mod n) as [0], [1], [2], c , [n - 1], where

[r] = {a: a is an integer, a K r (mod n)}

The residue classes (mod 4) are

 [0] = { c , -16, -12, -8, -4, 0, 4, 8, 12, 16, c }

 [1] = { c , -15, -11, -7, -3, 1, 5, 9, 13, 17, c }

 [2] = { c , -14, -10, -6, -2, 2, 6, 10, 14, 18, c }

 [3] = { c , -13, -9, -5, -1, 3, 7, 11, 15, 19, c }

Property Expression

Commutative Laws
(w + x) mod n = (x + w) mod n
(w * x) mod n = (x * w) mod n

Associative Laws
[(w + x) + y] mod n = [w + (x + y)] mod n
[(w * x) * y] mod n = [w * (x * y)] mod n

Distributive Law [w * (x + y)] mod n = [(w * x) + (w * y)] mod n

Identities
(0 + w) mod n = w mod n
(1 * w) mod n = w mod n

Additive Inverse (-w) For each w ∈ Zn, there exists a z such that w + z K 0 mod n

Table 2.3 Properties of Modular Arithmetic for Integers in Zn

Of all the integers in a residue class, the smallest nonnegative integer is the
one used to represent the residue class. Finding the smallest nonnegative integer to
which k is congruent modulo n is called reducing k modulo n.

If we perform modular arithmetic within Zn, the properties shown in Table 2.3
hold for integers in Zn. We show in Chapter 5 that this implies that Zn is a commuta-
tive ring with a multiplicative identity element.

There is one peculiarity of modular arithmetic that sets it apart from ordinary
arithmetic. First, observe that (as in ordinary arithmetic) we can write the following:

 if (a + b) K (a + c) (mod n) then b K c (mod n) (2.4)

(5 + 23) K (5 + 7)(mod 8); 23 K 7(mod 8)

Equation (2.4) is consistent with the existence of an additive inverse. Adding
the additive inverse of a to both sides of Equation (2.4), we have

 ((-a) + a + b) K ((-a) + a + c)(mod n)

 b K c (mod n)

M02_STAL7484_08_GE_C02.indd 54 20/04/22 08:59

2.3 / moDular arIThmeTIC 55

However, the following statement is true only with the attached condition:

 if (a * b) K (a * c)(mod n) then b K c(mod n) if a is relatively prime to n (2.5)

Recall that two integers are relatively prime if their only common positive integer
factor is 1. Similar to the case of Equation (2.4), we can say that Equation (2.5) is
consistent with the existence of a multiplicative inverse. Applying the multiplicative
inverse of a to both sides of Equation (2.5), we have

 ((a-1)ab) K ((a-1)ac)(mod n)

 b K c(mod n)

To see this, consider an example in which the condition of Equation (2.5) does not
hold. The integers 6 and 8 are not relatively prime, since they have the common
factor 2. We have the following:

 6 * 3 = 18 K 2(mod 8)

 6 * 7 = 42 K 2(mod 8)

Yet 3 [7 (mod 8).

The reason for this strange result is that for any general modulus n, a multi-
plier a that is applied in turn to the integers 0 through (n - 1) will fail to produce a
complete set of residues if a and n have any factors in common.

With a = 6 and n = 8,

Z8 0 1 2 3 4 5 6 7
Multiply by 6 0 6 12 18 24 30 36 42
Residues 0 6 4 2 0 6 4 2

Because we do not have a complete set of residues when multiplying by
6, more than one integer in Z8 maps into the same residue. Specifically,
6 * 0 mod 8 = 6 * 4 mod 8; 6 * 1 mod 8 = 6 * 5 mod 8; and so on. Because
this is a many-to-one mapping, there is not a unique inverse to the multiply
 operation.

However, if we take a = 5 and n = 8, whose only common factor is 1,

Z8 0 1 2 3 4 5 6 7
Multiply by 5 0 5 10 15 20 25 30 35
Residues 0 5 2 7 4 1 6 3

The line of residues contains all the integers in Z8, in a different order.

M02_STAL7484_08_GE_C02.indd 55 20/04/22 08:59

56 ChaPTer 2 / INTroDuCTIoN To Number Theory

In general, an integer has a multiplicative inverse in Zn if and only if that inte-
ger is relatively prime to n. Table 2.2c shows that the integers 1, 3, 5, and 7 have a
multiplicative inverse in Z8; but 2, 4, and 6 do not.

Euclidean Algorithm Revisited

The Euclidean algorithm can be based on the following theorem: For any integers a,
b, with a Ú b Ú 0,

 gcd(a, b) = gcd(b, a mod b) (2.6)

gcd(55, 22) = gcd(22, 55 mod 22) = gcd(22, 11) = 11

 gcd(18, 12) = gcd(12, 6) = gcd(6, 0) = 6

 gcd(11, 10) = gcd(10, 1) = gcd(1, 0) = 1

To see that Equation (2.6) works, let d = gcd(a, b). Then, by the definition of
gcd, d � a and d � b. For any positive integer b, we can express a as

a = kb + r K r (mod b)
a mod b = r

with k, r integers. Therefore, (a mod b) = a - kb for some integer k. But because
d � b, it also divides kb. We also have d � a. Therefore, d � (a mod b). This shows that d
is a common divisor of b and (a mod b). Conversely, if d is a common divisor of b
and (a mod b), then d � kb and thus d � [kb + (a mod b)], which is equivalent to d � a.
Thus, the set of common divisors of a and b is equal to the set of common divisors
of b and (a mod b). Therefore, the gcd of one pair is the same as the gcd of the other
pair, proving the theorem.

Equation (2.6) can be used repetitively to determine the greatest common divisor.

This is the same scheme shown in Equation (2.3), which can be rewritten in the
following way.

Euclidean Algorithm

Calculate Which satisfies

r1 = a mod b a = q1b + r1

r2 = b mod r1 b = q2r1 + r2

r3 = r1 mod r2 r1 = q3r2 + r3

~
~
~

~
~
~

rn = rn - 2 mod rn - 1 rn - 2 = qnrn - 1 + rn

rn + 1 = rn - 1 mod rn = 0 rn - 1 = qn + 1rn + 0
d = gcd(a, b) = rn

We can define the Euclidean algorithm concisely as the following recursive
function.

M02_STAL7484_08_GE_C02.indd 56 20/04/22 08:59

2.3 / moDular arIThmeTIC 57

Euclid(a,b)
if (b=0) then return a;
else return Euclid(b, a mod b);

The Extended Euclidean Algorithm

We now proceed to look at an extension to the Euclidean algorithm that will be
important for later computations in the area of finite fields and in encryption algo-
rithms, such as RSA. For given integers a and b, the extended Euclidean algorithm
not only calculates the greatest common divisor d but also two additional integers x
and y that satisfy the following equation.

 ax + by = d = gcd(a, b) (2.7)

It should be clear that x and y will have opposite signs. Before examining the
algorithm, let us look at some of the values of x and y when a = 42 and b = 30.
Note that gcd(42, 30) = 6. Here is a partial table of values3 for 42x + 30y.

x − 3 − 2 − 1 0 1 2 3

y

-3 -216 -174 -132 -90 -48 -6 36

-2 -186 -144 -102 -60 -18 24 66

-1 -156 -114 -72 -30 12 54 96

0 -126 -84 -42 0 42 84 126

1 -96 -54 -12 30 72 114 156

2 -66 -24 18 60 102 144 186

3 -36 6 48 90 132 174 216

Observe that all of the entries are divisible by 6. This is not surpris-
ing, because both 42 and 30 are divisible by 6, so every number of the form
42x + 30y = 6(7x + 5y) is a multiple of 6. Note also that gcd(42, 30) = 6 appears
in the table. In general, it can be shown that for given integers a and b, the smallest
positive value of ax + by is equal to gcd(a, b).

Now let us show how to extend the Euclidean algorithm to determine (x, y, d)
given a and b. We again go through the sequence of divisions indicated in Equation
(2.3), and we assume that at each step i we can find integers xi and yi that satisfy
ri = axi + byi. We end up with the following sequence.

a = q1b + r1 r1 = ax1 + by1

b = q2r1 + r2 r2 = ax2 + by2

r1 = q3r2 + r3 r3 = ax3 + by3

f f
rn - 2 = qnrn - 1 + rn rn = axn + byn

rn - 1 = qn + 1rn + 0

3This example is taken from [SILV06].

M02_STAL7484_08_GE_C02.indd 57 20/04/22 08:59

58 ChaPTer 2 / INTroDuCTIoN To Number Theory

Now, observe that we can rearrange terms to write

 ri = ri- 2 - ri- 1qi (2.8)

Also, in rows i - 1 and i - 2, we find the values

ri- 2 = axi- 2 + byi- 2 and ri- 1 = axi- 1 + byi- 1

Substituting into Equation (2.8), we have

 ri = (axi- 2 + byi- 2) - (axi- 1 + byi- 1)qi

 = a(xi- 2 - qixi- 1) + b(yi- 2 - qiyi- 1)

But we have already assumed that ri = axi + byi. Therefore,

xi = xi- 2 - qixi- 1 and yi = yi- 2 - qiyi- 1

We now summarize the calculations:

Extended Euclidean Algorithm

Calculate Which satisfies Calculate Which satisfies

r-1 = a x-1 = 1; y-1 = 0 a = ax-1 + by-1

r0 = b x0 = 0; y0 = 1 b = ax0 + by0

r1 = a mod b
q1 = :a/b;

a = q1b + r1 x1 = x-1 - q1x0 = 1
y1 = y-1 - q1y0 = -q1

r1 = ax1 + by1

r2 = b mod r1
q2 = :b/r1;

b = q2r1 + r2 x2 = x0 - q2x1
y2 = y0 - q2y1

r2 = ax2 + by2

r3 = r1 mod r2
q3 = :r1/r2;

r1 = q3r2 + r3 x3 = x1 - q3x2
y3 = y1 - q3y2

r3 = ax3 + by3

~
~
~

~
~
~

~
~
~

~
~
~

rn = rn - 2 mod rn - 1
qn = :rn - 2/rn - 1;

rn - 2 = qnrn - 1 + rn xn = xn - 2 - qnxn - 1
yn = yn - 2 - qnyn - 1

rn = axn + byn

rn + 1 = rn - 1 mod rn = 0
qn + 1 = :rn - 1/rn;

rn - 1 = qn + 1rn + 0 d = gcd(a, b) = rn

x = xn; y = yn

We need to make several additional comments here. In each row, we calculate
a new remainder ri based on the remainders of the previous two rows, namely ri- 1
and ri- 2. To start the algorithm, we need values for r0 and r-1, which are just a and b.
It is then straightforward to determine the required values for x-1, y-1, x0, and y0.

We know from the original Euclidean algorithm that the process ends
with a remainder of zero and that the greatest common divisor of a and b is
d = gcd(a, b) = rn. But we also have determined that d = rn = axn + byn.
Therefore, in Equation (2.7), x = xn and y = yn.

As an example, let us use a = 1759 and b = 550 and solve for
1759x + 550y = gcd(1759, 550). The results are shown in Table 2.4. Thus, we have
1759 * (-111) + 550 * 355 = -195249 + 195250 = 1.

M02_STAL7484_08_GE_C02.indd 58 20/04/22 08:59

2.4 / PrIme Numbers 59

 2.4 PRIME NUMBERS4

A central concern of number theory is the study of prime numbers. Indeed, whole
books have been written on the subject (e.g., [CRAN01], [RIBE96]). In this section,
we provide an overview relevant to the concerns of this book.

An integer p 7 1 is a prime number if and only if its only divisors5 are {1 and
{p. All numbers other than {1 and the prime numbers are composite numbers. In
other words, composite numbers are those which are the product of at least two prime
numbers. Prime numbers play a critical role in number theory and in the techniques dis-
cussed in this chapter. Table 2.5 shows the primes less than 2000. Note the way the primes
are distributed. In particular, note the number of primes in each range of 100 numbers.

Any integer a 7 1 can be factored in a unique way as

 a = p1
a1 * p2

a2 * g * pt
at (2.9)

where p1 6 p2 6 c 6 pt are prime numbers and where each ai is a positive inte-
ger. This is known as the fundamental theorem of arithmetic; a proof can be found
in any text on number theory.

4In this section, unless otherwise noted, we deal only with the nonnegative integers. The use of negative
integers would introduce no essential differences.
5Recall from Section 2.1 that integer a is said to be a divisor of integer b if there is no remainder on
 division. Equivalently, we say that a divides b.

i ri qi xi yi

-1 1759 1 0

0 550 0 1

1 109 3 1 -3

2 5 5 -5 16

3 4 21 106 -339

4 1 1 -111 355

5 0 4

Result: d = 1; x = -111; y = 355

Table 2.4 Extended Euclidean Algorithm Example

 91 = 7 * 13

 3600 = 24 * 32 * 52

 11011 = 7 * 112 * 13

It is useful for what follows to express Equation (2.9) another way. If P is the
set of all prime numbers, then any positive integer a can be written uniquely in the
 following form:

a = q
p∈P

pap where each ap Ú 0

M02_STAL7484_08_GE_C02.indd 59 20/04/22 08:59

60 ChaPTer 2 / INTroDuCTIoN To Number Theory

2
10

1
21

1
30

7
40

1
50

3
60

1
70

1
80

9
90

7
10

09
11

03
12

01
13

01
14

09
15

11
16

01
17

09
18

01
19

01

3
10

3
22

3
31

1
40

9
50

9
60

7
70

9
81

1
91

1
10

13
11

09
12

13
13

03
14

23
15

23
16

07
17

21
18

11
19

07

5
10

7
22

7
31

3
41

9
52

1
61

3
71

9
82

1
91

9
10

19
11

17
12

17
13

07
14

27
15

31
16

09
17

23
18

23
19

13

7
10

9
22

9
31

7
42

1
52

3
61

7
72

7
82

3
92

9
10

21
11

23
12

23
13

19
14

29
15

43
16

13
17

33
18

31
19

31

11
11

3
23

3
33

1
43

1
54

1
61

9
73

3
82

7
93

7
10

31
11

29
12

29
13

21
14

33
15

49
16

19
17

41
18

47
19

33

13
12

7
23

9
33

7
43

3
54

7
63

1
73

9
82

9
94

1
10

33
11

51
12

31
13

27
14

39
15

53
16

21
17

47
18

61
19

49

17
13

1
24

1
34

7
43

9
55

7
64

1
74

3
83

9
94

7
10

39
11

53
12

37
13

61
14

47
15

59
16

27
17

53
18

67
19

51

19
13

7
25

1
34

9
44

3
56

3
64

3
75

1
85

3
95

3
10

49
11

63
12

49
13

67
14

51
15

67
16

37
17

59
18

71
19

73

23
13

9
25

7
35

3
44

9
56

9
64

7
75

7
85

7
96

7
10

51
11

71
12

59
13

73
14

53
15

71
16

57
17

77
18

73
19

79

29
14

9
26

3
35

9
45

7
57

1
65

3
76

1
85

9
97

1
10

61
11

81
12

77
13

81
14

59
15

79
16

63
17

83
18

77
19

87

31
15

1
26

9
36

7
46

1
57

7
65

9
76

9
86

3
97

7
10

63
11

87
12

79
13

99
14

71
15

83
16

67
17

87
18

79
19

93

37
15

7
27

1
37

3
46

3
58

7
66

1
77

3
87

7
98

3
10

69
11

93
12

83
14

81
15

97
16

69
17

89
18

89
19

97

41
16

3
27

7
37

9
46

7
59

3
67

3
78

7
88

1
99

1
10

87
12

89
14

83
16

93
19

99

43
16

7
28

1
38

3
47

9
59

9
67

7
79

7
88

3
99

7
10

91
12

91
14

87
16

97

47
17

3
28

3
38

9
48

7
68

3
88

7
10

93
12

97
14

89
16

99

53
17

9
29

3
39

7
49

1
69

1
10

97
14

93

59
18

1
49

9
14

99

61
19

1

67
19

3

71
19

7

73
19

9

79 83 89 97

T
ab

le
 2

.5

P
ri

m
es

 U
nd

er
 2

00
0

M02_STAL7484_08_GE_C02.indd 60 20/04/22 08:59

2.4 / PrIme Numbers 61

The right-hand side is the product over all possible prime numbers p; for any par-
ticular value of a, most of the exponents ap will be 0.

The value of any given positive integer can be specified by simply listing all the
nonzero exponents in the foregoing formulation.

The integer 12 is represented by {a2 = 2, a3 = 1}.

The integer 18 is represented by {a2 = 1, a3 = 2}.

The integer 91 is represented by {a7 = 1, a13 = 1}.

Multiplication of two numbers is equivalent to adding the corresponding

exponents. Given a = q
p∈P

pap, b = q
p∈P

pbp. Define k = ab. We know that the integer

k can be expressed as the product of powers of primes: k = q
p∈P

pkp. It follows that
kp = ap + bp for all p ∈ P.

 k = 12 * 18 = (22 * 3) * (2 * 32) = 216

 k2 = 2 + 1 = 3; k3 = 1 + 2 = 3

 216 = 23 * 33 = 8 * 27

 a = 12; b = 36; 12 � 36

 12 = 22 * 3; 36 = 22 * 32

 a2 = 2 = b2

 a3 = 1 … 2 = b3

 Thus, the inequality ap … bp is satisfied for all prime numbers.

What does it mean, in terms of the prime factors of a and b, to say that a divides b?
Any integer of the form pn can be divided only by an integer that is of a lesser or
equal power of the same prime number, pj with j … n. Thus, we can say the following.

Given

a = q
p∈P

pap, b = q
p∈P

pbp

If a � b, then ap … bp for all p.

It is easy to determine the greatest common divisor of two positive integers if
we express each integer as the product of primes.

M02_STAL7484_08_GE_C02.indd 61 20/04/22 08:59

62 ChaPTer 2 / INTroDuCTIoN To Number Theory

The following relationship always holds:

If k = gcd(a, b), then kp = min(ap, bp) for all p.

Determining the prime factors of a large number is no easy task, so the pre-
ceding relationship does not directly lead to a practical method of calculating the
greatest common divisor.

 2.5 FERMAT’S AND EULER’S THEOREMS

Two theorems that play important roles in public-key cryptography are Fermat’s
theorem and Euler’s theorem.

Fermat’s Theorem6

Fermat’s theorem states the following: If p is prime and a is a positive integer not
divisible by p, then

 ap - 1 K 1 (mod p) (2.10)

Proof: Consider the set of positive integers less than p: {1, 2, c , p - 1} and mul-
tiply each element by a, modulo p, to get the set X = {a mod p, 2a mod p, c ,
(p - 1)a mod p}. None of the elements of X is equal to zero because p does not
divide a. Furthermore, no two of the integers in X are equal. To see this, assume that
ja K ka(mod p)), where 1 … j 6 k … p - 1. Because a is relatively prime7 to p, we
can eliminate a from both sides of the equation [see Equation (2.5)] resulting in
j K k(mod p). This last equality is impossible, because j and k are both positive inte-
gers less than p. Therefore, we know that the (p - 1) elements of X are all
positive integers with no two elements equal. We can conclude the X consists of the
set of integers {1, 2, c , p - 1} in some order. Multiplying the numbers in both
sets (p and X) and taking the result mod p yields

 a * 2a * g * (p - 1)a K [(1 * 2 * g * (p - 1)](mod p)

 ap - 1(p - 1)! K (p - 1)! (mod p)

We can cancel the (p - 1)! term because it is relatively prime to p [see Equation
(2.5)]. This yields Equation (2.10), which completes the proof.

6This is sometimes referred to as Fermat’s little theorem.
7Recall from Section 2.2 that two numbers are relatively prime if they have no prime factors in common;
that is, their only common divisor is 1. This is equivalent to saying that two numbers are relatively prime
if their greatest common divisor is 1.

 300 = 22 * 31 * 52

 18 = 21 * 32

 gcd(18,300) = 21 * 31 * 50 = 6

M02_STAL7484_08_GE_C02.indd 62 20/04/22 08:59

2.5 / FermaT’s aND euler’s Theorems 63

An alternative form of Fermat’s theorem is also useful: If p is prime and a is a
positive integer, then

 ap K a(mod p) (2.11)

Note that the first form of the theorem [Equation (2.10)] requires that a be rela-
tively prime to p, but this Equation (2.11) does not.

a = 7, p = 19

72 = 49 K 11 (mod 19)

74 K 121 K 7 (mod 19)

78 K 49 K 11 (mod 19)

716 K 121 K 7 (mod 19)

ap - 1 = 718 = 716 * 72 K 7 * 11 K 1 (mod 19)

 p = 5, a = 3 ap = 35 = 243 K 3(mod 5) = a(mod p)

 p = 5, a = 10 ap = 105 = 100000 K 10(mod 5) K 0(mod 5) = a(mod p)

Euler’s Totient Function

Before presenting Euler’s theorem, we need to introduce an important quantity in
number theory, referred to as Euler’s totient function. This function, written f(n),
is defined as the number of positive integers less than n and relatively prime to n.
By convention, f(1) = 1.

Determine f(37) and f(35).

Because 37 is prime, all of the positive integers from 1 through 36 are relatively
prime to 37. Thus f(37) = 36.

To determine f(35), we list all of the positive integers less than 35 that are
 relatively prime to it:

1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 16, 17, 18

19, 22, 23, 24, 26, 27, 29, 31, 32, 33, 34

There are 24 numbers on the list, so f(35) = 24.

Table 2.6 lists the first 30 values of f(n). The value f(1) is without meaning but
is defined to have the value 1.

It should be clear that, for a prime number p,

f(p) = p - 1

Now suppose that we have two prime numbers p and q with p ≠ q. Then we can
show that, for n = pq,

M02_STAL7484_08_GE_C02.indd 63 20/04/22 08:59

64 ChaPTer 2 / INTroDuCTIoN To Number Theory

f(n) = f(pq) = f(p) * f(q) = (p - 1) * (q - 1)

To see that f(n) = f(p) * f(q), consider that the set of positive integers less than
n is the set {1, c , (pq - 1)}. The integers in this set that are not relatively prime
to n are the set {p, 2p, c , (q - 1)p} and the set {q, 2q, c , (p - 1)q}. To see
this, consider that any integer that divides n must divide either of the prime num-
bers p or q. Therefore, any integer that does not contain either p or q as a factor is
relatively prime to n. Further note that the two sets just listed are non-overlapping:
Because p and q are prime, we can state that none of the integers in the first set can
be written as a multiple of q, and none of the integers in the second set can be writ-
ten as a multiple of p. Thus the total number of unique integers in the two sets is
(q - 1) + (p - 1). Accordingly,

 f(n) = (pq - 1) - [(q - 1) + (p - 1)]

 = pq - (p + q) + 1

 = (p - 1) * (q - 1)

 = f(p) * f(q)

f(21) = f(3) * f(7) = (3 - 1) * (7 - 1) = 2 * 6 = 12
where the 12 integers are {1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20}.

Table 2.6 Some Values of Euler’s Totient Function f(n)

n f(n)

1 1

2 1

3 2

4 2

5 4

6 2

7 6

8 4

9 6

10 4

n f(n)

11 10

12 4

13 12

14 6

15 8

16 8

17 16

18 6

19 18

20 8

n f(n)

21 12

22 10

23 22

24 8

25 20

26 12

27 18

28 12

29 28

30 8

Euler’s Theorem

Euler’s theorem states that for every a and n that are relatively prime:

 af(n) K 1(mod n) (2.12)

Proof: Equation (2.12) is true if n is prime, because in that case, f(n) = (n - 1)
and Fermat’s theorem holds. However, it also holds for any integer n. Recall that

M02_STAL7484_08_GE_C02.indd 64 20/04/22 08:59

2.5 / FermaT’s aND euler’s Theorems 65

f(n) is the number of positive integers less than n that are relatively prime to n.
Consider the set of such integers, labeled as

R = {x1, x2, c , xf(n)}

That is, each element xi of R is a unique positive integer less than n with gcd(xi, n) = 1.
Now multiply each element by a, modulo n:

S = {(ax1 mod n), (ax2 mod n), c , (axf(n) mod n)}

The set S is a permutation8 of R , by the following line of reasoning:

1. Because a is relatively prime to n and xi is relatively prime to n, axi must also
be relatively prime to n. Thus, all the members of S are integers that are less
than n and that are relatively prime to n.

2. There are no duplicates in S. Refer to Equation (2.5). If axi mod n = axj
mod n, then xi = xj.

Therefore,

 q
f(n)

i = 1
(axi mod n) = q

f(n)

i = 1
xi

 q
f(n)

i = 1
axi K q

f(n)

i = 1
xi (mod n)

 af(n) * Jqf(n)

i = 1
xiR K q

f(n)

i = 1
xi (mod n)

 af(n) K 1 (mod n)

which completes the proof. This is the same line of reasoning applied to the proof of
Fermat’s theorem.

8A permutation of a finite set of elements S is an ordered sequence of all the elements of S, with each
element appearing exactly once.

 a = 3; n = 10; f(10) = 4; af(n) = 34 = 81 K 1(mod 10) K 1(mod n)

 a = 2; n = 11; f(11) = 10; af(n) = 210 = 1024 K 1(mod 11) K 1(mod n)

As is the case for Fermat’s theorem, an alternative form of the theorem is also
useful:

 af(n) + 1 K a(mod n) (2.13)

Again, similar to the case with Fermat’s theorem, the first form of Euler’s theorem
[Equation (2.12)] requires that a be relatively prime to n, but this form does not. It
is sufficient for Equation (2.13) that n is squarefree. An integer is squarefree if its
prime decomposition contains no repeated factors.

M02_STAL7484_08_GE_C02.indd 65 20/04/22 08:59

66 ChaPTer 2 / INTroDuCTIoN To Number Theory

 2.6 TESTING FOR PRIMALITY

For many cryptographic algorithms, it is necessary to select one or more very large
prime numbers at random. Thus, we are faced with the task of determining whether
a given large number is prime. There is no simple yet efficient means of accomplish-
ing this task.

In this section, we present one attractive and popular algorithm. You may be
surprised to learn that this algorithm yields a number that is not necessarily a prime.
However, the algorithm can yield a number that is almost certainly a prime. This will
be explained presently. We also make reference to a deterministic algorithm for find-
ing primes. The section closes with a discussion concerning the distribution of primes.

Miller–Rabin Algorithm9

The algorithm due to Miller and Rabin [MILL75, RABI80] is typically used to test
a large number for primality. Before explaining the algorithm, we need some back-
ground. First, any positive odd integer n Ú 3 can be expressed as

n - 1 = 2kq with k 7 0, q odd

To see this, note that n - 1 is an even integer. Then, divide (n - 1) by 2 until the
result is an odd number q, for a total of k divisions. If n is expressed as a binary
number, then the result is achieved by shifting the number to the right until the
rightmost digit is a 1, for a total of k shifts. We now develop two properties of prime
numbers that we will need.

Two ProPerTies of Prime Numbers The first property is stated as follows: If p is
prime and a is a positive integer less than p, then a2 mod p = 1 if and only if either
a mod p = 1 or a mod p = -1 mod p = p - 1. By the rules of modular arithmetic
(a mod p) (a mod p) = a2 mod p. Thus, if either a mod p = 1 or a mod p = -1,
then a2 mod p = 1. Conversely, if a2 mod p = 1, then (a mod p)2 = 1, which is true
only for a mod p = 1 or a mod p = -1.

The second property is stated as follows: Let p be a prime number greater than
2. We can then write p - 1 = 2kq with k 7 0, q odd. Let a be any integer in the
range 1 6 a 6 p - 1. Then one of the two following conditions is true.

1. aq is congruent to 1 modulo p. That is, aq mod p = 1, or equivalently,
aq K 1(mod p).

2. One of the numbers aq, a2q, a4q, c , a2k - 1q is congruent to -1 mod-
ulo p. That is, there is some number j in the range (1 … j … k) such that
a2j - 1q mod p = -1 mod p = p - 1 or equivalently, a2j - 1q K - 1(mod p).

Proof: Fermat’s theorem [Equation (2.10)] states that an - 1 K 1(mod n) if n is
prime. We have p - 1 = 2kq. Thus, we know that ap - 1 mod p = a2kq mod p = 1.
Thus, if we look at the sequence of numbers

 aq mod p, a2q mod p, a4q mod p, c , a2k - 1q mod p, a2kq mod p (2.14)

9Also referred to in the literature as the Rabin-Miller algorithm, or the Rabin-Miller test, or the Miller–
Rabin test.

M02_STAL7484_08_GE_C02.indd 66 20/04/22 08:59

2.6 / TesTINg For PrImalITy 67

we know that the last term in Equation (2.14) has value 1. Further, each number in
the list is the square of the previous number. Therefore, one of the following pos-
sibilities must be true.

1. The first number on the list, and therefore all subsequent numbers on the list,
equals 1.

2. Some number on the list does not equal 1, but its square mod p does equal 1.
By virtue of the first property of prime numbers defined above, we know that
the only number that satisfies this condition is p - 1. So, in this case, the list
contains an element equal to p - 1.

This completes the proof.

DeTails of The algoriThm These considerations lead to the conclusion that,
if n is prime, then either the first element in the list of residues, or remainders,
(aq, a2q, c , a2k - 1q, a2kq) modulo n equals 1; or some element in the list equals
(n - 1); otherwise n is composite (i.e., not a prime). On the other hand, if the
condition is met, that does not necessarily mean that n is prime. For example, if
n = 2047 = 23 * 89, then n - 1 = 2 * 1023. We compute 21023 mod 2047 = 1, so
that 2047 meets the condition but is not prime.

We can use the preceding property to devise a test for primality. The procedure
TEST takes a candidate integer n as input and returns the result composite if n is
definitely not a prime, and the result inconclusive if n may or may not be a prime.

TEST (n)
1. Find integers k, q, with k > 0, q odd, so that

(n − 1 = 2k q);
2. Select a random integer a, 1 < a < n - 1;
3. if aq mod n = 1 then return(”inconclusive”);
4. for j = 0 to k - 1 do
5. if a2

j
qmod n = n - 1 then return(”inconclusive”);

6. return(”composite”);

 Let us apply the test to the prime number n = 29. We have (n - 1) = 28 =
22(7) = 2kq. First, let us try a = 10. We compute 107 mod 29 = 17, which is neither
1 nor 28, so we continue the test. The next calculation finds that (107)2 mod 29 = 28,
and the test returns inconclusive (i.e., 29 may be prime). Let’s try again with
a = 2. We have the following calculations: 27 mod 29 = 12; 214 mod 29 = 28; and
the test again returns inconclusive. If we perform the test for all integers a in
the range 1 through 28, we get the same inconclusive result, which is compatible
with n being a prime number.

Now let us apply the test to the composite number n = 13 * 17 = 221. Then
(n - 1) = 220 = 22(55) = 2kq. Let us try a = 5. Then we have 555 mod 221 = 112,
which is neither 1 nor 220(555)2 mod 221 = 168. Because we have used all values of
j (i.e., j = 0 and j = 1) in line 4 of the TEST algorithm, the test returns composite,
indicating that 221 is definitely a composite number. But suppose we had selected
a = 21. Then we have 2155 mod 221 = 200; (2155)2 mod 221 = 220; and the test re-
turns inconclusive, indicating that 221 may be prime. In fact, of the 218 integers from
2 through 219, four of these will return an inconclusive result, namely 21, 47, 174, and 200.

M02_STAL7484_08_GE_C02.indd 67 20/04/22 08:59

68 ChaPTer 2 / INTroDuCTIoN To Number Theory

rePeaTeD use of The miller–rabiN algoriThm How can we use the Miller–Rabin
algorithm to determine with a high degree of confidence whether or not an integer
is prime? It can be shown [KNUT98] that given an odd number n that is not prime
and a randomly chosen integer, a with 1 6 a 6 n - 1, the probability that TEST
will return inconclusive (i.e., fail to detect that n is not prime) is less than 1/4.
Thus, if t different values of a are chosen, the probability that all of them will pass
TEST (return inconclusive) for n is less than (1/4)t. For example, for t = 10, the
probability that a nonprime number will pass all ten tests is less than 10-6. Thus,
for a sufficiently large value of t , we can be confident that n is prime if Miller’s test
always returns inconclusive.

This gives us a basis for determining whether an odd integer n is prime
with a reasonable degree of confidence. The procedure is as follows: Repeatedly
invoke TEST (n) using randomly chosen values for a. If, at any point, TEST returns
 composite, then n is determined to be nonprime. If TEST continues to return
inconclusive for t tests, then for a sufficiently large value of t, assume that n
is prime.

A Deterministic Primality Algorithm

Prior to 2002, there was no known method of efficiently proving the primality of
very large numbers. All of the algorithms in use, including the most popular (Miller–
Rabin), produced a probabilistic result. In 2002 (announced in 2002, published in
2004), Agrawal, Kayal, and Saxena [AGRA04] developed a relatively simple de-
terministic algorithm that efficiently determines whether a given large number
is a prime. The algorithm, known as the AKS algorithm, does not appear to be as
efficient as the Miller–Rabin algorithm. Thus far, it has not supplanted this older,
probabilistic technique.

Distribution of Primes

It is worth noting how many numbers are likely to be rejected before a prime num-
ber is found using the Miller–Rabin test, or any other test for primality. A result from
number theory, known as the prime number theorem, states that the primes near n
are spaced on the average one every ln (n) integers. Thus, on average, one would
have to test on the order of ln(n) integers before a prime is found. Because all even
integers can be immediately rejected, the correct figure is 0.5 ln(n). For example, if
a prime on the order of magnitude of 2200 were sought, then about 0.5 ln(2200) = 69
trials would be needed to find a prime. However, this figure is just an average. In
some places along the number line, primes are closely packed, and in other places
there are large gaps.

The two consecutive odd integers 1,000,000,000,061 and 1,000,000,000,063
are both prime. On the other hand, 1001! + 2, 1001! + 3, c , 1001! + 1000,
1001! + 1001 is a sequence of 1000 consecutive composite integers.

M02_STAL7484_08_GE_C02.indd 68 20/04/22 08:59

2.7 / The ChINese remaINDer Theorem 69

 2.7 THE CHINESE REMAINDER THEOREM

One of the most useful results of number theory is the Chinese remainder theorem
(CRT).10 In essence, the CRT says it is possible to reconstruct integers in a certain
range from their residues modulo a set of pairwise relatively prime moduli.

10The CRT is so called because it is believed to have been discovered by the Chinese mathematician
 Sun-Tsu in around 100 A.D.

The 10 integers in Z10, that is the integers 0 through 9, can be reconstructed from
their two residues modulo 2 and 5 (the relatively prime factors of 10). Say the
known residues of a decimal digit x are r2 = 0 and r5 = 3; that is, x mod 2 = 0
and x mod 5 = 3. Therefore, x is an even integer in Z10 whose remainder, on divi-
sion by 5, is 3. The unique solution is x = 8.

The CRT can be stated in several ways. We present here a formulation that is most
useful from the point of view of this text. An alternative formulation is explored in
Problem 2.33. Let

M = q
k

i = 1
mi

where the mi are pairwise relatively prime; that is, gcd(mi, mj) = 1 for 1 … i, j … k,
and i ≠ j. We can represent any integer A in ZM by a k-tuple whose elements are in
Zmi

 using the following correspondence:

 A 4 (a1, a2, c , ak) (2.15)

where A ∈ ZM, ai ∈ Zmi
, and ai = A mod mi for 1 … i … k. The CRT makes two

assertions.

1. The mapping of Equation (2.15) is a one-to-one correspondence (called a
 bijection) between ZM and the Cartesian product Zm1

* Zm2
* c * Zmk

.
That is, for every integer A such that 0 … A 6 M, there is a unique k- tuple
(a1, a2, c , ak) with 0 … ai 6 mi that represents it, and for every such
k- tuple (a1, a2, c , ak), there is a unique integer A in ZM.

2. Operations performed on the elements of ZM can be equivalently performed
on the corresponding k-tuples by performing the operation independently in
each coordinate position in the appropriate system.

Let us demonstrate the first assertion. The transformation from A to
(a1, a2, c , ak), is obviously unique; that is, each ai is uniquely calculated as
ai = A mod mi. Computing A from (a1, a2, c , ak) can be done as follows. Let

M02_STAL7484_08_GE_C02.indd 69 20/04/22 08:59

70 ChaPTer 2 / INTroDuCTIoN To Number Theory

Mi = M/mi for 1 … i … k. Note that Mi = m1 * m2 * c * mi- 1 * mi+ 1 * c
* mk, so that Mi K 0 (mod mj) for all j ≠ i. Then let

 ci = Mi * (Mi
-1 mod mi) for 1 … i … k (2.16)

By the definition of Mi, it is relatively prime to mi and therefore has a unique multi-
plicative inverse mod mi. So Equation (2.16) is well defined and produces a unique
value ci. We can now compute

 A K ¢ ak
i = 1

aici≤(mod M) (2.17)

To show that the value of A produced by Equation (2.17) is correct, we must
show that ai = A mod mi for 1 … i … k. Note that cj K Mj K 0 (mod mi) if j ≠ i,
and that ci K 1 (mod mi). It follows that ai = A mod mi.

The second assertion of the CRT, concerning arithmetic operations, follows
from the rules for modular arithmetic. That is, the second assertion can be stated as
follows: If

A 4 (a1, a2, c , ak)

B 4 (b1, b2, c , bk)

then

(A + B) mod M 4 ((a1 + b1) mod m1, c , (ak + bk) mod mk)
(A - B) mod M 4 ((a1 - b1) mod m1, c , (ak - bk) mod mk)
(A * B) mod M 4 ((a1 * b1) mod m1, c , (ak * bk) mod mk)

One of the useful features of the Chinese remainder theorem is that it provides
a way to manipulate (potentially very large) numbers mod M in terms of tuples of
smaller numbers. This can be useful when M is 150 digits or more. However, note
that it is necessary to know beforehand the factorization of M.

 To represent 973 mod 1813 as a pair of numbers mod 37 and 49, define

 m1 = 37

 m2 = 49

 M = 1813

 A = 973

We also have M1 = 49 and M2 = 37. Using the extended Euclidean algorithm,
we compute M1

-1 = 34 mod m1 and M2
-1 = 4 mod m2. (Note that we only need

to compute each Mi and each Mi
-1 once.) Taking residues modulo 37 and 49, our

representation of 973 is (11, 42), because 973 mod 37 = 11 and 973 mod 49 = 42.
Now suppose we want to add 678 to 973. What do we do to (11, 42)? First

we compute (678) 4 (678 mod 37, 678 mod 49) = (12, 41). Then we add the
tuples element-wise and reduce (11 + 12 mod 37, 42 + 41 mod 49) = (23, 34).
To verify that this has the correct effect, we compute

M02_STAL7484_08_GE_C02.indd 70 20/04/22 08:59

2.8 / DIsCreTe logarIThms 71

 2.8 DISCRETE LOGARITHMS

Discrete logarithms are fundamental to a number of public-key algorithms, includ-
ing Diffie–Hellman key exchange and the digital signature algorithm (DSA). This
section provides a brief overview of discrete logarithms. For the interested reader,
more detailed developments of this topic can be found in [ORE67] and [LEVE90].

The Powers of an Integer, Modulo n

Recall from Euler’s theorem [Equation (2.12)] that, for every a and n that are rela-
tively prime,

af(n) K 1 (mod n)

where f(n), Euler’s totient function, is the number of positive integers less than n
and relatively prime to n. Now consider the more general expression:

 am K 1 (mod n) (2.18)

If a and n are relatively prime, then there is at least one integer m that satisfies
Equation (2.18), namely, m = f(n). The least positive exponent m for which
Equation (2.18) holds is referred to in several ways:

◆■ The order of a (mod n)

◆■ The exponent to which a belongs (mod n)

◆■ The length of the period generated by a

 (23, 34) 4 a1M1M1
-1 + a2M2M2

-1 mod M

 = [(23)(49)(34) + (34)(37)(4)] mod 1813

 = 43350 mod 1813

 = 1651

and check that it is equal to (973 + 678) mod 1813 = 1651. Remember that in
the above derivation, Mi

-1 is the multiplicative inverse of M1 modulo m1 and M2
-1

is the multiplicative inverse of M2 modulo m2.
Suppose we want to multiply 1651 (mod 1813) by 73. We multiply (23, 34)

by 73 and reduce to get (23 * 73 mod 37, 34 * 73 mod 49) = (14, 32). It is eas-
ily verified that

 (14, 32) 4 [(14)(49)(34) + (32)(37)(4)] mod 1813

 = 865

 = 1651 * 73 mod 1813

M02_STAL7484_08_GE_C02.indd 71 20/04/22 08:59

72 ChaPTer 2 / INTroDuCTIoN To Number Theory

Table 2.7 shows all the powers of a, modulo 19 for all positive a 6 19. The
length of the sequence for each base value is indicated by shading. Note the
following:

1. All sequences end in 1. This is consistent with the reasoning of the preceding
few paragraphs.

2. The length of a sequence divides f(19) = 18. That is, an integral number of
sequences occur in each row of the table.

3. Some of the sequences are of length 18. In this case, it is said that the base inte-
ger a generates (via powers) the set of nonzero integers modulo 19. Each such
integer is called a primitive root of the modulus 19.

More generally, we can say that the highest possible exponent to which a num-
ber can belong (mod n) is f(n). If a number is of this order, it is referred to as a
primitive root of n. The importance of this notion is that if a is a primitive root of n,
then its powers

a, a2, c , af(n)

are distinct (mod n) and are all relatively prime to n. In particular, for a prime num-
ber p, if a is a primitive root of p, then

a, a2, c , ap - 1

are distinct (mod p). For the prime number 19, its primitive roots are 2, 3, 10, 13, 14,
and 15.

Not all integers have primitive roots. In fact, the only integers with primitive
roots are those of the form 2, 4, pa, and 2pa, where p is any odd prime and a is a posi-
tive integer. The proof is not simple but can be found in many number theory books,
including [ORE76].

To see this last point, consider the powers of 7, modulo 19:

71 K 7 (mod 19)
72 = 49 = 2 * 19 + 11 K 11 (mod 19)
73 = 343 = 18 * 19 + 1 K 1 (mod 19)
74 = 2401 = 126 * 19 + 7 K 7 (mod 19)
75 = 16807 = 884 * 19 + 11 K 11 (mod 19)

There is no point in continuing because the sequence is repeating. This can be
proven by noting that 73 K 1(mod 19), and therefore, 73 + j K 737j K 7j(mod 19),
and hence, any two powers of 7 whose exponents differ by 3 (or a multiple of 3)
are congruent to each other (mod 19). In other words, the sequence is periodic,
and the length of the period is the smallest positive exponent m such that
7m K 1(mod 19).

M02_STAL7484_08_GE_C02.indd 72 20/04/22 08:59

2.8 / DIsCreTe logarIThms 73

Logarithms for Modular Arithmetic

With ordinary positive real numbers, the logarithm function is the inverse of expo-
nentiation. An analogous function exists for modular arithmetic.

Let us briefly review the properties of ordinary logarithms. The logarithm of a
number is defined to be the power to which some positive base (except 1) must be
raised in order to equal the number. That is, for base x and for a value y,

y = xlogx(y)

The properties of logarithms include

 logx(1) = 0

 logx(x) = 1

 logx(yz) = logx(y) + logx(z)

 logx(yr) = r * logx(y)

Consider a primitive root a for some prime number p (the argument can
be developed for nonprimes as well). Then we know that the powers of a from

a a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 4 8 16 13 7 14 9 18 17 15 11 3 6 12 5 10 1

3 9 8 5 15 7 2 6 18 16 10 11 14 4 12 17 13 1

4 16 7 9 17 11 6 5 1 4 16 7 9 17 11 6 5 1

5 6 11 17 9 7 16 4 1 5 6 11 17 9 7 16 4 1

6 17 7 4 5 11 9 16 1 6 17 7 4 5 11 9 16 1

7 11 1 7 11 1 7 11 1 7 11 1 7 11 1 7 11 1

8 7 18 11 12 1 8 7 18 11 12 1 8 7 18 11 12 1

9 5 7 6 16 11 4 17 1 9 5 7 6 16 11 4 17 1

10 5 12 6 3 11 15 17 18 9 14 7 13 16 8 4 2 1

11 7 1 11 7 1 11 7 1 11 7 1 11 7 1 11 7 1

12 11 18 7 8 1 12 11 18 7 8 1 12 11 18 7 8 1

13 17 12 4 14 11 10 16 18 6 2 7 15 5 8 9 3 1

14 6 8 17 10 7 3 4 18 5 13 11 2 9 12 16 15 1

15 16 12 9 2 11 13 5 18 4 3 7 10 17 8 6 14 1

16 9 11 5 4 7 17 6 1 16 9 11 5 4 7 17 6 1

17 4 11 16 6 7 5 9 1 17 4 11 16 6 7 5 9 1

18 1 18 1 18 1 18 1 18 1 18 1 18 1 18 1 18 1

Table 2.7 Powers of Integers, Modulo 19

M02_STAL7484_08_GE_C02.indd 73 20/04/22 08:59

74 ChaPTer 2 / INTroDuCTIoN To Number Theory

1 through (p - 1) produce each integer from 1 through (p - 1) exactly once. We
also know that any integer b satisfies

b K r (mod p) for some r, where 0 … r … (p - 1)

by the definition of modular arithmetic. It follows that for any integer b and a primi-
tive root a of prime number p, we can find a unique exponent i such that

b K ai(mod p) where 0 … i … (p - 1)

This exponent i is referred to as the discrete logarithm of the number b for the base
a (mod p). We denote this value as dloga,p(b).11

Note the following:

 dloga,p(1) = 0 because a0 mod p = 1 mod p = 1

 dloga,p(a) = 1 because a1 mod p = a

11Many texts refer to the discrete logarithm as the index. There is no generally agreed notation for this
concept, much less an agreed name.

Here is an example using a nonprime modulus, n = 9. Here f(n) = 6 and a = 2
is a primitive root. We compute the various powers of a and find

20 = 1 24 K 7 (mod 9)
21 = 2 25 K 5 (mod 9)
22 = 4 26 K 1 (mod 9)
23 = 8

This gives us the following table of the numbers with given discrete logarithms
(mod 9) for the root a = 2:

Logarithm 0 1 2 3 4 5
Number 1 2 4 8 7 5

To make it easy to obtain the discrete logarithms of a given number, we rearrange
the table:

Number 1 2 4 5 7 8
Logarithm 0 1 2 5 4 3

Now consider

x = adloga, p(x) mod p y = adloga, p(y) mod p
xy = adloga, p(xy) mod p

M02_STAL7484_08_GE_C02.indd 74 20/04/22 08:59

2.8 / DIsCreTe logarIThms 75

Using the rules of modular multiplication,

 xy mod p = [(x mod p)(y mod p)] mod p

 adloga, p(xy) mod p = [(adloga, p(x) mod p)(adloga, p(y) mod p)] mod p

 = (adloga, p(x) + dloga, p(y)) mod p

But now consider Euler’s theorem, which states that, for every a and n that are rela-
tively prime,

af(n) K 1(mod n)

Any positive integer z can be expressed in the form z = q + kf(n), with
0 … q 6 f(n). Therefore, by Euler’s theorem,

az K aq(mod n) if z K q mod f(n)

Applying this to the foregoing equality, we have

dloga, p(xy) K [dloga, p(x) + dloga, p(y)](mod f(p))

and generalizing,

dloga, p(yr) K [r * dloga, p(y)](mod f(p))

This demonstrates the analogy between true logarithms and discrete logarithms.
Keep in mind that unique discrete logarithms mod m to some base a exist only

if a is a primitive root of m.
Table 2.8, which is directly derived from Table 2.7, shows the sets of discrete

logarithms that can be defined for modulus 19.

Calculation of Discrete Logarithms

Consider the equation

y = gx mod p

Given g, x, and p, it is a straightforward matter to calculate y. At the worst, we must
perform x repeated multiplications, and algorithms exist for achieving greater ef-
ficiency (see Chapter 9).

However, given y, g, and p, it is, in general, very difficult to calculate x (take the
discrete logarithm). The difficulty seems to be on the same order of magnitude as
that of factoring primes required for RSA. At the time of this writing, the asymptoti-
cally fastest known algorithm for taking discrete logarithms modulo a prime num-
ber is on the order of [BETH91]:

e((ln p)1/3(ln(ln p))2/3)

which is not feasible for large primes.

M02_STAL7484_08_GE_C02.indd 75 20/04/22 08:59

76 ChaPTer 2 / INTroDuCTIoN To Number Theory

 2.9 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

(a) Discrete logarithms to the base 2, modulo 19

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

log2,19(a) 18 1 13 2 16 14 6 3 8 17 12 15 5 7 11 4 10 9

(b) Discrete logarithms to the base 3, modulo 19

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

log3,19(a) 18 7 1 14 4 8 6 3 2 11 12 15 17 13 5 10 16 9

(c) Discrete logarithms to the base 10, modulo 19

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

log10,19(a) 18 17 5 16 2 4 12 15 10 1 6 3 13 11 7 14 8 9

(d) Discrete logarithms to the base 13, modulo 19

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

log13,19(a) 18 11 17 4 14 10 12 15 16 7 6 3 1 5 13 8 2 9

(e) Discrete logarithms to the base 14, modulo 19

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

log14,19(a) 18 13 7 8 10 2 6 3 14 5 12 15 11 1 17 16 4 9

(f) Discrete logarithms to the base 15, modulo 19

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

log15,19(a) 18 5 11 10 8 16 12 15 4 13 6 3 7 17 1 2 14 9

Table 2.8 Tables of Discrete Logarithms, Modulo 19

Key Terms

bijection
commutative
composite number
discrete logarithm
divisor

greatest common divisor
identity element
index
modular arithmetic
modulus

order
prime number
primitive root
relatively prime
residue

M02_STAL7484_08_GE_C02.indd 76 20/04/22 08:59

2.9 / Key Terms, revIew QuesTIoNs, aND Problems 77

Review Questions

 2.1 What does it mean to say that b is a divisor of a?
 2.2 What is the meaning of the expression a divides b?
 2.3 What is the difference between modular arithmetic and ordinary arithmetic?
 2.4 What is a prime number?
 2.5 What is Euler’s totient function?
 2.6 The Miller–Rabin test can determine if a number is not prime but cannot determine

if a number is prime. How can such an algorithm be used to test for primality?
 2.7 What is a primitive root of a number?
 2.8 What is the difference between an index and a discrete logarithm?

Problems

 2.1 Reformulate Equation (2.1), removing the restriction that a is a nonnegative integer.
That is, let a be any integer.

 2.2 Draw a figure similar to Figure 2.1 for a 6 0.
 2.3 For each of the following equations, find an integer x that satisfies the equation.

a. 4x K 2 (mod 3)
b. 7x K 4 (mod 9)
c. 5x K 3 (mod 11)

 2.4 In this text, we assume that the modulus is a positive integer. But the definition of the
expression a mod n also makes perfect sense if n is negative. Determine the following:
a. 7 mod 4
b. 7 mod -4
c. -7 mod 4
d. -7 mod -4

 2.5 A modulus of 0 does not fit the definition but is defined by convention as follows:
a mod 0 = a. With this definition in mind, what does the following expression mean:
a K b (mod 0)?

 2.6 In Section 2.3, we define the congruence relationship as follows: Two integers a and
b are said to be congruent modulo n if (a mod n) = (b mod n). We then proved that
a K b (mod n) if n � (a - b). Some texts on number theory use this latter relation-
ship as the definition of congruence: Two integers a and b are said to be congruent
modulo n if n � (a - b). Using this latter definition as the starting point, prove that, if
(a mod n) = (b mod n), then n divides (a - b).

 2.7 What is the smallest positive integer that has exactly k divisors? Provide answers for
values for 1 … k … 8.

 2.8 Prove the following:
a. a K b (mod n) implies b K a (mod n)
b. a K b (mod n) and b K c (mod n) imply a K c (mod n)

 2.9 Prove the following:
a. [(a mod n) - (b mod n)] mod n = (a - b) mod n
b. [(a mod n) * (b mod n)] mod n = (a * b) mod n

 2.10 Find the multiplicative inverse of each nonzero element in Z5.
 2.11 Show that an integer N is congruent modulo 9 to the sum of its decimal digits. For

example, 723 K 7 + 2 + 3 K 12 K 1 + 2 K 3 (mod 9). This is the basis for the fa-
miliar procedure of “casting out 9’s” when checking computations in arithmetic.

M02_STAL7484_08_GE_C02.indd 77 20/04/22 08:59

78 ChaPTer 2 / INTroDuCTIoN To Number Theory

 2.12 a. Determine gcd(72345, 43215)
b. Determine gcd(3486, 10292)

 2.13 The purpose of this problem is to set an upper bound on the number of iterations of
the Euclidean algorithm.
a. Suppose that m = qn + r with q 7 0 and 0 … r 6 n. Show that m/2 7 r.
b. Let Ai be the value of A in the Euclidean algorithm after the ith iteration. Show that

Ai+ 2 6
Ai

2

c. Show that if m, n, and N are integers with (1 … m, n, … 2N), then the Euclidean
algorithm takes at most 2N steps to find gcd(m, n).

 2.14 The Euclidean algorithm has been known for over 2000 years and has always been
a favorite among number theorists. After these many years, there is now a potential
competitor, invented by J. Stein in 1961. Stein’s algorithm is as follows: Determine
gcd(A, B) with A, B Ú 1.
STEP 1 Set A1 = A, B1 = B, C1 = 1
STEP 2 For n 7 1, (1) If An = Bn, stop. gcd(A, B) = AnCn

(2) If An and Bn are both even, set An + 1 = An/2, Bn + 1 = Bn/2,
Cn + 1 = 2Cn

(3) If An is even and Bn is odd, set An + 1 = An/2, Bn + 1 = Bn,
Cn + 1 = Cn

(4) If An is odd and Bn is even, set An + 1 = An, Bn + 1 = Bn/2,
Cn + 1 = Cn

(5) If An and Bn are both odd, set An + 1 = � An - Bn � , Bn + 1 =
min (Bn, An), Cn + 1 = Cn

 Continue to step n + 1.
a. To get a feel for the two algorithms, compute gcd(6150, 704) using both the

 Euclidean and Stein’s algorithm.
b. What is the apparent advantage of Stein’s algorithm over the Euclidean algorithm?

 2.15 a. Show that if Stein’s algorithm does not stop before the nth step, then

Cn + 1 * gcd(An + 1, Bn + 1) = Cn * gcd(An, Bn).

b. Show that if the algorithm does not stop before step (n - 1), then

An + 2Bn + 2 …
AnBn

2
.

c. Show that if 1 … A, B … 2N, then Stein’s algorithm takes at most 4N steps to find
gcd(m, n). Thus, Stein’s algorithm works in roughly the same number of steps as
the Euclidean algorithm.

d. Demonstrate that Stein’s algorithm does indeed return gcd(A, B).
 2.16 Using the extended Euclidean algorithm, find the multiplicative inverse of

a. 135 mod 61,
b. 7465 mod 2464, and
c. 42828 mod 6407.

 2.17 The purpose of this problem is to determine how many prime numbers there
are. Suppose there are a total of n prime numbers, and we list these in order:
p1 = 2 6 p2 = 3 6 p3 = 5 6 c 6 pn.
a. Define X = 1 + p1p2 c pn. That is, X is equal to one plus the product of all the

primes. Can we find a prime number Pm that divides X?
b. What can you say about m?
c. Deduce that the total number of primes cannot be finite.
d. Show that Pn + 1 … 1 + p1p2 c pn.

M02_STAL7484_08_GE_C02.indd 78 20/04/22 08:59

2.9 / Key Terms, revIew QuesTIoNs, aND Problems 79

 2.18 The purpose of this problem is to demonstrate that the probability that two random
numbers are relatively prime is about 0.6.
a. Let P = Pr[gcd(a, b) = 1]. Show that Pr[gcd(a, b) = d] = P/d2. Hint: Consider

the quantity gcd aa
d

,
b
d
b .

b. The sum of the result of part (a) over all possible values of d is 1. That is
Σd Ú1Pr[gcd(a, b) = d] = 1. Use this equality to determine the value of P. Hint:

Use the identity a
∞

i = 1

1

i2 =
p2

6
.

 2.19 Why is gcd(n, n + 1) = 1 for two consecutive integers n and n + 1?
 2.20 Using Fermat’s theorem, find 4225 mod 13.
 2.21 Use Fermat’s theorem to find a number a between 0 and 92 with a congruent to 71013

modulo 93.
 2.22 Use Fermat’s theorem to find a number x between 0 and 37 with x73 congruent to

4 modulo 37. (You should not need to use any brute-force searching.)
 2.23 Use Euler’s theorem to find a number a between 0 and 9 such that a is congruent to

9101 modulo 10. (Note: This is the same as the last digit of the decimal expansion of
9100.)

 2.24 Use Euler’s theorem to find a number x between 0 and 14 with x61 congruent to
7 modulo 15. (You should not need to use any brute-force searching.)

 2.25 Notice in Table 2.6 that f(n) is even for n 7 2. This is true for all n 7 2. Give a con-
cise argument why this is so.

 2.26 Prove the following: If p is prime, then f(pi) = pi - pi- 1. Hint: What numbers have
a factor in common with pi?

 2.27 It can be shown (see any book on number theory) that if gcd(m, n) = 1, then
f(mn) = f(m)f(n). Using this property, the property developed in the preceding
problem, and the property that f(p) = p - 1 for p prime, it is straightforward to
determine the value of f(n) for any n. Determine the following:
a. f(29) b. f(51) c. f(455) d. f(616)

 2.28 It can also be shown that for arbitrary positive integer a, f(a) is given by

f(a) = q
t

i = 1
[pi

ai - 1(pi - 1)]

 where a is given by Equation (2.9), namely: a = P1
a1P2

a2 c Pt
at. Demonstrate this result.

 2.29 Consider the function: f(n) = number of elements in the set {a: 0 … a 6 n and
gcd(a, n) = 1}. What is this function?

 2.30 Although ancient Chinese mathematicians did good work coming up with their re-
mainder theorem, they did not always get it right. They had a test for primality. The
test said that n is prime if and only if n divides (2n - 2).
a. Give an example that satisfies the condition using an odd prime.
b. The condition is obviously true for n = 2. Prove that the condition is true if n is an

odd prime (proving the if condition).
c. Give an example of an odd n that is not prime and that does not satisfy the condi-

tion. You can do this with nonprime numbers up to a very large value. This misled
the Chinese mathematicians into thinking that if the condition is true then n is prime.

d. Unfortunately, the ancient Chinese never tried n = 341, which is nonprime
(341 = 11 * 31), yet 341 divides 2341 - 2 without remainder. Demonstrate that
2341 K 2 (mod 341) (disproving the only if condition). Hint: It is not necessary to
calculate 2341; play around with the congruences instead.

M02_STAL7484_08_GE_C02.indd 79 20/04/22 08:59

80 ChaPTer 2 / INTroDuCTIoN To Number Theory

 2.31 Show that, if n is an odd composite integer, then the Miller–Rabin test will return
inconclusive for a = 1 and a = (n - 1).

 2.32 If n is composite and passes the Miller–Rabin test for the base a, then n is called
a strong pseudoprime to the base a. Show that 2047 is a strong pseudoprime to the
base 2.

 2.33 A common formulation of the Chinese remainder theorem (CRT) is as follows: Let
m1, c , mk be integers that are pairwise relatively prime for 1 … i, j … k, and i ≠ j.
Define M to be the product of all the mi>s. Let a1, c , ak be integers. Then the set of
congruences:

 x K a1(mod m1)

 x K a2(mod m2)
~
~
~

 x K ak(mod mk)

 has a unique solution modulo M. Show that the theorem stated in this form is true.
 2.34 The example used by Sun-Tsu to illustrate the CRT was

 x K 2 (mod 3); x K 3 (mod 5); x K 2 (mod 7)

 Solve for x.
 2.35 Six professors begin courses on Monday, Tuesday, Wednesday, Thursday, Friday, and

Saturday, respectively, and announce their intentions of lecturing at intervals of 3,
2, 5, 6, 1, and 4 days, respectively. The regulations of the university forbid Sunday
 lectures (so that a Sunday lecture must be omitted). When first will all six professors
find themselves compelled to omit a lecture? Hint: Use the CRT.

 2.36 Find all the primitive roots of 37.
 2.37 Given 5 as a primitive root of 23, construct a table of discrete logarithms, and use it to

solve the following congruences.
a. 3x5 = 2 (mod 23)
b. 7x10 + 1 = 0 (mod 23)
c. 5x = 6 (mod 23)

Programming Problems

 2.1 Write a computer program that implements fast exponentiation (successive squaring)
modulo n.

 2.2 Write a computer program that implements the Miller–Rabin algorithm for a user-
specified n. The program should allow the user two choices: (1) specify a possible
witness a to test using the Witness procedure or (2) specify a number s of random
witnesses for the Miller–Rabin test to check.

 APPENDIX 2A THE MEANING OF MOD

The operator mod is used in this book and in the literature in two different ways: as
a binary operator and as a congruence relation. This appendix explains the distinc-
tion and precisely defines the notation used in this book regarding parentheses. This
notation is common but, unfortunately, not universal.

M02_STAL7484_08_GE_C02.indd 80 20/04/22 08:59

The Binary Operator mod

If a is an integer and n is a positive integer, we define a mod n to be the remainder
when a is divided by n. The integer n is called the modulus, and the remainder is
called the residue. Thus, for any integer a, we can always write

 a = :a/n; * n + (a mod n)

Formally, we define the operator mod as

 a mod n = a - :a/n; * n for n ≠ 0

As a binary operation, mod takes two integer arguments and returns the re-
mainder. For example, 7 mod 3 = 1. The arguments may be integers, integer vari-
ables, or integer variable expressions. For example, all of the following are valid,
with the obvious meanings:

7 mod 3

7 mod m

x mod 3

x mod m

(x2 + y + 1) mod (2m + n)

where all of the variables are integers. For each of the above expressions, the value is
the remainder that results when the left-hand term is divided by the right-hand term
[see Equation (2.1)]. Note that if either the left- or right-hand argument is an expres-
sion, the expression is parenthesized. The operator mod is not inside parentheses.

In fact, the mod operation also works if the two arguments are arbitrary real num-
bers, not just integers. In this book, we are concerned only with the integer operation.

The Congruence Relation mod

As a congruence relation, mod expresses that two arguments have the same remain-
der with respect to a given modulus. For example, 7 K 4 (mod 3) expresses the fact
that both 7 and 4 have a remainder of 1 when divided by 3. The following two ex-
pressions are equivalent:

 a K b (mod m) 3 a mod m = b mod m

Another way of expressing it is to say that the expression a K b (mod m) is the
same as saying that a - b is an integral multiple of m. Again, all the arguments may
be integers, integer variables, or integer variable expressions. For example, all of the
following are valid, with the obvious meanings:

7 K 4 (mod 3)

x K y (mod m)

(x2 + y + 1) K (a + 1)(mod [m + n])

where all of the variables are integers. Two conventions are used. The congruence
sign is K . The modulus for the relation is defined by placing the mod operator fol-
lowed by the modulus in parentheses.

aPPeNDIx 2a / The meaNINg oF moD 81

M02_STAL7484_08_GE_C02.indd 81 20/04/22 08:59

82 ChaPTer 2 / INTroDuCTIoN To Number Theory

The congruence relation is used to define residue classes. Those numbers that
have the same remainder r when divided by m form a residue class (mod m). There
are m residue classes (mod m). For a given remainder r, the residue class to which it
belongs consists of the numbers

 r, r { m, r { 2m, c

According to our definition, the congruence

 a K b (mod m)

signifies that the numbers a and b differ by a multiple of m. Consequently, the con-
gruence can also be expressed in the terms that a and b belong to the same residue
class (mod m).

M02_STAL7484_08_GE_C02.indd 82 20/04/22 08:59

Part two: Symmetric ciPherS

Classical Encryption Techniques
3.1 Symmetric Cipher Model

Cryptography
Cryptanalysis and Brute-Force Attack

3.2 Substitution Techniques

Caesar Cipher
Monoalphabetic Ciphers
Playfair Cipher
Hill Cipher
Polyalphabetic Ciphers
One-Time Pad

3.3 Transposition Techniques

3.4 Key Terms, Review Questions, and Problems

CHAPTER3

83

M03_STAL7484_08_GE_C03.indd 83 25/04/22 8:33 AM

84 CHAPTER 3 / ClAssiCAl EnCRyPTion TECHniquEs

Symmetric encryption, also referred to as conventional encryption or single-key
encryption, was the only type of encryption in use prior to the development of public-
key encryption in the 1970s. It remains by far the most widely used of the two types
of encryption. Part Two examines a number of symmetric ciphers. In this chapter, we
begin with a look at a general model for the symmetric encryption process; this will
enable us to understand the context within which the algorithms are used. Next, we
examine a variety of algorithms in use before the computer era. Finally, we look briefly
at a different approach known as steganography. Chapters 4 and 6 introduce the two
most widely used symmetric cipher: DES and AES.

Before beginning, we define some terms. An original message is known as the
plaintext, while the coded message is called the ciphertext. The process of convert-
ing from plaintext to ciphertext is known as enciphering or encryption; restoring the
plaintext from the ciphertext is deciphering or decryption. The many schemes used
for encryption constitute the area of study known as cryptography. Such a scheme
is known as a cryptographic system or a cipher. Techniques used for decipher-
ing a message without any knowledge of the enciphering details fall into the area of
 cryptanalysis. Cryptanalysis is what the layperson calls “breaking the code.” The areas
of cryptography and cryptanalysis together are called cryptology.

 3.1 SYMMETRIC CIPHER MODEL

A symmetric encryption scheme has five ingredients (Figure 3.1):

■■ Plaintext: This is the original intelligible message or data that is fed into the
algorithm as input.

■■ Encryption algorithm: The encryption algorithm performs various substitu-
tions and transformations on the plaintext.

■■ Secret key: The secret key is also input to the encryption algorithm. The key is a
value independent of the plaintext and of the algorithm. The algorithm will pro-
duce a different output depending on the specific key being used at the time. The
exact substitutions and transformations performed by the algorithm depend on
the key.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

■◆ Present an overview of the main concepts of symmetric cryptography.

■◆ Explain the difference between cryptanalysis and brute-force attack.

■◆ Understand the operation of a monoalphabetic substitution cipher.

■◆ Understand the operation of a polyalphabetic cipher.

■◆ Present an overview of the Hill cipher.

M03_STAL7484_08_GE_C03.indd 84 25/04/22 8:33 AM

3.1 / symmETRiC CiPHER modEl 85

■■ Ciphertext: This is the scrambled message produced as output. It depends on
the plaintext and the secret key. For a given message, two different keys will
produce two different ciphertexts. The ciphertext is an apparently random
stream of data and, as it stands, is unintelligible.

■■ Decryption algorithm: This is essentially the encryption algorithm run in reverse.
It takes the ciphertext and the secret key and produces the original plaintext.

There are two requirements for secure use of conventional encryption:

1. We need a strong encryption algorithm. At a minimum, we would like the al-
gorithm to be such that an opponent who knows the algorithm and has ac-
cess to one or more ciphertexts would be unable to decipher the ciphertext or
figure out the key. This requirement is usually stated in a stronger form: The
opponent should be unable to decrypt ciphertext or discover the key even if he
or she is in possession of a number of ciphertexts together with the plaintext
that produced each ciphertext.

2. Sender and receiver must have obtained copies of the secret key in a secure
fashion and must keep the key secure. If someone can discover the key and
knows the algorithm, all communication using this key is readable.

We assume that it is impractical to decrypt a message on the basis of the cipher-
text plus knowledge of the encryption/decryption algorithm. In other words, we do
not need to keep the algorithm secret; we need to keep only the key secret. This fea-
ture of symmetric encryption is what makes it feasible for widespread use. The fact
that the algorithm need not be kept secret means that manufacturers can and have
developed low-cost chip implementations of data encryption algorithms. These chips
are widely available and incorporated into a number of products. With the use of sym-
metric encryption, the principal security problem is maintaining the secrecy of the key.

Let us take a closer look at the essential elements of a symmetric encryp-
tion scheme, using Figure 3.2. A source produces a message in plaintext,
X = [X1, X2, c , XM]. The M elements of X are letters in some finite alphabet.
Traditionally, the alphabet usually consisted of the 26 capital letters. Nowadays,

Figure 3.1 Simplified Model of Symmetric Encryption

Encryption
Algorithm

Data
block

(plaintext)

Data
block

(plaintext)

Encrypted
block

(ciphertext)

Decryption
Algorithm

Secret key shared by
sender and recipient

Y 5 E(K, X)

X 5 D(K, Y)X

K K

M03_STAL7484_08_GE_C03.indd 85 25/04/22 8:33 AM

86 CHAPTER 3 / ClAssiCAl EnCRyPTion TECHniquEs

the binary alphabet {0, 1} is typically used. For encryption, a key of the form
K = [K1, K2, c , KJ] is generated. If the key is generated at the message source,
then it must also be provided to the destination by means of some secure channel.
Alternatively, a third party could generate the key and securely deliver it to both
source and destination.

With the message X and the encryption key K as input, the encryption algo-
rithm forms the ciphertext Y = [Y1, Y2, c , YN]. We can write this as

 Y = E(K, X)

This notation indicates that Y is produced by using encryption algorithm E as a
function of the plaintext X, with the specific function determined by the value of
the key K.

The intended receiver, in possession of the key, is able to invert the
transformation:

 X = D(K, Y)

An opponent, observing Y but not having access to K or X, may attempt to
recover X or K or both X and K. It is assumed that the opponent knows the encryption
(E) and decryption (D) algorithms. If the opponent is interested in only this particular
message, then the focus of the effort is to recover X by generating a plaintext estimate
Xn . Often, however, the opponent is interested in being able to read future messages as
well, in which case an attempt is made to recover K by generating an estimate Kn .

Figure 3.2 Model of Symmetric Cryptosystem

Message
source

Cryptanalyst

Key
source

Destination
X X

X

K

Y 5 E(K, X)

Secure channel

K

Encryption
algorithm

Decryption
algorithm

⁄

⁄

M03_STAL7484_08_GE_C03.indd 86 25/04/22 8:33 AM

3.1 / symmETRiC CiPHER modEl 87

Cryptography

Cryptographic systems are characterized along three independent dimensions:

1. The type of operations used for transforming plaintext to ciphertext. All
encryption algorithms are based on two general principles: substitution, in
which each element in the plaintext (bit, letter, group of bits or letters) is
mapped into another element, and transposition, in which elements in the
plaintext are rearranged. The fundamental requirement is that no informa-
tion be lost (i.e., that all operations are reversible). Most systems, referred to
as product systems, involve multiple stages of substitutions and transpositions.

2. The number of keys used. If both sender and receiver use the same key, the
system is referred to as symmetric, single-key, secret-key, or conventional
 encryption. If the sender and receiver use different keys, the system is referred
to as asymmetric, two-key, or public-key encryption.

3. The way in which the plaintext is processed. A block cipher processes the
input one block of elements at a time, producing an output block for each
input block. A stream cipher processes the input elements continuously, pro-
ducing output one element at a time, as it goes along.

Cryptanalysis and Brute-Force Attack

Typically, the objective of attacking an encryption system is to recover the key in
use rather than simply to recover the plaintext of a single ciphertext. There are two
general approaches to attacking a conventional encryption scheme:

■■ Cryptanalysis: Cryptanalytic attacks rely on the nature of the algorithm plus
perhaps some knowledge of the general characteristics of the plaintext or even
some sample plaintext–ciphertext pairs. This type of attack exploits the charac-
teristics of the algorithm to attempt to deduce a specific plaintext or to deduce
the key being used.

■■ Brute-force attack: The attacker tries every possible key on a piece of cipher-
text until an intelligible translation into plaintext is obtained. On average, half
of all possible keys must be tried to achieve success.

If either type of attack succeeds in deducing the key, the effect is catastrophic:
All future and past messages encrypted with that key are compromised.

Cryptanalysis Table 3.1 summarizes the various types of cryptanalytic attacks based
on the amount of information known to the cryptanalyst. The most difficult problem is
presented when all that is available is the ciphertext only. In some cases, not even the
encryption algorithm is known, but in general, we can assume that the opponent does
know the algorithm used for encryption. One possible attack under these circumstances
is the brute-force approach of trying all possible keys. If the key space is very large,
this becomes impractical. Thus, the opponent must rely on an analysis of the ciphertext
itself, generally applying various statistical tests to it. To use this approach, the opponent
must have some general idea of the type of plaintext that is concealed, such as English
or French text, an EXE file, a Java source listing, an accounting file, and so on.

M03_STAL7484_08_GE_C03.indd 87 25/04/22 8:33 AM

88 CHAPTER 3 / ClAssiCAl EnCRyPTion TECHniquEs

The ciphertext-only attack is the easiest to defend against because the oppo-
nent has the least amount of information to work with. In many cases, however,
the analyst has more information. The analyst may be able to capture one or more
plaintext messages as well as their encryptions. Or the analyst may know that certain
plaintext patterns will appear in a message. For example, a file that is encoded in the
Postscript format always begins with the same pattern, or there may be a standard-
ized header or banner to an electronic funds transfer message, and so on. All these
are examples of known plaintext. With this knowledge, the analyst may be able to
deduce the key on the basis of the way in which the known plaintext is transformed.

Closely related to the known-plaintext attack is what might be referred to as a
probable-word attack. If the opponent is working with the encryption of some gen-
eral prose message, he or she may have little knowledge of what is in the message.
However, if the opponent is after some very specific information, then parts of the
message may be known. For example, if an entire accounting file is being transmit-
ted, the opponent may know the placement of certain key words in the header of the
file. As another example, the source code for a program developed by Corporation
X might include a copyright statement in some standardized position.

If the analyst is able somehow to get the source system to insert into the sys-
tem a message chosen by the analyst, then a chosen-plaintext attack is possible.
In general, if the analyst is able to choose the messages to encrypt, the analyst may
deliberately pick patterns that can be expected to reveal the structure of the key.

Table 3.1 lists two other types of attack: chosen ciphertext and chosen text.
These are less commonly employed as cryptanalytic techniques but are nevertheless
possible avenues of attack.

Only relatively weak algorithms fail to withstand a ciphertext-only attack.
Generally, an encryption algorithm is designed to withstand a known-plaintext attack.

Type of Attack Known to Cryptanalyst

Ciphertext Only ■■Encryption algorithm
■■Ciphertext

Known Plaintext ■■Encryption algorithm
■■Ciphertext
■■One or more plaintext–ciphertext pairs formed with the secret key

Chosen Plaintext ■■Encryption algorithm
■■Ciphertext
■■■Plaintext message chosen by cryptanalyst, together with its corresponding

 ciphertext generated with the secret key

Chosen Ciphertext ■■Encryption algorithm
■■Ciphertext
■■■Ciphertext chosen by cryptanalyst, together with its corresponding decrypted

plaintext generated with the secret key

Chosen Text ■■Encryption algorithm
■■Ciphertext
■■■Plaintext message chosen by cryptanalyst, together with its corresponding

 ciphertext generated with the secret key
■■■Ciphertext chosen by cryptanalyst, together with its corresponding decrypted

plaintext generated with the secret key

Table 3.1 Types of Attacks on Encrypted Messages

M03_STAL7484_08_GE_C03.indd 88 25/04/22 8:33 AM

3.1 / symmETRiC CiPHER modEl 89

Two more definitions are worthy of note. An encryption scheme is
 unconditionally secure if the ciphertext generated by the scheme does not contain
enough information to determine uniquely the corresponding plaintext, no matter
how much ciphertext is available. That is, no matter how much time an opponent
has, it is impossible for him or her to decrypt the ciphertext simply because the
required information is not there. With the exception of a scheme known as the one-
time pad (described later in this chapter), there is no encryption algorithm that is
unconditionally secure. Therefore, all that the users of an encryption algorithm can
strive for is an algorithm that meets one or both of the following criteria:

■■ The cost of breaking the cipher exceeds the value of the encrypted information.

■■ The time required to break the cipher exceeds the useful lifetime of the
information.

An encryption scheme is said to be computationally secure if either of the
foregoing two criteria are met. Unfortunately, it is very difficult to estimate the
amount of effort required to cryptanalyze ciphertext successfully.

All forms of cryptanalysis for symmetric encryption schemes are designed
to exploit the fact that traces of structure or pattern in the plaintext may survive
encryption and be discernible in the ciphertext. This will become clear as we exam-
ine various symmetric encryption schemes in this chapter. We will see in Part Three
that cryptanalysis for public-key schemes proceeds from a fundamentally different
premise, namely, that the mathematical properties of the pair of keys may make it
possible for one of the two keys to be deduced from the other.

Brute-ForCe attaCk A brute-force attack involves trying every possible key until
an intelligible translation of the ciphertext into plaintext is obtained. On average,
half of all possible keys must be tried to achieve success. That is, if there are X dif-
ferent keys, on average an attacker would discover the actual key after X/2 tries. It
is important to note that there is more to a brute-force attack than simply running
through all possible keys. Unless known plaintext is provided, the analyst must be
able to recognize plaintext as plaintext. If the message is just plain text in English,
then the result pops out easily, although the task of recognizing English would have
to be automated. If the text message has been compressed before encryption, then
recognition is more difficult. And if the message is some more general type of data,
such as a numerical file, and this has been compressed, the problem becomes even
more difficult to automate. Thus, to supplement the brute-force approach, some
degree of knowledge about the expected plaintext is needed, and some means of
automatically distinguishing plaintext from garble is also needed.

strong enCryption For users, security managers, and organization executives, there
is a requirement for strong encryption to protect data. The term strong encryption is
an imprecise one, but in general terms, it refers to encryption schemes that make it
impractically difficult for unauthorized persons or systems to gain access to plaintext
that has been encrypted. [NAS18] lists the following properties that make an encryp-
tion algorithm strong: appropriate choice of cryptographic algorithm, use of sufficiently
long key lengths, appropriate choice of protocols, a well-engineered implementation,
and the absence of deliberately introduced hidden flaws. The first two factors relate to
cryptanalysis, discussed in this section, and the third factor relates to the discussion in
Part Six. The last two factors are beyond the scope of this book.

M03_STAL7484_08_GE_C03.indd 89 25/04/22 8:33 AM

90 CHAPTER 3 / ClAssiCAl EnCRyPTion TECHniquEs

 3.2 SUBSTITUTION TECHNIQUES

In this section and the next, we examine a sampling of what might be called classical
encryption techniques. A study of these techniques enables us to illustrate the basic
approaches to symmetric encryption used today and the types of cryptanalytic at-
tacks that must be anticipated.

The two basic building blocks of all encryption techniques are substitution and
transposition. We examine these in the next two sections. Finally, we discuss a system
that combines both substitution and transposition.

A substitution technique is one in which the letters of plaintext are replaced
by other letters or by numbers or symbols.1 If the plaintext is viewed as a sequence
of bits, then substitution involves replacing plaintext bit patterns with ciphertext bit
patterns.

Caesar Cipher

The earliest known, and the simplest, use of a substitution cipher was by Julius
Caesar. The Caesar cipher involves replacing each letter of the alphabet with the
letter standing three places further down the alphabet. For example,

plain: meet me after the toga party
cipher: PHHW PH DIWHU WKH WRJD SDUWB

Note that the alphabet is wrapped around, so that the letter following Z is A.
We can define the transformation by listing all possibilities, as follows:

plain: a b c d e f g h i j k l m n o p q r s t u v w x y z
cipher: D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

Let us assign a numerical equivalent to each letter:

a b c d e f g h i j k l m

0 1 2 3 4 5 6 7 8 9 10 11 12

n o p q r s t u v w x y z

13 14 15 16 17 18 19 20 21 22 23 24 25

Then the algorithm can be expressed as follows. For each plaintext letter p, substi-
tute the ciphertext letter C:2

 C = E(3, p) = (p + 3) mod 26

A shift may be of any amount, so that the general Caesar algorithm is

 C = E(k, p) = (p + k) mod 26 (3.1)

1When letters are involved, the following conventions are used in this book. Plaintext is always in
 lowercase; ciphertext is in uppercase; key values are in italicized lowercase.
2We define a mod n to be the remainder when a is divided by n. For example, 11 mod 7 = 4. See Chapter 2
for a further discussion of modular arithmetic.

M03_STAL7484_08_GE_C03.indd 90 25/04/22 8:33 AM

3.2 / subsTiTuTion TECHniquEs 91

where k takes on a value in the range 1 to 25. The decryption algorithm is simply

 p = D(k, C) = (C - k) mod 26 (3.2)

If it is known that a given ciphertext is a Caesar cipher, then a brute-force
cryptanalysis is easily performed: simply try all the 25 possible keys. Figure 3.3
shows the results of applying this strategy to the example ciphertext. In this case, the
plaintext leaps out as occupying the third line.

Three important characteristics of this problem enabled us to use a brute-force
cryptanalysis:

1. The encryption and decryption algorithms are known.

2. There are only 25 keys to try.

3. The language of the plaintext is known and easily recognizable.

In most networking situations, we can assume that the algorithms are known.
What generally makes brute-force cryptanalysis impractical is the use of an algo-
rithm that employs a large number of keys. For example, the triple DES algorithm,

Figure 3.3 Brute-Force Cryptanalysis of Caesar Cipher

PHHW PH DIWHU WKH WRJD SDUWB
KEY

1

2 nffu nf bgufs uif uphb qbsuz

3 meet me after the toga party

4 ldds ld zesdq sgd snfz ozqsx

5 kccr kc ydrcp rfc rmey nyprw

6 jbbq jb xcqbo qeb qldx mxoqv

iaap ia wbpan pda pkcw lwnpu

hzzo hz vaozm ocz ojbv kvmot

gyyn gy uznyl nby niau julns

fxxm fx tymxk max mhzt itkmr

ewwl ew sxlwj lzw lgys hsjlq

dvvk dv rwkvi kyv kfxr grikp

cuuj cu qvjuh jxu jewq fqhjo

btti bt puitg iwt idvp epgin

assh as othsf hvs hcuo dofhm

zrrg zr nsgre gur gbtn cnegl

7

8

9

10

11

12

13

14

15

16

17 yqqf yq mrfqd ftq fasm bmdfk

18 xppe xp lqepc esp ezrl alcej

19 wood wo kpdob dro dyqk zkbdi

20 vnnc vn jocna cqn cxpj yjach

21 ummb um inbmz bpm bwoi xizbg

22 tlla tl hmaly aol avnh whyaf

23 skkz sk glzkx znk zumg vgxze

24 rjjy rj fkyjw ymj ytlf ufwyd

25 qiix qi ejxiv xli xske tevxc

oggv og chvgt vjg vqic rctva

M03_STAL7484_08_GE_C03.indd 91 25/04/22 8:33 AM

92 CHAPTER 3 / ClAssiCAl EnCRyPTion TECHniquEs

examined in Chapter 7, makes use of a 168-bit key, giving a key space of 2168 or
greater than 3.7 * 1050 possible keys.

The third characteristic is also significant. If the language of the plaintext is
unknown, then plaintext output may not be recognizable. Furthermore, the input
may be abbreviated or compressed in some fashion, again making recognition dif-
ficult. For example, Figure 3.4 shows a portion of a text file compressed using an
algorithm called ZIP. If this file is then encrypted with a simple substitution cipher
(expanded to include more than just 26 alphabetic characters), then the plaintext
may not be recognized when it is uncovered in the brute-force cryptanalysis.

Monoalphabetic Ciphers

With only 25 possible keys, the Caesar cipher is far from secure. A dramatic increase
in the key space can be achieved by allowing an arbitrary substitution. Before pro-
ceeding, we define the term permutation. A permutation of a finite set of elements S
is an ordered sequence of all the elements of S, with each element appearing exactly
once. For example, if S = {a, b, c}, there are six permutations of S:

 abc, acb, bac, bca, cab, cba

In general, there are n! permutations of a set of n elements, because the first
element can be chosen in one of n ways, the second in n - 1 ways, the third in n - 2
ways, and so on.

Recall the assignment for the Caesar cipher:

plain: a b c d e f g h i j k l m n o p q r s t u v w x y z
cipher: D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

If, instead, the “cipher” line can be any permutation of the 26 alphabetic characters,
then there are 26! or greater than 4 * 1026 possible keys. This is 10 orders of magni-
tude greater than the key space for DES and would seem to eliminate brute-force
techniques for cryptanalysis. Such an approach is referred to as a monoalphabetic
substitution cipher, because a single cipher alphabet (mapping from plain alphabet
to cipher alphabet) is used per message.

There is, however, another line of attack. If the cryptanalyst knows the nature
of the plaintext (e.g., noncompressed English text), then the analyst can exploit the
regularities of the language. To see how such a cryptanalysis might proceed, we give
a partial example here that is adapted from one in [SINK09]. The ciphertext to be
solved is

Figure 3.4 Sample of Compressed Text

M03_STAL7484_08_GE_C03.indd 92 25/04/22 8:33 AM

3.2 / subsTiTuTion TECHniquEs 93

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ
VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX
EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ

As a first step, the relative frequency of the letters can be determined and com-
pared to a standard frequency distribution for English, such as is shown in Figure 3.5
(based on [LEWA00]). If the message were long enough, this technique alone might
be sufficient, but because this is a relatively short message, we cannot expect an
exact match. In any case, the relative frequencies of the letters in the ciphertext (in
percentages) are as follows:

P 13.33 H 5.83 F 3.33 B 1.67 C 0.00

Z 11.67 D 5.00 W 3.33 G 1.67 K 0.00

S 8.33 E 5.00 Q 2.50 Y 1.67 L 0.00

U 8.33 V 4.17 T 2.50 I 0.83 N 0.00

O 7.50 X 4.17 A 1.67 J 0.83 R 0.00

M 6.67

Comparing this breakdown with Figure 3.5, it seems likely that cipher letters
P and Z are the equivalents of plain letters e and t, but it is not certain which is
which. The letters S, U, O, M, and H are all of relatively high frequency and probably

Figure 3.5 Relative Frequency of Letters in English Text

0

2

4

6

8

10

12

14

A

8.
16

7

1.
49

2

2.
78

2

4.
25

3

12
.7

02

2.
22

8

2.
01

5

6.
09

4 6.
99

6

0.
15

3 0.
77

2

4.
02

5

2.
40

6

6.
74

9 7.
50

7

1.
92

9

0.
09

5

5.
98

7

6.
32

7

9.
05

6

2.
75

8

0.
97

8

2.
36

0

0.
15

0

1.
97

4

0.
07

4

B C D E F G H I J K L M N

R
el

at
iv

e
fr

eq
ue

nc
y

(%
)

O P Q R S T U V W X Y Z

M03_STAL7484_08_GE_C03.indd 93 25/04/22 8:33 AM

94 CHAPTER 3 / ClAssiCAl EnCRyPTion TECHniquEs

correspond to plain letters from the set {a, h, i, n, o, r, s}. The letters with the lowest
frequencies (namely, A, B, G, Y, I, J) are likely included in the set {b, j, k, q, v, x, z}.

There are a number of ways to proceed at this point. We could make some
tentative assignments and start to fill in the plaintext to see if it looks like a rea-
sonable “skeleton” of a message. A more systematic approach is to look for other
regularities. For example, certain words may be known to be in the text. Or we
could look for repeating sequences of cipher letters and try to deduce their plain-
text equivalents.

A powerful tool is to look at the frequency of two-letter combinations, known
as digrams. A table similar to Figure 3.5 could be drawn up showing the relative fre-
quency of digrams. The most common such digram is th. In our ciphertext, the most
common digram is ZW, which appears three times. So we make the correspondence
of Z with t and W with h. Then, by our earlier hypothesis, we can equate P with e.
Now notice that the sequence ZWP appears in the ciphertext, and we can translate
that sequence as “the.” This is the most frequent trigram (three-letter combination)
in English, which seems to indicate that we are on the right track.

Next, notice the sequence ZWSZ in the first line. We do not know that these
four letters form a complete word, but if they do, it is of the form th_t. If so, S equates
with a.

So far, then, we have

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ
t a e e te a that e e a a

VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX
e t ta t ha e ee a e th t a

EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ
e e e tat e the t

Only four letters have been identified, but already we have quite a bit of the
message. Continued analysis of frequencies plus trial and error should easily yield a
solution from this point. The complete plaintext, with spaces added between words,
follows:

it was disclosed yesterday that several informal but
direct contacts have been made with political
representatives of the viet cong in moscow

Monoalphabetic ciphers are easy to break because they reflect the frequency
data of the original alphabet. A countermeasure is to provide multiple substi-
tutes, known as homophones, for a single letter. For example, the letter e could
be assigned a number of different cipher symbols, such as 16, 74, 35, and 21, with
each homophone assigned to a letter in rotation or randomly. If the number of
symbols assigned to each letter is proportional to the relative frequency of that
letter, then single-letter frequency information is completely obliterated. The great
mathematician Carl Friedrich Gauss believed that he had devised an unbreak-
able cipher using homophones. However, even with homophones, each element
of plaintext affects only one element of ciphertext, and multiple-letter patterns

M03_STAL7484_08_GE_C03.indd 94 25/04/22 8:33 AM

3.2 / subsTiTuTion TECHniquEs 95

(e.g., digram frequencies) still survive in the ciphertext, making cryptanalysis rela-
tively straightforward.

Two principal methods are used in substitution ciphers to lessen the extent to
which the structure of the plaintext survives in the ciphertext: One approach is to
encrypt multiple letters of plaintext, and the other is to use multiple cipher alpha-
bets. We briefly examine each.

Playfair Cipher

The best-known multiple-letter encryption cipher is the Playfair, which treats di-
grams in the plaintext as single units and translates these units into ciphertext
digrams.3

The Playfair algorithm is based on the use of a 5 * 5 matrix of letters con-
structed using a keyword. Here is an example, solved by Lord Peter Wimsey in
Dorothy Sayers’s Have His Carcase:4

M O N A R

C H Y B D

E F G I/J K

L P Q S T

U V W X Z

In this case, the keyword is monarchy. The matrix is constructed by filling in
the letters of the keyword (minus duplicates) from left to right and from top to bot-
tom, and then filling in the remainder of the matrix with the remaining letters in
alphabetic order. The letters I and J count as one letter. Plaintext is encrypted two
letters at a time, according to the following rules:

1. Repeating plaintext letters that are in the same pair are separated with a filler
letter, such as x, so that balloon would be treated as ba lx lo on.

2. Two plaintext letters that fall in the same row of the matrix are each replaced
by the letter to the right, with the first element of the row circularly following
the last. For example, ar is encrypted as RM.

3. Two plaintext letters that fall in the same column are each replaced by the let-
ter beneath, with the top element of the column circularly following the last.
For example, mu is encrypted as CM.

4. Otherwise, each plaintext letter in a pair is replaced by the letter that lies in
its own row and the column occupied by the other plaintext letter. Thus, hs
becomes BP and ea becomes IM (or JM, as the encipherer wishes).

The Playfair cipher is a great advance over simple monoalphabetic ciphers. For
one thing, whereas there are only 26 letters, there are 26 * 26 = 676 digrams, so

3This cipher was actually invented by British scientist Sir Charles Wheatstone in 1854, but it bears the
name of his friend Baron Playfair of St. Andrews, who championed the cipher at the British foreign office.
4The book provides an absorbing account of a probable-word attack.

M03_STAL7484_08_GE_C03.indd 95 25/04/22 8:33 AM

96 CHAPTER 3 / ClAssiCAl EnCRyPTion TECHniquEs

that identification of individual digrams is more difficult. Furthermore, the relative
frequencies of individual letters exhibit a much greater range than that of digrams,
making frequency analysis much more difficult. For these reasons, the Playfair
cipher was for a long time considered unbreakable. It was used as the standard field
system by the British Army in World War I and still enjoyed considerable use by the
U.S. Army and other Allied forces during World War II.

Despite this level of confidence in its security, the Playfair cipher is relatively
easy to break, because it still leaves much of the structure of the plaintext language
intact. A few hundred letters of ciphertext are generally sufficient.

One way of revealing the effectiveness of the Playfair and other ciphers is
shown in Figure 3.6. The line labeled plaintext plots a typical frequency distribution
of the 26 alphabetic characters (no distinction between upper and lower case) in
ordinary text. This is also the frequency distribution of any monoalphabetic substi-
tution cipher, because the frequency values for individual letters are the same, just
with different letters substituted for the original letters. The plot is developed in the
following way: The number of occurrences of each letter in the text is counted and
divided by the number of occurrences of the most frequently used letter. Using the
results of Figure 3.5, we see that e is the most frequently used letter. As a result, e
has a relative frequency of 1, t of 9.056/12.702 ≈ 0.72, and so on. The points on the
horizontal axis correspond to the letters in order of decreasing frequency.

Figure 3.6 also shows the frequency distribution that results when the text is
encrypted using the Playfair cipher. To normalize the plot, the number of occur-
rences of each letter in the ciphertext was again divided by the number of occur-
rences of e in the plaintext. The resulting plot therefore shows the extent to which
the frequency distribution of letters, which makes it trivial to solve substitution

Figure 3.6 Relative Frequency of Occurrence of Letters

0
1 2 3 4 5 6 1 7 8 9 10 10 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Plaintext

Playfair

Vigenère

Random polyalphabetic

Frequency ranked letters (decreasing frequency)

N
or

m
al

iz
ed

 re
la

tiv
e

fr
eq

ue
nc

y

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M03_STAL7484_08_GE_C03.indd 96 25/04/22 8:33 AM

3.2 / subsTiTuTion TECHniquEs 97

ciphers, is masked by encryption. If the frequency distribution information were
totally concealed in the encryption process, the ciphertext plot of frequencies would
be flat, and cryptanalysis using ciphertext only would be effectively impossible. As
the figure shows, the Playfair cipher has a flatter distribution than does plaintext,
but nevertheless, it reveals plenty of structure for a cryptanalyst to work with. The
plot also shows the Vigenère cipher, discussed subsequently. The Hill and Vigenère
curves on the plot are based on results reported in [SIMM93].

Hill Cipher5

Another interesting multiletter cipher is the Hill cipher, developed by the mathema-
tician Lester Hill in 1929.

ConCepts From linear algeBra Before describing the Hill cipher, let us briefly
review some terminology from linear algebra. In this discussion, we are concerned
with matrix arithmetic modulo 26. For the reader who needs a refresher on matrix
multiplication and inversion, see Appendix A.

We define the inverse M-1 of a square matrix M by the equation M(M-1) =
M-1M = I, where I is the identity matrix. I is a square matrix that is all zeros except
for ones along the main diagonal from upper left to lower right. The inverse of a
matrix does not always exist, but when it does, it satisfies the preceding equation.
For example,

 A = ¢ 5 8
17 3

≤ A-1 mod 26 = ¢9 2
1 15

≤
 AA-1 = ¢ (5 * 9) + (8 * 1) (5 * 2) + (8 * 15)

(17 * 9) + (3 * 1) (17 * 2) + (3 * 15)
≤

 = ¢ 53 130
156 79

≤ mod 26 = ¢1 0
0 1

≤
To explain how the inverse of a matrix is computed, we begin with the concept

of determinant. For any square matrix (m * m), the determinant equals the sum of
all the products that can be formed by taking exactly one element from each row
and exactly one element from each column, with certain of the product terms pre-
ceded by a minus sign. For a 2 * 2 matrix,

 ¢k11 k12

k21 k22
≤

the determinant is k11k22 - k12k21. For a 3 * 3 matrix, the value of the determinant
is k11k22k33 + k21k32k13 + k31k12k23 - k31k22k13 - k21k12k33 - k11k32k23. If a square

5This cipher is somewhat more difficult to understand than the others in this chapter, but it illustrates an
important point about cryptanalysis that will be useful later on. This subsection can be skipped on a first
reading.

M03_STAL7484_08_GE_C03.indd 97 25/04/22 8:33 AM

98 CHAPTER 3 / ClAssiCAl EnCRyPTion TECHniquEs

matrix A has a nonzero determinant, then the inverse of the matrix is computed as
[A-1]ij = (det A)-1(-1)i+ j(Dji), where (Dji) is the subdeterminant formed by de-
leting the jth row and the ith column of A, det(A) is the determinant of A, and
(det A)-1 is the multiplicative inverse of (det A) mod 26.

Continuing our example,

 det ¢ 5 8
17 3

≤ = (5 * 3) - (8 * 17) = -121 mod 26 = 9

We can show that 9-1 mod 26 = 3, because 9 * 3 = 27 mod 26 = 1 (see
Chapter 2 or Appendix A). Therefore, we compute the inverse of A as

 A = ¢ 5 8
17 3

≤
 A-1 mod 26 = 3¢ 3 -8

-17 5
≤ = 3¢3 18

9 5
≤ = ¢ 9 54

27 15
≤ = ¢9 2

1 15
≤

the hill algorithm This encryption algorithm takes m successive plaintext let-
ters and substitutes for them m ciphertext letters. The substitution is determined
by m linear equations in which each character is assigned a numerical value
(a = 0, b = 1, c , z = 25). For m = 3, the system can be described as

 c1 = (k11p1 + k21p2 + k31p3) mod 26

 c2 = (k12p1 + k22p2 + k32p3) mod 26

 c3 = (k13p1 + k23p2 + k33p3) mod 26

This can be expressed in terms of row vectors and matrices:6

 (c1 c2 c3) = (p1 p2 p3)£k11 k12 k13

k21 k22 k23

k31 k32 k33

≥ mod 26

or

 C = PK mod 26

where C and P are row vectors of length 3 representing the plaintext and ciphertext,
and K is a 3 * 3 matrix representing the encryption key. Operations are performed
mod 26.

6Some cryptography books express the plaintext and ciphertext as column vectors, so that the column
vector is placed after the matrix rather than the row vector placed before the matrix. Sage uses row vec-
tors, so we adopt that convention.

M03_STAL7484_08_GE_C03.indd 98 25/04/22 8:33 AM

3.2 / subsTiTuTion TECHniquEs 99

For example, consider the plaintext “paymoremoney” and use the encryption key

 K = £17 17 5
21 18 21
2 2 19

≥

The first three letters of the plaintext are represented by the vector (15 0 24).
Then (15 0 24)K = (303 303 531) mod 26 = (17 17 11) = RRL. Continuing in this
fashion, the ciphertext for the entire plaintext is RRLMWBKASPDH.

Decryption requires using the inverse of the matrix K. We can compute det
K = 23, and therefore, (det K)-1 mod 26 = 17. We can then compute the inverse as7

 K-1 = £ 4 9 15
15 17 6
24 0 17

≥

This is demonstrated as

 £17 17 5
21 18 21
2 2 19

≥£ 4 9 15
15 17 6
24 0 17

≥ = £443 442 442
858 495 780
494 52 365

≥ mod 26 = £1 0 0
0 1 0
0 0 1

≥

It is easily seen that if the matrix K-1 is applied to the ciphertext, then the
plaintext is recovered.

In general terms, the Hill system can be expressed as

 C = E(K, P) = PK mod 26

 P = D(K, C) = CK-1 mod 26 = PKK-1 = P

As with Playfair, the strength of the Hill cipher is that it completely hides
single-letter frequencies. Indeed, with Hill, the use of a larger matrix hides more
frequency information. Thus, a 3 * 3 Hill cipher hides not only single-letter but also
two-letter frequency information.

Although the Hill cipher is strong against a ciphertext-only attack, it is easily
broken with a known plaintext attack. For an m * m Hill cipher, suppose we have m
plaintext–ciphertext pairs, each of length m. We label the pairs Pj = (p1jp1j c pmj)
and Cj = (c1jc1j c cmj) such that Cj = PjK for 1 … j … m and for some unknown
key matrix K. Now define two m * m matrices X = (pij) and Y = (cij). Then we
can form the matrix equation Y = XK. If X has an inverse, then we can determine
K = X-1Y. If X is not invertible, then a new version of X can be formed with addi-
tional plaintext–ciphertext pairs until an invertible X is obtained.

Consider this example. Suppose that the plaintext “hillcipher” is encrypted
using a 2 * 2 Hill cipher to yield the ciphertext HCRZSSXNSP. Thus, we know that
(7 8)K mod 26 = (7 2); (11 11)K mod 26 = (17 25); and so on. Using the
first two plaintext-ciphertext pairs, we have

7The calculations for this example are provided in detail in Appendix A.

M03_STAL7484_08_GE_C03.indd 99 25/04/22 8:33 AM

100 CHAPTER 3 / ClAssiCAl EnCRyPTion TECHniquEs

 ¢ 7 2
17 25

≤ = ¢ 7 8
11 11

≤K mod 26

The inverse of X can be computed:

 ¢ 7 8
11 11

≤-1

= ¢25 22
1 23

≤

so

 K = ¢25 22
1 23

≤ ¢ 7 2
17 25

≤ = ¢549 600
398 577

≤ mod 26 = ¢3 2
8 5

≤

This result is verified by testing the remaining plaintext–ciphertext pairs.

Polyalphabetic Ciphers

Another way to improve on the simple monoalphabetic technique is to use differ-
ent monoalphabetic substitutions as one proceeds through the plaintext message.
The general name for this approach is polyalphabetic substitution cipher. All these
techniques have the following features in common:

1. A set of related monoalphabetic substitution rules is used.

2. A key determines which particular rule is chosen for a given transformation.

Vigenère Cipher The best known, and one of the simplest, polyalphabetic ciphers
is the Vigenère cipher. In this scheme, the set of related monoalphabetic substitution
rules consists of the 26 Caesar ciphers with shifts of 0 through 25. Each cipher is
denoted by a key letter, which is the ciphertext letter that substitutes for the plain-
text letter a. Thus, a Caesar cipher with a shift of 3 is denoted by the key value 3.8

We can express the Vigenère cipher in the following manner. Assume a
sequence of plaintext letters P = p0, p1, p2, c , pn - 1 and a key consisting of the
sequence of letters K = k0, k1, k2, c , km - 1, where typically m 6 n. The sequence
of ciphertext letters C = C0, C1, C2, c , Cn - 1 is calculated as follows:

 C = C0, C1, C2, c, Cn - 1 = E(K, P) = E[(k0, k1, k2, c, km - 1), (p0, p1, p2, c , pn - 1)]

 = (p0 + k0) mod 26, (p1 + k1) mod 26, c, (pm - 1 + km - 1) mod 26,

(pm + k0) mod 26, (pm + 1 + k1) mod 26, c , (p2m - 1 + km - 1) mod 26, c

Thus, the first letter of the key is added to the first letter of the plaintext, mod 26,
the second letters are added, and so on through the first m letters of the plaintext.
For the next m letters of the plaintext, the key letters are repeated. This process

8To aid in understanding this scheme and also to aid in it use, a matrix known as the Vigenère tableau is
often used. This tableau is discussed in a document at box.com/Crypto8e.

M03_STAL7484_08_GE_C03.indd 100 25/04/22 8:33 AM

http://box.com/Crypto8e

3.2 / subsTiTuTion TECHniquEs 101

continues until all of the plaintext sequence is encrypted. A general equation of the
encryption process is

 Ci = (pi + ki mod m) mod 26 (3.3)

Compare this with Equation (3.1) for the Caesar cipher. In essence, each plain-
text character is encrypted with a different Caesar cipher, depending on the corre-
sponding key character. Similarly, decryption is a generalization of Equation (3.2):

 pi = (Ci - ki mod m) mod 26 (3.4)

To encrypt a message, a key is needed that is as long as the message. Usually,
the key is a repeating keyword. For example, if the keyword is deceptive, the message
“we are discovered save yourself” is encrypted as

key: deceptivedeceptivedeceptive
plaintext: wearediscoveredsaveyourself
ciphertext: ZICVTWQNGRZGVTWAVZHCQYGLMGJ

Expressed numerically, we have the following result.

key 3 4 2 4 15 19 8 21 4 3 4 2 4 15

plaintext 22 4 0 17 4 3 8 18 2 14 21 4 17 4

ciphertext 25 8 2 21 19 22 16 13 6 17 25 6 21 19

key 19 8 21 4 3 4 2 4 15 19 8 21 4

plaintext 3 18 0 21 4 24 14 20 17 18 4 11 5

ciphertext 22 0 21 25 7 2 16 24 6 11 12 6 9

The strength of this cipher is that there are multiple ciphertext letters for each
plaintext letter, one for each unique letter of the keyword. Thus, the letter frequency
information is obscured. However, not all knowledge of the plaintext structure is
lost. For example, Figure 3.6 shows the frequency distribution for a Vigenère cipher
with a keyword of length 9. An improvement is achieved over the Playfair cipher,
but considerable frequency information remains.

It is instructive to sketch a method of breaking this cipher, because the method
reveals some of the mathematical principles that apply in cryptanalysis.

First, suppose that the opponent believes that the ciphertext was encrypted
using either monoalphabetic substitution or a Vigenère cipher. A simple test can be
made to make a determination. If a monoalphabetic substitution is used, then the
statistical properties of the ciphertext should be the same as that of the language of
the plaintext. Thus, referring to Figure 3.5, there should be one cipher letter with a
relative frequency of occurrence of about 12.7%, one with about 9.06%, and so on. If
only a single message is available for analysis, we would not expect an exact match of
this small sample with the statistical profile of the plaintext language. Nevertheless,
if the correspondence is close, we can assume a monoalphabetic substitution.

M03_STAL7484_08_GE_C03.indd 101 25/04/22 8:33 AM

102 CHAPTER 3 / ClAssiCAl EnCRyPTion TECHniquEs

If, on the other hand, a Vigenère cipher is suspected, then progress depends on
determining the length of the keyword, as will be seen in a moment. For now, let us
concentrate on how the keyword length can be determined. The important insight
that leads to a solution is the following: If two identical sequences of plaintext let-
ters occur at a distance that is an integer multiple of the keyword length, they will
generate identical ciphertext sequences. In the foregoing example, two instances
of the sequence “red” are separated by nine character positions. Consequently, in
both cases, r is encrypted using key letter e, e is encrypted using key letter p, and d
is encrypted using key letter t. Thus, in both cases, the ciphertext sequence is VTW.
We indicate this above by underlining the relevant ciphertext letters and shading the
relevant ciphertext numbers.

An analyst looking at only the ciphertext would detect the repeated sequences
VTW at a displacement of 9 and make the assumption that the keyword is either three
or nine letters in length. The appearance of VTW twice could be by chance and may not
reflect identical plaintext letters encrypted with identical key letters. However, if the
message is long enough, there will be a number of such repeated ciphertext sequences.
By looking for common factors in the displacements of the various sequences, the
analyst should be able to make a good guess of the keyword length.

Solution of the cipher now depends on an important insight. If the keyword
length is m, then the cipher, in effect, consists of m monoalphabetic substitution
ciphers. For example, with the keyword DECEPTIVE, the letters in positions 1, 10,
19, and so on are all encrypted with the same monoalphabetic cipher. Thus, we can
use the known frequency characteristics of the plaintext language to attack each of
the monoalphabetic ciphers separately.

The periodic nature of the keyword can be eliminated by using a nonrepeating
keyword that is as long as the message itself. Vigenère proposed what is referred to
as an autokey system, in which a keyword is concatenated with the plaintext itself to
provide a running key. For our example,

key: deceptivewearediscoveredsav
plaintext: wearediscoveredsaveyourself
ciphertext: ZICVTWQNGKZEIIGASXSTSLVVWLA

Even this scheme is vulnerable to cryptanalysis. Because the key and the plain-
text share the same frequency distribution of letters, a statistical technique can be
applied. For example, e enciphered by e, by Figure 3.5, can be expected to occur with
a frequency of (0.127)2 ≈ 0.016, whereas t enciphered by t would occur only about
half as often. These regularities can be exploited to achieve successful
cryptanalysis.9

Vernam Cipher The ultimate defense against such a cryptanalysis is to choose a
keyword that is as long as the plaintext and has no statistical relationship to it. Such
a system was introduced by an AT&T engineer named Gilbert Vernam in 1918.

9Although the techniques for breaking a Vigenère cipher are by no means complex, a 1917 issue of
Scientific American characterized this system as “impossible of translation.” This is a point worth remem-
bering when similar claims are made for modern algorithms.

M03_STAL7484_08_GE_C03.indd 102 25/04/22 8:33 AM

3.2 / subsTiTuTion TECHniquEs 103

His system works on binary data (bits) rather than letters. The system can be ex-
pressed succinctly as follows (Figure 3.7):

 ci = pi ⊕ ki

where

pi = ith binary digit of plaintext

ki = ith binary digit of key

ci = ith binary digit of ciphertext
⊕ = exclusive@or (XOR) operation

Compare this with Equation (3.3) for the Vigenère cipher.
Thus, the ciphertext is generated by performing the bitwise XOR of the plain-

text and the key. Because of the properties of the XOR, decryption simply involves
the same bitwise operation:

 pi = ci ⊕ ki

which compares with Equation (3.4).
The essence of this technique is the means of construction of the key. Vernam

proposed the use of a running loop of tape that eventually repeated the key, so that
in fact the system worked with a very long but repeating keyword. Although such
a scheme, with a long key, presents formidable cryptanalytic difficulties, it can be
broken with sufficient ciphertext, the use of known or probable plaintext sequences,
or both.

One-Time Pad

An Army Signal Corp officer, Joseph Mauborgne, proposed an improvement to the
Vernam cipher that yields the ultimate in security. Mauborgne suggested using a
random key that is as long as the message, so that the key need not be repeated. In
addition, the key is to be used to encrypt and decrypt a single message, and then is
discarded. Each new message requires a new key of the same length as the new mes-
sage. Such a scheme, known as a one-time pad, is unbreakable. It produces random
output that bears no statistical relationship to the plaintext. Because the ciphertext

Figure 3.7 Vernam Cipher

Key stream
generator

Cryptographic
bit stream (ki)

Cryptographic
bit stream (ki)

Plaintext
(pi)

Plaintext
(pi)

Ciphertext
(ci)

Key stream
generator

M03_STAL7484_08_GE_C03.indd 103 25/04/22 8:33 AM

104 CHAPTER 3 / ClAssiCAl EnCRyPTion TECHniquEs

contains no information whatsoever about the plaintext, there is simply no way to
break the code.

An example should illustrate our point. Suppose that we are using a Vigenère
scheme with 27 characters in which the twenty-seventh character is the space
character, but with a one-time key that is as long as the message. Consider the
ciphertext

ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS

We now show two different decryptions using two different keys:

ciphertext: ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS
key: pxlmvmsydofuyrvzwc tnlebnecvgdupahfzzlmnyih
plaintext: mr mustard with the candlestick in the hall

ciphertext: ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS
key: pftgpmiydgaxgoufhklllmhsqdqogtewbqfgyovuhwt
plaintext: miss scarlet with the knife in the library

Suppose that a cryptanalyst had managed to find these two keys. Two plau-
sible plaintexts are produced. How is the cryptanalyst to decide which is the correct
decryption (i.e., which is the correct key)? If the actual key were produced in a truly
random fashion, then the cryptanalyst cannot say that one of these two keys is more
likely than the other. Thus, there is no way to decide which key is correct and there-
fore which plaintext is correct.

In fact, given any plaintext of equal length to the ciphertext, there is a key that
produces that plaintext. Therefore, if you did an exhaustive search of all possible
keys, you would end up with many legible plaintexts, with no way of knowing which
was the intended plaintext. Therefore, the code is unbreakable.

The security of the one-time pad is entirely due to the randomness of the key.
If the stream of characters that constitute the key is truly random, then the stream
of characters that constitute the ciphertext will be truly random. Thus, there are no
patterns or regularities that a cryptanalyst can use to attack the ciphertext.

In theory, we need look no further for a cipher. The one-time pad offers com-
plete security but, in practice, has two fundamental difficulties:

1. There is the practical problem of making large quantities of random keys. Any
heavily used system might require millions of random characters on a regular
basis. Supplying truly random characters in this volume is a significant task.

2. Even more daunting is the problem of key distribution and protection. For
every message to be sent, a key of equal length is needed by both sender and
receiver. Thus, a mammoth key distribution problem exists.

Because of these difficulties, the one-time pad is of limited utility and is useful
primarily for low-bandwidth channels requiring very high security.

The one-time pad is the only cryptosystem that exhibits what is referred to as
perfect secrecy. This concept is explored in Appendix B.

M03_STAL7484_08_GE_C03.indd 104 25/04/22 8:33 AM

3.3 / TRAnsPosiTion TECHniquEs 105

 3.3 TRANSPOSITION TECHNIQUES

All the techniques examined so far involve the substitution of a ciphertext symbol
for a plaintext symbol. A very different kind of mapping is achieved by performing
some sort of permutation on the plaintext letters. This technique is referred to as a
transposition cipher.

The simplest such cipher is the rail fence technique, in which the plaintext is
written down as a sequence of diagonals and then read off as a sequence of rows. For
example, to encipher the message “meet me after the toga party” with a rail fence of
depth 2, we write the following:

m e m a t r h t g p r y
e t e f e t e o a a t

The encrypted message is

MEMATRHTGPRYETEFETEOAAT

This sort of thing would be trivial to cryptanalyze. A more complex scheme is
to write the message in a rectangle, row by row, and read the message off, column
by column, but permute the order of the columns. The order of the columns then
becomes the key to the algorithm. For example,

Key: 4 3 1 2 5 6 7
Plaintext: a t t a c k p
 o s t p o n e
 d u n t i l t
 w o a m x y z
Ciphertext: TTNAAPTMTSUOAODWCOIXKNLYPETZ

Thus, in this example, the key is 4312567. To encrypt, start with the column
that is labeled 1, in this case column 3. Write down all the letters in that column.
Proceed to column 4, which is labeled 2, then column 2, then column 1, then
 columns 5, 6, and 7.

A pure transposition cipher is easily recognized because it has the same let-
ter frequencies as the original plaintext. For the type of columnar transposition just
shown, cryptanalysis is fairly straightforward and involves laying out the ciphertext
in a matrix and playing around with column positions. Digram and trigram fre-
quency tables can be useful.

The transposition cipher can be made significantly more secure by performing
more than one stage of transposition. The result is a more complex permutation that
is not easily reconstructed. Thus, if the foregoing message is reencrypted using the
same algorithm,

M03_STAL7484_08_GE_C03.indd 105 25/04/22 8:33 AM

106 CHAPTER 3 / ClAssiCAl EnCRyPTion TECHniquEs

Key: 4 3 1 2 5 6 7
Input: t t n a a p t
 m t s u o a o
 d w c o i x k
 n l y p e t z
Output: NSCYAUOPTTWLTMDNAOIEPAXTTOKZ

To visualize the result of this double transposition, designate the letters in the
original plaintext message by the numbers designating their position. Thus, with 28
letters in the message, the original sequence of letters is

01 02 03 04 05 06 07 08 09 10 11 12 13 14
15 16 17 18 19 20 21 22 23 24 25 26 27 28

After the first transposition, we have

03 10 17 24 04 11 18 25 02 09 16 23 01 08
15 22 05 12 19 26 06 13 20 27 07 14 21 28

which has a somewhat regular structure. But after the second transposition, we have

17 09 05 27 24 16 12 07 10 02 22 20 03 25
15 13 04 23 19 14 11 01 26 21 18 08 06 28

This is a much less structured permutation and is much more difficult to cryptanalyze.

Review Questions

 3.1 Describe the main requirements for the secure use of symmetric encryption.
 3.2 What are the two basic functions used in encryption algorithms?

 3.4 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

block cipher
brute-force attack
cipher
ciphertext
computationally secure
conventional encryption
cryptanalysis
cryptographic system
cryptography

cryptology
deciphering
decryption
digram
enciphering
encryption
monoalphabetic substitution

cipher
one-time pad

permutation
plaintext
polyalphabetic substitution

cipher
single-key encryption
stream cipher
symmetric encryption
unconditionally secure

M03_STAL7484_08_GE_C03.indd 106 25/04/22 8:33 AM

3.4 / KEy TERms, REviEw quEsTions, And PRoblEms 107

 3.3 Differentiate between secret-key encryption and public-key encryption.
 3.4 What is the difference between a block cipher and a stream cipher?
 3.5 What are the two general approaches to attacking a cipher?
 3.6 List and briefly define types of cryptanalytic attacks based on what is known to the

attacker.
 3.7 Briefly describe the criteria that define a computationally secure cipher.
 3.8 Why is the Caesar cipher substitution technique vulnerable to a brute-force cryptanalysis?
 3.9 How much key space is available when a monoalphabetic substitution cipher is used

to replace plaintext with ciphertext?
 3.10 What is the drawback of a Playfair cipher?
 3.11 What is the difference between a monoalphabetic cipher and a polyalphabetic cipher?
 3.12 How can an attacker determine the length of the keyword used in the Vigenère cipher?
 3.13 What is a transposition cipher?
 3.14 What are the drawbacks of Steganography?

Problems

 3.1 A generalization of the Caesar cipher, known as the affine Caesar cipher, has the fol-
lowing form: For each plaintext letter p, substitute the ciphertext letter C:

 C = E([a, b], p) = (ap + b) mod 26

 A basic requirement of any encryption algorithm is that it be one-to-one. That is, if
p ≠ q, then E(k, p) ≠ E(k, q). Otherwise, decryption is impossible, because more
than one plaintext character maps into the same ciphertext character. The affine
Caesar cipher is not one-to-one for all values of a. For example, for a = 2 and b = 3,
then E([a, b], 0) = E([a, b], 13) = 3.

a. Are there any limitations on the value of b? Explain why or why not.
b. Determine which values of a are not allowed.
c. Provide a general statement of which values of a are and are not allowed. Justify

your statement.
 3.2 What is the number of monoalphabetic permutation ciphers over n elements?
 3.3 A ciphertext has been generated with an affine cipher. The most frequent letter of the

ciphertext is “C,” and the second most frequent letter of the ciphertext is “Z.” Break
this code.

 3.4 The following ciphertext was generated using a simple substitution algorithm.

hzsrnqc klyy wqc flo mflwf ol zqdn nsoznj wskn lj xzsrbjnf,
wzsxz gqv zqhhnf ol ozn glco zlfnco hnlhrn; nsoznj
jnrqosdnc lj fnqj kjsnfbc, wzsxz sc xnjoqsfrv gljn efeceqr.
zn rsdnb qrlfn sf zsc zlecn sf cqdsrrn jlw, wzsoznj flfn
hnfnojqonb. q csfyrn blgncosx cekksxnb ol cnjdn zsg. zn
pjnqmkqconb qfb bsfnb qo ozn xrep, qo zlejc gqozngqosxqrrv
ksanb, sf ozn cqgn jllg, qo ozn cqgn oqprn, fndnj oqmsfy
zsc gnqrc wsoz loznj gngpnjc, gexz rncc pjsfysfy q yenco
wsoz zsg; qfb wnfo zlgn qo naqxorv gsbfsyzo, lfrv ol jnosjn
qo lfxn ol pnb. zn fndnj ecnb ozn xlcv xzqgpnjc wzsxz ozn
jnkljg hjldsbnc klj soc kqdlejnb gngpnjc. zn hqccnb onf
zlejc leo lk ozn ownfov-klej sf cqdsrrn jlw, nsoznj sf
crnnhsfy lj gqmsfy zsc olsrno.

 Decrypt this message.

M03_STAL7484_08_GE_C03.indd 107 25/04/22 8:33 AM

108 CHAPTER 3 / ClAssiCAl EnCRyPTion TECHniquEs

 Hints:
1. As you know, the most frequently occurring letter in English is e. Therefore, the

first or second (or perhaps third?) most common character in the message is likely
to stand for e. Also, e is often seen in pairs (e.g., meet, fleet, speed, seen, been,
agree, etc.). Try to find a character in the ciphertext that decodes to e.

2. The most common word in English is “the.” Use this fact to guess the characters
that stand for t and h.

3. Decipher the rest of the message by deducing additional words.
 Warning: The resulting message is in English but may not make much sense on a first

reading.
 3.5 One way to solve the key distribution problem is to use a book that both the sender

and the receiver possess. The sender and the receiver use the location of a word in the
book as the code. In order to avoid problems when a particular plaintext word is not
present in the book, the method can be modified to encode individual letters by the lo-
cation of a word beginning with that letter. Further, to ease the encoding and decoding
process, the encoding of a letter is the pair of line number and the location of the word
in that line.

 For example, the first sentence of the 1931 book The American Black Chamber
(by Herbert Yardley) is:

The secret activities of the American Black Chamber, which I directed,
ceased in 1929, sixteen years after I arrived at the Department of State as
a young telegraph operator.

 Using this book, the message “tact” can be encoded as (3,4),(1,3),(1,8),(3,4).

 The particular scheme discussed in this problem is based on this sentence. Answer the
questions given the following enciphered message:

(1,6), (1,8) (2,1) (3,5), (1,2), (3,4)

a. What is the plaintext?
b. How secure is the method?
c. What kind of practical problems may arise while using this method?

 3.6 In one of his cases, Sherlock Holmes was confronted with the following message.

534 C2 13 127 36 31 4 17 21 41
DOUGLAS 109 293 5 37 BIRLSTONE

26 BIRLSTONE 9 127 171

 Although Watson was puzzled, Holmes was able immediately to deduce the type of
cipher. Can you?

 3.7 a. Given the encryption of a long plaintext, how can one possibly determine if the
encryption is by the Playfair cipher?

b. The Playfair cipher has the property that if the decryption of a ciphertext digraph
AB is PQ, then the decryption of the reverse digraph BA will be QP. How can one
use this property to cryptanalyze a ciphertext encrypted using the Playfair cipher?

c. Unlike the Playfair cipher which uses a single 5 * 5 matrix, the two-square cipher
uses two 5 * 5 matrices placed one below the other. The two matrices are con-
structed similar to the Playfair cipher with two different keywords. The encryption
proceeds digraph-wise, in which a rectangle is formed by the first character’s posi-
tion in the first matrix and the second character’s position in the second matrix.
Then the two characters at the remaining two vertices of the rectangle become
the ciphertext. In case the characters of the digraph fall in the same column, the
digraph encrypts to itself.

 Given the two keywords TARGET and HELP, encrypt the plaintext “we will rock”
using the two-square cipher.

M03_STAL7484_08_GE_C03.indd 108 25/04/22 8:33 AM

3.4 / KEy TERms, REviEw quEsTions, And PRoblEms 109

 3.8 A disadvantage of the general monoalphabetic cipher is that both sender and receiver
must commit the permuted cipher sequence to memory. A common technique for
avoiding this is to use a keyword from which the cipher sequence can be generated.
For example, using the keyword CRYPTO, write out the keyword followed by unused
letters in normal order, and match this against the plaintext letters:

plain: a b c d e f g h i j k l m n o p q r s t u v w x y z

cipher: C R Y P T O A B D E F G H I J K L M N Q S U V W X Z

 If it is felt that this process does not produce sufficient mixing, write the remaining let-
ters on successive lines and then generate the sequence by reading down the columns:

C R Y P T O

A B D E F G

H I J K L M

N Q S U V W

X Z

 This yields the sequence:

C A H N X R B I Q Z Y D J S P E K U T F L V O G M W

 Such a system is used in the example in Section 3.2 (the one that begins “it was dis-
closed yesterday”). Determine the keyword.

 3.9 When the PT-109 American patrol boat, under the command of Lieutenant John F.
Kennedy, was sunk by a Japanese destroyer, a message was received at an Australian
wireless station in Playfair code:

KXJEY UREBE ZWEHE WRYTU HEYFS

KREHE GOYFI WTTTU OLKSY CAJPO

BOTEI ZONTX BYBNT GONEY CUZWR

GDSON SXBOU YWRHE BAAHY USEDQ

 The key used was royal new zealand navy. Decrypt the message. Translate TT into tt.
 3.10 a. Construct a Playfair matrix with the key algorithm.

b. Construct a Playfair matrix with the key cryptography. Make a reasonable assump-
tion about how to treat redundant letters in the key.

 3.11 a. Using this Playfair matrix:

J/K C D E F

U N P Q S

Z V W X Y

R A L G O

B I T H M

Encrypt this message:

I only regret that I have but one life to give for my country.

Note: This message is by Nathan Hale, a soldier in the American Revolutionary War.
b. Repeat part (a) using the Playfair matrix from Problem 3.10a.

M03_STAL7484_08_GE_C03.indd 109 25/04/22 8:33 AM

110 CHAPTER 3 / ClAssiCAl EnCRyPTion TECHniquEs

c. How do you account for the results of this problem? Can you generalize your
conclusion?

 3.12 a. Given the keyword SECURITY, encrypt the following plaintext using the au-
tokey system.

 We are discovered. Save yourself.
b. Given a long ciphertext which has been encrypted with the autokey system, how

can one find the secret key used?
 3.13 What substitution system results when we use a 1 * 25 Playfair matrix?
 3.14 a. Encrypt the message “meet me at the usual place at ten rather than eight o clock’’

using the Hill cipher with the key ¢7 3
2 5

≤. Show your calculations and the result.

b. Show the calculations for the corresponding decryption of the ciphertext to
 recover the original plaintext.

 3.15 We have shown that the Hill cipher succumbs to a known plaintext attack if sufficient
plaintext–ciphertext pairs are provided. It is even easier to solve the Hill cipher if a
chosen plaintext attack can be mounted. Describe such an attack.

 3.16 In a language having p letters, where p is a prime number, we can encode the let-
ters by the set of integers Zp = {0,1,2, …, p - 1}. Suppose we use the Hill cipher

with the matrix ¢a b
c d

≤ modulo p to encrypt messages in this language. It can be

shown that this requires the matrix to be invertible modulo p. A matrix is invert-
ible modulo p if none of its rows can be represented as a linear combination of the
other rows modulo p. If the ith row is denoted by Ri, then this condition translates to
Ri ≠ (c1R1 + c2R2 + c + ci- 1Ri- 1) modulo p, where ci ∈ Zp for all i. Determine
the number of different (good) keys there are for a 2 * 2 Hill cipher without count-
ing them one by one, using the following steps:
a. Assume that no row can be all zeros, because then this row can be represented as

a linear combination of other rows with the coefficient ci being 0. Find the number
of possibilities for the first row.

b. The second row should not be a multiple of the first row modulo p. Find the num-
ber of possibilities for the second row.

c. Find the total number of 2 * 2 matrices, which can be used in the Hill cipher.
d. If we encrypt 3 letters at a time using the Hill cipher, the matrix will have to be of

the order 3 * 3. Using arguments similar to the above, find the number of good
matrices for this size.

e. If the matrix is of size n * n, where n is a product of two prime numbers p and q,
then the fraction of all matrices that are invertible modulo n is equal to the frac-
tion of all matrices that are invertible modulo p times the fraction of all matrices
that are invertible modulo q. Using this knowledge, find the number of 2 * 2 in-
vertible matrices modulo 26.

 3.17 Calculate the determinant mod 26 of

a. ¢23 5
13 7

≤ b. £21 13 25
5 7 18
3 14 12

≥
 3.18 Determine the inverse mod 26 of

a. ¢ 3 4
15 9

≤ b. £ 5 3 15
21 2 6
1 12 25

≥
 3.19 Using the Vigenère cipher, encrypt the word “cryptographic” using the word “eng”.

M03_STAL7484_08_GE_C03.indd 110 25/04/22 8:33 AM

3.4 / KEy TERms, REviEw quEsTions, And PRoblEms 111

 3.20 This problem explores the use of a one-time pad version of the Vigenère cipher. In
this scheme, the key is a stream of random numbers between 0 and 26. For example,
if the key is 3 19 5 . . . , then the first letter of plaintext is encrypted with a shift of 3
letters, the second with a shift of 19 letters, the third with a shift of 5 letters, and so on.
a. Encrypt the plaintext sendmoremoney with the key stream

3 11 5 7 17 21 0 11 14 8 7 13 9

b. Using the ciphertext produced in part (a), find a key so that the ciphertext de-
crypts to the plaintext cashnotneeded.

 3.21 In one of Dorothy Sayers’s mysteries, Lord Peter is confronted with the message
shown in Figure 3.8. He also discovers the key to the message, which is a sequence of
integers:

Figure 3.8 A Puzzle for Lord Peter

I thought to see the fairies in the fields, but I saw only the evil elephants with their black
backs. Woe! how that sight awed me! The elves danced all around and about while I heard
voices calling clearly. Ah! how I tried to see—throw off the ugly cloud—but no blind eye
of a mortal was permitted to spy them. So then came minstrels, having gold trumpets, harps
and drums. These played very loudly beside me, breaking that spell. So the dream vanished,
whereat I thanked Heaven. I shed many tears before the thin moon rose up, frail and faint as
a sickle of straw. Now though the Enchanter gnash his teeth vainly, yet shall he return as the
Spring returns. Oh, wretched man! Hell gapes, Erebus now lies open. The mouths of Death
wait on thy end.

787656543432112343456567878878765654

3432112343456567878878765654433211234

a. Decrypt the message. Hint: What is the largest integer value?
b. If the algorithm is known but not the key, how secure is the scheme?
c. If the key is known but not the algorithm, how secure is the scheme?

Programming Problems

 3.1 Write a program that can encrypt and decrypt using the general Caesar cipher, also
known as an additive cipher.

 3.2 Write a program that can encrypt and decrypt using the affine cipher described in
Problem 3.1.

 3.3 Write a program that can perform a letter frequency attack on an additive cipher with-
out human intervention. Your software should produce possible plaintexts in rough
order of likelihood. It would be good if your user interface allowed the user to specify
“give me the top 10 possible plaintexts.”

 3.4 Write a program that can perform a letter frequency attack on any monoalphabetic
substitution cipher without human intervention. Your software should produce pos-
sible plaintexts in rough order of likelihood. It would be good if your user interface
allowed the user to specify “give me the top 10 possible plaintexts.”

 3.5 Create software that can encrypt and decrypt using a 2 * 2 Hill cipher.
 3.6 Create software that can perform a fast known plaintext attack on a Hill cipher, given the

dimension m. How fast are your algorithms, as a function of m?

M03_STAL7484_08_GE_C03.indd 111 25/04/22 8:33 AM

112

4.1 Traditional Block Cipher Structure

Stream Ciphers and Block Ciphers
Motivation for the Feistel Cipher Structure
The Feistel Cipher

4.2 The Data Encryption Standard

DES Encryption
DES Decryption

4.3 A DES Example

Results
The Avalanche Effect

4.4 The Strength of DES

The Use of 56-Bit Keys
The Nature of the DES Algorithm
Timing Attacks

4.5 Block Cipher Design Principles

Number of Rounds
Design of Function F
Key Schedule Algorithm

4.6 Key Terms, Review Questions, and Problems

CHAPTER

Block Ciphers and the Data
Encryption Standard

4

M04_STAL7484_08_GE_C04.indd 112 30/04/22 8:21 AM

4.1 / TraDiTional BloCk CiphEr STruCTurE 113

The objective of this chapter is to illustrate the principles of modern symmetric
ciphers. For this purpose, we focus on the most widely used symmetric cipher: the Data
Encryption Standard (DES). Although numerous symmetric ciphers have been devel-
oped since the introduction of DES, and although it is destined to be replaced by the
Advanced Encryption Standard (AES), DES remains the most important such algo-
rithm. Furthermore, a detailed study of DES provides an understanding of the prin-
ciples used in other symmetric ciphers.

This chapter begins with a discussion of the general principles of symmetric block
ciphers, which are the principal type of symmetric ciphers studied in this book. The
other form of symmetric ciphers, stream ciphers, are discussed in Chapter 8. Next, we
cover full DES. Following this look at a specific algorithm, we return to a more general
discussion of block cipher design.

 4.1 TRADITIONAL BLOCK CIPHER STRUCTURE

Several important symmetric block encryption algorithms in current use are
based on a structure referred to as a Feistel block cipher [FEIS73]. For that rea-
son, it is important to examine the design principles of the Feistel cipher. We
begin with a comparison of stream ciphers and block ciphers. Then we discuss the
motivation for the Feistel block cipher structure. Finally, we discuss some of its
implications.

Stream Ciphers and Block Ciphers

A stream cipher is one that encrypts a digital data stream one bit or one byte at
a time. Examples of classical stream ciphers are the autokeyed Vigenère cipher
and the Vernam cipher. In the ideal case, a one-time pad version of the Vernam
cipher would be used (Figure 3.7), in which the keystream (ki) is as long as the

LEARNING OBJECTIVES

After studying this chapter, you should be able to

◆◆ Understand the distinction between stream ciphers and block ciphers.

◆◆ Present an overview of the Feistel cipher and explain how decryption is
the inverse of encryption.

◆◆ Present an overview of Data Encryption Standard (DES).

◆◆ Explain the concept of the avalanche effect.

◆◆ Discuss the cryptographic strength of DES.

◆◆ Summarize the principal block cipher design principles.

M04_STAL7484_08_GE_C04.indd 113 30/04/22 8:21 AM

114 ChapTEr 4 / BloCk CiphErS anD ThE DaTa EnCrypTion STanDarD

plaintext bit stream (pi). If the cryptographic keystream is random, then this cipher
is unbreakable by any means other than acquiring the keystream. However, the key-
stream must be provided to both users in advance via some independent and secure
channel. This introduces insurmountable logistical problems if the intended data
traffic is very large.

Accordingly, for practical reasons, the bit-stream generator must be
 implemented as an algorithmic procedure, so that the cryptographic bit stream
can be produced by both users. In this approach (Figure 4.1a), the bit-stream
generator is a key-controlled algorithm and must produce a bit stream that
is cryptographically strong. That is, it must be computationally impractical to
predict future portions of the bit stream based on previous portions of the bit
stream. The two users need only share the generating key, and each can produce
the keystream.

A block cipher is one in which a block of plaintext is treated as a whole
and used to produce a ciphertext block of equal length. Typically, a block size of
64 or 128 bits is used. As with a stream cipher, the two users share a symmetric
encryption key (Figure 4.1b). Using some of the modes of operation explained in
Chapter 7, a block cipher can be used to achieve the same effect as a stream cipher.

Figure 4.1 Stream Cipher and Block Cipher

(a) Stream cipher using algorithmic bit-stream generator

Bit-stream
generation
algorithm

ENCRYPTION

ki

Key
(K)

Plaintext
(pi)

Plaintext
(pi)

Bit-stream
generation
algorithm

DECRYPTION

ki

Key
(K)

Ciphertext
(ci)

(b) Block cipher

b bitsb bits

Key
(K)

Encryption
algorithm

Plaintext

b bits

Ciphertext

Ciphertext

b bits

Decryption
algorithm

Key
(K)

Plaintext

M04_STAL7484_08_GE_C04.indd 114 30/04/22 8:21 AM

4.1 / TraDiTional BloCk CiphEr STruCTurE 115

Far more effort has gone into analyzing block ciphers. In general, they seem
applicable to a broader range of applications than stream ciphers. The vast majority
of network-based symmetric cryptographic applications make use of block ciphers.
Accordingly, the concern in this chapter, and in our discussions throughout the book
of symmetric encryption, will primarily focus on block ciphers.

Motivation for the Feistel Cipher Structure

A block cipher operates on a plaintext block of n bits to produce a cipher-
text block of n bits. There are 2n possible different plaintext blocks and, for
the encryption to be reversible (i.e., for decryption to be possible), each must
 produce a unique ciphertext block. Such a transformation is called reversible,
or nonsingular. The following examples illustrate nonsingular and singular
 transformations for n = 2.

Reversible Mapping Irreversible Mapping

Plaintext Ciphertext Plaintext Ciphertext

00 11 00 11

01 10 01 10

10 00 10 01

11 01 11 01

In the latter case, a ciphertext of 01 could have been produced by one of two plain-
text blocks. So if we limit ourselves to reversible mappings, the number of different
transformations is 2n!.1

Figure 4.2 illustrates the logic of a general substitution cipher for n = 4.
A 4-bit input produces one of 16 possible input states, which is mapped by the
substitution cipher into a unique one of 16 possible output states, each of which
is represented by 4 ciphertext bits. The encryption and decryption mappings can
be defined by a tabulation, as shown in Table 4.1. This is the most general form of
block cipher and can be used to define any reversible mapping between plaintext
and ciphertext. Feistel refers to this as the ideal block cipher, because it allows for
the maximum number of possible encryption mappings from the plaintext block
[FEIS75].

But there is a practical problem with the ideal block cipher. If a small block
size, such as n = 4, is used, then the system is equivalent to a classical substitution
cipher. Such systems, as we have seen, are vulnerable to a statistical analysis of the
plaintext. This weakness is not inherent in the use of a substitution cipher but rather
results from the use of a small block size. If n is sufficiently large and an arbitrary
reversible substitution between plaintext and ciphertext is allowed, then the statisti-
cal characteristics of the source plaintext are masked to such an extent that this type
of cryptanalysis is infeasible.

1The reasoning is as follows: For the first plaintext, we can choose any of 2n ciphertext blocks. For the
second plaintext, we choose from among 2n - 1 remaining ciphertext blocks, and so on.

M04_STAL7484_08_GE_C04.indd 115 30/04/22 8:21 AM

116 ChapTEr 4 / BloCk CiphErS anD ThE DaTa EnCrypTion STanDarD

An arbitrary reversible substitution cipher (the ideal block cipher) for a large
block size is not practical, however, from an implementation and performance
point of view. For such a transformation, the mapping itself constitutes the key.
Consider again Table 4.1, which defines one particular reversible mapping from

Figure 4.2 General n-bit-n-bit Block Substitution (shown with n = 4)

4-bit input

4 to 16 decoder

16 to 4 encoder

4-bit output

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Table 4.1 Encryption and Decryption Tables for Substitution Cipher of Figure 4.2

Plaintext Ciphertext

0000 1110

0001 0100

0010 1101

0011 0001

0100 0010

0101 1111

0110 1011

0111 1000

1000 0011

1001 1010

1010 0110

1011 1100

1100 0101

1101 1001

1110 0000

1111 0111

Ciphertext Plaintext

0000 1110

0001 0011

0010 0100

0011 1000

0100 0001

0101 1100

0110 1010

0111 1111

1000 0111

1001 1101

1010 1001

1011 0110

1100 1011

1101 0010

1110 0000

1111 0101

M04_STAL7484_08_GE_C04.indd 116 30/04/22 8:21 AM

4.1 / TraDiTional BloCk CiphEr STruCTurE 117

plaintext to ciphertext for n = 4. The mapping can be defined by the entries in the
second column, which show the value of the ciphertext for each plaintext block.
This, in essence, is the key that determines the specific mapping from among all
possible mappings. In this case, using this straightforward method of defining the
key, the required key length is (4 bits) * (16 rows) = 64 bits. In general, for an
n-bit ideal block cipher, the length of the key defined in this fashion is n * 2n bits.
For a 64-bit block, which is a desirable length to thwart statistical attacks, the
required key length is 64 * 264 = 270 ≈ 1021 bits.

In considering these difficulties, Feistel points out that what is needed is an
approximation to the ideal block cipher system for large n, built up out of compo-
nents that are easily realizable [FEIS75]. But before turning to Feistel’s approach,
let us make one other observation. We could use the general block substitution
cipher but, to make its implementation tractable, confine ourselves to a subset of
the 2n! possible reversible mappings. For example, suppose we define the mapping in
terms of a set of linear equations. In the case of n = 4, we have

 y1 = k11x1 + k12x2 + k13x3 + k14x4

 y2 = k21x1 + k22x2 + k23x3 + k24x4

 y3 = k31x1 + k32x2 + k33x3 + k34x4

 y4 = k41x1 + k42x2 + k43x3 + k44x4

where the xi are the four binary digits of the plaintext block, the yi are the four bi-
nary digits of the ciphertext block, the kij are the binary coefficients, and arithmetic
is mod 2. The key size is just n2, in this case 16 bits. The danger with this kind of for-
mulation is that it may be vulnerable to cryptanalysis by an attacker that is aware of
the structure of the algorithm. In this example, what we have is essentially the Hill
cipher discussed in Chapter 3, applied to binary data rather than characters. As we
saw in Chapter 3, a simple linear system such as this is quite vulnerable.

The Feistel Cipher

Feistel proposed [FEIS73] that we can approximate the ideal block cipher by utiliz-
ing the concept of a product cipher, which is the execution of two or more simple
ciphers in sequence in such a way that the final result or product is cryptographically
stronger than any of the component ciphers. The essence of the approach is to de-
velop a block cipher with a key length of k bits and a block length of n bits, allowing
a total of 2k possible transformations, rather than the 2n! transformations available
with the ideal block cipher.

In particular, Feistel proposed the use of a cipher that alternates substitutions
and permutations, where these terms are defined as follows:

◆■ Substitution: Each plaintext element or group of elements is uniquely replaced
by a corresponding ciphertext element or group of elements.

◆■ Permutation: A sequence of plaintext elements is replaced by a permutation
of that sequence. That is, no elements are added or deleted or replaced in the
sequence, rather the order in which the elements appear in the sequence is
changed.

M04_STAL7484_08_GE_C04.indd 117 30/04/22 8:21 AM

118 ChapTEr 4 / BloCk CiphErS anD ThE DaTa EnCrypTion STanDarD

In fact, Feistel’s is a practical application of a proposal by Claude Shannon
to develop a product cipher that alternates confusion and diffusion functions
[SHAN49].2 We look next at these concepts of diffusion and confusion and then
present the Feistel cipher. But first, it is worth commenting on this remarkable fact:
The Feistel cipher structure, which dates back over a quarter century and which, in
turn, is based on Shannon’s proposal of 1945, is the structure used by a number of
significant symmetric block ciphers currently in use. In particular, the Feistel struc-
ture is used for Triple Data Encryption Algorithm (TDEA), which is one of the two
encryption algorithms (along with AES), approved for general use by the National
Institute of Standards and Technology (NIST). The Feistel structure is also used for
several schemes for format-preserving encryption, which have recently come into
prominence. In addition, the Camellia block cipher is a Feistel structure; it is one
of the possible symmetric ciphers in TLS and a number of other Internet security
protocols. Both TDEA and format-preserving encryption are covered in Chapter 7.

Diffusion anD Confusion The terms diffusion and confusion were introduced by
Claude Shannon to capture the two basic building blocks for any cryptographic sys-
tem [SHAN49]. Shannon’s concern was to thwart cryptanalysis based on statisti-
cal analysis. The reasoning is as follows. Assume the attacker has some knowledge
of the statistical characteristics of the plaintext. For example, in a human-readable
message in some language, the frequency distribution of the various letters may be
known. Or there may be words or phrases likely to appear in the message (probable
words). If these statistics are in any way reflected in the ciphertext, the cryptanalyst
may be able to deduce the encryption key, part of the key, or at least a set of keys
likely to contain the exact key. In what Shannon refers to as a strongly ideal cipher,
all statistics of the ciphertext are independent of the particular key used. The arbi-
trary substitution cipher that we discussed previously (Figure 4.2) is such a cipher,
but as we have seen, it is impractical.3

Other than recourse to ideal systems, Shannon suggests two methods for frus-
trating statistical cryptanalysis: diffusion and confusion. In diffusion, the statistical
structure of the plaintext is dissipated into long-range statistics of the ciphertext. This
is achieved by having each plaintext digit affect the value of many ciphertext digits;
generally, this is equivalent to having each ciphertext digit be affected by many plain-
text digits. An example of diffusion is to encrypt a message M = m1, m2, m3, c of
characters with an averaging operation:

 yn = ¢ ak
i = 1

mn + i≤ mod 26

2The paper is available at box.com/Crypto8e. Shannon’s 1949 paper appeared originally as a classified
report in 1945. Shannon enjoys an amazing and unique position in the history of computer and informa-
tion science. He not only developed the seminal ideas of modern cryptography but is also responsible for
inventing the discipline of information theory. Based on his work in information theory, he developed
a formula for the capacity of a data communications channel, which is still used today. In addition, he
founded another discipline, the application of Boolean algebra to the study of digital circuits; this last he
managed to toss off as a master’s thesis.
3Appendix B expands on Shannon’s concepts concerning measures of secrecy and the security of crypto-
graphic algorithms.

M04_STAL7484_08_GE_C04.indd 118 30/04/22 8:21 AM

http://box.com/Crypto8e

4.1 / TraDiTional BloCk CiphEr STruCTurE 119

adding k successive letters to get a ciphertext letter yn. One can show that the statis-
tical structure of the plaintext has been dissipated. Thus, the letter frequencies in the
ciphertext will be more nearly equal than in the plaintext; the digram frequencies
will also be more nearly equal, and so on. In a binary block cipher, diffusion can be
achieved by repeatedly performing some permutation on the data followed by ap-
plying a function to that permutation; the effect is that bits from different positions
in the original plaintext contribute to a single bit of ciphertext.4

Every block cipher involves a transformation of a block of plaintext into a
block of ciphertext, where the transformation depends on the key. The mechanism
of diffusion seeks to make the statistical relationship between the plaintext and
ciphertext as complex as possible in order to thwart attempts to deduce the key. On
the other hand, confusion seeks to make the relationship between the statistics of
the ciphertext and the value of the encryption key as complex as possible, again to
thwart attempts to discover the key. Thus, even if the attacker can get some handle
on the statistics of the ciphertext, the way in which the key was used to produce that
ciphertext is so complex as to make it difficult to deduce the key. This is achieved by
the use of a complex substitution algorithm. In contrast, a simple linear substitution
function would add little confusion.

As [ROBS95b] points out, so successful are diffusion and confusion in captur-
ing the essence of the desired attributes of a block cipher that they have become the
cornerstone of modern block cipher design.

feistel Cipher struCture The left-hand side of Figure 4.3 depicts the encryption
structure proposed by Feistel. The inputs to the encryption algorithm are a plaintext
block of length 2w bits and a key K. The plaintext block is divided into two halves,
LE0 and RE0. The two halves of the data pass through n rounds of processing and
then combine to produce the ciphertext block. Each round i has as inputs LEi- 1 and
REi- 1 derived from the previous round, as well as a subkey Ki derived from the over-
all K. In general, the subkeys Ki are different from K and from each other. In Figure
4.3, 16 rounds are used, although any number of rounds could be implemented.

All rounds have the same structure. A substitution is performed on the left
half of the data. This is done by applying a round function F to the right half of the
data and then taking the exclusive-OR of the output of that function and the left
half of the data. The round function has the same general structure for each round
but is parameterized by the round subkey Ki. Another way to express this is to say
that F is a function of right-half block of w bits and a subkey of y bits, which pro-
duces an output value of length w bits: F(REi, Ki+ 1). Following this substitution, a
permutation is performed that consists of the interchange of the two halves of the
data.5 This structure is a particular form of the substitution-permutation network
(SPN) proposed by Shannon.

4Some books on cryptography equate permutation with diffusion. This is incorrect. Permutation, by itself,
does not change the statistics of the plaintext at the level of individual letters or permuted blocks. For exam-
ple, in DES, the permutation swaps two 32-bit blocks, so statistics of strings of 32 bits or less are preserved.
5.The final round is followed by an interchange that undoes the interchange that is part of the final round.
One could simply leave both interchanges out of the diagram, at the sacrifice of some consistency of pre-
sentation. In any case, the effective lack of a swap in the final round is done to simplify the implementa-
tion of the decryption process, as we shall see.

M04_STAL7484_08_GE_C04.indd 119 30/04/22 8:21 AM

120 ChapTEr 4 / BloCk CiphErS anD ThE DaTa EnCrypTion STanDarD

The exact realization of a Feistel network depends on the choice of the follow-
ing parameters and design features:

◆■ Block size: Larger block sizes mean greater security (all other things being
equal) but reduced encryption/decryption speed for a given algorithm. The
greater security is achieved by greater diffusion. Traditionally, a block size of
64 bits has been considered a reasonable tradeoff and was nearly universal in
block cipher design. However, the new AES uses a 128-bit block size.

Figure 4.3 Feistel Encryption and Decryption (16 rounds)

Output (ciphertext)

K1

LD0 5 RE16 RD0 5 LE16

LD2 5 RE14 RD2 5 LE14

LD14 5 RE2 RD14 5 LE2

LD16 5 RE0

LD17 5RE0

RD16 5 LE0

RD17 5 LE0

RD1 5 LE15LD1 5 RE15

RD15 5 LE1LD15 5 RE1

Input (ciphertext)

Output (plaintext)

R
ou

nd
 1

K1

K2

K15

K16

K2

K15

K16

F

LE0 RE0

Input (plaintext)

LE1 RE1

LE2 RE2

F

F

LE14 RE14

LE15 RE15

LE16 RE16

LE17 RE17

F

F

F

F

F

R
ou

nd
 2

R
ou

nd
 1

5
R

ou
nd

 1
6

R
ou

nd
 1

6
R

ou
nd

 1
5

R
ou

nd
 2

R
ou

nd
 1

M04_STAL7484_08_GE_C04.indd 120 30/04/22 8:21 AM

4.1 / TraDiTional BloCk CiphEr STruCTurE 121

◆■ Key size: Larger key size means greater security but may decrease encryption/
decryption speed. The greater security is achieved by greater resistance to
brute-force attacks and greater confusion. Key sizes of 64 bits or less are now
widely considered to be inadequate, and 128 bits has become a common size.

◆■ Number of rounds: The essence of the Feistel cipher is that a single round
offers inadequate security but that multiple rounds offer increasing security.
A typical size is 16 rounds.

◆■ Subkey generation algorithm: Greater complexity in this algorithm should
lead to greater difficulty of cryptanalysis.

◆■ Round function F: Again, greater complexity generally means greater resis-
tance to cryptanalysis.

There are two other considerations in the design of a Feistel cipher:

◆■ Fast software encryption/decryption: In many cases, encryption is embedded
in applications or utility functions in such a way as to preclude a hardware
implementation. Accordingly, the speed of execution of the algorithm becomes
a concern.

◆■ Ease of analysis: Although we would like to make our algorithm as difficult as
possible to cryptanalyze, there is great benefit in making the algorithm easy
to analyze. That is, if the algorithm can be concisely and clearly explained, it is
easier to analyze that algorithm for cryptanalytic vulnerabilities and therefore
develop a higher level of assurance as to its strength. DES, for example, does
not have an easily analyzed functionality.

feistel DeCryption algorithm The process of decryption with a Feistel cipher is
essentially the same as the encryption process. The rule is as follows: Use the cipher-
text as input to the algorithm, but use the subkeys Ki in reverse order. That is, use
Kn in the first round, Kn - 1 in the second round, and so on, until K1 is used in the last
round. This is a nice feature, because it means we need not implement two different
algorithms; one for encryption and one for decryption.

To see that the same algorithm with a reversed key order produces the correct
result, Figure 4.3 shows the encryption process going down the left-hand side and
the decryption process going up the right-hand side for a 16-round algorithm. For
clarity, we use the notation LEi and REi for data traveling through the encryption
algorithm and LDi and RDi for data traveling through the decryption algorithm.
The diagram indicates that, at every round, the intermediate value of the decryption
process is equal to the corresponding value of the encryption process with the two
halves of the value swapped. To put this another way, let the output of the ith encryp-
tion round be LEi ‘REi (LEi concatenated with REi). Then the corresponding out-
put of the (16 - i)th decryption round is REi ‘LEi or, equivalently, LD16 - i ‘RD16 - i.

Let us walk through Figure 4.3 to demonstrate the validity of the preceding
assertions. After the last iteration of the encryption process, the two halves of the
output are swapped, so that the ciphertext is RE16 ‘LE16. The output of that round
is the ciphertext. Now take that ciphertext and use it as input to the same algorithm.
The input to the first round is RE16 ‘LE16, which is equal to the 32-bit swap of the
output of the sixteenth round of the encryption process.

M04_STAL7484_08_GE_C04.indd 121 30/04/22 8:21 AM

122 ChapTEr 4 / BloCk CiphErS anD ThE DaTa EnCrypTion STanDarD

Now we would like to show that the output of the first round of the decryption
process is equal to a 32-bit swap of the input to the sixteenth round of the encryp-
tion process. First, consider the encryption process. We see that

 LE16 = RE15

 RE16 = LE15 ⊕ F(RE15, K16)

On the decryption side,

 LD1 = RD0 = LE16 = RE15

 RD1 = LD0 ⊕ F(RD0, K16)

 = RE16 ⊕ F(RE15, K16)

 = [LE15 ⊕ F(RE15, K16)] ⊕ F(RE15, K16)

The XOR has the following properties:

 [A ⊕ B] ⊕ C = A ⊕ [B ⊕ C]

 D ⊕ D = 0

 E ⊕ 0 = E

Thus, we have LD1 = RE15 and RD1 = LE15. Therefore, the output of the first
round of the decryption process is RE15 ‘LE15, which is the 32-bit swap of the
input to the sixteenth round of the encryption. This correspondence holds all the
way through the 16 iterations, as is easily shown. We can cast this process in general
terms. For the ith iteration of the encryption algorithm,

 LEi = REi- 1

 REi = LEi- 1 ⊕ F(REi- 1, Ki)

Rearranging terms:

 REi- 1 = LEi

 LEi- 1 = REi ⊕ F(REi- 1, Ki) = REi ⊕ F(LEi, Ki)

Thus, we have described the inputs to the ith iteration as a function of the outputs, and
these equations confirm the assignments shown in the right-hand side of Figure 4.3.

Finally, we see that the output of the last round of the decryption process is
RE0 ‘LE0. A 32-bit swap recovers the original plaintext, demonstrating the validity
of the Feistel decryption process.

Note that the derivation does not require that F be a reversible function. To
see this, take a limiting case in which F produces a constant output (e.g., all ones)
regardless of the values of its two arguments. The equations still hold.

To help clarify the preceding concepts, let us look at a specific example
(Figure 4.4) and focus on the fifteenth round of encryption, corresponding to the
second round of decryption. Suppose that the blocks at each stage are 32 bits (two
16-bit halves) and that the key size is 24 bits. Suppose that at the end of encryption
round fourteen, the value of the intermediate block (in hexadecimal) is DE7F03A6.
Then LE14 = DE7F and RE14 = 03A6. Also assume that the value of K15 is 12DE52.
After round 15, we have LE15 = 03A6 and RE15 = F(03A6, 12DE52) ⊕ DE7F.

M04_STAL7484_08_GE_C04.indd 122 30/04/22 8:22 AM

4.2 / ThE DaTa EnCrypTion STanDarD 123

Now let’s look at the decryption. We assume that LD1 = RE15 and
RD1 = LE15, as shown in Figure 4.3, and we want to demonstrate that LD2 = RE14
and RD2 = LE14. So, we start with LD1 = F(03A6, 12DE52) ⊕ DE7F and
RD1 = 03A6. Then, from Figure 4.3, LD2 = 03A6 = RE14 and RD2 =
F(03A6, 12DE52) ⊕ [F(03A6, 12DE52) ⊕ DE7F] = DE7F = LE14.

 4.2 THE DATA ENCRYPTION STANDARD

Until the introduction of the Advanced Encryption Standard (AES) in 2001, the
Data Encryption Standard (DES) was the most widely used encryption scheme.
DES was issued in 1977 by the National Bureau of Standards, now the National
Institute of Standards and Technology (NIST), as Federal Information Processing
Standard 46 (FIPS PUB 46). The algorithm itself is referred to as the Data Encryption
Algorithm (DEA).6 For DEA, data are encrypted in 64-bit blocks using a 56-bit key.
The algorithm transforms 64-bit input in a series of steps into a 64-bit output. The
same steps, with the same key, are used to reverse the encryption.

Over the years, DES became the dominant symmetric encryption algorithm,
especially in financial applications. In 1994, NIST reaffirmed DES for federal use
for another five years; NIST recommended the use of DES for applications other
than the protection of classified information. In 1999, NIST issued a new version
of its standard (FIPS PUB 46-3) that indicated that DES should be used only for
legacy systems and that triple DES (which in essence involves repeating the DES
algorithm three times on the plaintext using two or three different keys to produce
the ciphertext) be used. We study triple DES in Chapter 7. Because the underly-
ing encryption and decryption algorithms are the same for DES and triple DES, it
remains important to understand the DES cipher. This section provides an overview.
For the interested reader, Appendix C provides further detail.

6The terminology is a bit confusing. Until recently, the terms DES and DEA could be used interchange-
ably. However, the most recent edition of the DES document includes a specification of the DEA de-
scribed here plus the triple DEA (TDEA) described in Chapter 7. Both DEA and TDEA are part of the
Data Encryption Standard. Further, until the recent adoption of the official term TDEA, the triple DEA
algorithm was typically referred to as triple DES and written as 3DES. For the sake of convenience, we
will use the term 3DES.

Figure 4.4 Feistel Example

Decryption roundEncryption round

6A306A30 F(03A6, 12DE52) DE7F F(03A6, 12DE52) DE7F

12DE52F

DE7F 03A6

12DE52

03A6

F(03A6, 12DE52)
[F(03A6, 12DE52) DE7F]

5 DE7F

FR
ou

nd
 1

5

R
ou

nd
 2

1

1 1

1

1
1

M04_STAL7484_08_GE_C04.indd 123 30/04/22 8:22 AM

124 ChapTEr 4 / BloCk CiphErS anD ThE DaTa EnCrypTion STanDarD

DES Encryption

The overall scheme for DES encryption is illustrated in Figure 4.5. As with any en-
cryption scheme, there are two inputs to the encryption function: the plaintext to be
encrypted and the key. In this case, the plaintext must be 64 bits in length and the
key is 56 bits in length.7

Looking at the left-hand side of the figure, we can see that the processing of
the plaintext proceeds in three phases. First, the 64-bit plaintext passes through an
initial permutation (IP) that rearranges the bits to produce the permuted input.

7Actually, the function expects a 64-bit key as input. However, only 56 of these bits are ever used; the
other 8 bits can be used as parity bits or simply set arbitrarily.

Figure 4.5 General Depiction of DES Encryption Algorithm

Initial permutation

Permuted choice 2Round 1

32-bit swap

Inverse initial
permutation

Permuted choice 1

Round 2

Round 16

64-bit plaintext 64-bit key

K1

K2

K16

64-bit ciphertext

Left circular shift

Permuted choice 2 Left circular shift

Permuted choice 2 Left circular shift

64 56

56

56

56

48

48

48

56 64

64 bits

• • • • • • • • • • • • • • • • • •

• • • • • • • • •

M04_STAL7484_08_GE_C04.indd 124 30/04/22 8:22 AM

4.3 / a DES ExamplE 125

This is followed by a phase consisting of sixteen rounds of the same function, which
involves both permutation and substitution functions. The output of the last (six-
teenth) round consists of 64 bits that are a function of the input plaintext and the
key. The left and right halves of the output are swapped to produce the preoutput.
Finally, the preoutput is passed through a permutation [IP-1] that is the inverse of
the initial permutation function, to produce the 64-bit ciphertext. With the excep-
tion of the initial and final permutations, DES has the exact structure of a Feistel
cipher, as shown in Figure 4.3.

The right-hand portion of Figure 4.5 shows the way in which the 56-bit key is
used. Initially, the key is passed through a permutation function. Then, for each of
the sixteen rounds, a subkey (Ki) is produced by the combination of a left circular
shift and a permutation. The permutation function is the same for each round, but a
different subkey is produced because of the repeated shifts of the key bits.

DES Decryption

As with any Feistel cipher, decryption uses the same algorithm as encryption, except
that the application of the subkeys is reversed. Additionally, the initial and final per-
mutations are reversed.

 4.3 A DES EXAMPLE

We now work through an example and consider some of its implications. Although
you are not expected to duplicate the example by hand, you will find it informative
to study the hex patterns that occur from one step to the next.

For this example, the plaintext is a hexadecimal palindrome. The plaintext, key,
and resulting ciphertext are as follows:

Plaintext: 02468aceeca86420

Key: 0f1571c947d9e859

Ciphertext: da02ce3a89ecac3b

Results

Table 4.2 shows the progression of the algorithm. The first row shows the 32-bit
values of the left and right halves of data after the initial permutation. The next 16
rows show the results after each round. Also shown is the value of the 48-bit subkey
generated for each round. Note that Li = Ri- 1. The final row shows the left- and
right-hand values after the inverse initial permutation. These two values combined
form the ciphertext.

The Avalanche Effect

A desirable property of any encryption algorithm is that a small change in either
the plaintext or the key should produce a significant change in the ciphertext. In
particular, a change in one bit of the plaintext or one bit of the key should produce

M04_STAL7484_08_GE_C04.indd 125 30/04/22 8:22 AM

126 ChapTEr 4 / BloCk CiphErS anD ThE DaTa EnCrypTion STanDarD

a change in many bits of the ciphertext. This is referred to as the avalanche effect.
If the change were small, this might provide a way to reduce the size of the plaintext
or key space to be searched.

Using the example from Table 4.2, Table 4.3 shows the result when the fourth
bit of the plaintext is changed, so that the plaintext is 12468aceeca86420. The
second column of the table shows the intermediate 64-bit values at the end of each
round for the two plaintexts. The third column shows the number of bits that differ
between the two intermediate values. The table shows that, after just three rounds,
18 bits differ between the two blocks. On completion, the two ciphertexts differ in
32 bit positions.

Table 4.4 shows a similar test using the original plaintext of with two keys that
differ in only the fourth bit position: the original key, 0f1571c947d9e859, and the
altered key, 1f1571c947d9e859. Again, the results show that about half of the
bits in the ciphertext differ and that the avalanche effect is pronounced after just a
few rounds.

Table 4.2 DES Example

Round Ki Li Ri

IP 5a005a00 3cf03c0f

1 1e030f03080d2930 3cf03c0f bad22845

2 0a31293432242318 bad22845 99e9b723

3 23072318201d0c1d 99e9b723 0bae3b9e

4 05261d3824311a20 0bae3b9e 42415649

5 3325340136002c25 42415649 18b3fa41

6 123a2d0d04262a1c 18b3fa41 9616fe23

7 021f120b1c130611 9616fe23 67117cf2

8 1c10372a2832002b 67117cf2 c11bfc09

9 04292a380c341f03 c11bfc09 887fbc6c

10 2703212607280403 887fbc6c 600f7e8b

11 2826390c31261504 600f7e8b f596506e

12 12071c241a0a0f08 f596506e 738538b8

13 300935393c0d100b 738538b8 c6a62c4e

14 311e09231321182a c6a62c4e 56b0bd75

15 283d3e0227072528 56b0bd75 75e8fd8f

16 2921080b13143025 75e8fd8f 25896490

IP − 1 da02ce3a 89ecac3b

Note: DES subkeys are shown as eight 6-bit values in hex format

M04_STAL7484_08_GE_C04.indd 126 30/04/22 8:22 AM

4.3 / a DES ExamplE 127

Table 4.3 Avalanche Effect in DES: Change in Plaintext

Round D

9 c11bfc09887fbc6c
99f911532eed7d94

32

10 887fbc6c600f7e8b
2eed7d94d0f23094

34

11 600f7e8bf596506e
d0f23094455da9c4

37

12 f596506e738538b8
455da9c47f6e3cf3

31

13 738538b8c6a62c4e
7f6e3cf34bc1a8d9

29

14 c6a62c4e56b0bd75
4bc1a8d91e07d409

33

15 56b0bd7575e8fd8f
1e07d4091ce2e6dc

31

16 75e8fd8f25896490
1ce2e6dc365e5f59

32

IP − 1 da02ce3a89ecac3b
057cde97d7683f2a

32

Round D

02468aceeca86420
12468aceeca86420

1

1 3cf03c0fbad22845
3cf03c0fbad32845

1

2 bad2284599e9b723
bad3284539a9b7a3

5

3 99e9b7230bae3b9e
39a9b7a3171cb8b3

18

4 0bae3b9e42415649
171cb8b3ccaca55e

34

5 4241564918b3fa41
ccaca55ed16c3653

37

6 18b3fa419616fe23
d16c3653cf402c68

33

7 9616fe2367117cf2
cf402c682b2cefbc

32

8 67117cf2c11bfc09
2b2cefbc99f91153

33

Table 4.4 Avalanche Effect in DES: Change in Key

Round D

02468aceeca86420
02468aceeca86420

0

1 3cf03c0fbad22845
3cf03c0f9ad628c5

3

2 bad2284599e9b723
9ad628c59939136b

11

3 99e9b7230bae3b9e
9939136b768067b7

25

4 0bae3b9e42415649
768067b75a8807c5

29

5 4241564918b3fa41
5a8807c5488dbe94

26

6 18b3fa419616fe23
488dbe94aba7fe53

26

7 9616fe2367117cf2
aba7fe53177d21e4

27

8 67117cf2c11bfc09
177d21e4548f1de4

32

Round D

9 c11bfc09887fbc6c
548f1de471f64dfd

34

10 887fbc6c600f7e8b
71f64dfd4279876c

36

11 600f7e8bf596506e
4279876c399fdc0d

32

12 f596506e738538b8
399fdc0d6d208dbb

28

13 738538b8c6a62c4e
6d208dbbb9bdeeaa

33

14 c6a62c4e56b0bd75
b9bdeeaad2c3a56f

30

15 56b0bd7575e8fd8f
d2c3a56f2765c1fb

27

16 75e8fd8f25896490
2765c1fb01263dc4

30

IP − 1 da02ce3a89ecac3b
ee92b50606b62b0b

30

M04_STAL7484_08_GE_C04.indd 127 30/04/22 8:22 AM

128 ChapTEr 4 / BloCk CiphErS anD ThE DaTa EnCrypTion STanDarD

 4.4 THE STRENGTH OF DES

Since its adoption as a federal standard, there have been lingering concerns about
the level of security provided by DES. These concerns, by and large, fall into two
areas: key size and the nature of the algorithm.

The Use of 56-Bit Keys

With a key length of 56 bits, there are 256 possible keys, which is approximately
7.2 * 1016 keys. Thus, on the face of it, a brute-force attack appears impractical.
Assuming that, on average, half the key space has to be searched, a single machine
performing one DES encryption per microsecond would take more than a thousand
years to break the cipher.

However, the assumption of one encryption per microsecond is overly con-
servative. As far back as 1977, Diffie and Hellman postulated that the technology
existed to build a parallel machine with 1 million encryption devices, each of which
could perform one encryption per microsecond [DIFF77]. This would bring the
average search time down to about 10 hours. The authors estimated that the cost
would be about $20 million in 1977 dollars.

With current technology, it is not even necessary to use special, purpose-built
hardware. Rather, the speed of commercial, off-the-shelf processors threaten the
security of DES. A 2008 paper from Seagate Technology [SEAG08] suggests that
a rate of 1 billion (109) key combinations per second is reasonable for today’s mul-
ticore computers. Recent offerings confirm this. Both Intel and AMD now offer
hardware-based instructions to accelerate the use of AES. Tests run on a contem-
porary multicore Intel machine resulted in an encryption rate of about half a bil-
lion encryptions per second [BASU12]. Another recent analysis suggests that with
contemporary supercomputer technology, a rate of 1013 encryptions per second is
reasonable [AROR12].

With these results in mind, Table 4.5 shows how much time is required for a
brute-force attack for various key sizes. As can be seen, a single PC can break DES in
about a year; if multiple PCs work in parallel, the time is drastically shortened. And
today’s supercomputers should be able to find a key in about an hour. Key sizes of
128 bits or greater are effectively unbreakable using simply a brute-force approach.
Even if we managed to speed up the attacking system by a factor of 1 trillion (1012),
it would still take over 100,000 years to break a code using a 128-bit key.

Fortunately, there are a number of alternatives to DES, the most important of
which are AES and triple DES, discussed in Chapters 6 and 7, respectively.

The Nature of the DES Algorithm

Another concern is the possibility that cryptanalysis is possible by exploiting the
characteristics of the DES algorithm. The focus of concern has been on the eight sub-
stitution tables, or S-boxes, that are used in each iteration (described in Appendix C).
Because the design criteria for these boxes, and indeed for the entire algorithm,
were not made public, there is a suspicion that the boxes were constructed in such
a way that cryptanalysis is possible for an opponent who knows the weaknesses in

M04_STAL7484_08_GE_C04.indd 128 30/04/22 8:22 AM

4.5 / BloCk CiphEr DESign prinCiplES 129

Key Size (bits) Cipher

Number of
Alternative

Keys
Time Required at 109

Decryptions/s

Time Required
at 1013

Decryptions/s

56 DES 256 ≈ 7.2 * 1016 255 ns = 1.125 years 1 hour

128 AES 2128 ≈ 3.4 * 1038 2127 ns = 5.3 * 1021 years 5.3 * 1017 years

168 Triple DES 2168 ≈ 3.7 * 1050 2167 ns = 5.8 * 1033 years 5.8 * 1029 years

192 AES 2192 ≈ 6.3 * 1057 2191 ns = 9.8 * 1040 years 9.8 * 1036 years

256 AES 2256 ≈ 1.2 * 1077 2255 ns = 1.8 * 1060 years 1.8 * 1056 years

26 characters
(permutation)

Monoalphabetic 2! = 4 * 1026 2 * 1026 ns = 6.3 * 109 years 6.3 * 106 years

Table 4.5 Average Time Required for Exhaustive Key Search

the S-boxes. This assertion is tantalizing, and over the years a number of regularities
and unexpected behaviors of the S-boxes have been discovered. Despite this, no one
has so far succeeded in discovering the supposed fatal weaknesses in the S-boxes.8

Timing Attacks

We discuss timing attacks in more detail in Part Three, as they relate to public-key
algorithms. However, the issue may also be relevant for symmetric ciphers. In es-
sence, a timing attack is one in which information about the key or the plaintext is
obtained by observing how long it takes a given implementation to perform decryp-
tions on various ciphertexts. A timing attack exploits the fact that an encryption
or decryption algorithm often takes slightly different amounts of time on different
inputs. [HEVI99] reports on an approach that yields the Hamming weight (number
of bits equal to one) of the secret key. This is a long way from knowing the actual
key, but it is an intriguing first step. The authors conclude that DES appears to be
fairly resistant to a successful timing attack but suggest some avenues to explore.
Although this is an interesting line of attack, it so far appears unlikely that this tech-
nique will ever be successful against DES or more powerful symmetric ciphers such
as triple DES and AES.

 4.5 BLOCK CIPHER DESIGN PRINCIPLES

Although much progress has been made in designing block ciphers that are cryp-
tographically strong, the basic principles have not changed all that much since the
work of Feistel and the DES design team in the early 1970s. In this section we look
at three critical aspects of block cipher design: the number of rounds, design of the
function F, and key scheduling.

8At least, no one has publicly acknowledged such a discovery.

M04_STAL7484_08_GE_C04.indd 129 30/04/22 8:22 AM

130 ChapTEr 4 / BloCk CiphErS anD ThE DaTa EnCrypTion STanDarD

Number of Rounds

The cryptographic strength of a Feistel cipher derives from three aspects of the de-
sign: the number of rounds, the function F, and the key schedule algorithm. Let us
look first at the choice of the number of rounds.

The greater the number of rounds, the more difficult it is to perform crypt-
analysis, even for a relatively weak F. In general, the criterion should be that the
number of rounds is chosen so that known cryptanalytic efforts require greater
effort than a simple brute-force key search attack. This criterion was certainly used
in the design of DES. Schneier [SCHN96] observes that for 16-round DES, a differ-
ential cryptanalysis attack is slightly less efficient than brute force: The differential
cryptanalysis attack requires 255.1 operations,9 whereas brute force requires 255. If
DES had 15 or fewer rounds, differential cryptanalysis would require less effort than
a brute-force key search.

This criterion is attractive, because it makes it easy to judge the strength of
an algorithm and to compare different algorithms. In the absence of a cryptanalytic
breakthrough, the strength of any algorithm that satisfies the criterion can be judged
solely on key length.

Design of Function F

The heart of a Feistel block cipher is the function F, which provides the element of
confusion in a Feistel cipher. Thus, it must be difficult to “unscramble” the substitu-
tion performed by F. One obvious criterion is that F be nonlinear, as we discussed
previously. The more nonlinear F, the more difficult any type of cryptanalysis will be.
There are several measures of nonlinearity, which are beyond the scope of this book.
In rough terms, the more difficult it is to approximate F by a set of linear equations,
the more nonlinear F is.

Several other criteria should be considered in designing F. We would like the
algorithm to have good avalanche properties. Recall that, in general, this means that
a change in one bit of the input should produce a change in many bits of the output.
A more stringent version of this is the strict avalanche criterion (SAC) [WEBS86],
which states that any output bit j of an S-box (see Appendix C for a discussion of
S-boxes) should change with probability 1/2 when any single input bit i is inverted
for all i, j. Although SAC is expressed in terms of S-boxes, a similar criterion could
be applied to F as a whole. This is important when considering designs that do not
include S-boxes.

Another criterion proposed in [WEBS86] is the bit independence criterion
(BIC), which states that output bits j and k should change independently when any
single input bit i is inverted for all i, j, and k. The SAC and BIC criteria appear to
strengthen the effectiveness of the confusion function.

9Differential cryptanalysis of DES requires 247 chosen plaintext. If all you have to work with is known
plaintext, then you must sort through a large quantity of known plaintext–ciphertext pairs looking for the
useful ones. This brings the level of effort up to 255.1.

M04_STAL7484_08_GE_C04.indd 130 30/04/22 8:22 AM

4.6 / kEy TErmS, rEviEw QuESTionS, anD proBlEmS 131

Key Schedule Algorithm

With any Feistel block cipher, the key is used to generate one subkey for each round.
In general, we would like to select subkeys to maximize the difficulty of deducing
individual subkeys and the difficulty of working back to the main key. No general
principles for this have yet been promulgated.

Adams suggests [ADAM94] that, at minimum, the key schedule should guar-
antee key/ciphertext Strict Avalanche Criterion and Bit Independence Criterion.

 4.6 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

avalanche effect
block cipher
confusion
diffusion
Feistel cipher

irreversible mapping
permutation
product cipher
reversible mapping
round

round function
stream cipher
subkey
substitution

Review Questions
 4.1 Briefly define a nonsingular transformation.
 4.2 What is the difference between a block cipher and a stream cipher?
 4.3 Why is it not practical to use an arbitrary reversible substitution cipher of the kind

shown in Table 4.1?
 4.4 Briefly define the terms substitution and permutation.
 4.5 What is the strict avalanche criterion for the Feistel F function?
 4.6 Which parameters and design choices determine the actual algorithm of a Feistel

cipher?
 4.7 What are the critical aspects of Feistel cipher design?

Problems

 4.1 a. In Section 4.1, under the subsection on Feistel decryption algorithm, it is men-
tioned that the decryption algorithm is essentially the same as the encryption
 algorithm except that the subkeys are used in reverse order. Justify this statement.

b. In the same discussion, it was stated that the F function is not required to be
 reversible for the correctness of the algorithm. The statement holds for an
F function that always produces a constant output. Will the claim still hold if
F does not always produce a constant output? Justify your answer.

M04_STAL7484_08_GE_C04.indd 131 30/04/22 8:22 AM

132 ChapTEr 4 / BloCk CiphErS anD ThE DaTa EnCrypTion STanDarD

 4.2 Consider a Feistel cipher composed of sixteen rounds with a block length of 128 bits
and a key length of 128 bits. Suppose that, for a given k, the key scheduling algorithm
determines values for the first eight round keys, k1, k2, c k8, and then sets

 k9 = k8, k10 = k7, k11 = k6, c , k16 = k1

 Suppose you have a ciphertext c. Explain how, with access to an encryption oracle,
you can decrypt c and determine m using just a single oracle query. This shows that
such a cipher is vulnerable to a chosen plaintext attack. (An encryption oracle can be
thought of as a device that, when given a plaintext, returns the corresponding cipher-
text. The internal details of the device are not known to you and you cannot break
open the device. You can only gain information from the oracle by making queries to
it and observing its responses.)

 4.3 Let p be a permutation of the integers 0, 1, 2, c , (2n - 1), such that p(m) gives the
permuted value of m, 0 … m 6 2n. Put another way, p maps the set of n-bit integers
onto itself, and no two integers map into the same integer. DES is such a permutation
for 64-bit integers. We say that p has a fixed point at m if p(m) = m. That is, if p is
an encryption mapping, then a fixed point corresponds to a message that encrypts to
itself. We are interested in the number of fixed points in a randomly chosen permuta-
tion p. Show the somewhat unexpected result that the number of fixed points for p is
1 on an average, and this number is independent of the size of the permutation.

 4.4 Consider a block encryption algorithm that encrypts blocks of length n, and let
N = 2n. Say we have t plaintext–ciphertext pairs Pi, Ci = E(K, Pi), where we as-
sume that the key K is a randomly chosen m-bit string. Imagine that we wish to find
K by exhaustive search. We could generate key K′ and test whether Ci = E(K′, Pi)
for 1 c i c t. If K′ encrypts each Pi to its proper Ci, then we have evidence that
K = K′. However, it may be the case that the mappings E(K, #) and E(K′, #) exactly
agree on the t plaintext–ciphertext pairs Pi, Ci and agree on no other pairs. Such keys
are called spurious keys.
a. What is the probability that E(K, #) and E(K′, #) agree on exactly t plaintext-

ciphertext pairs?
b. Find the expected number of spurious keys when E(K, #) and E(K′, #) agree on

exactly t plaintext-ciphertext pairs.
 4.5 For any block cipher, the fact that it is a nonlinear function is crucial to its security. To

see this, suppose that we have a linear block cipher EL that encrypts 256-bit blocks of
plaintext into 256-bit blocks of ciphertext. Let EL(k, m) denote the encryption of a
256-bit message m under a key k (the actual bit length of k is irrelevant). Thus,

 EL(k, [m1 ⊕ m2]) = EL(k, m1) ⊕ EL(k, m2) for all 128@bit patterns m1, m2.

 Describe how, with 256 chosen ciphertexts, an adversary can decrypt any ciphertext
without knowledge of the secret key k. (A “chosen ciphertext” means that an adver-
sary has the ability to choose a ciphertext and then obtain its decryption. Here, you
have 256 plaintext/ciphertext pairs to work with, and you have the ability to choose
the value of the ciphertexts.)

 4.6 Suppose the DES F function mapped every 32-bit input R, regardless of the value of
the input K, to
a. a 32-bit string of zero, and
b. R.

 Then:
1. What function would DES compute?
2. What would the decryption look like?

 Hint: Use the following properties of the XOR operation:

 (A ⊕ B) ⊕ C = A ⊕ (B ⊕ C)

M04_STAL7484_08_GE_C04.indd 132 30/04/22 8:22 AM

4.6 / kEy TErmS, rEviEw QuESTionS, anD proBlEmS 133

1A ⊕ A2 = 0

1A ⊕ 02 = A

A ⊕ 1 = bitwise complement of A

 4.7 Show that DES decryption is, in fact, the inverse of DES encryption.
 4.8 The 32-bit swap after the sixteenth iteration of the DES algorithm is needed to make

the encryption process invertible by simply running the ciphertext back through the
algorithm with the key order reversed. This was demonstrated in the preceding prob-
lem. However, it still may not be entirely clear why the 32-bit swap is needed. To
demonstrate why, solve the following exercises. First, some notation:

 A ‘B = the concatenation of the bit strings A and B

 Ti(R ‘L) = the transformation defined by the ith iteration of the encryption

algorithm for 1 … I … 16

 TDi(R ‘L) = the transformation defined by the ith iteration of the decryption

algorithm for 1 … I … 16

 T17(R ‘L) = L ‘R, where this transformation occurs after the sixteenth iteration

of the encryption algorithm

a. Show that the composition TD1(IP(IP-1(T17(T16(L15 ‘R15))))) is equivalent to the
transformation that interchanges the 32-bit halves, L15 and R15. That is, show that

 TD1(IP(IP-1(T17(T16(L15 ‘R15))))) = R15 ‘L15

b. Now suppose that we did away with the final 32-bit swap in the encryption algo-
rithm. Then we would want the following equality to hold:

 TD1(IP(IP-1(T16(L15 ‘R15)))) = L15 ‘R15

Does it?

Note: The following problems refer to details of DES that are described in Appendix C.

 4.9 Consider the substitution defined by row 1 of S-box S1 in Table C.2. Show a block
diagram similar to Figure 4.2 that corresponds to this substitution.

 4.10 Compute the bits number 4, 17, 41, and 45 at the output of the first round of the
DES decryption, assuming that the ciphertext block is composed of all ones, and the
 external key is composed of all ones.

 4.11 This problem provides a numerical example of encryption using a one-round version
of DES. We start with the same bit pattern for the key K and the plaintext, namely:

Hexadecimal notation: 0 1 2 3 4 5 6 7 8 9 A B C D E F

Binary notation: 0000 0001 0010 0011 0100 0101 0110 0111

1000 1001 1010 1011 1100 1101 1110 1111

a. Derive K1, the first-round subkey.
b. Derive L0, R0.
c. Expand R0 to get E[R0], where E[#] is the expansion function of Table C.1.
d. Calculate A = E[R0] ⊕ K1.
e. Group the 48-bit result of (d) into sets of 6 bits and evaluate the corresponding

S-box substitutions.
f. Concatenate the results of (e) to get a 32-bit result, B.

M04_STAL7484_08_GE_C04.indd 133 30/04/22 8:22 AM

134 ChapTEr 4 / BloCk CiphErS anD ThE DaTa EnCrypTion STanDarD

g. Apply the permutation to get P(B).
h. Calculate R1 = P(B) ⊕ L0.
i. Write down the ciphertext.

 4.12 Analyze the amount of left shifts in the DES key schedule by studying Table C.3 (d).
Is there a pattern? What could be the reason for the choice of these constants?

 4.13 Suppose that a modern multi-core computer can process 109 key combinations per
second. How much time will it take to search the key space of an encryption algo-
rithm that has a 56-bit key? If the key size is increased to 60 bits but the CPU speed is
also doubled, then how much time will the key search take on the new computer?

 4.14 a. Let X′ be the bitwise complement of X. Prove that if the complement of the plain-
text block is taken and the complement of an encryption key is taken, then the
result of DES encryption with these values is the complement of the original ci-
phertext. That is,

If Y = E(K, X)

Then Y′ = E(K′, X′)

Hint: Begin by showing that for any two bit strings of equal length, A and B,
(A ⊕ B)′ = A′ ⊕ B.

b. It has been said that a brute-force attack on DES requires searching a key space of
256 keys. Does the result of part (a) change that?

 4.15 a. We say that a DES key K is weak if DESK is an involution. Exhibit four weak keys
for DES.

b. We say that a DES key K is semi-weak if it is not weak and if there exists a key K′
such that DESK

- 1 = DESK′. Exhibit four semi-weak keys for DES.

Programming Problems

 4.1 Create software that can encrypt and decrypt using a general substitution block
 cipher.

 4.2 Create software that can encrypt and decrypt using S-DES.

M04_STAL7484_08_GE_C04.indd 134 30/04/22 8:22 AM

5CHAPTER

Finite Fields
5.1 Groups

Groups
Abelian Group
Cyclic Group

5.2 Rings

5.3 Fields

5.4 Finite Fields of the Form GF(p)

Finite Fields of Order p
Finding the Multiplicative Inverse in GF(p)
Summary

5.5 Polynomial Arithmetic

Ordinary Polynomial Arithmetic
Polynomial Arithmetic with Coefficients in Zp
Finding the Greatest Common Divisor
Summary

5.6 Finite Fields of the Form GF(2n)

Motivation
Modular Polynomial Arithmetic
Finding the Multiplicative Inverse
Computational Considerations
Using a Generator
Summary

5.7 Key Terms, Review Questions, and Problems

135

M05_STAL7484_08_GE_C05.indd 135 20/04/22 11:33

136 CHAPTER 5 / FiniTE FiElds

Finite fields have become increasingly important in cryptography. A number of
 cryptographic algorithms rely heavily on properties of finite fields, notably the
Advanced Encryption Standard (AES) and elliptic curve cryptography. Other exam-
ples include the message authentication code CMAC and the authenticated encryption
scheme GCM.

This chapter provides the reader with sufficient background on the concepts of
finite fields to be able to understand the design of AES and other cryptographic algo-
rithms that use finite fields. Because students unfamiliar with abstract algebra may find
the concepts behind finite fields somewhat difficult to grasp, we approach the topic in a
way designed to enhance understanding. Our plan of attack is as follows:

1. Fields are a subset of a larger class of algebraic structures called rings, which
are in turn a subset of the larger class of groups. In fact, as shown in Figure 5.1,
both groups and rings can be further differentiated. Groups are defined by
a simple set of properties and are easily understood. Each successive subset
(abelian group, ring, commutative ring, and so on) adds additional properties
and is thus more complex. Sections 5.1 through 5.3 will examine groups, rings,
and fields, successively.

2. Finite fields are a subset of fields, consisting of those fields with a finite num-
ber of elements. These are the class of fields that are found in cryptographic
algorithms. With the concepts of fields in hand, we turn in Section 5.4 to a
specific class of finite fields, namely those with p elements, where p is prime.
Certain asymmetric cryptographic algorithms make use of such fields.

3. A more important class of finite fields, for cryptography, comprises those with
2n elements depicted as fields of the form GF(2n). These are used in a wide
variety of cryptographic algorithms. However, before discussing these fields, we
need to analyze the topic of polynomial arithmetic, which is done in Section 5.5.

4. With all of this preliminary work done, we are able at last, in Section 5.6, to
discuss finite fields of the form GF(2n).

Before proceeding, the reader may wish to review Sections 2.1 through 2.3, which
cover relevant topics in number theory.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

◆◆ Distinguish among groups, rings, and fields.

◆◆ Define finite fields of the form GF(p).

◆◆ Explain the differences among ordinary polynomial arithmetic, polynomial
arithmetic with coefficients in Zp, and modular polynomial arithmetic in
GF(2n).

◆◆ Define finite fields of the form GF(2n).

◆◆ Explain the two different uses of the mod operator.

M05_STAL7484_08_GE_C05.indd 136 20/04/22 11:33

5.1 / GRouPs 137

 5.1 GROUPS

Groups, rings, and fields are the fundamental elements of a branch of mathematics
known as abstract algebra, or modern algebra. In abstract algebra, we are concerned
with sets on whose elements we can operate algebraically; that is, we can combine
two elements of the set, perhaps in several ways, to obtain a third element of the set.
These operations are subject to specific rules, which define the nature of the set. By
convention, the notation for the two principal classes of operations on set elements is
usually the same as the notation for addition and multiplication on ordinary numbers.
However, it is important to note that, in abstract algebra, we are not limited to basic
arithmetical operations. All this should become clear as we proceed.

Groups

A group G, sometimes denoted by {G, # }, is a set of elements with a binary opera-
tion denoted by # that associates to each ordered pair (a, b) of elements in G an
element (a # b) in G * G, such that the following axioms are obeyed:1

(A1) Closure: If a and b belong to G, then a # b is also in G.

(A2) Associative: a # (b # c) = (a # b) # c for all a, b, c in G.

1 The operator # is generic and can refer to addition, multiplication, or some other mathematical operation.

Figure 5.1 Groups, Rings, and Fields

Groups

Abelian groups

Rings

Commutative rings

Integral domains

Fields

Finite
fields

M05_STAL7484_08_GE_C05.indd 137 20/04/22 11:33

138 CHAPTER 5 / FiniTE FiElds

(A3) Identity element: There is an element e in G such that
a # e = e # a = a for all a in G.

(A4) Inverse element: For each a in G, there is an element a′ in G
such that a # a′ = a′ # a = e.

Let Nn denote a set of n distinct symbols that, for convenience, we represent as
{1, 2, c , n}. A permutation of n distinct symbols is a one-to-one mapping from
Nn on to Nn.2 Define Sn to be the set of all permutations of n distinct symbols. Each
element of Sn is represented by a permutation p of the integers in 1, 2, . . . , n.
It is easy to demonstrate that Sn is a group:

A1: If (p, r ∈ Sn), then the composite mapping p # r is formed by
permuting the elements of r according to the permutation p. For
 example, {3, 2, 1} # {1, 3, 2} = {2, 3, 1}. The notation for this map-
ping is explained as follows: The value of the first element of p in-
dicates which element of r is to be in the first position in p # r; the
value of the second element of p indicates which element of r is to
be in the second position in p # r; and so on. Clearly, p # r ∈ Sn.

A2: The composition of mappings is also easily seen to be associative.

A3: The identity mapping is the permutation that does not alter the
order of the n elements. For Sn, the identity element is {1, 2, c , n}.

A4: For any p ∈ Sn, the mapping that undoes the permutation defined
by p is the inverse element for p. There will always be such an in-
verse. For example {2, 3, 1} # {3, 1, 2} = {1, 2, 3}.

2This is equivalent to the definition of permutation in Chapter 2, which stated that a permutation of a
finite set of elements S is an ordered sequence of all the elements of S, with each element appearing
exactly once.

The set of integers (positive, negative, and 0) under addition is an abelian group.
The set of nonzero real numbers under multiplication is an abelian group. The
set Sn from the preceding example is a group but not an abelian group for n 7 2.

If a group has a finite number of elements, it is referred to as a finite group, and
the order of the group is equal to the number of elements in the group. Otherwise,
the group is an infinite group.

Abelian Group

A group is said to be abelian if it satisfies the following additional condition:

(A5) Commutative: a # b = b # a for all a, b in G.

M05_STAL7484_08_GE_C05.indd 138 20/04/22 11:33

5.2 / RinGs 139

When the group operation is addition, the identity element is 0; the inverse ele-
ment of a is -a; and subtraction is defined with the following rule: a - b = a + (-b).

Cyclic Group

We define exponentiation within a group as a repeated application of the group op-
erator, so that a3 = a # a # a. Furthermore, we define a0 = e as the identity element,
and a-n = (a′)n, where a′ is the inverse element of a within the group. A group G is
cyclic if every element of G is a power ak (k is an integer) of a fixed element a ∈ G.
The element a is said to generate the group G or to be a generator of G. A cyclic
group is always abelian and may be finite or infinite.

The additive group of integers is an infinite cyclic group generated by the element
1. In this case, powers are interpreted additively, so that n is the nth power of 1.

 5.2 RINGS

A ring R, sometimes denoted by {R, + , * }, is a set of elements with two binary
operations, called addition and multiplication,3 such that for all a, b, c in R the fol-
lowing axioms are obeyed.

(A1–A5) R is an abelian group with respect to addition; that is, R satisfies axioms
A1 through A5. For the case of an additive group, we denote the identity element
as 0 and the inverse of a as -a.

(M1) Closure under multiplication: If a and b belong to R, then ab is also in R.

(M2) Associativity of multiplication: a(bc) = (ab)c for all a, b, c in R.

(M3) Distributive laws: a(b + c) = ab + ac for all a, b, c in R.
(a + b)c = ac + bc for all a, b, c in R.

In essence, a ring is a set of elements in which we can do addition, subtraction
[a - b = a + (-b)], and multiplication without leaving the set.

3Generally, we do not use the multiplication symbol, * , but denote multiplication by the concatenation of
two elements. Thus, a * b is written as ab.

With respect to addition and multiplication, the set of all n-square matrices over
the real numbers is a ring.

A ring is said to be commutative if it satisfies the following additional condition:

(M4) Commutativity of multiplication: ab = ba for all a, b in R.

M05_STAL7484_08_GE_C05.indd 139 20/04/22 11:33

140 CHAPTER 5 / FiniTE FiElds

Next, we define an integral domain, which is a commutative ring that obeys the
following axioms.

(M5) Multiplicative identity: There is an element 1 in R such that
a1 = 1a = a for all a in R.

(M6) No zero divisors: If a, b in R and ab = 0, then either a = 0
or b = 0.

Let S be the set of even integers (positive, negative, and 0) under the usual
operations of addition and multiplication. S is a commutative ring. The set of all
n-square matrices defined in the preceding example is not a commutative ring.

The set Zn of integers {0, 1, c , n - 1}, together with the arithmetic op-
erations modulo n, is a commutative ring (Table 4.3).

Let S be the set of integers (positive, negative, and 0) under the usual operations
of addition and multiplication. S is an integral domain.

Familiar examples of fields are the rational numbers, the real numbers, and the
complex numbers. Note that the set of all integers is not a field, because not every
element of the set has a multiplicative inverse; in fact, only the elements 1 and -1
have multiplicative inverses in the integers.

 5.3 FIELDS

A field F, sometimes denoted by {F, + , * }, is a set of elements with two binary op-
erations, called addition and multiplication, such that for all a, b, c in F the following
axioms are obeyed.

(A1–M6) F is an integral domain; that is, F satisfies axioms A1 through A5 and
M1 through M6.

(M7) Multiplicative inverse: For each a in F, except 0, there is an element
a-1 in F such that aa-1 = (a-1)a = 1.

In essence, a field is a set of elements in which we can do addition, subtraction,
multiplication, and division without leaving the set. Division is defined with the fol-
lowing rule: a/b = a(b-1).

In gaining insight into fields, the following alternate characterization may be
useful. A field F, denoted by {F, + , * }, is a set of elements with two binary opera-
tions, called addition and multiplication, such that the following conditions hold:

1. F forms an abelian group with respect to addition.

2. The nonzero elements of F form an abelian group with respect to multiplication.

M05_STAL7484_08_GE_C05.indd 140 20/04/22 11:33

5.4 / FiniTE FiElds oF THE FoRM GF(p) 141

3. The distributive law holds. That is, for all a, b, c in F,

 a(b + c) = ab + ac.

 (a + b)c = ac + bc.

4. Figure 5.2 summarizes the axioms that define groups, rings, and fields.

 5.4 FINITE FIELDS OF THE FORM GF(p)

In Section 5.3, we defined a field as a set that obeys all of the axioms of Figure 5.2
and gave some examples of infinite fields. Infinite fields are not of particular inter-
est in the context of cryptography. However, in addition to infinite fields, there are
two types of finite fields, as illustrated in Figure 5.3. Finite fields play a crucial role in
many cryptographic algorithms.

It can be shown that the order of a finite field (number of elements in the
field) must be a power of a prime pn, where n is a positive integer. The finite field
of order pn is generally written GF(pn); GF stands for Galois field, in honor of the
mathematician Galois who first studied finite fields. Two special cases are of inter-
est for our purposes. For n = 1, we have the finite field GF(p); this finite field has a
different structure than that for finite fields with n 7 1 and is studied in this section.
For finite fields of the form GF(pn), GF(2n) fields are of particular cryptographic
interest, and these are covered in Section 5.6.

Finite Fields of Order p

For a given prime, p, we define the finite field of order p, GF(p), as the set Zp of integers
{0, 1, c , p - 1} together with the arithmetic operations modulo p. Note therefore
that we are using ordinary modular arithmetic to define the operations over these fields.

Figure 5.2 Properties of Groups, Rings, and Fields

(A1) Closure under addition: If a and b belong to S, then a 1 b is also in S
(A2) Associativity of addition: a 1 (b 1 c) 5 (a 1 b) 1 c for all a, b, c in S
(A3) Additive identity: There is an element 0 in R such that

a 1 0 5 0 1 a 5 a for all a in S
(A4) Additive inverse: For each a in S there is an element 2a in S

such that a 1 (2a) 5 (2a) 1 a 5 0

(A5) Commutativity of addition: a 1 b 5 b 1 a for all a, b in S

(M1) Closure under multiplication: If a and b belong to S, then ab is also in S
(M2) Associativity of multiplication: a(bc) 5 (ab)c for all a, b, c in S
(M3) Distributive laws: a(b 1 c) 5 ab 1 ac for all a, b, c in S

(a 1 b)c 5 ac 1 bc for all a, b, c in S

(M4) Commutativity of multiplication: ab 5 ba for all a, b in S

(M5) Multiplicative identity: There is an element 1 in S such that
a1 5 1a 5 a for all a in S

(M6) No zero divisors: If a, b in S and ab 5 0, then either
a 5 0 or b 5 0

(M7) Multiplicative inverse: If a belongs to S and a Þ 0, there is an
element a in S such that aa 5 a a 5 112 12

G
ro

up

A
be

lia
n

gr
ou

p

R
in

g

C
om

m
ut

at
iv

e
ri

ng

In
te

gr
al

 d
om

ai
n

Fi
el

d

12

M05_STAL7484_08_GE_C05.indd 141 20/04/22 11:33

142 CHAPTER 5 / FiniTE FiElds

Recall that we showed in Section 5.2 that the set Zn of integers {0, 1, c , n - 1},
together with the arithmetic operations modulo n, is a commutative ring (Figure 5.2).
We further observed that any integer in Zn has a multiplicative inverse if and only if
that integer is relatively prime to n [see discussion of Equation (2.5)].4 If n is prime,
then all of the nonzero integers in Zn are relatively prime to n, and therefore there
exists a multiplicative inverse for all of the nonzero integers in Zn. Thus, for Zp we
can add the following properties to those listed in Table 5.2:

Multiplicative
inverse (w-1)

For each w ∈ Zp, w ≠ 0, there exists a z ∈ Zp
such that w * z K 1 (mod p)

Because w is relatively prime to p, if we multiply all the elements of Zp by
w, the resulting residues are all of the elements of Zp permuted. Thus, exactly one
of the residues has the value 1. Therefore, there is some integer in Zp that, when
multiplied by w, yields the residue 1. That integer is the multiplicative inverse of w,
designated w-1. Therefore, Zp is in fact a finite field. Furthermore, Equation (2.5) is
consistent with the existence of a multiplicative inverse and can be rewritten with-
out the condition that a is relatively prime to n. So, for a and b in Zp, with a Z 0:

 if (a * b) K (a * c)(mod p) then b K c(mod p) (5.1)

Multiplying both sides of Equation (5.1) by the multiplicative inverse of a, we have

 ((a-1) * a * b) K ((a-1) * a * c)(mod p)

 b K c (mod p)

4As stated in the discussion of Equation (2.5), two integers are relatively prime if their only common
positive integer factor is 1.

Figure 5.3 Types of Fields

Fields

Fields with an
infinite number

of elements

Finite fields

GF(p)
Finite fields

with p elements

GF(pn)
Finite fields

with pn elements

The simplest finite field is GF(2). Its arithmetic operations are easily summarized:

+ 0 1

0 0 1

1 1 0

Addition

* 0 1

0 0 0

1 0 1

Multiplication

w -w w-1

0 0 -
1 1 1

Inverses

In this case, addition is equivalent to the exclusive-OR (XOR) operation, and
multiplication is equivalent to the logical AND operation.

M05_STAL7484_08_GE_C05.indd 142 20/04/22 11:33

5.4 / FiniTE FiElds oF THE FoRM GF(p) 143

The right-hand side of Table 5.1 shows arithmetic operations in GF(7). This is a
field of order 7 using modular arithmetic modulo 7. As can be seen, it satisfies all
of the properties required of a field (Figure 5.2). Compare with the left-hand side
of Table 5.1, which reproduces Table 2.2. In the latter case, we see that the set Z8,
using modular arithmetic modulo 8, is not a field. Later in this chapter, we show
how to define addition and multiplication operations on Z8 in such a way as to
form a finite field.

Finding the Multiplicative Inverse in GF(p)

It is easy to find the multiplicative inverse of an element in GF(p) for small values
of p. You simply construct a multiplication table, such as shown in Table 5.1e, and
the desired result can be read directly. However, for large values of p, this approach
is not practical.

If a and b are relatively prime, then b has a multiplicative inverse modulo a.
That is, if gcd(a, b) = 1, then b has a multiplicative inverse modulo a. Thus, for posi-
tive integer b 6 a, there exists a b-1 6 a such that bb-1 K 1 mod a. If a is a prime
number and 0 6 b 6 a, then clearly a and b are relatively prime and have a great-
est common divisor of 1. We now show that we can easily compute b-1 using the
extended Euclidean algorithm.

We repeat here Equation (2.7), which we showed can be solved with the
extended Euclidean algorithm:

 ax + by = d = gcd(a, b)

Now, if gcd(a, b) = 1, then we have ax + by = 1. Using the basic equalities of
modular arithmetic, defined in Section 2.3, we can say

[(ax mod a) + (by mod a)] mod a = 1 mod a

0 + (by mod a) = 1

But if by mod a = 1, then y = b-1. Thus, applying the extended Euclidean
algorithm to Equation (2.7) yields the value of the multiplicative inverse of b if
gcd(a, b) = 1.

Consider the example that was shown in Table 2.4. Here we have a = 1759,
which is a prime number, and b = 550. The solution of the equation
1759x + 550y = d yields a value of y = 355. Thus, b-1 = 355. To verify, we cal-
culate 550 * 355 mod 1759 = 195250 mod 1759 = 1.

More generally, the extended Euclidean algorithm can be used to find a
 multiplicative inverse in Zn for any n. If we apply the extended Euclidean algorithm
to the equation nx + by = d, and the algorithm yields d = 1, then y = b-1 in Zn.

M05_STAL7484_08_GE_C05.indd 143 20/04/22 11:33

144 CHAPTER 5 / FiniTE FiElds

+ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7 0

2 2 3 4 5 6 7 0 1

3 3 4 5 6 7 0 1 2

4 4 5 6 7 0 1 2 3

5 5 6 7 0 1 2 3 4

6 6 7 0 1 2 3 4 5

7 7 0 1 2 3 4 5 6

(a) Addition modulo 8

* 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7

2 0 2 4 6 0 2 4 6

3 0 3 6 1 4 7 2 5

4 0 4 0 4 0 4 0 4

5 0 5 2 7 4 1 6 3

6 0 6 4 2 0 6 4 2

7 0 7 6 5 4 3 2 1

(b) Multiplication modulo 8

w 0 1 2 3 4 5 6 7

-w 0 7 6 5 4 3 2 1

w-1 — 1 — 3 — 5 — 7

(c) Additive and multiplicative
inverses modulo 8

+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5

(d) Addition modulo 7

* 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

(e) Multiplication modulo 7

w 0 1 2 3 4 5 6

-w 0 6 5 4 3 2 1

w-1 — 1 4 5 2 3 6

(f) Additive and multiplicative
inverses modulo 7

Table 5.1 Arithmetic Modulo 8 and Modulo 7

Summary

In this section, we have shown how to construct a finite field of order p, where p is
prime. Specifically, we defined GF(p) with the following properties.

1. GF(p) consists of p elements.

2. The binary operations + and * are defined over the set. The operations of
addition, subtraction, multiplication, and division can be performed without
leaving the set. Each element of the set other than 0 has a multiplicative inverse,
and division is performed by multiplication by the multiplicative inverse.

We have shown that the elements of GF(p) are the integers {0, 1, c , p - 1}
and that the arithmetic operations are addition and multiplication mod p.

M05_STAL7484_08_GE_C05.indd 144 20/04/22 11:33

5.5 / PolynoMiAl ARiTHMETiC 145

 5.5 POLYNOMIAL ARITHMETIC

Before continuing our discussion of finite fields, we need to introduce the interest-
ing subject of polynomial arithmetic. We are concerned with polynomials in a single
variable x, and we can distinguish three classes of polynomial arithmetic (Figure 5.4).

◆■ Ordinary polynomial arithmetic, using the basic rules of algebra.

◆■ Polynomial arithmetic in which the arithmetic on the coefficients is performed
modulo p; that is, the coefficients are in GF(p).

◆■ Polynomial arithmetic in which the coefficients are in GF(p), and the poly-
nomials are defined modulo a polynomial m(x) whose highest power is some
integer n.

This section examines the first two classes, and the next section covers the
last class.

Ordinary Polynomial Arithmetic

A polynomial of degree n (integer n Ú 0) is an expression of the form

 f(x) = anxn + an - 1x
n - 1 + g + a1x + a0 = a

n

i = 0
aix

i

where the ai are elements of some designated set of numbers S, called the coefficient
set, and an ≠ 0. We say that such polynomials are defined over the coefficient set S.

A zero-degree polynomial is called a constant polynomial and is simply an
element of the set of coefficients. An nth-degree polynomial is said to be a monic
polynomial if an = 1.

In the context of abstract algebra, we are usually not interested in evaluating
a polynomial for a particular value of x [e.g., f(7)]. To emphasize this point, the vari-
able x is sometimes referred to as the indeterminate.

Polynomial arithmetic includes the operations of addition, subtraction,
 multiplication, and division. These operations are defined in a natural way as though the

Figure 5.4 Treatment of Polynomials

Polynomial f(x)

x treated as a variable,
and evaluated for

a particular value of x

x treated as an
indeterminate

Ordinary
polynomial
arithmetic

Arithmetic on
coefficients is

performed
modulo p

Arithmetic on coefficients is
performed modulo p

and polynomials are defined
modulo a polynomial m(x)

M05_STAL7484_08_GE_C05.indd 145 20/04/22 11:33

146 CHAPTER 5 / FiniTE FiElds

variable x was an element of S. Division is similarly defined, but requires that S be a field.
Examples of fields include the real numbers, rational numbers, and Zp for p prime. Note
that the set of all integers is not a field and does not support polynomial division.

Addition and subtraction are performed by adding or subtracting correspond-
ing coefficients. Thus, if

 f(x) = a
n

i = 0
aix

i; g(x) = a
m

i = 0
bix

i; n Ú m

then addition is defined as

 f(x) + g(x) = a
m

i = 0
(ai + bi)xi + a

n

i = m + 1
aix

i

and multiplication is defined as

 f(x) * g(x) = a
n + m

i = 0
cix

i

where

 ck = a0bk + a1bk - 1 + g + ak - 1b1 + akb0

In the last formula, we treat ai as zero for i 7 n and bi as zero for i 7 m. Note that
the degree of the product is equal to the sum of the degrees of the two polynomials.

As an example, let f(x) = x3 + x2 + 2 and g(x) = x2 - x + 1, where S is the set
of integers. Then

 f(x) + g(x) = x3 + 2x2 - x + 3

 f(x) - g(x) = x3 + x + 1

 f(x) * g(x) = x5 + 3x2 - 2x + 2

Figures 5.5a through 5.5c show the manual calculations. We comment on division
subsequently.

Polynomial Arithmetic with Coefficients in Zp

Let us now consider polynomials in which the coefficients are elements of some
field F; we refer to this as a polynomial over the field F. In this case, it is easy to show
that the set of such polynomials is a ring, referred to as a polynomial ring. That is, if
we consider each distinct polynomial to be an element of the set, then that set is a
ring.5

When polynomial arithmetic is performed on polynomials over a field, then
division is possible. Note that this does not mean that exact division is possible. Let

5In fact, the set of polynomials whose coefficients are elements of a commutative ring forms a polynomial
ring, but that is of no interest in the present context.

M05_STAL7484_08_GE_C05.indd 146 20/04/22 11:33

5.5 / PolynoMiAl ARiTHMETiC 147

us clarify this distinction. Within a field, given two elements a and b, the quotient a/b
is also an element of the field. However, given a ring R that is not a field, in general,
division will result in both a quotient and a remainder; this is not exact division.

Figure 5.5 Examples of Polynomial Arithmetic

x 3

x3

1 1x2

12x2

x2 x

2

121 ()

× ()

2 ()

x2

1

1 3

(a) Addition

(d) Division(c) Multiplication

x3

x3

1 1x2

1x2

x2 x

2

x3

x 2

1

1

1x2

x32 x2

2x2

1 x

2

2

x

x

2

21

2x2 2x1 2

x4 22 2x3 2x

x5 1 1x4 2x2

x5 13x2

12 x2 x 12

1 2

22x1 2

x3

x3

1 1x2

x2 x

2

12

x1

1

1

11

1

(b) Subtraction

Consider the division 5/3 within a set S. If S is the set of rational numbers, which
is a field, then the result is simply expressed as 5/3 and is an element of S. Now
suppose that S is the field Z7. In this case, we calculate (using Table 5.1f)

5/3 = (5 * 3-1) mod 7 = (5 * 5) mod 7 = 4

which is an exact solution. Finally, suppose that S is the set of integers, which is a
ring but not a field. Then 5/3 produces a quotient of 1 and a remainder of 2:

 5/3 = 1 + 2/3
 5 = 1 * 3 + 2

Thus, division is not exact over the set of integers.

Now, if we attempt to perform polynomial division over a coefficient set that is
not a field, we find that division is not always defined.

If the coefficient set is the integers, then (5x2)/(3x) does not have a solution,
because it would require a coefficient with a value of 5/3, which is not in the coef-
ficient set. Suppose that we perform the same polynomial division over Z7. Then
we have (5x2)/(3x) = 4x, which is a valid polynomial over Z7.

However, as we demonstrate presently, even if the coefficient set is a field,
polynomial division is not necessarily exact. In general, division will produce a quo-
tient and a remainder. We can restate the division algorithm of Equation (2.1) for
polynomials over a field as follows. Given polynomials f(x) of degree n and g(x)

M05_STAL7484_08_GE_C05.indd 147 20/04/22 11:33

148 CHAPTER 5 / FiniTE FiElds

of degree (m), (n Ú m), if we divide f(x) by g(x), we get a quotient q(x) and a
 remainder r(x) that obey the relationship

 f(x) = q(x)g(x) + r(x) (5.2)

with polynomial degrees:

 Degree f(x) = n
 Degree g(x) = m
 Degree q(x) = n - m
 0 … Degree r(x) … m - 1

With the understanding that remainders are allowed, we can say that polyno-
mial division is possible if the coefficient set is a field. One common technique used
for polynomial division is polynomial long division, similar to long division for inte-
gers. Examples of this are shown subsequently.

In an analogy to integer arithmetic, we can write f(x) mod g(x) for the remain-
der r(x) in Equation (5.2). That is, r(x) = f(x) mod g(x). If there is no remainder [i.e.,
r(x) = 0], then we can say g(x) divides f(x), written as g(x) � f(x). Equivalently, we
can say that g(x) is a factor of f(x) or g(x) is a divisor of f(x).

For the preceding example [f(x) = x3 + x2 + 2 and g(x) = x2 - x + 1], f(x)/g(x)
produces a quotient of q(x) = x + 2 and a remainder r(x) = x, as shown in
 Figure 5.5d. This is easily verified by noting that

 q(x)g(x) + r(x) = (x + 2)(x2 - x + 1) + x = (x3 + x2 - x + 2) + x

 = x3 + x2 + 2 = f(x)

For our purposes, polynomials over GF(2) are of most interest. Recall from
Section 5.4 that in GF(2), addition is equivalent to the XOR operation, and multipli-
cation is equivalent to the logical AND operation. Further, addition and subtraction
are equivalent mod 2:

 1 + 1 = 1 - 1 = 0
 1 + 0 = 1 - 0 = 1
 0 + 1 = 0 - 1 = 1

Figure 5.6 shows an example of polynomial arithmetic over GF(2). For
f(x) = (x7 + x5 + x4 + x3 + x + 1) and g(x) = (x3 + x + 1), the figure shows
f(x) + g(x); f(x) - g(x); f(x) * g(x); and f(x)/g(x). Note that g(x) � f(x).

A polynomial f(x) over a field F is called irreducible if and only if f(x) can-
not be expressed as a product of two polynomials, both over F, and both of degree
greater than 0 and lower than that of f(x). By analogy to integers, an irreducible
polynomial is also called a prime polynomial.:

The polynomial6 f(x) = x4 + 1 over GF(2) is reducible, because

x4 + 1 = (x + 1)(x3 + x2 + x + 1).

6In the reminder of this chapter, unless otherwise noted, all examples are of polynomials over GF(2).

M05_STAL7484_08_GE_C05.indd 148 20/04/22 11:33

5.5 / PolynoMiAl ARiTHMETiC 149

Consider the polynomial f(x) = x3 + x + 1. It is clear by inspection that x is not
a factor of f(x). We easily show that x + 1 is not a factor of f(x):

x2 + x
x + 1�x3 + x + 1

x3 + x2

x2 + x
x2 + x

1
Thus, f(x) has no factors of degree 1. But it is clear by inspection that if f(x)
is reducible, it must have one factor of degree 2 and one factor of degree 1.
 Therefore, f(x) is irreducible.

Figure 5.6 Examples of Polynomial Arithmetic over GF(2)

(a) Addition

(c) Multiplication

(d) Division

x4x5 11x7

xx3

x3x4 11x5 +1x7 1x 1

111 ()1

x3x4 11x5 11x7 1x 1

x4x5 1+x7

x3 x

x3 1 11 x 1

11

x5x6 11x8 x4 11 1x2

1x2

x

x7x8 11x10 x6 11 1x4

x10 1x4

x3

113()1

x3x4 11x5 1

2

1x7

x4x5 11x7

1x

x3 x

1

11()1

(b) Subtraction

x3x4 11x5 11

11

x7

x4x5x7

1x 1

x3 1 1x 1

x3 1 1x 1

x4 1

1

1

x3 x 11

M05_STAL7484_08_GE_C05.indd 149 20/04/22 11:33

150 CHAPTER 5 / FiniTE FiElds

Finding the Greatest Common Divisor

We can extend the analogy between polynomial arithmetic over a field and integer
arithmetic by defining the greatest common divisor as follows. The polynomial c(x)
is said to be the greatest common divisor of a(x) and b(x) if the following are true.

1. c(x) divides both a(x) and b(x).

2. Any divisor of a(x) and b(x) is a divisor of c(x).

An equivalent definition is the following: gcd[a(x), b(x)] is the polynomial of
maximum degree that divides both a(x) and b(x).

We can adapt the Euclidean algorithm to compute the greatest common divi-
sor of two polynomials. Recall Equation (2.6), from Chapter 2, which is the basis of the
Euclidean algorithm: gcd(a, b) = gcd(b, a mod b) assuming a 7 b. This equality can be
rewritten as the following equation:

 gcd[a(x), b(x)] = gcd[b(x), a(x) mod b(x)] (5.3)

The equation assumes that the degree of a(x) is greater than the degree of b(x).
Equation (5.3) can be used repetitively to determine the greatest common divisor.
Compare the following scheme to the definition of the Euclidean algorithm for integers.

Euclidean Algorithm for Polynomials

Calculate Which satisfies

r1(x) = a(x) mod b(x) a(x) = q1(x)b(x) + r1(x)

r2(x) = b(x) mod r1(x) b(x) = q2(x)r1(x) + r2(x)

r3(x) = r1(x) mod r2(x) r1(x) = q3(x)r2(x) + r3(x)

• •
• •
• •

rn(x) = rn - 2(x) mod rn - 1(x) rn - 2(x) = qn(x)rn - 1(x) + rn(x)

rn + 1(x) = rn - 1(x) mod rn(x) = 0
rn - 1(x) = qn + 1(x)rn(x) + 0

d(x) = gcd(a(x), b(x)) = rn(x)

At each iteration, we have d(x) = gcd(ri + 1(x), ri(x)) until finally
d(x) = gcd(rn(x), 0) = rn(x). Thus, we can find the greatest common divisor of two
polynomials by repetitive application of the division algorithm. This is the Euclidean
algorithm for polynomials.

Find gcd[a(x), b(x)] for a(x) = x6 + x5 + x4 + x3 + x2 + x + 1 and b(x) =
x4 + x2 + x + 1. First, we divide a(x) by b(x):

x2 + x
x4 + x2 + x + 1�x6 + x5 + x4 + x3 + x2 + x + 1

x6 + x4 + x3 + x2

x5 + x + 1
x5 + x3 + x2 + x

x3 + x2 + 1

M05_STAL7484_08_GE_C05.indd 150 20/04/22 11:33

5.6 / FiniTE FiElds oF THE FoRM GF(2n) 151

Summary

We began this section with a discussion of arithmetic with ordinary polynomials. In
ordinary polynomial arithmetic, the variable is not evaluated; that is, we do not plug
a value in for the variable of the polynomials. Instead, arithmetic operations are
performed on polynomials (addition, subtraction, multiplication, division) using the
ordinary rules of algebra. Polynomial division is not allowed unless the coefficients
are elements of a field.

Next, we discussed polynomial arithmetic in which the coefficients are ele-
ments of GF(p). In this case, polynomial addition, subtraction, multiplication, and
division are allowed. However, division is not exact; that is, in general division results
in a quotient and a remainder.

Finally, we showed that the Euclidean algorithm can be extended to find the
greatest common divisor of two polynomials whose coefficients are elements of a
field.

All of the material in this section provides a foundation for the following sec-
tion, in which polynomials are used to define finite fields of order pn.

 5.6 FINITE FIELDS OF THE FORM GF(2n)

Earlier in this chapter, we mentioned that the order of a finite field must be of the
form pn, where p is a prime and n is a positive integer. In Section 5.4, we looked at
the special case of finite fields with order p. We found that, using modular arithmetic
in Zp, all of the axioms for a field (Figure 5.2) are satisfied. For polynomials over pn,
with n 7 1, operations modulo pn do not produce a field. In this section, we show
what structure satisfies the axioms for a field in a set with pn elements and concen-
trate on GF(2n).

Motivation

Virtually all encryption algorithms, both symmetric and asymmetric, involve arith-
metic operations on integers. If one of the operations that is used in the algorithm is
division, then we need to work in arithmetic defined over a field. For convenience

This yields r1(x) = x3 + x2 + 1 and q1 (x) = x2 + x.

Then, we divide b(x) by r1(x).

x + 1
x3 + x2 + 1�x4 + x2 + x + 1

x4 + x3 + x
x3 + x2 + 1
x3 + x2 + 1

This yields r2(x) = 0 and q2(x) = x + 1.

Therefore, gcd[a(x), b(x)] = r1(x) = x3 + x2 + 1.

M05_STAL7484_08_GE_C05.indd 151 20/04/22 11:34

152 CHAPTER 5 / FiniTE FiElds

and for implementation efficiency, we would also like to work with integers that fit
exactly into a given number of bits with no wasted bit patterns. That is, we wish to
work with integers in the range 0 through 2n - 1, which fit into an n-bit word.

Suppose we wish to define a conventional encryption algorithm that operates on
data 8 bits at a time, and we wish to perform division. With 8 bits, we can repre-
sent integers in the range 0 through 255. However, 256 is not a prime number, so
that if arithmetic is performed in Z256 (arithmetic modulo 256), this set of inte-
gers will not be a field. The closest prime number less than 256 is 251. Thus, the
set Z251, using arithmetic modulo 251, is a field. However, in this case the 8-bit
patterns representing the integers 251 through 255 would not be used, resulting
in inefficient use of storage.

As the preceding example points out, if all arithmetic operations are to be used
and we wish to represent a full range of integers in n bits, then arithmetic modulo
2n will not work. Equivalently, the set of integers modulo 2n for n 7 1, is not a field.
Furthermore, even if the encryption algorithm uses only addition and multiplica-
tion, but not division, the use of the set Z2n is questionable, as the following example
illustrates.

Suppose we wish to use 3-bit blocks in our encryption algorithm and use only
the operations of addition and multiplication. Then arithmetic modulo 8 is well
defined, as shown in Table 5.1. However, note that in the multiplication table, the
nonzero integers do not appear an equal number of times. For example, there are
only four occurrences of 3, but twelve occurrences of 4. On the other hand, as was
mentioned, there are finite fields of the form GF(2n), so there is in particular a
finite field of order 23 = 8. Arithmetic for this field is shown in Table 5.2. In this
case, the number of occurrences of the nonzero integers is uniform for multiplica-
tion. To summarize,

Integer 1 2 3 4 5 6 7
Occurrences in Z8 4 8 4 12 4 8 4
Occurrences in GF(23) 7 7 7 7 7 7 7

For the moment, let us set aside the question of how the matrices of Table 5.2
were constructed and instead make some observations.

1. The addition and multiplication tables are symmetric about the main diago-
nal, in conformance to the commutative property of addition and multiplica-
tion. This property is also exhibited in Table 5.1, which uses mod 8 arithmetic.

2. All the nonzero elements defined by Table 5.2 have a multiplicative inverse,
unlike the case with Table 5.1.

3. The scheme defined by Table 5.2 satisfies all the requirements for a finite
field. Thus, we can refer to this scheme as GF(23).

4. For convenience, we show the 3-bit assignment used for each of the elements
of GF(23).

M05_STAL7484_08_GE_C05.indd 152 20/04/22 11:34

5.6 / FiniTE FiElds oF THE FoRM GF(2n) 153

Intuitively, it would seem that an algorithm that maps the integers unevenly
onto themselves might be cryptographically weaker than one that provides a uni-
form mapping. That is, a cryptanalytic technique might be able to exploit the fact
that some integers occur more frequently and some less frequently in the ciphertext.
Thus, the finite fields of the form GF(2n) are attractive for cryptographic algorithms.

To summarize, we are looking for a set consisting of 2n elements, together with
a definition of addition and multiplication over the set that define a field. We can
assign a unique integer in the range 0 through 2n - 1 to each element of the set.
Keep in mind that we will not use modular arithmetic, as we have seen that this does
not result in a field. Instead, we will show how polynomial arithmetic provides a
means for constructing the desired field.

Modular Polynomial Arithmetic

Consider the set S of all polynomials of degree n - 1 or less over the field Zp. Thus,
each polynomial has the form

 f(x) = an - 1x
n - 1 + an - 2x

n - 2 + g + a1x + a0 = a
n - 1

i = 0
aix

i

000 001 010 011 100 101 110 111

+ 0 1 2 3 4 5 6 7

000 0 0 1 2 3 4 5 6 7

001 1 1 0 3 2 5 4 7 6

010 2 2 3 0 1 6 7 4 5

011 3 3 2 1 0 7 6 5 4

100 4 4 5 6 7 0 1 2 3

101 5 5 4 7 6 1 0 3 2

110 6 6 7 4 5 2 3 0 1

111 7 7 6 5 4 3 2 1 0

(a) Addition

000 001 010 011 100 101 110 111

* 0 1 2 3 4 5 6 7

000 0 0 0 0 0 0 0 0 0

001 1 0 1 2 3 4 5 6 7

010 2 0 2 4 6 3 1 7 5

011 3 0 3 6 5 7 4 1 2

100 4 0 4 3 7 6 2 5 1

101 5 0 5 1 4 2 7 3 6

110 6 0 6 7 1 5 3 2 4

111 7 0 7 5 2 1 6 4 3

(b) Multiplication

w -w w-1

0 0 -

1 1 1

2 2 5

3 3 6

4 4 7

5 5 2

6 6 3

7 7 4

(c) Additive and multiplicative
inverses

Table 5.2 Arithmetic in GF(23)

M05_STAL7484_08_GE_C05.indd 153 20/04/22 11:34

154 CHAPTER 5 / FiniTE FiElds

where each ai takes on a value in the set {0, 1, c , p - 1}. There are a total of pn
different polynomials in S.

For p = 3 and n = 2, the 32 = 9 polynomials in the set are

0, 1, 2, x, x + 1, x + 2, 2x, 2x + 1, 2x + 2

For p = 2 and n = 3, the 23 = 8 polynomials in the set are

0, 1, x, x + 1, x2, x2 + 1, x2 + x, x2 + x + 1

With the appropriate definition of arithmetic operations, each such set S is a
finite field. The definition consists of the following elements.

1. Arithmetic follows the ordinary rules of polynomial arithmetic using the basic
rules of algebra, with the following two refinements.

2. Arithmetic on the coefficients is performed modulo p. That is, we use the rules
of arithmetic for the finite field Zp.

3. If multiplication results in a polynomial of degree greater than n - 1, then the
polynomial is reduced modulo some irreducible polynomial m(x) of degree n.
That is, we divide by m(x) and keep the remainder. For a polynomial f(x), the
remainder is expressed as r(x) = f(x) mod m(x).

The Advanced Encryption Standard (AES) uses arithmetic in the finite field
GF(28), with the irreducible polynomial m(x) = x8 + x4 + x3 + x + 1. Consider
the two polynomials f(x) = x6 + x4 + x2 + x + 1 and g(x) = x7 + x + 1. Then

 f(x) + g(x) = x6 + x4 + x2 + x + 1 + x7 + x + 1

 = x7 + x6 + x4 + x2

 f(x) * g(x) = x13 + x11 + x9 + x8 + x7

+ x7 + x5 + x3 + x2 + x

+ x6 + x4 + x2 + x + 1

 = x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1

x5 + x3

x8 + x4 + x3 + x + 1 >x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1
x13 + x9 + x8 + x6 + x5

x11 + x4 + x3

x11 + x7 + x6 + x4 + x3

x7 + x6 + 1

Therefore, f(x) * g(x) mod m(x) = x7 + x6 + 1.

M05_STAL7484_08_GE_C05.indd 154 20/04/22 11:34

5.6 / FiniTE FiElds oF THE FoRM GF(2n) 155

As with ordinary modular arithmetic, we have the notion of a set of residues
in modular polynomial arithmetic. The set of residues modulo m(x), an nth-degree
polynomial, consists of pn elements. Each of these elements is represented by one of
the pn polynomials of degree m 6 n.

The residue class [x + 1], (mod m(x)), consists of all polynomials a(x) such that
a(x) K (x + 1)(mod m(x)). Equivalently, the residue class [x + 1] consists of all
polynomials a(x) that satisfy the equality a(x) mod m(x) = x + 1.

It can be shown that the set of all polynomials modulo an irreducible nth-
degree polynomial m(x) satisfies the axioms in Figure 5.2, and thus forms a finite
field. Furthermore, all finite fields of a given order are isomorphic; that is, any two
finite-field structures of a given order have the same structure, but the representa-
tion or labels of the elements may be different.

To construct the finite field GF(23), we need to choose an irreducible poly-
nomial of degree 3. There are only two such polynomials: (x3 + x2 + 1) and
(x3 + x + 1). Using the latter, Table 5.3 shows the addition and multiplication
tables for GF(23). Note that this set of tables has the identical structure to those
of Table 5.2. Thus, we have succeeded in finding a way to define a field of order 23.

We can now read additions and multiplications from the table easily. For exam-
ple, consider binary 100 + 010 = 110. This is equivalent to x2 + x. Also consider
100 * 010 = 011, which is equivalent to x2 * x = x3 and reduces to x + 1. That
is, x3 mod (x3 + x + 1) = x + 1, which is equivalent to 011.

Finding the Multiplicative Inverse

Just as the Euclidean algorithm can be adapted to find the greatest common divi-
sor of two polynomials, the extended Euclidean algorithm can be adapted to find
the multiplicative inverse of a polynomial. Specifically, the algorithm will find the
multiplicative inverse of b(x) modulo a(x) if the degree of b(x) is less than the de-
gree of a(x) and gcd[a(x), b(x)] = 1. If a(x) is an irreducible polynomial, then it has
no factor other than itself or 1, so that gcd[a(x), b(x)] = 1. The algorithm can be
characterized in the same way as we did for the extended Euclidean algorithm for
integers. Given polynomials a(x) and b(x) with the degree of a(x) greater than the
degree of b(x), we wish to solve the following equation for the values v(x), w(x), and
d(x), where d(x) = gcd[a(x), b(x)]:

 a(x)v(x) + b(x)w(x) = d(x)

If d(x) = 1, then w(x) is the multiplicative inverse of b(x) modulo a(x). The calcula-
tions are as follows.

M05_STAL7484_08_GE_C05.indd 155 20/04/22 11:34

156 CHAPTER 5 / FiniTE FiElds

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

+
0

1
x

x
+

1
x2

x2
+

1
x2

+
x

x2
+

x
+

1

00
0

0
0

1
x

x
+

1
x2

x2
+

1
x2

+
x

x2
+

x
+

1

00
1

1
1

0
x

+
1

x
x2

+
1

x2
x2

+
x

+
1

x2
+

x

01
0

x
x

x
+

1
0

1
x2

+
x

x2
+

x
+

1
x2

x2
+

1

01
1

x
+

1
x

+
1

x
1

0
x2

+
x

+
1

x2
+

x
x2

+
1

x2

10
0

x2
x2

x2
+

1
x2

+
x

x2
+

x
+

1
0

1
x

x
+

1

10
1

x2
+

1
x2

+
1

x2
x2

+
x

+
1

x2
+

x
1

0
x

+
1

x

11
0

x2
+

x
x2

+
x

x2
+

x
+

1
x2

x2
+

1
x

x
+

1
0

1

11
1

x2
+

x
+

1
x2

+
x

+
1

x2
+

x
x2

+
1

x2
x

+
1

x
1

0

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

*
0

1
x

x
+

1
x2

x2
+

1
x2

+
x

x2
+

x
+

1

00
0

0
0

0
0

0
0

0
0

0

00
1

1
0

1
x

x
+

1
x2

x2
+

1
x2

+
x

x2
+

x
+

1

01
0

x
0

x
x2

x2
+

x
x

+
1

1
x2

+
x

+
1

x2
+

1

01
1

x
+

1
0

x
+

1
x2

+
x

x2
+

1
x2

+
x

+
1

x2
1

x

10
0

x2
0

x2
x

+
1

x2
+

x
+

1
x2

+
x

x
x2

+
1

1

10
1

x2
+

1
0

x2
+

1
1

x2
x

x2
+

x
+

1
x

+
1

x2
+

x

11
0

x2
+

x
0

x2
+

x
x2

+
x

+
1

1
x2

+
1

x
+

1
x

x2

11
1

x2
+

x
+

1
0

x2
+

x
+

1
x2

+
1

x
1

x2
+

1
x2

x
+

1

(a
) A

dd
it

io
n

(b
)

M
ul

ti
pl

ic
at

io
n

T
ab

le
 5

.3

Po
ly

no
m

ia
l A

ri
th

m
et

ic
 M

od
ul

o
(x

3
+

x
+

1)

M05_STAL7484_08_GE_C05.indd 156 20/04/22 11:34

5.6 / FiniTE FiElds oF THE FoRM GF(2n) 157

Extended Euclidean Algorithm for Polynomials

Calculate Which satisfies Calculate Which satisfies

r-1(x) = a(x) v-1(x) = 1; w-1(x) = 0 a(x) = a(x)v-1(x) +
bw-1(x)

r0(x) = b(x) v0(x) = 0; w0(x) = 1 b(x) = a(x)v0(x) +
b(x)w0(x)

r1(x) = a(x) mod b(x)
q1(x) = quotient of
a(x)/b(x)

a(x) = q1(x)b(x) +
r1(x)

v1(x) = v-1(x) -
q1(x)v0(x) = 1
w1(x) = w-1(x) -
q1(x)w0(x) = -q1(x)

r1(x) = a(x)v1(x) +
b(x)w1(x)

r2(x) = b(x) mod r1(x)
q2(x) = quotient of
b(x)/r1(x)

b(x) = q2(x)r1(x) +
r2(x)

v2(x) = v0(x) -
q2(x)v1(x)
w2(x) = w0(x) -
q2(x)w1(x)

r2(x) = a(x)v2(x) +
b(x)w2(x)

r3(x) = r1(x) mod r2(x)
q3(x) = quotient of
r1(x)/r2(x)

r1(x) = q3(x)r2(x) +
r3(x)

v3(x) = v1(x) -
q3(x)v2(x)
w3(x) = w1(x) -
q3(x)w2(x)

r3(x) = a(x)v3(x) +
b(x)w3(x)

• • • •

• • • •
• • f •

rn(x) = rn - 2(x)
mod rn - 1(x)
qn(x) = quotient of
rn - 2(x)/rn - 2(x)

rn - 2(x) = qn(x)rn - 1(x)
+ rn(x)

vn(x) = vn - 2(x) -
qn(x)vn - 1(x)
wn(x) = wn - 2(x) -
qn(x)wn - 1(x)

rn(x) = a(x)vn(x) +
b(x)wn(x)

rn + 1(x) = rn - 1(x)
mod rn(x) = 0
qn + 1(x) = quotient of
rn - 1(x)/rn(x)

rn - 1(x) = qn + 1(x)rn(x)
+ 0

d(x) = gcd(a(x),
b(x)) = rn(x)
v(x) = vn(x); w(x) =
wn(x)

Table 5.4 shows the calculation of the multiplicative inverse of (x7 + x + 1)
mod (x8 + x4 + x3 + x + 1). The result is that (x7 + x + 1)-1 = (x7). That is,
(x7 + x + 1)(x7) K 1(mod (x8 + x4 + x3 + x + 1)).

Computational Considerations

A polynomial f(x) in GF(2n)

 f(x) = an - 1x
n - 1 + an - 2x

n - 2 + g + a1x + a0 = a
n - 1

i = 0
aix

i

can be uniquely represented by the sequence of its n binary coefficients
(an - 1, an - 2, c , a0). Thus, every polynomial in GF(2n) can be represented by an
n-bit number.

M05_STAL7484_08_GE_C05.indd 157 20/04/22 11:34

158 CHAPTER 5 / FiniTE FiElds

Addition We have seen that addition of polynomials is performed by adding cor-
responding coefficients, and, in the case of polynomials over Z2, addition is just the
XOR operation. So, addition of two polynomials in GF(2n) corresponds to a bitwise
XOR operation.

Initialization a(x) = x8 + x4 + x3 + x + 1; v-1(x) = 1; w-1(x) = 0
b(x) = x7 + x + 1; v0(x) = 0; w0(x) = 1

Iteration 1 q1(x) = x; r1(x) = x4 + x3 + x2 + 1
v1(x) = 1; w1(x) = x

Iteration 2 q2(x) = x3 + x2 + 1; r2(x) = x
v2(x) = x3 + x2 + 1; w2(x) = x4 + x3 + x + 1

Iteration 3 q3(x) = x3 + x2 + x; r3(x) = 1
v3(x) = x6 + x2 + x + 1; w3(x) = x7

Iteration 4 q4(x) = x; r4(x) = 0
v4(x) = x7 + x + 1; w4(x) = x8 + x4 + x3 + x + 1

Result d(x) = r3(x) = gcd(a(x), b(x)) = 1
w(x) = w3(x) = (x7 + x + 1)-1 mod (x8 + x4 + x3 + x + 1) = x7

Table 5.4 Extended Euclid [(x8 + x4 + x3 + x + 1), (x7 + x + 1)]

Tables 5.2 and 5.3 show the addition and multiplication tables for GF(23) mod-
ulo m(x) = (x3 + x + 1). Table 5.2 uses the binary representation, and Table 5.3
uses the polynomial representation.

Consider the two polynomials in GF(28) from our earlier example:

f(x) = x6 + x4 + x2 + x + 1 and g(x) = x7 + x + 1.

(x6 + x4 + x2 + x + 1) + (x7 + x + 1) = x7 + x6 + x4 + x2 (polynomial notation)
(01010111) ⊕ (10000011) = (11010100) (binary notation)
{57} ⊕ {83} = {D4} (hexadecimal notation)7

7A basic refresher on number systems (decimal, binary, hexadecimal) can be found at the Computer
Science Student Resource Site at WilliamStallings.com/StudentSupport.html. Here each of two groups
of 4 bits in a byte is denoted by a single hexadecimal character, and the two characters are enclosed in
brackets.

MultiplicAtion There is no simple XOR operation that will accomplish multiplica-
tion in GF(2n). However, a reasonably straightforward, easily implemented tech-
nique is available. We will discuss the technique with reference to GF(28) using
m(x) = x8 + x4 + x3 + x + 1, which is the finite field used in AES. The technique
readily generalizes to GF(2n).

The technique is based on the observation that

 x8 mod m(x) = [m(x) - x8] = (x4 + x3 + x + 1) (5.4)

M05_STAL7484_08_GE_C05.indd 158 20/04/22 11:34

http://WilliamStallings.com/StudentSupport.html

5.6 / FiniTE FiElds oF THE FoRM GF(2n) 159

A moment’s thought should convince you that Equation (5.4) is true; if you
are not sure, divide it out. In general, in GF(2n) with an nth-degree polynomial p(x),
we have xn mod p(x) = [p(x) - xn].

Now, consider a polynomial in GF(28), which has the form
f(x) = b7x

7 + b6x
6 + b5x

5 + b4x
4 + b3x

3 + b2x
2 + b1x + b0. If we multiply by x,

we have

 x * f(x) = (b7x
8 + b6x

7 + b5x
6 + b4x

5 + b3x
4

 + b2x
3 + b1x

2 + b0x) mod m(x) (5.5)

If b7 = 0 in Equation (5.5), then the result is a polynomial of degree less than
8, which is already in reduced form, and no further computation is necessary. If
b7 = 1, then reduction modulo m(x) is achieved using Equation (5.4):

 x * f(x) = (b6x
7 + b5x

6 + b4x
5 + b3x

4 + b2x
3 + b1x

2 + b0x)

 + (x4 + x3 + x + 1)

It follows that multiplication by x (i.e., 00000010) can be implemented as a 1-bit
left shift followed by a conditional bitwise XOR with (00011011), which represents
(x4 + x3 + x + 1). To summarize,

 x * f(x) = b (b6b5b4b3b2b1b00) if b7 = 0
(b6b5b4b3b2b1b00) ⊕ (00011011) if b7 = 1

 (5.6)

Multiplication by a higher power of x can be achieved by repeated application
of Equation (5.6). By adding intermediate results, multiplication by any constant in
GF(28) can be achieved.

In an earlier example, we showed that for f(x) = x6 + x4 + x2 + x + 1, g(x) = x7 +
x + 1, and m(x) = x8 + x4 + x3 + x + 1, we have f(x) * g(x) mod m(x) = x7 + x6 + 1.
Redoing this in binary arithmetic, we need to compute (01010111) * (10000011). First,
we determine the results of multiplication by powers of x:

 (01010111) * (00000010) = (10101110)
 (01010111) * (00000100) = (01011100) ⊕ (00011011) = (01000111)
 (01010111) * (00001000) = (10001110)
 (01010111) * (00010000) = (00011100) ⊕ (00011011) = (00000111)
 (01010111) * (00100000) = (00001110)
 (01010111) * (01000000) = (00011100)
 (01010111) * (10000000) = (00111000)

So,

 (01010111) * (10000011) = (01010111) * [(00000001) ⊕ (00000010) ⊕ (10000000)]

 = (01010111) ⊕ (10101110) ⊕ (00111000) = (11000001)

which is equivalent to x7 + x6 + 1.

M05_STAL7484_08_GE_C05.indd 159 20/04/22 11:34

160 CHAPTER 5 / FiniTE FiElds

Using a Generator

An equivalent technique for defining a finite field of the form GF(2n), using a
primitive polynomial, is sometimes more convenient. To begin, we need several new
definitions. A generator g of a finite field F of order q (contains q elements) is an
element whose first q - 1 powers generate all the nonzero elements of F. That is, the
elements of F consist of 0, g0, g1, c , gq - 2.

Recall from the discussion in Chapter 2 that if a is a primitive root of n, then
its powers a, a2, c , af(n) are distinct (mod n) and are all relatively prime to n. In
particular, for a prime number p, if a is a primitive root of p, then a, a2, c , ap-1
are distinct (mod p). Consider a field F defined by a polynomial f(x). An element b
contained in F is called a root of the polynomial if f(b) = 0.

A monic polynomial f(x) is a primitive polynomial of degree n over a finite field
GF(p) if and only if all of its roots are generators of the nonzero elements of the finite
field GF(pn). In particular, it can be shown that f(x) satisfies the following equation:

xpn-1 K 1(mod(f(x))

Moreover, (pn - 1) is the least positive integer for which the preceding equation
is true. That is, there is no integer m 6 (pn - 1) for which f(x) divides (xm - 1).
For example, for GF(23), f(x) = x3 + x + 1 is a primitive polynomial. Thus,

x23-1 = x7 K 1(mod x3 + x + 1)

which is easily shown.

All primitive polynomials are also irreducible, but the reverse is not true. For
an irreducible polynomial that is not a primitive polynomial, we can find a positive
integer m 6 (pn - 1). For example, the irreducible polynomial used to define the
GF(28) finite field for AES is f(x) = x8 + x4 + x3 + x + 1. In this case, it can be eas-
ily calculated that f(x) divides (x51 - 1). But, because 51 … (28 - 1), f(x) is not a
primitive polynomial. A root of this polynomial can generate only 51 nonzero ele-
ments of GF(28).

Let us consider the finite field GF(23), defined over the primitive polynomial
x3 + x + 1, discussed previously. Thus, the generator g must satisfy
f(g) = g3 + g + 1 = 0. Keep in mind, as discussed previously, that we need not
find a numerical solution to this equality. Rather, we deal with polynomial arith-
metic in which arithmetic on the coefficients is performed modulo 2. Therefore, the
solution to the preceding equality is g3 = -g - 1 = g + 1. We now show that g
in fact generates all of the polynomials of degree less than 3. We have the following.

 g4 = g(g3) = g(g + 1) = g2 + g
 g5 = g(g4) = g(g2 + g) = g3 + g2 = g2 + g + 1
 g6 = g(g5) = g(g2 + g + 1) = g3 + g2 + g = g2 + g + g + 1 = g2 + 1
 g7 = g(g6) = g(g2 + 1) = g3 + g = g + g + 1 = 1 = g0

M05_STAL7484_08_GE_C05.indd 160 20/04/22 11:34

5.6 / FiniTE FiElds oF THE FoRM GF(2n) 161

Power
Representation

Polynomial
Representation

Binary
Representation

Decimal (Hex)
Representation

0 0 000 0

g0(= g7) 1 001 1

g1 g 010 2

g2 g2 100 4

g3 g + 1 011 3

g4 g2 + g 110 6

g5 g2 + g + 1 111 7

g6 g2 + 1 101 5

Table 5.5 Generator for GF(23) using x3 + x + 1

We see that the powers of g generate all the nonzero polynomials in GF(23).
Also, it should be clear that gk = gk mod7 for any integer k. Table 5.5 shows the
power representation, as well as the polynomial and binary representations.

This power representation makes multiplication easy. To multiply in the
power notation, add exponents modulo 7. For example, g4 * g6 = g(10 mod 7) =
g3 = g + 1. The same result is achieved using polynomial arithmetic: We have
g4 = g2 + g and g6 = g2 + 1. Then, (g2 + g) * (g2 + 1) = g4 + g3 + g2 + g.
Next, we need to determine (g4 + g3 + g2 + g) mod (g3 + g + 1) by division:

g + 1
g3 + g + 1�g4 + g3 + g2 + g

g4 + g2 + g
g3

g3 + g + 1
g + 1

We get a result of g + 1, which agrees with the result obtained using the power
representation.

Table 5.6 shows the addition and multiplication tables for GF(23) using the
power representation. Note that this yields the identical results to the polynomi-
al representation (Table 5.3) with some of the rows and columns i nterchanged.

In general, for GF(2n) with primitive polynomial f(x), determine
gn = f(g) - gn. Then calculate all of the powers of g from gn + 1 through
g2n - 2. The elements of the field correspond to the powers of g from g0
through g2n - 2 plus the value 0. For multiplication of two elements in the
field, use the equality gk = gk mod(2n - 1) for any integer k.

M05_STAL7484_08_GE_C05.indd 161 20/04/22 11:34

162 CHAPTER 5 / FiniTE FiElds

00
0

00
1

01
0

10
0

01
1

11
0

11
1

10
1

+
0

1
g

g2
g3

g4
g5

g6

00
0

0
0

1
g

g2
g

+
1

g2
+

g
g2

+
g

+
1

g2
+

1

00
1

1
1

0
g

+
1

g2
+

1
g

g2
+

g
+

1
g2

+
g

g2

01
0

g
g

g
+

1
0

g2
+

g
1

g2
g2

+
1

g2
+

g
+

1

10
0

g2
g2

g2
+

1
g2

+
g

0
g2

+
g

+
1

g
g

+
1

1

01
1

g3
g

+
1

g
1

g2
+

g
+

1
0

g2
+

1
g2

g2
+

g

11
0

g4
g2

+
g

g2
+

g
+

1
g2

g
g2

+
1

0
1

g
+

1

11
1

g5
g2

+
g

+
1

g2
+

g
g2

+
1

g
+

1
g2

1
0

g

10
1

g6
g2

+
1

g2
g2

+
g

+
1

1
g2

+
g

g
+

1
g

0

(a
) A

dd
it

io
n

00
0

00
1

01
0

10
0

01
1

11
0

11
1

10
1

*
0

1
g

g2
g3

g4
g5

g6

00
0

0
0

0
0

0
0

0
0

0

00
1

1
0

1
g

g2
g

+
1

g2
+

g
g2

+
g

+
1

g2
+

1

01
0

g
0

g
g2

g
+

1
g2

+
g

g2
+

g
+

1
g2

+
1

1

10
0

g2
0

g2
g

+
1

g2
+

g
g2

+
g

+
1

g2
+

1
1

g

01
1

g3
0

g
+

1
g2

+
g

g2
+

g
+

1
g2

+
1

1
g

g2

11
0

g4
0

g2
+

g
g2

+
g

+
1

g2
+

1
1

g
g2

g
+

1

11
1

g5
0

g2
+

g
+

1
g2

+
1

1
g

g2
g

+
1

g2
+

g

10
1

g6
0

g2
+

1
1

g
g2

g
+

1
g2

+
g

g2
+

g
+

1

(b
)

M
ul

ti
pl

ic
at

io
n

T
ab

le
 5

.6

 G
F

(2
3)

A
ri

th
m

et
ic

 U
si

ng
 G

en
er

at
or

 fo
r

th
e

Po
ly

no
m

ia
l (

x3
+

x
+

1)

M05_STAL7484_08_GE_C05.indd 162 20/04/22 11:34

5.7 / KEy TERMs, REviEw QuEsTions, And PRoblEMs 163

Summary

In this section, we have shown how to construct a finite field of order 2n. Specifically,
we defined GF(2n) with the following properties.

1. GF(2n) consists of 2n elements.

2. The binary operations + and * are defined over the set. The operations
of addition, subtraction, multiplication, and division can be performed with-
out leaving the set. Each element of the set other than 0 has a multiplicative
inverse.

We have shown that the elements of GF(2n) can be defined as the set of all
polynomials of degree n - 1 or less with binary coefficients. Each such polynomial
can be represented by a unique n-bit value. Arithmetic is defined as polynomial
arithmetic modulo some irreducible polynomial of degree n. We have also seen that
an equivalent definition of a finite field GF(2n) makes use of a generator and that
arithmetic is defined using powers of the generator.

Review Questions

 5.1 Briefly define a group.
 5.2 Briefly define a ring.
 5.3 Briefly define a field.
 5.4 Briefly define an irreducible polynomial.

Problems

 5.1 Consider the group S7 of all permutations of 7 distinct symbols.
a. Let x = (1, 2, 3) (4, 6) and y = (2, 3, 4, 5, 6) in S7 be two permutations that are

written in disjoint cycle notation. Compute x # y and y # x.
b. Is S7 abelian?

 5.2 Does the set of residue classes (mod3) form a group
a. with respect to modular addition?
b. with respect to modular multiplication?

Key Terms

commutative
divisor
field

finite field
greatest common divisor
identity element

modular arithmetic
order
relatively prime

 5.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

M05_STAL7484_08_GE_C05.indd 163 20/04/22 11:34

164 CHAPTER 5 / FiniTE FiElds

 5.3 Let S = {0, a, b, c} The addition and multiplication on the set S is defined in the
 following tables:

+ 0 a B C

0 0 a B C

A a 0 c B

B b c 0 A

C c b a 0

* 0 a b c

0 0 0 0 0

a 0 a b c

b 0 a b c

c 0 0 0 0

 Is S a noncommutative ring? Justify your answer.
 5.4 Develop a set of tables similar to Table 5.1 for GF(5).
 5.5 Demonstrate that the set of polynomials whose coefficients form a field is a ring.
 5.6 Let R be the field of real numbers. Let R[x] be the ring of polynomials with coeffi-

cients in field R. State whether each of the following statements is true or false.
a. R[x] is a commutative ring with unity, with multiplicative identity being the con-

stant polynomial 1.
b. f ∈ R[x] has a multiplicative inverse if and only if f is a non-zero constant.
c. R[x] is also a field.

 5.7 For polynomial arithmetic with coefficients in Z11, perform the following calculations.
a. (x2 + 2x + 9)(x3 + 11x2 + x + 7)
b. (8x2 + 3x + 2)(5x2 + 6)

 5.8 Determine which of the following polynomials are reducible over GF(2).
a. x2 + 1
b. x2 + x + 1
c. x4 + x + 1

 5.9 Determine the gcd of the following pairs of polynomials.
a. (x3 + 1) and (x2 + x + 1) over GF(2)
b. (x3 + x + 1) and (x2 + 1) over GF(3)
c. (x3 - 2x + 1) and (x2 - x - 2) over GF(5)
d. (x4 + 8x3 + 7x + 8) and (2x3 + 9x2 + 10x + 1) over GF(11)

 5.10 Develop a set of tables similar to Table 5.3 for GF(3) with m(x) = x2 + x + 1.
 5.11 Determine the multiplicative inverse of x2 + 1 in GF(23) with m(x) = x3 + x - 1.
 5.12 Develop a table similar to Table 5.5 for GF(25) with m(x) = x5 + x4 + x3 + x + 1.

Programming Problems

 5.1 Write a simple four-function calculator in GF(24). You may use table lookups for the
multiplicative inverses.

 5.2 Write a simple four-function calculator in GF(28). You should compute the multiplica-
tive inverses on the fly.

M05_STAL7484_08_GE_C05.indd 164 20/04/22 11:34

Advanced Encryption Standard

CHAPTER6
6.1 Finite Field Arithmetic

6.2 AES Structure

General Structure
Detailed Structure

6.3 AES Transformation Functions

Substitute Bytes Transformation
ShiftRows Transformation
MixColumns Transformation
AddRoundKey Transformation

6.4 AES Key Expansion

Key Expansion Algorithm
Rationale

6.5 An AES Example

Results
Avalanche Effect

6.6 AES Implementation

Equivalent Inverse Cipher
Implementation Aspects

6.7 Key Terms, Review Questions, and Problems

Appendix 6A Polynomials with Coefficients in GF(28)

165

M06_STAL7484_08_GE_C06.indd 165 20/04/22 11:50

166 CHAPTER 6 / AdvAnCEd EnCRyPTion STAndARd

The Advanced Encryption Standard (AES) was published by the National Institute
of Standards and Technology (NIST) in 2001. AES is a symmetric block cipher
that is intended to replace DES as the approved standard for a wide range of
applications.

[NECH01], available from NIST, summarizes the evaluation criteria used by
NIST to select from among the candidates for AES, plus the rationale for picking
Rijndael, which was the winning candidate. This material is useful in understanding not
just the AES design but also the criteria by which to judge any symmetric encryption
algorithm. The essence of the criteria was to develop an algorithm with a high level of
security and good performance on a range of systems.

It is worth making additional comment about the performance of AES.
Because of the popularity of AES, a number of efforts have been made to im-
prove performance through both software and hardware optimization. Most nota-
bly, in 2008, Intel introduced the Advanced Encryption Standard New Instructions
(AES-NI) as a hardware extension to the x86 instruction set to improve the speed
of encryption and decryption. The AES-NI instruction enables x86 processors to
achieve a performance of 0.64 cycles/byte for an authenticated encryption mode
known as AES-GCM (described in Chapter 12).

In 2018, Intel added vectorized instructions, referred to as VAES*, to the existing
AES-NI for its high-end processors [INTE17]. These instructions are intended to push
the performance of AES software further down, to a new theoretical throughput of
0.16 cycles/byte [DRUC18].

AES has become the most widely used symmetric cipher. Compared to
 public-key ciphers such as RSA, the structure of AES and most symmetric ciphers
is quite complex and cannot be explained as easily as many other cryptographic
algorithms. Accordingly, the reader may wish to begin with a simplified version of
AES, which is described in Appendix A. This version allows the reader to perform
encryption and decryption by hand and gain a good understanding of the working
of the algorithm details. Classroom experience indicates that a study of this simpli-
fied version enhances understanding of AES. One possible approach is to read the
chapter first, then carefully read Appendix A and then re-read the main body of
the chapter.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

◆◆ Present an overview of the general structure of Advanced Encryption
Standard (AES).

◆◆ Understand the four transformations used in AES.

◆◆ Explain the AES key expansion algorithm.

◆◆ Understand the use of polynomials with coefficients in GF(28).

M06_STAL7484_08_GE_C06.indd 166 20/04/22 11:50

6.1 / FiniTE FiEld ARiTHmETiC 167

 6.1 FINITE FIELD ARITHMETIC

In AES, all operations are performed on 8-bit bytes. In particular, the arithmetic op-
erations of addition, multiplication, and division are performed over the finite field
GF(28). Section 5.6 discusses such operations in some detail. For the reader who has
not studied Chapter 5, and as a quick review for those who have, this section sum-
marizes the important concepts.

In essence, a field is a set in which we can do addition, subtraction, multiplica-
tion, and division without leaving the set. Division is defined with the following rule:
a/b = a(b-1). An example of a finite field (one with a finite number of elements) is
the set Zp consisting of all the integers {0, 1, c , p - 1}, where p is a prime num-
ber and in which arithmetic is carried out modulo p.

Virtually all encryption algorithms, both conventional and public-key, involve
arithmetic operations on integers. If one of the operations used in the algorithm
is division, then we need to work in arithmetic defined over a field; this is because
division requires that each nonzero element have a multiplicative inverse. For con-
venience and for implementation efficiency, we would also like to work with inte-
gers that fit exactly into a given number of bits, with no wasted bit patterns. That is,
we wish to work with integers in the range 0 through 2n - 1, which fit into an n-bit
word. Unfortunately, the set of such integers, Z2n, using modular arithmetic, is not a
field. For example, the integer 2 has no multiplicative inverse in Z2n, that is, there is
no integer b, such that 2b mod 2n = 1.

There is a way of defining a finite field containing 2n elements; such a field is
referred to as GF(2n). Consider the set, S, of all polynomials of degree n - 1 or less
with binary coefficients. Thus, each polynomial has the form

 f(x) = an - 1x
n - 1 + an - 2x

n - 2 + g + a1x + a0 = a
n - 1

i = 0
aix

i

where each ai takes on the value 0 or 1. There are a total of 2n different polynomials
in S. For n = 3, the 23 = 8 polynomials in the set are

0 x x2 x2 + x
1 x + 1 x2 + 1 x2 + x + 1

With the appropriate definition of arithmetic operations, each such set S is a
finite field. The definition consists of the following elements.

1. Arithmetic follows the ordinary rules of polynomial arithmetic using the basic
rules of algebra with the following two refinements.

2. Arithmetic on the coefficients is performed modulo 2. This is the same as the
XOR operation.

3. If multiplication results in a polynomial of degree greater than n - 1, then the
polynomial is reduced modulo some irreducible polynomial m(x) of degree n.
That is, we divide by m(x) and keep the remainder. For a polynomial f(x),
the remainder is expressed as r(x) = f(x) mod m(x). A polynomial m(x) is
called irreducible if and only if m(x) cannot be expressed as a product of two
 polynomials, both of degree lower than that of m(x).

M06_STAL7484_08_GE_C06.indd 167 20/04/22 11:50

168 CHAPTER 6 / AdvAnCEd EnCRyPTion STAndARd

For example, to construct the finite field GF(23), we need to choose an irre-
ducible polynomial of degree 3. There are only two such polynomials: (x3 + x2 + 1)
and (x3 + x + 1). Addition is equivalent to taking the XOR of like terms. Thus,
(x + 1) + x = 1.

A polynomial in GF(2n) can be uniquely represented by its n binary coefficients
(an - 1an - 2 c a0). Therefore, every polynomial in GF(2n) can be represented by
an n-bit number. Addition is performed by taking the bitwise XOR of the two n-bit
elements. There is no simple XOR operation that will accomplish multiplication in
GF(2n). However, a reasonably straightforward, easily implemented, technique is
available. In essence, it can be shown that multiplication of a number in GF(2n) by
2 consists of a left shift followed by a conditional XOR with a constant. Multiplication
by larger numbers can be achieved by repeated application of this rule.

For example, AES uses arithmetic in the finite field GF(28) with the irreducible
polynomial m(x) = x8 + x4 + x3 + x + 1. Consider two elements A =
(a7a6 c a1a0) and B = (b7b6 c b1b0). The sum A + B = (c7c6 c c1c0), where
ci = ai ⊕ bi. The multiplication {02} # A equals (a6 c a1a00) if a7 = 0 and equals
(a6 c a1a00) ⊕ (00011011) if a7 = 1.1

To summarize, AES operates on 8-bit bytes. Addition of two bytes is defined as
the bitwise XOR operation. Multiplication of two bytes is defined as multiplication
in the finite field GF(28), with the irreducible polynomial2 m(x) = x8 + x4 + x3 +
x + 1. The developers of Rijndael give as their motivation for selecting this one of
the 30 possible irreducible polynomials of degree 8 that it is the first one on the list
given in [LIDL94].

 6.2 AES STRUCTURE

General Structure

Figure 6.1 shows the overall structure of the AES encryption process. The cipher
takes a plaintext block size of 128 bits, or 16 bytes. The key length can be 16, 24, or
32 bytes (128, 192, or 256 bits). The algorithm is referred to as AES-128, AES-192, or
AES-256, depending on the key length.

The input to the encryption and decryption algorithms is a single 128-bit
block. In FIPS PUB 197, this block is depicted as a 4 * 4 square matrix of bytes. This
block is copied into the State array, which is modified at each stage of encryption or
decryption. After the final stage, State is copied to an output matrix. These opera-
tions are depicted in Figure 6.2a. Similarly, the key is depicted as a square matrix of
bytes. This key is then expanded into an array of key schedule words. Figure 6.2b
shows the expansion for the 128-bit key. Each word is four bytes, and the total key
schedule is 44 words for the 128-bit key. Note that the ordering of bytes within a
matrix is by column. So, for example, the first four bytes of a 128-bit plaintext input
to the encryption cipher occupy the first column of the in matrix, the second four

1In FIPS PUB 197, a hexadecimal number is indicated by enclosing it in curly brackets. We use that convention
in this chapter.
2In the remainder of this discussion, references to GF(28) refer to the finite field defined with this
polynomial.

M06_STAL7484_08_GE_C06.indd 168 20/04/22 11:50

6.2 / AES STRuCTuRE 169

Figure 6.1 AES Encryption Process

Initial transformation

K
ey

 e
xp

an
si

on

Plaintext—16 bytes (128 bits) Key—M bytes

Key
(M bytes)Round 0 key

(16 bytes)

Round 1 key
(16 bytes)

Round N 2 1 key
(16 bytes)

Round N key
(16 bytes)

Cipehertext—16 bytes (128 bits)

Input state
(16 bytes)

State after
initial

transformation
(16 bytes)

Final state
(16 bytes)

Round N 2 1
output state
(16 bytes)

Round 1
output state
(16 bytes)

Round 1
(4 transformations)

Round N 2 1
(4 transformations)

Round N
(3 transformations)

No. of
rounds

10 16

Key
Length
(bytes)

12 24

14 32

bytes occupy the second column, and so on. Similarly, the first four bytes of the
expanded key, which form a word, occupy the first column of the w matrix.

The cipher consists of N rounds, where the number of rounds depends on the
key length: 10 rounds for a 16-byte key, 12 rounds for a 24-byte key, and 14 rounds
for a 32-byte key (Table 6.1). The first N - 1 rounds consist of four distinct

M06_STAL7484_08_GE_C06.indd 169 20/04/22 11:50

170 CHAPTER 6 / AdvAnCEd EnCRyPTion STAndARd

Figure 6.2 AES Data Structures

in0 in4 in8 in12

in1 in5 in9 in13

in2 in6 in10 in14

in3 in7 in11 in15

s0,0

s1,0

s2,0

s3,0

s0,1

s1,1

s2,1

s3,1

s0,2

s1,2

s2,2

s3,2

s0,3

s1,3

s2,3

s3,3

s0,0

s1,0

s2,0

s3,0

s0,1

s1,1

s2,1

s3,1

s0,2

s1,2

s2,2

s3,2

s0,3

s1,3

s2,3

s3,3

out0 out4 out8 out12

out1 out5 out9 out13

out2 out6 out10 out14

out3 out7 out11 out15

k0 k4 k8 k12

k1 k5 k9 k13

k2 k6 k10 k14

k3 k7 k11 k15

w0 w1 w2 • • • w43w42

(a) Input, state array, and output

(b) Key and expanded key

Key Size (words/bytes/bits) 4/16/128 6/24/192 8/32/256
Plaintext Block Size (words/bytes/bits) 4/16/128 4/16/128 4/16/128
Number of Rounds 10 12 14
Round Key Size (words/bytes/bits) 4/16/128 4/16/128 4/16/128
Expanded Key Size (words/bytes) 44/176 52/208 60/240

Table 6.1 AES Parameters

M06_STAL7484_08_GE_C06.indd 170 20/04/22 11:50

6.2 / AES STRuCTuRE 171

transformation functions: SubBytes, ShiftRows, MixColumns, and AddRoundKey,
which are described subsequently. The final round contains only three transforma-
tions, and there is a initial single transformation (AddRoundKey) before the first
round, which can be considered Round 0. Each transformation takes one or more
4 * 4 matrices as input and produces a 4 * 4 matrix as output. Figure 6.1 shows
that the output of each round is a 4 * 4 matrix, with the output of the final round
being the ciphertext. Also, the key expansion function generates N + 1 round keys,
each of which is a distinct 4 * 4 matrix. Each round key serves as one of the inputs
to the AddRoundKey transformation in each round.

Detailed Structure

Figure 6.3 shows the AES cipher in more detail, indicating the sequence of transfor-
mations in each round and showing the corresponding decryption function. As was
done in Chapter 4, we show encryption proceeding down the page and decryption
proceeding up the page.

Before delving into details, we can make several comments about the overall
AES structure.

1. One noteworthy feature of this structure is that it is not a Feistel structure.
Recall that, in the classic Feistel structure, half of the data block is used to
modify the other half of the data block and then the halves are swapped. AES
instead processes the entire data block as a single matrix during each round
using substitutions and permutation.

2. The key that is provided as input is expanded into an array of forty-four 32-bit
words, w[i]. Four distinct words (128 bits) serve as a round key for each round;
these are indicated in Figure 6.3.

3. Four different stages are used, one of permutation and three of substitution:

◆■ Substitute bytes: Uses an S-box to perform a byte-by-byte substitution of
the block.

◆■ ShiftRows: A simple permutation.

◆■ MixColumns: A substitution that makes use of arithmetic over GF(28).

◆■ AddRoundKey: A simple bitwise XOR of the current block with a portion
of the expanded key.

4. The structure is quite simple. For both encryption and decryption, the cipher
begins with an AddRoundKey stage, followed by nine rounds that each
includes all four stages, followed by a tenth round of three stages. Figure 6.4
depicts the structure of a full encryption round.

5. Only the AddRoundKey stage makes use of the key. For this reason, the cipher
begins and ends with an AddRoundKey stage. Any other stage, applied at the
beginning or end, is reversible without knowledge of the key and so would add
no security.

M06_STAL7484_08_GE_C06.indd 171 20/04/22 11:50

172 CHAPTER 6 / AdvAnCEd EnCRyPTion STAndARd

Figure 6.3 AES Encryption and Decryption

Add round key

w[4, 7]

Plaintext
(16 bytes)

Plaintext
(16 bytes)

Substitute bytes

Expand key

Shift rows

Mix columnsR
ou

nd
 1

R
ou

nd
 9

R
ou

nd
 1

0

Add round key

•
•
•

Substitute bytes

Shift rows

Mix columns

Add round key

Substitute bytes

Shift rows

Add round key

Ciphertext
(16 bytes)

(a) Encryption

Key
(16 bytes)

Add round key

Inverse sub bytes

Inverse shift rows

Inverse mix cols

R
ou

nd
 1

0
R

ou
nd

 9
R

ou
nd

 1

Add round key

•
•
•

Inverse sub bytes

Inverse shift rows

Inverse mix cols

Add round key

Inverse sub bytes

Inverse shift rows

Add round key

Ciphertext
(16 bytes)

(b) Decryption

w[36, 39]

w[40, 43]

w[0, 3]

6. The AddRoundKey stage is, in effect, a form of Vernam cipher and by itself
would not be formidable. The other three stages together provide confu-
sion, diffusion, and nonlinearity, but by themselves would provide no security
because they do not use the key. We can view the cipher as alternating opera-
tions of XOR encryption (AddRoundKey) of a block, followed by scrambling
of the block (the other three stages), followed by XOR encryption, and so on.
This scheme is both efficient and highly secure.

M06_STAL7484_08_GE_C06.indd 172 20/04/22 11:50

6.2 / AES STRuCTuRE 173

Figure 6.4 AES Encryption Round

SSubBytes

State

State

State

State

State

ShiftRows

MixColumns

AddRoundKey

S S S S S S S S S S S S S S S

M M M M

r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15

7. Each stage is easily reversible. For the Substitute Byte, ShiftRows, and
MixColumns stages, an inverse function is used in the decryption algorithm.
For the AddRoundKey stage, the inverse is achieved by XORing the same
round key to the block, using the result that A ⊕ B ⊕ B = A.

8. As with most block ciphers, the decryption algorithm makes use of the expanded
key in reverse order. However, the decryption algorithm is not identical to the
encryption algorithm. This is a consequence of the particular structure of AES.

9. Once it is established that all four stages are reversible, it is easy to verify
that decryption does recover the plaintext. Figure 6.3 lays out encryption
and decryption going in opposite vertical directions. At each horizontal point
(e.g., the dashed line in the figure), State is the same for both encryption and
decryption.

10. The final round of both encryption and decryption consists of only three stages.
Again, this is a consequence of the particular structure of AES and is required
to make the cipher reversible.

M06_STAL7484_08_GE_C06.indd 173 20/04/22 11:50

174 CHAPTER 6 / AdvAnCEd EnCRyPTion STAndARd

 6.3 AES TRANSFORMATION FUNCTIONS

We now turn to a discussion of each of the four transformations used in AES. For
each stage, we describe the forward (encryption) algorithm, the inverse (decryption)
algorithm, and the rationale for the stage.

Substitute Bytes Transformation

Forward and Inverse TransFormaTIons The forward substitute byte
 transformation, called SubBytes, is a simple table lookup (Figure 6.5a). AES defines
a 16 * 16 matrix of byte values, called an S-box (Table 6.2a), that contains a per-
mutation of all possible 256 8-bit values. Each individual byte of State is mapped
into a new byte in the following way: The leftmost 4 bits of the byte are used as
a row value and the rightmost 4 bits are used as a column value. These row and
 column values serve as indexes into the S-box to select a unique 8-bit output value.

Figure 6.5 AES Byte-Level Operations

s0,0 s0,1 s0,2 s0,3

s1,0 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

s0,0 s0,1 s0,2 s0,3

s1,0 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

(b) Add round key transformation

(a) Substitute byte transformation

S-box

x

y

¿ ¿ ¿ ¿

¿ ¿¿¿

s1,1

s0,0

wi wi12 wi13

s0,2 s0,3

s1,0 s1,2 s1,3

5
s2,0 s2,2 s2,3

s3,0 s3,2 s3,3

s1,1

s0,0 s0,2 s0,3

s1,0 s1,2 s1,3

s2,0 s2,2 s2,3

s3,0 s3,2 s3,3

s1,1

s0,1

s2,1

s3,1

wi11

s0,1

s2,1

s3,1

s1,1

¿¿¿

¿ ¿ ¿ ¿

¿

¿

¿

¿
¿

¿ ¿

¿ ¿ ¿ ¿

¿ ¿ ¿

¿
¿ ¿

1

M06_STAL7484_08_GE_C06.indd 174 20/04/22 11:50

6.3 / AES TRAnSFoRmATion FunCTionS 175

y
0 1 2 3 4 5 6 7 8 9 A B C D E F

0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76
1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0
2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15
3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75
4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84
5 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF
6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8

x
7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2
8 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73
9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB
A E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79
B E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08
C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A
D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E
E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF
F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16

(a) S-box

y
0 1 2 3 4 5 6 7 8 9 A B C D E F

0 52 09 6A D5 30 36 A5 38 BF 40 A3 9E 81 F3 D7 FB
1 7C E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E9 CB
2 54 7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA C3 4E
3 08 2E A1 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25
4 72 F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92
5 6C 70 48 50 FD ED B9 DA 5E 15 46 57 A7 8D 9D 84
6 90 D8 AB 00 8C BC D3 0A F7 E4 58 05 B8 B3 45 06

x
7 D0 2C 1E 8F CA 3F 0F 02 C1 AF BD 03 01 13 8A 6B
8 3A 91 11 41 4F 67 DC EA 97 F2 CF CE F0 B4 E6 73
9 96 AC 74 22 E7 AD 35 85 E2 F9 37 E8 1C 75 DF 6E
A 47 F1 1A 71 1D 29 C5 89 6F B7 62 0E AA 18 BE 1B
B FC 56 3E 4B C6 D2 79 20 9A DB C0 FE 78 CD 5A F4
C 1F DD A8 33 88 07 C7 31 B1 12 10 59 27 80 EC 5F
D 60 51 7F A9 19 B5 4A 0D 2D E5 7A 9F 93 C9 9C EF
E A0 E0 3B 4D AE 2A F5 B0 C8 EB BB 3C 83 53 99 61
F 17 2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 0C 7D

(b) Inverse S-box

Table 6.2 AES S-Boxes

M06_STAL7484_08_GE_C06.indd 175 20/04/22 11:50

176 CHAPTER 6 / AdvAnCEd EnCRyPTion STAndARd

For example, the hexadecimal value {95} references row 9, column 5 of the S-box,
which contains the value {2A}. Accordingly, the value {95} is mapped into the value
{2A}.

Here is an example of the SubBytes transformation:

EA 04 65 85 87 F2 4D 97

83 45 5D 96 EC 6E 4C 90

5C 33 98 B0 S 4A C3 46 E7

F0 2D AD C5 8C D8 95 A6

The S-box is constructed in the following fashion (Figure 6.6a).

Figure 6.6 Constuction of S-Box and IS-Box

b0

b1

b2

b3

b4

b5

b6

b7

5

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

b0

b1

b2

b3

b4

b5

b6

b7

1

1
1
0
0
0
1
1
0

Inverse
in GF(28)

Byte to bit
column vector

Bit column
vector to byte

Byte at row y,
column x

initialized to yx
yx

S(yx)

(a) Calculation of byte at
row y, column x of S-box

(a) Calculation of byte at
row y, column x of IS-box

Inverse
in GF(28)

Byte to bit
column vector

Bit column
vector to byte

Byte at row y,
column x

initialized to yx
yx

b0¿

b¿

b¿
b ¿

1

2

3

b4

b5

b6

b7

5

0 0 1 0 0 1 0 1
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1
1 0 1 0 0 1 0 0
0 1 0 1 0 0 1 0
0 0 1 0 1 0 0 1
1 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0

b0

b1

b2

b3

b4

b5

b6

b7

1

1
0
1
0
0
0
0
0

IS(yx)

¿

¿
¿

¿

¿

¿

¿

¿

¿

¿

¿
¿

M06_STAL7484_08_GE_C06.indd 176 20/04/22 11:50

6.3 / AES TRAnSFoRmATion FunCTionS 177

1. Initialize the S-box with the byte values in ascending sequence row by row.
The first row contains {00}, {01}, {02}, c , {0F}; the second row contains
{10}, {11}, etc.; and so on. Thus, the value of the byte at row y, column x is {yx}.

2. Map each byte in the S-box to its multiplicative inverse in the finite field
GF(28); the value {00} is mapped to itself.

3. Consider that each byte in the S-box consists of 8 bits labeled
(b7, b6, b5, b4, b3, b2, b1, b0). Apply the following transformation to each bit of
each byte in the S-box:

 bi
= = bi ⊕ b(i+ 4) mod 8 ⊕ b(i+ 5) mod 8 ⊕ b(i+ 6) mod 8 ⊕ b(i+ 7) mod 8 ⊕ ci (6.1)

 where ci is the ith bit of byte c with the value {63}; that is,
(c7c6c5c4c3c2c1c0) = (01100011). The prime (′) indicates that the variable is to
be updated by the value on the right. The AES standard depicts this transfor-
mation in matrix form as follows.

 Hb0
=

b1
=

b2
=

b3
=

b4
=

b5
=

b6
=

b7
=

X = H1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

X Hb0

b1

b2

b3

b4

b5

b6

b7

X + H1
1
0
0
0
1
1
0

X (6.2)

Equation (6.2) has to be interpreted carefully. In ordinary matrix multiplica-
tion,3 each element in the product matrix is the sum of products of the elements of
one row and one column. In this case, each element in the product matrix is the bit-
wise XOR of products of elements of one row and one column. Furthermore, the
final addition shown in Equation (6.2) is a bitwise XOR. Recall from Section 5.6
that the bitwise XOR is addition in GF(28).

As an example, consider the input value {95}. The multiplicative inverse in
GF(28) is {95}-1 = {8A}, which is 10001010 in binary. Using Equation (6.2),

 H1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

X H0
1
0
1
0
0
0
1

X ⊕ H1
1
0
0
0
1
1
0

X = H1
0
0
1
0
0
1
0

X ⊕ H1
1
0
0
0
1
1
0

X = H0
1
0
1
0
1
0
0

X

3For a brief review of the rules of matrix and vector multiplication, refer to Appendix B.

M06_STAL7484_08_GE_C06.indd 177 20/04/22 11:51

178 CHAPTER 6 / AdvAnCEd EnCRyPTion STAndARd

The result is {2A}, which should appear in row {09} column {05} of the S-box.
This is verified by checking Table 6.2a.

The inverse substitute byte transformation, called InvSubBytes, makes use of
the inverse S-box shown in Table 6.2b. Note, for example, that the input {2A} pro-
duces the output {95}, and the input {95} to the S-box produces {2A}. The inverse
S-box is constructed (Figure 6.6b) by applying the inverse of the transformation in
Equation (6.1) followed by taking the multiplicative inverse in GF(28). The inverse
transformation is

 bi
= = b(i+ 2) mod 8 ⊕ b(i+ 5) mod 8 ⊕ b(i+ 7) mod 8 ⊕ di

where byte d = {05}, or 00000101. We can depict this transformation as follows.

 Hb0
=

b1
=

b2
=

b3
=

b4
=

b5
=

b6
=

b7
=

X = H0 0 1 0 0 1 0 1
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1
1 0 1 0 0 1 0 0
0 1 0 1 0 0 1 0
0 0 1 0 1 0 0 1
1 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0

X Hb0

b1

b2

b3

b4

b5

b6

b7

X + H1
0
1
0
0
0
0
0

X

To see that InvSubBytes is the inverse of SubBytes, label the matrices in
SubBytes and InvSubBytes as X and Y, respectively, and the vector versions of con-
stants c and d as C and D, respectively. For some 8-bit vector B, Equation (6.2)
becomes B= = XB ⊕ C. We need to show that Y(XB ⊕ C) ⊕ D = B. To multiply
out, we must show YXB ⊕ YC ⊕ D = B. This becomes

 H0 0 1 0 0 1 0 1
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1
1 0 1 0 0 1 0 0
0 1 0 1 0 0 1 0
0 0 1 0 1 0 0 1
1 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0

X H1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

X Hb0

b1

b2

b3

b4

b5

b6

b7

X ⊕

 H0 0 1 0 0 1 0 1
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1
1 0 1 0 0 1 0 0
0 1 0 1 0 0 1 0
0 0 1 0 1 0 0 1
1 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0

X H 1
1
0
0
0
1
1
0

X ⊕ H1
0
1
0
0
0
0
0

X =

M06_STAL7484_08_GE_C06.indd 178 20/04/22 11:51

6.3 / AES TRAnSFoRmATion FunCTionS 179

 H1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

X Hb0

b1

b2

b3

b4

b5

b6

b7

X ⊕ H1
0
1
0
0
0
0
0

X ⊕ H1
0
1
0
0
0
0
0

X = Hb0

b1

b2

b3

b4

b5

b6

b7

X

We have demonstrated that YX equals the identity matrix, and the YC = D,
so that YC ⊕ D equals the null vector.

raTIonale The S-box is designed to be resistant to known cryptanalytic attacks.
Specifically, the Rijndael developers sought a design that has a low correlation
 between input bits and output bits and the property that the output is not a linear
mathematical function of the input [DAEM01]. The nonlinearity is due to the use
of the multiplicative inverse. In addition, the constant in Equation (6.1) was chosen
so that the S-box has no fixed points [S@box(a) = a] and no “opposite fixed points”
[S@box(a) = a], where a is the bitwise complement of a.

Of course, the S-box must be invertible, that is, IS@box[S@box(a)] = a.
However, the S-box does not self-inverse in the sense that it is not true that
S@box(a) = IS@box(a). For example, S@box({95}) = {2A}, but IS@box({95}) = {AD}.

ShiftRows Transformation

Forward and Inverse TransFormaTIons The forward shift row transformation,
called ShiftRows, is depicted in Figure 6.7a. The first row of State is not altered. For
the second row, a 1-byte circular left shift is performed. For the third row, a 2-byte
circular left shift is performed. For the fourth row, a 3-byte circular left shift is per-
formed. The following is an example of ShiftRows.

87 F2 4D 97 87 F2 4D 97

EC 6E 4C 90 6E 4C 90 EC

4A C3 46 E7 S 46 E7 4A C3

8C D8 95 A6 A6 8C D8 95

The inverse shift row transformation, called InvShiftRows, performs the cir-
cular shifts in the opposite direction for each of the last three rows, with a 1-byte
circular right shift for the second row, and so on.

raTIonale The shift row transformation is more substantial than it may first
 appear. This is because the State, as well as the cipher input and output, is treated
as an array of four 4-byte columns. Thus, on encryption, the first 4 bytes of the
plaintext are copied to the first column of State, and so on. Furthermore, as will
be seen, the round key is applied to State column by column. Thus, a row shift
moves an individual byte from one column to another, which is a linear distance

M06_STAL7484_08_GE_C06.indd 179 20/04/22 11:51

180 CHAPTER 6 / AdvAnCEd EnCRyPTion STAndARd

performed in GF(28). The MixColumns transformation on a single column of State
can be expressed as

 s0, j
= = (2 # s0, j) ⊕ (3 # s1, j) ⊕ s2, j ⊕ s3, j

 s1, j
= = s0, j ⊕ (2 # s1, j) ⊕ (3 # s2, j) ⊕ s3, j

 s2, j
= = s0, j ⊕ s1, j ⊕ (2 # s2, j) ⊕ (3 # s3, j)

 s3, j
= = (3 # s0, j) ⊕ s1, j ⊕ s2, j ⊕ (2 # s3, j)

 (6.4)

The following is an example of MixColumns:

87 F2 4D 97 47 40 A3 4C

6E 4C 90 EC 37 D4 70 9F

46 E7 4A C3 S 94 E4 3A 42

A6 8C D8 95 ED A5 A6 BC

Let us verify the first column of this example. Recall from Section 5.6 that, in
GF(28), addition is the bitwise XOR operation and that multiplication can be per-
formed according to the rule established in Equation (5.6). In particular, multiplica-
tion of a value by x (i.e., by {02}) can be implemented as a 1-bit left shift followed by
a conditional bitwise XOR with (0001 1011) if the leftmost bit of the original value
(prior to the shift) is 1. Thus, to verify the MixColumns transformation on the first
column, we need to show that

({02} # {87}) ⊕ ({03} # {6E}) ⊕ {46} ⊕ {A6} = {47}
{87} ⊕ ({02} # {6E}) ⊕ ({03} # {46}) ⊕ {A6} = {37}
{87} ⊕ {6E} ⊕ ({02} # {46}) ⊕ ({03} # {A6}) = {94}
({03} # {87}) ⊕ {6E} ⊕ {46} ⊕ ({02} # {A6}) = {ED}

For the first equation, we have {02} # {87} = (0000 1110) ⊕ (0001 1011) =
(0001 0101) and {03} # {6E} = {6E} ⊕ ({02} # {6E}) = (0110 1110) ⊕ (1101 1100) =
(1011 0010). Then,

{02} # {87} = 0001 0101
{03} # {6E} = 1011 0010
{46} = 0100 0110
{A6} = 1010 0110

0100 0111 = {47}

The other equations can be similarly verified.
The inverse mix column transformation, called InvMixColumns, is defined by

the following matrix multiplication:D 0E 0B 0D 09
09 0E 0B 0D
0D 09 0E 0B
0B 0D 09 0E

T D s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

T = D s0,0
= s0,1

= s0,2
= s0,3

=

s1,0
= s1,1

= s1,2
= s1,3

=

s2,0
= s2,1

= s2,2
= s2,3

=

s3,0
= s3,1

= s3,2
= s3,3

=

T (6.5)
4We follow the convention of FIPS PUB 197 and use the symbol # to indicate multiplication over the
finite field GF(28) and ⊕ to indicate bitwise XOR, which corresponds to addition in GF(28).

of a multiple of 4 bytes. Also note that the transformation ensures that the 4 bytes
of one column are spread out to four different columns. Figure 6.4 illustrates the
effect.

MixColumns Transformation

Forward and Inverse TransFormaTIons The forward mix column transformation,
called MixColumns, operates on each column individually. Each byte of a column
is mapped into a new value that is a function of all four bytes in that column. The
transformation can be defined by the following matrix multiplication on State
(Figure 6.7b):

 D02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

T D s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

T = D s0,0
= s0,1

= s0,2
= s0,3

=

s1,0
= s1,1

= s1,2
= s1,3

=

s2,0
= s2,1

= s2,2
= s2,3

=

s3,0
= s3,1

= s3,2
= s3,3

=

T (6.3)

Each element in the product matrix is the sum of products of elements of one row
and one column. In this case, the individual additions and multiplications4 are

Figure 6.7 AES Row and Column Operations

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

s0,0 s0,1 s0,2 s0,3

s1,1 s1,2 s1,3 s1,0

s2,2 s2,3 s2,0 s2,1

s3,3 s3,0 s3,1 s3,2

(a) Shift row transformation

(b) Mix column transformation

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

3

¿ ¿ ¿ ¿

¿¿¿¿

¿ ¿ ¿ ¿

¿¿¿¿

5

M06_STAL7484_08_GE_C06.indd 180 20/04/22 11:51

6.3 / AES TRAnSFoRmATion FunCTionS 181

performed in GF(28). The MixColumns transformation on a single column of State
can be expressed as

 s0, j
= = (2 # s0, j) ⊕ (3 # s1, j) ⊕ s2, j ⊕ s3, j

 s1, j
= = s0, j ⊕ (2 # s1, j) ⊕ (3 # s2, j) ⊕ s3, j

 s2, j
= = s0, j ⊕ s1, j ⊕ (2 # s2, j) ⊕ (3 # s3, j)

 s3, j
= = (3 # s0, j) ⊕ s1, j ⊕ s2, j ⊕ (2 # s3, j)

 (6.4)

The following is an example of MixColumns:

87 F2 4D 97 47 40 A3 4C

6E 4C 90 EC 37 D4 70 9F

46 E7 4A C3 S 94 E4 3A 42

A6 8C D8 95 ED A5 A6 BC

Let us verify the first column of this example. Recall from Section 5.6 that, in
GF(28), addition is the bitwise XOR operation and that multiplication can be per-
formed according to the rule established in Equation (5.6). In particular, multiplica-
tion of a value by x (i.e., by {02}) can be implemented as a 1-bit left shift followed by
a conditional bitwise XOR with (0001 1011) if the leftmost bit of the original value
(prior to the shift) is 1. Thus, to verify the MixColumns transformation on the first
column, we need to show that

({02} # {87}) ⊕ ({03} # {6E}) ⊕ {46} ⊕ {A6} = {47}
{87} ⊕ ({02} # {6E}) ⊕ ({03} # {46}) ⊕ {A6} = {37}
{87} ⊕ {6E} ⊕ ({02} # {46}) ⊕ ({03} # {A6}) = {94}
({03} # {87}) ⊕ {6E} ⊕ {46} ⊕ ({02} # {A6}) = {ED}

For the first equation, we have {02} # {87} = (0000 1110) ⊕ (0001 1011) =
(0001 0101) and {03} # {6E} = {6E} ⊕ ({02} # {6E}) = (0110 1110) ⊕ (1101 1100) =
(1011 0010). Then,

{02} # {87} = 0001 0101
{03} # {6E} = 1011 0010
{46} = 0100 0110
{A6} = 1010 0110

0100 0111 = {47}

The other equations can be similarly verified.
The inverse mix column transformation, called InvMixColumns, is defined by

the following matrix multiplication:D 0E 0B 0D 09
09 0E 0B 0D
0D 09 0E 0B
0B 0D 09 0E

T D s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

T = D s0,0
= s0,1

= s0,2
= s0,3

=

s1,0
= s1,1

= s1,2
= s1,3

=

s2,0
= s2,1

= s2,2
= s2,3

=

s3,0
= s3,1

= s3,2
= s3,3

=

T (6.5)
4We follow the convention of FIPS PUB 197 and use the symbol # to indicate multiplication over the
finite field GF(28) and ⊕ to indicate bitwise XOR, which corresponds to addition in GF(28).

M06_STAL7484_08_GE_C06.indd 181 20/04/22 11:51

182 CHAPTER 6 / AdvAnCEd EnCRyPTion STAndARd

It is not immediately clear that Equation (6.5) is the inverse of Equation (6.3).
We need to showD 0E 0B 0D 09

09 0E 0B 0D
0D 09 0E 0B
0B 0D 09 0E

T D02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

T D s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

T = D s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s0,3 s3,1 s3,2 s3,3

T
which is equivalent to showing

 D 0E 0B 0D 09
09 0E 0B 0D
0D 09 0E 0B
0B 0D 09 0E

T D02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

T = D1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

T (6.6)

That is, the inverse transformation matrix times the forward transformation matrix
equals the identity matrix. To verify the first column of Equation (6.6), we need
to show

 ({0E} # {02}) ⊕ {0B} ⊕ {0D} ⊕ ({09} # {03}) = {01}
 ({09} # {02}) ⊕ {0E} ⊕ {0B} ⊕ ({0D} # {03}) = {00}
 ({0D} # {02}) ⊕ {09} ⊕ {0E} ⊕ ({0B} # {03}) = {00}

 ({0B} # {02}) ⊕ {0D} ⊕ {09} ⊕ ({0E} # {03}) = {00}

For the first equation, we have {0E} # {02} = 00011100 and {09} # {03} =
{09} ⊕ ({09} # {02}) = 00001001 ⊕ 00010010 = 00011011. Then

{0E} # {02} = 00011100
{0B} = 00001011
{0D} = 00001101
{09} # {03} = 00011011

00000001

The other equations can be similarly verified.
The AES document describes another way of characterizing the MixColumns

transformation, which is in terms of polynomial arithmetic. In the standard,
MixColumns is defined by considering each column of State to be a four-term poly-
nomial with coefficients in GF(28). Each column is multiplied modulo (x4 + 1) by
the fixed polynomial a(x), given by

 a(x) = {03}x3 + {01}x2 + {01}x + {02} (6.7)

Appendix 6A demonstrates that multiplication of each column of State by
a(x) can be written as the matrix multiplication of Equation (6.3). Similarly, it
can be seen that the transformation in Equation (6.5) corresponds to treating

M06_STAL7484_08_GE_C06.indd 182 20/04/22 11:51

6.3 / AES TRAnSFoRmATion FunCTionS 183

each column as a four-term polynomial and multiplying each column by b(x),
given by

 b(x) = {0B}x3 + {0D}x2 + {09}x + {0E} (6.8)

It readily can be shown that b(x) = a-1(x) mod (x4 + 1).

raTIonale The coefficients of the matrix in Equation (6.3) are based on a linear
code with maximal distance between code words, which ensures a good mixing
among the bytes of each column. The mix column transformation combined with the
shift row transformation ensures that after a few rounds all output bits depend on all
input bits. See [DAEM99] for a discussion.

In addition, the choice of coefficients in MixColumns, which are all {01}, {02},
or {03}, was influenced by implementation considerations. As was discussed, multi-
plication by these coefficients involves at most a shift and an XOR. The coefficients
in InvMixColumns are more formidable to implement. However, encryption was
deemed more important than decryption for two reasons:

1. For the CFB and OFB cipher modes (Figures 7.5 and 7.6; described in
Chapter 7), only encryption is used.

2. As with any block cipher, AES can be used to construct a message authentica-
tion code (Chapter 12), and for this, only encryption is used.

AddRoundKey Transformation

Forward and Inverse TransFormaTIons In the forward add round key
 transformation, called AddRoundKey, the 128 bits of State are bitwise XORed with
the 128 bits of the round key. As shown in Figure 6.5b, the operation is viewed as
a columnwise operation between the 4 bytes of a State column and one word of
the round key; it can also be viewed as a byte-level operation. The following is an
 example of AddRoundKey:

47 40 A3 4C AC 19 28 57 EB 59 8B 1B

37 D4 70 9F 77 FA D1 5C 40 2E A1 C3

94 E4 3A 42 ⊕ 66 DC 29 00 = F2 38 13 42

ED A5 A6 BC F3 21 41 6A 1E 84 E7 D6

The first matrix is State, and the second matrix is the round key.
The inverse add round key transformation is identical to the forward add

round key transformation, because the XOR operation is its own inverse.

raTIonale The add round key transformation is as simple as possible and affects
every bit of State. The complexity of the round key expansion, plus the complexity
of the other stages of AES, ensure security.

Figure 6.8 is another view of a single round of AES, emphasizing the mecha-
nisms and inputs of each transformation.

M06_STAL7484_08_GE_C06.indd 183 20/04/22 11:51

184 CHAPTER 6 / AdvAnCEd EnCRyPTion STAndARd

 6.4 AES KEY EXPANSION

Key Expansion Algorithm

The AES key expansion algorithm takes as input a four-word (16-byte) key and
produces a linear array of 44 words (176 bytes). This is sufficient to provide a four-
word round key for the initial AddRoundKey stage and each of the 10 rounds of the
cipher. The pseudocode on the next page describes the expansion.

The key is copied into the first four words of the expanded key. The remainder
of the expanded key is filled in four words at a time. Each added word w[i] depends
on the immediately preceding word, w[i - 1], and the word four positions back,
w[i - 4]. In three out of four cases, a simple XOR is used. For a word whose posi-
tion in the w array is a multiple of 4, a more complex function is used. Figure 6.9
illustrates the generation of the expanded key, using the symbol g to represent that
complex function. The function g consists of the following subfunctions.

Figure 6.8 Inputs for Single AES Round

SubBytes

State matrix
at beginning

of round

State matrix
at end

of round

MixColumns matrix
Round

key

Variable inputConstant inputs

ShiftRows

MixColumns

AddRoundKey

S-box

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

M06_STAL7484_08_GE_C06.indd 184 20/04/22 11:51

6.4 / AES KEy ExPAnSion 185

KeyExpansion (byte key[16], word w[44])
{
 word temp
 for (i = 0; i < 4; i++) w[i] = (key[4*i], key[4*i+1],
 key[4*i+2],
 key[4*i+3]);
 for (i = 4; i < 44; i++)
 {
 temp = w[i − 1];
 if (i mod 4 = 0) temp = SubWord (RotWord (temp))
 ⊕ Rcon[i/4];
 w[i] = w[i−4] ⊕ temp
 }
}

Figure 6.9 AES Key Expansion

k3

(a) Overall algorithm

(b) Function g

k7 k11 k15

k2 k6 k10 k14

k1 k5 k9 k13

k0 k4 k8 k12

w0 w1 w2 w3 g

w4 w5 w6 w7

w40 w41 w42 w43

g

B0 B1 B2 B3

w

w

B1 B2 B3 B0

0 0 0

B1

S S

B2
9 9 B3

S S

B0
9 9

RCj

œ

M06_STAL7484_08_GE_C06.indd 185 20/04/22 11:51

186 CHAPTER 6 / AdvAnCEd EnCRyPTion STAndARd

1. RotWord performs a one-byte circular left shift on a word. This means that an
input word [B0, B1, B2, B3] is transformed into [B1, B2, B3, B0].

2. SubWord performs a byte substitution on each byte of its input word, using the
S-box (Table 6.2a).

3. The result of steps 1 and 2 is XORed with a round constant, Rcon[j].

The round constant is a word in which the three rightmost bytes are always 0.
Thus, the effect of an XOR of a word with Rcon is to only perform an XOR on the left-
most byte of the word. The round constant is different for each round and is defined
as Rcon[j] = (RC[j], 0, 0, 0), with RC[1] = 1, RC[j] = 2 # RC[j - 1] and with mul-
tiplication defined over the field GF(28). The values of RC[j] in hexadecimal are

j 1 2 3 4 5 6 7 8 9 10

RC[j] 01 02 04 08 10 20 40 80 1B 36

For example, suppose that the round key for round 8 is

 EA D2 73 21 B5 8D BA D2 31 2B F5 60 7F 8D 29 2F

Then the first 4 bytes (first column) of the round key for round 9 are calculated as
shown in Table 6.3

Table 6.3 Example Round Key Calculation

Description Value

i (decimal) 36

temp = w[i - 1] 7F8D292F

RotWord (temp) 8D292F7F

SubWord (RotWord (temp)) 5DA515D2

Rcon (9) 1B000000

SubWord (RotWord (temp)) ⊕ Rcon (9) 46A515D2

w[i - 4] EAD27321

w[i] = w[i - 4] ⊕ SubWord (RotWord (temp)) ⊕ Rcon (9) AC7766F3

Rationale

The Rijndael developers designed the expansion key algorithm to be resistant to
known cryptanalytic attacks. The inclusion of a round-dependent round constant
eliminates the symmetry, or similarity, between the ways in which round keys are
generated in different rounds. The specific criteria that were used are [DAEM99]

◆■ Knowledge of a part of the cipher key or round key does not enable calcula-
tion of many other round-key bits.

◆■ An invertible transformation [i.e., knowledge of any Nk consecutive words of
the expanded key enables regeneration of the entire expanded key (Nk = key
size in words)].

◆■ Speed on a wide range of processors.

M06_STAL7484_08_GE_C06.indd 186 20/04/22 11:51

6.5 / An AES ExAmPlE 187

◆■ Usage of round constants to eliminate symmetries.

◆■ Diffusion of cipher key differences into the round keys; that is, each key bit
affects many round key bits.

◆■ Enough nonlinearity to prohibit the full determination of round key differ-
ences from cipher key differences only.

◆■ Simplicity of description.

The authors do not quantify the first point on the preceding list, but the idea
is that if you know less than Nk consecutive words of either the cipher key or one
of the round keys, then it is difficult to reconstruct the remaining unknown bits. The
fewer bits one knows, the more difficult it is to do the reconstruction or to determine
other bits in the key expansion.

 6.5 AN AES EXAMPLE

We now work through an example and consider some of its implications. Although
you are not expected to duplicate the example by hand, you will find it informative
to study the hex patterns that occur from one step to the next.

For this example, the plaintext is a hexadecimal palindrome. The plaintext, key,
and resulting ciphertext are

Plaintext: 0123456789abcdeffedcba9876543210

Key: 0f1571c947d9e8590cb7add6af7f6798

Ciphertext: ff0b844a0853bf7c6934ab4364148fb9

Results

Table 6.4 shows the expansion of the 16-byte key into 10 round keys. As previ-
ously explained, this process is performed word by word, with each four-byte word
 occupying one column of the word round-key matrix. The left-hand column shows
the four round-key words generated for each round. The right-hand column shows

Key Words Auxiliary Function

w0 = 0f 15 71 c9
w1 = 47 d9 e8 59
w2 = 0c b7 ad d6
w3 = af 7f 67 98

RotWord (w3) = 7f 67 98 af = x1
SubWord (x1) = d2 85 46 79 = y1
Rcon (1) = 01 00 00 00
y1 ⊕ Rcon (1) = d3 85 46 79 = z1

w4 = w0 ⊕ z1 = dc 90 37 b0
w5 = w4 ⊕ w1 = 9b 49 df e9
w6 = w5 ⊕ w2 = 97 fe 72 3f
w7 = w6 ⊕ w3 = 38 81 15 a7

RotWord (w7) = 81 15 a7 38 = x2
SubWord (x2) = 0c 59 5c 07 = y2
Rcon (2) = 02 00 00 00
y2 ⊕ Rcon (2) = 0e 59 5c 07 = z2

w8 = w4 ⊕ z2 = d2 c9 6b b7
w9 = w8 ⊕ w5 = 49 80 b4 5e
w10 = w9 ⊕ w6 = de 7e c6 61
w11 = w10 ⊕ w7 = e6 ff d3 c6

RotWord (w11) = ff d3 c6 e6 = x3
SubWord (x3) = 16 66 b4 83 = y3
Rcon (3) = 04 00 00 00
y3 ⊕ Rcon (3) = 12 66 b4 8e = z3

Table 6.4 Key Expansion for AES Example

(Continued)

M06_STAL7484_08_GE_C06.indd 187 20/04/22 11:51

188 CHAPTER 6 / AdvAnCEd EnCRyPTion STAndARd

Key Words Auxiliary Function

w12 = w8 ⊕ z3 = c0 af df 39
w13 = w12 ⊕ w9 = 89 2f 6b 67
w14 = w13 ⊕ w10 = 57 51 ad 06
w15 = w14 ⊕ w11 = b1 ae 7e c0

RotWord (w15) = ae 7e c0 b1 = x4
SubWord (x4) = e4 f3 ba c8 = y4
Rcon (4) = 08 00 00 00
y4 ⊕ Rcon (4) = ec f3 ba c8 = 4

w16 = w12 ⊕ z4 = 2c 5c 65 f1
w17 = w16 ⊕ w13 = a5 73 0e 96
w18 = w17 ⊕ w14 = f2 22 a3 90
w19 = w18 ⊕ w15 = 43 8c dd 50

RotWord (w19) = 8c dd 50 43 = x5
SubWord (x5) = 64 c1 53 1a = y5
Rcon(5) = 10 00 00 00
y5 ⊕ Rcon (5) = 74 c1 53 1a = z5

w20 = w16 ⊕ z5 = 58 9d 36 eb
w21 = w20 ⊕ w17 = fd ee 38 7d
w22 = w21 ⊕ w18 = 0f cc 9b ed
w23 = w22 ⊕ w19 = 4c 40 46 bd

RotWord (w23) = 40 46 bd 4c = x6
SubWord (x6) = 09 5a 7a 29 = y6
Rcon(6) = 20 00 00 00
y6 ⊕ Rcon(6) = 29 5a 7a 29 = z6

w24 = w20 ⊕ z6 = 71 c7 4c c2
w25 = w24 ⊕ w21 = 8c 29 74 bf
w26 = w25 ⊕ w22 = 83 e5 ef 52
w27 = w26 ⊕ w23 = cf a5 a9 ef

RotWord (w27) = a5 a9 ef cf = x7
SubWord (x7) = 06 d3 bf 8a = y7
Rcon (7) = 40 00 00 00
y7 ⊕ Rcon(7) = 46 d3 df 8a = z7

w28 = w24 ⊕ z7 = 37 14 93 48
w29 = w28 ⊕ w25 = bb 3d e7 f7
w30 = w29 ⊕ w26 = 38 d8 08 a5
w31 = w30 ⊕ w27 = f7 7d a1 4a

RotWord (w31) = 7d a1 4a f7 = x8
SubWord (x8) = ff 32 d6 68 = y8
Rcon (8) = 80 00 00 00
y8 ⊕ Rcon(8) = 7f 32 d6 68 = z8

w32 = w28 ⊕ z8 = 48 26 45 20
w33 = w32 ⊕ w29 = f3 1b a2 d7
w34 = w33 ⊕ w30 = cb c3 aa 72
w35 = w34 ⊕ w32 = 3c be 0b 3

RotWord (w35) = be 0b 38 3c = x9
SubWord (x9) = ae 2b 07 eb = y9
Rcon (9) = 1B 00 00 00
y9 ⊕ Rcon (9) = b5 2b 07 eb = z9

w36 = w32 ⊕ z9 = fd 0d 42 cb
w37 = w36 ⊕ w33 = 0e 16 e0 1c
w38 = w37 ⊕ w34 = c5 d5 4a 6e
w39 = w38 ⊕ w35 = f9 6b 41 56

RotWord (w39) = 6b 41 56 f9 = x10
SubWord (x10) = 7f 83 b1 99 = y10
Rcon (10) = 36 00 00 00
y10 ⊕ Rcon (10) = 49 83 b1 99 = z10

w40 = w36 ⊕ z10 = b4 8e f3 52
w41 = w40 ⊕ w37 = ba 98 13 4e
w42 = w41 ⊕ w38 = 7f 4d 59 20
w43 = w42 ⊕ w39 = 86 26 18 76

Table 6.4 Continued

the steps used to generate the auxiliary word used in key expansion. We begin, of
course, with the key itself serving as the round key for round 0.

Next, Table 6.5 shows the progression of State through the AES encryption
process. The first column shows the value of State at the start of a round. For the
first row, State is just the matrix arrangement of the plaintext. The second, third, and
fourth columns show the value of State for that round after the SubBytes, ShiftRows,
and MixColumns transformations, respectively. The fifth column shows the round
key. You can verify that these round keys equate with those shown in Table 6.4. The
first column shows the value of State resulting from the bitwise XOR of State after
the preceding MixColumns with the round key for the preceding round.

Avalanche Effect

If a small change in the key or plaintext were to produce a corresponding small
change in the ciphertext, this might be used to effectively reduce the size of the

M06_STAL7484_08_GE_C06.indd 188 20/04/22 11:51

6.5 / An AES ExAmPlE 189

Start of Round After SubBytes After ShiftRows After MixColumns Round Key

01 89 fe 76
23 ab dc 54
45 cd ba 32
67 ef 98 10

0f 47 0c af
15 d9 b7 7f
71 e8 ad 67
c9 59 d6 98

0e ce f2 d9
36 72 6b 2b
34 25 17 55
ae b6 4e 88

ab 8b 89 35
05 40 7f f1
18 3f f0 fc
e4 4e 2f c4

ab 8b 89 35
40 7f f1 05
f0 fc 18 3f
c4 e4 4e 2f

b9 94 57 75
e4 8e 16 51
47 20 9a 3f
c5 d6 f5 3b

dc 9b 97 38
90 49 fe 81
37 df 72 15
b0 e9 3f a7

65 0f c0 4d
74 c7 e8 d0
70 ff e8 2a
75 3f ca 9c

4d 76 ba e3
92 c6 9b 70
51 16 9b e5
9d 75 74 de

4d 76 ba e3
c6 9b 70 92
9b e5 51 16
de 9d 75 74

8e 22 db 12
b2 f2 dc 92
df 80 f7 c1
2d c5 1e 52

d2 49 de e6
c9 80 7e ff
6b b4 c6 d3
b7 5e 61 c6

5c 6b 05 f4
7b 72 a2 6d
b4 34 31 12
9a 9b 7f 94

4a 7f 6b bf
21 40 3a 3c
8d 18 c7 c9
b8 14 d2 22

4a 7f 6b bf
40 3a 3c 21
c7 c9 8d 18
22 b8 14 d2

b1 c1 0b cc
ba f3 8b 07
f9 1f 6a c3
1d 19 24 5c

c0 89 57 b1
af 2f 51 ae
df 6b ad 7e
39 67 06 c0

71 48 5c 7d
15 dc da a9
26 74 c7 bd
24 7e 22 9c

a3 52 4a ff
59 86 57 d3
f7 92 c6 7a
36 f3 93 de

a3 52 4a ff
86 57 d3 59
c6 7a f7 92
de 36 f3 93

d4 11 fe 0f
3b 44 06 73
cb ab 62 37
19 b7 07 ec

2c a5 f2 43
5c 73 22 8c
65 0e a3 dd
f1 96 90 50

f8 b4 0c 4c
67 37 24 ff
ae a5 c1 ea
e8 21 97 bc

41 8d fe 29
85 9a 36 16
e4 06 78 87
9b fd 88 65

41 8d fe 29
9a 36 16 85
78 87 e4 06
65 9b fd 88

2a 47 c4 48
83 e8 18 ba
84 18 27 23
eb 10 0a f3

58 fd 0f 4c
9d ee cc 40
36 38 9b 46
eb 7d ed bd

72 ba cb 04
1e 06 d4 fa
b2 20 bc 65
00 6d e7 4e

40 f4 1f f2
72 6f 48 2d
37 b7 65 4d
63 3c 94 2f

40 f4 1f f2
6f 48 2d 72
65 4d 37 b7
2f 63 3c 94

7b 05 42 4a
1e d0 20 40
94 83 18 52
94 c4 43 fb

71 8c 83 cf
c7 29 e5 a5
4c 74 ef a9
c2 bf 52 ef

0a 89 c1 85
d9 f9 c5 e5
d8 f7 f7 fb
56 7b 11 14

67 a7 78 97
35 99 a6 d9
61 68 68 0f
b1 21 82 fa

67 a7 78 97
99 a6 d9 35
68 0f 61 68
fa b1 21 82

ec 1a c0 80
0c 50 53 c7
3b d7 00 ef
b7 22 72 e0

37 bb 38 f7
14 3d d8 7d
93 e7 08 a1
48 f7 a5 4a

db a1 f8 77
18 6d 8b ba
a8 30 08 4e
ff d5 d7 aa

b9 32 41 f5
ad 3c 3d f4
c2 04 30 2f
16 03 0e ac

b9 32 41 f5
3c 3d f4 ad
30 2f c2 04
ac 16 03 0e

b1 1a 44 17
3d 2f ec b6
0a 6b 2f 42
9f 68 f3 b1

48 f3 cb 3c
26 1b c3 be
45 a2 aa 0b
20 d7 72 38

f9 e9 8f 2b
1b 34 2f 08
4f c9 85 49
bf bf 81 89

99 1e 73 f1
af 18 15 30
84 dd 97 3b
08 08 0c a7

99 1e 73 f1
18 15 30 af
97 3b 84 dd
a7 08 08 0c

31 30 3a c2
ac 71 8c c4
46 65 48 eb
6a 1c 31 62

fd 0e c5 f9
0d 16 d5 6b
42 e0 4a 41
cb 1c 6e 56

cc 3e ff 3b
a1 67 59 af
04 85 02 aa
a1 00 5f 34

4b b2 16 e2
32 85 cb 79
f2 97 77 ac
32 63 cf 18

4b b2 16 e2
85 cb 79 32
77 ac f2 97
18 32 63 cf

b4 ba 7f 86
8e 98 4d 26
f3 13 59 18
52 4e 20 76

ff 08 69 64
0b 53 34 14
84 bf ab 8f
4a 7c 43 b9

Table 6.5 AES Example

M06_STAL7484_08_GE_C06.indd 189 20/04/22 11:51

190 CHAPTER 6 / AdvAnCEd EnCRyPTion STAndARd

Round
Number of Bits

that Differ

0123456789abcdeffedcba9876543210
0023456789abcdeffedcba9876543210

1

0 0e3634aece7225b6f26b174ed92b5588
0f3634aece7225b6f26b174ed92b5588

1

1 657470750fc7ff3fc0e8e8ca4dd02a9c
c4a9ad090fc7ff3fc0e8e8ca4dd02a9c

20

2 5c7bb49a6b72349b05a2317ff46d1294
fe2ae569f7ee8bb8c1f5a2bb37ef53d5

58

3 7115262448dc747e5cdac7227da9bd9c
ec093dfb7c45343d689017507d485e62

59

4 f867aee8b437a5210c24c1974cffeabc
43efdb697244df808e8d9364ee0ae6f5

61

5 721eb200ba06206dcbd4bce704fa654e
7b28a5d5ed643287e006c099bb375302

68

6 0ad9d85689f9f77bc1c5f71185e5fb14
3bc2d8b6798d8ac4fe36a1d891ac181a

64

7 db18a8ffa16d30d5f88b08d777ba4eaa
9fb8b5452023c70280e5c4bb9e555a4b

67

8 f91b4fbfe934c9bf8f2f85812b084989
20264e1126b219aef7feb3f9b2d6de40

65

9 cca104a13e678500ff59025f3bafaa34
b56a0341b2290ba7dfdfbddcd8578205

61

10 ff0b844a0853bf7c6934ab4364148fb9
612b89398d0600cde116227ce72433f0

58

Table 6.6 Avalanche Effect in AES: Change in Plaintext

plaintext (or key) space to be searched. What is desired is the avalanche effect, in
which a small change in plaintext or key produces a large change in the ciphertext.

Using the example from Table 6.5, Table 6.6 shows the result when the eighth
bit of the plaintext is changed. The second column of the table shows the value of
the State matrix at the end of each round for the two plaintexts. Note that after
just one round, 20 bits of the State vector differ. After two rounds, close to half
the bits differ. This magnitude of difference propagates through the remaining
rounds. A bit difference in approximately half the positions in the most desirable
outcome. Clearly, if almost all the bits are changed, this would be logically equiva-
lent to almost none of the bits being changed. Put another way, if we select two
plaintexts at random, we would expect the two plaintexts to differ in about half of
the bit positions and the two ciphertexts to also differ in about half the positions.

Table 6.7 shows the change in State matrix values when the same plaintext is
used and the two keys differ in the eighth bit. That is, for the second case, the key is
0e1571c947d9e8590cb7add6af7f6798. Again, one round produces a signifi-
cant change, and the magnitude of change after all subsequent rounds is roughly
half the bits. Thus, based on this example, AES exhibits a very strong avalanche
effect.

M06_STAL7484_08_GE_C06.indd 190 20/04/22 11:51

6.6 / AES imPlEmEnTATion 191

Round
Number of Bits

that Differ

0123456789abcdeffedcba9876543210
0123456789abcdeffedcba9876543210

0

0 0e3634aece7225b6f26b174ed92b5588
0f3634aece7225b6f26b174ed92b5588

1

1 657470750fc7ff3fc0e8e8ca4dd02a9c
c5a9ad090ec7ff3fc1e8e8ca4cd02a9c

22

2 5c7bb49a6b72349b05a2317ff46d1294
90905fa9563356d15f3760f3b8259985

58

3 7115262448dc747e5cdac7227da9bd9c
18aeb7aa794b3b66629448d575c7cebf

67

4 f867aee8b437a5210c24c1974cffeabc
f81015f993c978a876ae017cb49e7eec

63

5 721eb200ba06206dcbd4bce704fa654e
5955c91b4e769f3cb4a94768e98d5267

81

6 0ad9d85689f9f77bc1c5f71185e5fb14
dc60a24d137662181e45b8d3726b2920

70

7 db18a8ffa16d30d5f88b08d777ba4eaa
fe8343b8f88bef66cab7e977d005a03c

74

8 f91b4fbfe934c9bf8f2f85812b084989
da7dad581d1725c5b72fa0f9d9d1366a

67

9 cca104a13e678500ff59025f3bafaa34
0ccb4c66bbfd912f4b511d72996345e0

59

10 ff0b844a0853bf7c6934ab4364148fb9
fc8923ee501a7d207ab670686839996b

53

Table 6.7 Avalanche Effect in AES: Change in Key

Note that this avalanche effect is stronger than that for DES (Table 4.2), which
requires three rounds to reach a point at which approximately half the bits are
changed, both for a bit change in the plaintext and a bit change in the key.

 6.6 AES IMPLEMENTATION

Equivalent Inverse Cipher

As was mentioned, the AES decryption cipher is not identical to the encryption
cipher (Figure 6.3). That is, the sequence of transformations for decryption differs
from that for encryption, although the form of the key schedules for encryption
and decryption is the same. This has the disadvantage that two separate software
or firmware modules are needed for applications that require both encryption and
decryption. There is, however, an equivalent version of the decryption algorithm
that has the same structure as the encryption algorithm. The equivalent version has
the same sequence of transformations as the encryption algorithm (with transfor-
mations replaced by their inverses). To achieve this equivalence, a change in key
schedule is needed.

M06_STAL7484_08_GE_C06.indd 191 20/04/22 11:51

192 CHAPTER 6 / AdvAnCEd EnCRyPTion STAndARd

Two separate changes are needed to bring the decryption structure in line
with the encryption structure. As illustrated in Figure 6.3, an encryption round has
the structure SubBytes, ShiftRows, MixColumns, AddRoundKey. The standard
decryption round has the structure InvShiftRows, InvSubBytes, AddRoundKey,
InvMixColumns. Thus, the first two stages of the decryption round need to be inter-
changed, and the second two stages of the decryption round need to be interchanged.

InTerchangIng InvshIFTrows and InvsubbyTes InvShiftRows affects the se-
quence of bytes in State but does not alter byte contents and does not depend on
byte contents to perform its transformation. InvSubBytes affects the contents of
bytes in State but does not alter byte sequence and does not depend on byte se-
quence to perform its transformation. Thus, these two operations commute and can
be interchanged. For a given State Si,

 InvShiftRows [InvSubBytes (Si)] = InvSubBytes [InvShiftRows (Si)]

InTerchangIng addroundKey and InvmIxcolumns The transformations
AddRoundKey and InvMixColumns do not alter the sequence of bytes in State. If we
view the key as a sequence of words, then both AddRoundKey and InvMixColumns
operate on State one column at a time. These two operations are linear with respect
to the column input. That is, for a given State Si and a given round key wj,

 InvMixColumns (Si ⊕ wj) = [InvMixColumns (Si)] ⊕ [InvMixColumns (wj)]

To see this, suppose that the first column of State Si is the sequence (y0, y1, y2, y3)
and the first column of the round key wj is (k0, k1, k2, k3). Then we need to showD 0E 0B 0D 09

09 0E 0B 0D
0D 09 0E 0B
0B 0D 09 0E

T Dy0 ⊕ k0

y1 ⊕ k1

y2 ⊕ k2

y3 ⊕ k3

T = D 0E 0B 0D 09
09 0E 0B 0D
0D 09 0E 0B
0B 0D 09 0E

T Dy0

y1

y2

y3

T ⊕ D 0E 0B 0D 09
09 0E 0B 0D
0D 09 0E 0B
0B 0D 09 0E

T Dk0

k1

k2

k3

T
Let us demonstrate that for the first column entry. We need to show

 [{0E} # (y0 ⊕ k0)] ⊕ [{0B} # (y1 ⊕ k1)] ⊕ [{0D} # (y2 ⊕ k2)] ⊕ [{09} # (y3 ⊕ k3)]

= [{0E} # y0] ⊕ [{0B} # y1] ⊕ [{0D} # y2] ⊕ [{09} # y3] ⊕
 [{0E} # k0] ⊕ [{0B} # k1] ⊕ [{0D} # k2] ⊕ [{09} # k3]

This equation is valid by inspection. Thus, we can interchange AddRoundKey
and InvMixColumns, provided that we first apply InvMixColumns to the round
key. Note that we do not need to apply InvMixColumns to the round key for the
input to the first AddRoundKey transformation (preceding the first round) nor
to the last AddRoundKey transformation (in round 10). This is because these two
AddRoundKey transformations are not interchanged with InvMixColumns to pro-
duce the equivalent decryption algorithm.

Figure 6.10 illustrates the equivalent decryption algorithm.

M06_STAL7484_08_GE_C06.indd 192 20/04/22 11:51

6.6 / AES imPlEmEnTATion 193

Figure 6.10 Equivalent Inverse Cipher

Add round key

w[36, 39]

w[40, 43]

Ciphertext

Inverse sub bytes

Inverse shift rows

Inverse mix cols R
ou

nd
 1

R
ou

nd
 9

R
ou

nd
 1

0

Add round keyInverse mix cols

•
•
•

Inverse sub bytes

Inverse shift rows

Inverse mix cols

Add round keyInverse mix cols

Inverse sub bytes

Inverse shift rowsExpand key

Add round key

PlaintextKey

w[4, 7]

w[0, 3]

Implementation Aspects

The Rijndael proposal [DAEM99] provides some suggestions for efficient im-
plementation on 8-bit processors, typical for current smart cards, and on 32-bit
 processors, typical for PCs.

8-bIT Processor AES can be implemented very efficiently on an 8-bit processor.
AddRoundKey is a bytewise XOR operation. ShiftRows is a simple byte-shifting
operation. SubBytes operates at the byte level and only requires a table of 256
bytes.

The transformation MixColumns requires matrix multiplication in the field
GF(28), which means that all operations are carried out on bytes. MixColumns only
requires multiplication by {02} and {03}, which, as we have seen, involved simple
shifts, conditional XORs, and XORs. This can be implemented in a more efficient

M06_STAL7484_08_GE_C06.indd 193 20/04/22 11:51

194 CHAPTER 6 / AdvAnCEd EnCRyPTion STAndARd

way that eliminates the shifts and conditional XORs. Equation set (6.4) shows the
equations for the MixColumns transformation on a single column. Using the iden-
tity {03} # x = ({02} # x) ⊕ x, we can rewrite Equation set (6.4) as follows.

 Tmp = s0, j ⊕ s1, j ⊕ s2, j ⊕ s3, j

 s0, j
= = s0, j ⊕ Tmp ⊕ [2 # (s0, j ⊕ s1, j)]

 s1, j
= = s1, j ⊕ Tmp ⊕ [2 # (s1, j ⊕ s2, j)] (6.9)

 s2, j
= = s2, j ⊕ Tmp ⊕ [2 # (s2, j ⊕ s3, j)]

 s3, j
= = s3, j ⊕ Tmp ⊕ [2 # (s3, j ⊕ s0, j)]

Equation set (6.9) is verified by expanding and eliminating terms.
The multiplication by {02} involves a shift and a conditional XOR. Such

an implementation may be vulnerable to a timing attack of the sort described in
Section 4.4. To counter this attack and to increase processing efficiency at the cost
of some storage, the multiplication can be replaced by a table lookup. Define the 256-
byte table X2, such that X2[i] = {02} # i. Then Equation set (6.9) can be rewritten as

 Tmp = s0, j ⊕ s1, j ⊕ s2, j ⊕ s3, j

 s0, j
= = s0, j ⊕ Tmp ⊕ X2[s0, j ⊕ s1, j]

 s1, c
= = s1, j ⊕ Tmp ⊕ X2[s1, j ⊕ s2, j]

 s2, c
= = s2, j ⊕ Tmp ⊕ X2[s2, j ⊕ s3, j]

 s3, j
= = s3, j ⊕ Tmp ⊕ X2[s3, j ⊕ s0, j]

32-bIT Processor The implementation described in the preceding subsection uses
only 8-bit operations. For a 32-bit processor, a more efficient implementation can be
achieved if operations are defined on 32-bit words. To show this, we first define the
four transformations of a round in algebraic form. Suppose we begin with a State
matrix consisting of elements ai, j and a round-key matrix consisting of elements ki, j.
Then the transformations can be expressed as follows.

SubBytes bi, j = S[ai, j]

ShiftRows D c0, j

c1, j

c2, j

c3, j

T = D b0, j

b1, j- 1

b2, j- 2

b3, j- 3

T
MixColumns Dd0, j

d1, j

d2, j

d3, j

T = D02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

T D c0, j

c1, j

c2, j

c3, j

T
AddRoundKey D e0, j

e1, j

e2, j

e3, j

T = Dd0, j

d1, j

d2, j

d3, j

T ⊕ Dk0, j

k1, j

k2, j

k3, j

T
M06_STAL7484_08_GE_C06.indd 194 20/04/22 11:51

6.6 / AES imPlEmEnTATion 195

In the ShiftRows equation, the column indices are taken mod 4. We can
 combine all of these expressions into a single equation:

 D e0, j

e1, j

e2, j

e3, j

T = D02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

T D S[a0, j]
S[a1, j- 1]
S[a2, j- 2]
S[a3, j- 3]

T ⊕ Dk0, j

k1, j

k2, j

k3, j

T
 = § D02

01
01
03

T # S[a0, j]¥ ⊕ § D03
02
01
01

T # S[a1, j- 1]¥ ⊕ § D01
03
02
01

T # S[a2, j- 2]¥
⊕ § D01

01
03
02

T # S[a3, j- 3]¥ ⊕ Dk0, j

k1, j

k2, j

k3, j

T

In the second equation, we are expressing the matrix multiplication as a linear com-
bination of vectors. We define four 256-word (1024-byte) tables as follows.

T0[x] = § D02
01
01
03

T # S[x]¥ T1[x] = § D03
02
01
01

T # S[x]¥ T2[x] = § D01
03
02
01

T # S[x]¥ T3[x] = § D01
01
03
02

T # S[x]¥
Thus, each table takes as input a byte value and produces a column vector (a 32-bit
word) that is a function of the S-box entry for that byte value. These tables can be
calculated in advance.

We can define a round function operating on a column in the following fashion.

 D s0, j
=

s1, j
=

s2, j
=

s3, j
=

T = T0[s0, j] ⊕ T1[s1, j- 1] ⊕ T2[s2, j- 2] ⊕ T3[s3, j- 3] ⊕ Dk0, j

k1, j

k2, j

k3, j

T

As a result, an implementation based on the preceding equation requires only
four table lookups and four XORs per column per round, plus 4 Kbytes to store the
table. The developers of Rijndael believe that this compact, efficient implementa-
tion was probably one of the most important factors in the selection of Rijndael
for AES.

M06_STAL7484_08_GE_C06.indd 195 20/04/22 11:51

196 CHAPTER 6 / AdvAnCEd EnCRyPTion STAndARd

 6.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Advanced Encryption
Standard (AES)

avalanche effect

field
finite field

key expansion
S-box

Key Terms

Review Questions

 6.1 What was the original set of criteria used by NIST to evaluate candidate AES ciphers?
 6.2 What was the final set of criteria used by NIST to evaluate candidate AES ciphers?
 6.3 How many different key sizes are approved for AES?
 6.4 What is the purpose of the State array?
 6.5 How is the S-box constructed?
 6.6 What is the rationale behind the choice of the specific S-box in the AES?
 6.7 Briefly describe ShiftRows.
 6.8 How many bytes in State are affected by ShiftRows?
 6.9 Why are different round constants used in the key expansion of AES?
 6.10 Briefly describe AddRoundKey.
 6.11 Briefly describe the key expansion algorithm.
 6.12 What is the difference between SubBytes and SubWord?
 6.13 What is the difference between ShiftRows and RotWord?
 6.14 How is the avalanche effect different in AES in comparison to DES? Quantify it in

terms of number of rounds.

Problems

 6.1 In the discussion of MixColumns and InvMixColumns, it was stated that

 b(x) = a-1(x) mod(x4 + 1)

 where a(x) = {03}x3 + {01}x2 + {01}x + {02} and b(x) = {0B}x3 + {0D}x2 + {09}x +
{0E.} Show that this is true.

 6.2 a. What is {02}-1 in GF(28)?
b. Verify the entry for {02} in the S-box.

 6.3 Show the first eight words of the key expansion for a 128-bit key of all ones.
 6.4 Given the plaintext {0F0E0D0C0B0A09080706050403020100} and the key

{02020202020202020202020202020202}:
a. Show the original contents of State, displayed as a 4 * 4 matrix.
b. Show the value of State after initial AddRoundKey.
c. Show the value of State after SubBytes.
d. Show the value of State after ShiftRows.
e. Show the value of State after MixColumns.

 6.5 Verify Equation (6.11) in Appendix 6A. That is, show that xi mod (x4 + 1) = xi mod 4.

M06_STAL7484_08_GE_C06.indd 196 20/04/22 11:51

Appendix 6A / pOLYnOMiALS WiTH COeFFiCienTS in GF(28) 197

 6.6 For each of the following elements of DES, indicate the differences with the compa-
rable element in AES.
a. Key size
b. Block size
c. S-box
d. Key expansion function
e. Initial and final permutation

 6.7 How are the coefficients chosen in the specific matrix used in the MixColumns?
 6.8 In the subsection on implementation aspects, it is mentioned that AES can be imple-

mented on 32-bit processors by using certain table lookups. Explain this technique
and compute the overall cost of implementing one round of AES using the technique.

 6.9 Compute the output of the MixColumns transformation for the following sequence
of input bytes “A1 B2 C3 D4.” Apply the InvMixColumns transformation to the ob-
tained result to verify your calculations. Change the first byte of the input from “A1”
to “A3”, perform the MixColumns transformation again for the new input, and deter-
mine how many bits have changed in the output.

 6.10 Use the key 1010 1001 1100 0011 to encrypt the plaintext “hi” as expressed in ASCII
as 0110 1000 0110 1001. The designers of S-AES got the ciphertext 0011 1110 1111
1011. Did you?

 6.11 Show that the matrix given here, with entries in GF(24), is the inverse of the matrix
used in the MixColumns step of S-AES.¢x3 + 1 x

x x3 + 1
≤

 6.12 Carefully write up a complete decryption of the ciphertext 0011 1110 1111 1011 using
the key 1010 1001 1100 0011 and the S-AES algorithm. You should get the plaintext
we started with in Problem 6.10. Note that the inverse of the S-boxes can be done with
a reverse table lookup. The inverse of the MixColumns step is given by the matrix in
the previous problem.

 6.13 The decryption algorithm in AES uses a sequence of operations that is the reverse of
the sequence used in the encryption algorithm. This has the disadvantage that differ-
ent circuits or codes are required to implement the encryption and decryption func-
tionality. Explain how it is possible to modify the decryption algorithm such that we
can bring the decryption structure in line with the encryption structure in AES.

Programming Problems

 6.1 Create software that can encrypt and decrypt using S-AES. Test data: A binary
 plaintext of 0110 1111 0110 1011 encrypted with a binary key of 1010 0111 0011 1011
should give a binary ciphertext of 0000 0111 0011 1000. Decryption should work
 correspondingly.

 6.2 Implement a differential cryptanalysis attack on 1-round S-AES.

 APPENDIX 6A POLYNOMIALS WITH COEFFICIENTS IN GF(28)

In Section 5.5, we discussed polynomial arithmetic in which the coefficients are in Zp
and the polynomials are defined modulo a polynomial m(x) whose highest power
is some integer n. In this case, addition and multiplication of coefficients occurred
within the field Zp; that is, addition and multiplication were performed modulo p.

M06_STAL7484_08_GE_C06.indd 197 23/04/22 1:29 PM

198 CHAPTER 6 / AdvAnCEd EnCRyPTion STAndARd

The AES document defines polynomial arithmetic for polynomials of degree 3
or less with coefficients in GF(28). The following rules apply.

1. Addition is performed by adding corresponding coefficients in GF(28). As
was pointed out Section 5.4, if we treat the elements of GF(28) as 8-bit strings,
then addition is equivalent to the XOR operation. So, if we have

 a(x) = a3x
3 + a2x

2 + a1x + a0 (6.10)

and

 b(x) = b3x
3 + b2x

2 + b1x + b0 (6.11)

then

 a(x) + b(x) = (a3 ⊕ b3)x3 + (a2 ⊕ b2)x2 + (a1 ⊕ b1)x + (a0 ⊕ b0)

2. Multiplication is performed as in ordinary polynomial multiplication with
two refinements:

a. Coefficients are multiplied in GF(28).
b. The resulting polynomial is reduced mod (x4 + 1).

We need to keep straight which polynomial we are talking about. Recall from
Section 5.6 that each element of GF(28) is a polynomial of degree 7 or less with bi-
nary coefficients, and multiplication is carried out modulo a polynomial of degree
8. Equivalently, each element of GF(28) can be viewed as an 8-bit byte whose bit
values correspond to the binary coefficients of the corresponding polynomial. For
the sets defined in this section, we are defining a polynomial ring in which each ele-
ment of this ring is a polynomial of degree 3 or less with coefficients in GF(28), and
multiplication is carried out modulo a polynomial of degree 4. Equivalently, each
element of this ring can be viewed as a 4-byte word whose byte values are elements
of GF(28) that correspond to the 8-bit coefficients of the corresponding polynomial.

We denote the modular product of a(x) and b(x) by a(x) ⊕ b(x). To com-
pute d(x) = a(x) ⊕ b(x), the first step is to perform a multiplication without the
modulo operation and to collect coefficients of like powers. Let us express this as
c(x) = a(x) * b(x). Then

 c(x) = c6x
6 + c5x

5 + c4x
4 + c3x

3 + c2x
2 + c1x + c0 (6.12)

where

c0 = a0
b0 c4 = (a3

b1) ⊕ (a2
b2) ⊕ (a1

b3)
c1 = (a1

b0) ⊕ (a0
b1) c5 = (a3

b2) ⊕ (a2
b3)

c2 = (a2
b0) ⊕ (a1

b1) ⊕ (a0
b2) c6 = a3

b3

c3 = (a3
b0) ⊕ (a2

b1) ⊕ (a1
b2) ⊕ (a0

b3)

The final step is to perform the modulo operation

 d(x) = c(x) mod (x4 + 1)

M06_STAL7484_08_GE_C06.indd 198 20/04/22 11:51

That is, d(x) must satisfy the equation

 c(x) = [(x4 + 1) * q(x)] ⊕ d(x)

such that the degree of d(x) is 3 or less.
A practical technique for performing multiplication over this polynomial ring

is based on the observation that

 xi mod (x4 + 1) = xi mod 4 (6.13)

If we now combine Equations (6.12) and (6.13), we end up with

 d(x) = c(x) mod (x4 + 1)

 = [c6x
6 + c5x

5 + c4x
4 + c3x

3 + c2x
2 + c1x + c0] mod (x4 + 1)

 = c3x
3 + (c2 ⊕ c6)x2 + (c1 ⊕ c5)x + (c0 ⊕ c4)

Expanding the ci coefficients, we have the following equations for the coef-
ficients of d(x).

 d0 = (a0
b0) ⊕ (a3

b1) ⊕ (a2
b2) ⊕ (a1

b3)
 d1 = (a1

b0) ⊕ (a0
b1) ⊕ (a3

b2) ⊕ (a2
b3)

 d2 = (a2
b0) ⊕ (a1

b1) ⊕ (a0
b2) ⊕ (a3

b3)
 d3 = (a3

b0) ⊕ (a2
b1) ⊕ (a1

b2) ⊕ (a0
b3)

This can be written in matrix form:

 Dd0

d1

d2

d3

T = Da0 a3 a2 a1

a1 a0 a3 a2

a2 a1 a0 a3

a3 a2 a1 a0

T Db0

b1

b2

b3

T (6.14)

MixColumns Transformation

In the discussion of MixColumns, it was stated that there were two equivalent
ways of defining the transformation. The first is the matrix multiplication shown in
Equation (6.3), which is repeated here:

 D02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

T D s0, 0 s0, 1 s0, 2 s0, 3

s1, 0 s1, 1 s1, 2 s1, 3

s2, 0 s2, 1 s2, 2 s2, 3

s3, 0 s3, 1 s3, 2 s3, 3

T = D s0, 0
= s0, 1

= s0, 2
= s0, 3

=

s1, 0
= s1, 1

= s1, 2
= s1, 3

=

s2, 0
= s2, 1

= s2, 2
= s2, 3

=

s3, 0
= s3, 1

= s3, 2
= s3, 3

=

T

The second method is to treat each column of State as a four-term polynomial
with coefficients in GF(28). Each column is multiplied modulo (x4 + 1) by the fixed
polynomial a(x), given by

 a(x) = {03}x3 + {01}x2 + {01}x + {02}

APPEndix 6A / PolynomiAlS WiTH CoEFFiCiEnTS in GF(28) 199

M06_STAL7484_08_GE_C06.indd 199 20/04/22 11:51

200 CHAPTER 6 / AdvAnCEd EnCRyPTion STAndARd

From Equation (6.10), we have a3 = {03}; a2 = {01}; a1 = {01}; and
a0 = {02}. For the jth column of State, we have the polynomial colj(x) = s3,jx

3 +
s2,jx

2 + s1,jx + s0, j. Substituting into Equation (6.14), we can express
d(x) = a(x) * colj(x) as

 Dd0

d1

d2

d3

T = Da0 a3 a2 a1

a1 a0 a3 a2

a2 a1 a0 a3

a3 a2 a1 a0

T D s0,j

s1,j

s2,j

s3,j

T = D02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

T D s0,j

s1,j

s2,j

s3,j

T

which is equivalent to Equation (6.3).

Multiplication by x

Consider the multiplication of a polynomial in the ring by x: c(x) = x ⊕ b(x).
We have

 c(x) = x ⊕ b(x) = [x * (b3x
3 + b2x

2 + b1x + b0] mod (x4 + 1)

 = (b3x
4 + b2x

3 + b1x
2 + b0x) mod (x4 + 1)

 = b2x
3 + b1x

2 + b0x + b3

Thus, multiplication by x corresponds to a 1-byte circular left shift of the 4 bytes
in the word representing the polynomial. If we represent the polynomial as a 4-byte
column vector, then we have

 D c0

c1

c2

c3

T = D00 00 00 01
01 00 00 00
00 01 00 00
00 00 01 00

T Db0

b1

b2

b3

T

M06_STAL7484_08_GE_C06.indd 200 20/04/22 11:51

Block Cipher Operation

CHAPTER7
7.1 Multiple Encryption and Triple DES

Double DES
Triple DES with Two Keys
Triple DES with Three Keys

7.2 Electronic Codebook

7.3 Cipher Block Chaining Mode

7.4 Cipher Feedback Mode

7.5 Output Feedback Mode

7.6 Counter Mode

7.7 XTS-AES Mode for Block-Oriented Storage Devices

Tweakable Block Ciphers
Storage Encryption Requirements
Operation on a Single Block
Operation on a Sector

7.8 Format-Preserving Encryption

Motivation
Difficulties in Designing an FPE
Feistel Structure for Format-Preserving Encryption
NIST Methods for Format-Preserving Encryption

7.9 Key Terms, Review Questions, and Problems

201

M07_STAL7484_08_GE_C07.indd 201 08/04/22 8:24 AM

202 CHAPTER 7 / BlOCk CiPHER OPERATiOn

This chapter continues our discussion of symmetric ciphers. We begin with the topic of
multiple encryption, looking in particular at the most widely used multiple-encryption
scheme: triple DES.

The chapter next turns to the subject of block cipher modes of operation. We
find that there are a number of different ways to apply a block cipher to plaintext, each
with its own advantages and particular applications.

 7.1 MULTIPLE ENCRYPTION AND TRIPLE DES

Because of its vulnerability to brute-force attack, DES, once the most widely used
symmetric cipher, has been largely replaced by stronger encryption schemes. Two
approaches have been taken. One approach is to design a completely new algorithm
that is resistant to both cryptanalytic and brute-force attacks, of which AES is a
prime example. Another alternative, which preserves the existing investment in soft-
ware and equipment, is to use multiple encryption with DES and multiple keys. We
begin by examining the simplest example of this second alternative. We then look at
the widely accepted triple DES (3DES) algorithm.

Double DES

The simplest form of multiple encryption has two encryption stages and two keys
(Figure 7.1a). Given a plaintext P and two encryption keys K1 and K2, ciphertext C
is generated as

 C = E(K2, E(K1, P))

Decryption requires that the keys be applied in reverse order:

 P = D(K1, D(K2, C))

For DES, this scheme appears to involve a key length of 56 * 2 = 112 bits, and
should result in a dramatic increase in cryptographic strength. But we need to exam-
ine the algorithm more closely.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

 ◆ Analyze the security of multiple encryption schemes.

 ◆ Explain the meet-in-the-middle attack.

 ◆ Compare and contrast ECB, CBC, CFB, OFB, and counter modes of operation.

 ◆ Present an overview of the XTS-AES mode of operation.

M07_STAL7484_08_GE_C07.indd 202 08/04/22 8:24 AM

7.1 / MulTiPlE EnCRyPTiOn And TRiPlE dEs 203

Reduction to a Single Stage Suppose it were true for DES, for all 56-bit key val-
ues, that given any two keys K1 and K2, it would be possible to find a key K3 such that

 E(K2, E(K1, P)) = E(K3, P) (7.1)

If this were the case, then double encryption, and indeed any number of stages of
multiple encryption with DES, would be useless because the result would be equiva-
lent to a single encryption with a single 56-bit key.

On the face of it, it does not appear that Equation (7.1) is likely to hold.
Consider that encryption with DES is a mapping of 64-bit blocks to 64-bit blocks.
In fact, the mapping can be viewed as a permutation. That is, if we consider all 264
possible input blocks, DES encryption with a specific key will map each block into
a unique 64-bit block. Otherwise, if, say, two given input blocks mapped to the same
output block, then decryption to recover the original plaintext would be impossible.

Figure 7.1 Multiple Encryption

K1

(3-key)

(2-key)K1

K3
or

E E

K1

P

K2

C
X

Encryption

D D

K2

C

K1

P
X

Decryption
(a) Double encryption

E D E

K1

(3-key)

(2-key)

K3
or
K1

P

K2

C
A B

Encryption

D E DC

K2

P

Decryption
(b) Triple encryption

B A

M07_STAL7484_08_GE_C07.indd 203 08/04/22 8:24 AM

204 CHAPTER 7 / BlOCk CiPHER OPERATiOn

With 264 possible inputs, how many different mappings are there that generate a
permutation of the input blocks? The value is easily seen to be

 (264)! = 10347380000000000000000 7 (101020
)

On the other hand, DES defines one mapping for each different key, for a total
number of mappings:

 256 6 1017

Therefore, it is reasonable to assume that if DES is used twice with different keys, it
will produce one of the many mappings that are not defined by a single application
of DES. Although there was much supporting evidence for this assumption, it was
not until 1992 that the assumption was proven [CAMP92].

Meet-in-the-Middle attack Thus, the use of double DES results in a mapping
that is not equivalent to a single DES encryption. But there is a way to attack this
scheme, one that does not depend on any particular property of DES but that will
work against any block encryption cipher.

The algorithm, known as a meet-in-the-middle attack, was first described in
[DIFF77]. It is based on the observation that, if we have

 C = E(K2, E(K1, P))

then (see Figure 7.1a)

 X = E(K1, P) = D(K2, C)

Given a known pair, (P, C), the attack proceeds as follows. First, encrypt P for all
256 possible values of K1. Store these results in a table and then sort the table by the
values of X. Next, decrypt C using all 256 possible values of K2. As each decryption
is produced, check the result against the table for a match. If a match occurs, then
test the two resulting keys against a new known plaintext–ciphertext pair. If the two
keys produce the correct ciphertext, accept them as the correct keys.

For any given plaintext P, there are 264 possible ciphertext values that could
be produced by double DES. Double DES uses, in effect, a 112-bit key, so that there
are 2112 possible keys. Therefore, for a given plaintext P, the maximum number of
different 112-bit keys that could produce a given ciphertext C is 2112/264 = 248. Thus,
the foregoing procedure can produce about 248 false alarms on the first (P, C) pair.
A similar argument indicates that with an additional 64 bits of known plaintext
and ciphertext, the false alarm rate is reduced to 248 - 64 = 2-16. Put another way,
if the meet-in-the-middle attack is performed on two blocks of known plaintext–
ciphertext, the probability that the correct keys are determined is 1 - 2-16. The
 result is that a known plaintext attack will succeed against double DES, which has a
key size of 112 bits, with an effort on the order of 256, which is not much more than
the 255 required for single DES.

Triple DES with Two Keys

An obvious counter to the meet-in-the-middle attack is to use three stages of
encryption with three different keys. Using DES as the underlying algorithm,
this approach is commonly referred to as 3DES, or Triple Data Encryption

M07_STAL7484_08_GE_C07.indd 204 08/04/22 8:24 AM

7.1 / MulTiPlE EnCRyPTiOn And TRiPlE dEs 205

Algorithm (TDEA). As shown in Figure 7.1b, there are two versions of 3DES; one
using two keys and one using three keys. NIST SP 800-67 (Recommendation for
the Triple Data Encryption Block Cipher, January 2012) defines the two-key and
three-key versions. We look first at the strength of the two-key version and then
examine the three-key version.

Two-key triple encryption was first proposed by Tuchman [TUCH79]. The
function follows an encrypt-decrypt-encrypt (EDE) sequence (Figure 7.1b):

 C = E(K1, D(K2, E(K1, P)))

 P = D(K1, E(K2, D(K1, C)))

There is no cryptographic significance to the use of decryption for the second
stage. Its only advantage is that it allows users of 3DES to decrypt data encrypted by
users of the older single DES:

 C = E(K1, D(K1, E(K1, P))) = E(K1, P)

 P = D(K1, E(K1, D(K1, C))) = D(K1, C)

3DES with two keys is a relatively popular alternative to DES and has been
adopted for use in the key management standards ANSI X9.17 and ISO 8732.1

Currently, there are no practical cryptanalytic attacks on 3DES. Coppersmith
[COPP94] notes that the cost of a brute-force key search on 3DES is on the order of
2112 ≈ (5 * 1033) and estimates that the cost of differential cryptanalysis suffers an
exponential growth, compared to single DES, exceeding 1052.

It is worth looking at several proposed attacks on 3DES that, although not
practical, give a flavor for the types of attacks that have been considered and that
could form the basis for more successful future attacks.

The first serious proposal came from Merkle and Hellman [MERK81]. Their
plan involves finding plaintext values that produce a first intermediate value of
A = 0 (Figure 7.1b) and then using the meet-in-the-middle attack to determine
the two keys. The level of effort is 256, but the technique requires 256 chosen
plaintext–ciphertext pairs, which is a number unlikely to be provided by the holder
of the keys.

A known-plaintext attack is outlined in [VANO90]. This method is an improve-
ment over the chosen-plaintext approach but requires more effort. The attack is
based on the observation that if we know A and C (Figure 7.1b), then the problem
reduces to that of an attack on double DES. Of course, the attacker does not know
A, even if P and C are known, as long as the two keys are unknown. However, the
attacker can choose a potential value of A and then try to find a known (P, C) pair
that produces A. The attack proceeds as follows.

1. Obtain n (P, C) pairs. This is the known plaintext. Place these in a table
(Table 1) sorted on the values of P (Figure 7.2b).

1American National Standards Institute (ANSI): Financial Institution Key Management (Wholesale).
From its title, X9.17 appears to be a somewhat obscure standard. Yet a number of techniques specified in
this standard have been adopted for use in other standards and applications, as we shall see throughout
this book.

M07_STAL7484_08_GE_C07.indd 205 08/04/22 8:24 AM

206 CHAPTER 7 / BlOCk CiPHER OPERATiOn

2. Pick an arbitrary value a for A, and create a second table (Figure 7.2c) with
entries defined in the following fashion. For each of the 256 possible keys
K1 = i, calculate the plaintext value Pi such that

Pi = D(i, a)

For each Pi that matches an entry in Table 1, create an entry in Table 2 consist-
ing of the K1 value and the value of B that is produced for the (P, C) pair from
Table 1, assuming that value of K1:

B = D(i, C)

At the end of this step, sort Table 2 on the values of B.

3. We now have a number of candidate values of K1 in Table 2 and are in a
 position to search for a value of K2. For each of the 256 possible keys K2 = j,
 calculate the second intermediate value for our chosen value of a:

Bj = D(j, a)

At each step, look up Bj in Table 2. If there is a match, then the corresponding
key i from Table 2 plus this value of j are candidate values for the unknown
keys (K1, K2). Why? Because we have found a pair of keys (i, j) that produce a
known (P, C) pair (Figure 7.2a).

4. Test each candidate pair of keys (i, j) on a few other plaintext–ciphertext pairs.
If a pair of keys produces the desired ciphertext, the task is complete. If no pair
succeeds, repeat from step 1 with a new value of a.

Figure 7.2 Known-Plaintext Attack on Triple DES

E D E

i j i

Ci

a Bj

(a) Two-key triple encryption with candidate pair of keys

Pi

Pi Ci

(b) Table of n known
plaintext–ciphertext

pairs, sorted on P

Bj Key i

(c) Table of intermediate
values and candidate

keys

M07_STAL7484_08_GE_C07.indd 206 08/04/22 8:24 AM

7.2 / ElECTROniC COdEBOOk 207

For a given known (P, C), the probability of selecting the unique value of a
that leads to success is 1/264. Thus, given n (P, C) pairs, the probability of success for
a single selected value of a is n/264. A basic result from probability theory is that the
expected number of draws required to draw one red ball out of a bin containing n
red balls and N - n green balls is (N + 1)/(n + 1) if the balls are not replaced. So
the expected number of values of a that must be tried is, for large n,

264 + 1
n + 1

≈
264

n

Thus, the expected running time of the attack is on the order of

 (256)
264

n
= 2120 - log2 n

Triple DES with Three Keys

Although the attacks just described appear impractical, anyone using two-key 3DES
may feel some concern. Thus, many researchers now feel that three-key 3DES is the
preferred alternative (e.g., [KALI96a]). In SP 800-57, Part 1 (Recommendation for
Key Management—Part 1: General, July 2012) NIST recommends that 2-key 3DES
be retired as soon as practical and replaced with 3-key 3DES.

Three-key 3DES is defined as

 C = E(K3, D(K2, E(K1, P)))

Backward compatibility with DES is provided by putting K3 = K2 or K1 = K2. One
might expect that 3TDEA would provide 56 # 3 = 168 bits of strength. However,
there is an attack on 3TDEA that reduces the strength to the work that would be
involved in exhausting a 112-bit key [MERK81].

A number of Internet-based applications have adopted three-key 3DES,
including PGP and S/MIME, both discussed in Chapter 21.

 7.2 ELECTRONIC CODEBOOK

A block cipher takes a fixed-length block of text of length b bits and a key as input
and produces a b-bit block of ciphertext. If the amount of plaintext to be encrypted
is greater than b bits, then the block cipher can still be used by breaking the plaintext
up into b-bit blocks. When multiple blocks of plaintext are encrypted using the same
key, a number of security issues arise. To apply a block cipher in a variety of applica-
tions, five modes of operation have been defined by NIST (SP 800-38A). In essence,
a mode of operation is a technique for enhancing the effect of a cryptographic algo-
rithm or adapting the algorithm for an application, such as applying a block cipher
to a sequence of data blocks or a data stream. The five modes are intended to cover
a wide variety of applications of encryption for which a block cipher could be used.
These modes are intended for use with any symmetric block cipher, including triple
DES and AES. The modes are summarized in Table 7.1 and described in this and the
following sections.

M07_STAL7484_08_GE_C07.indd 207 08/04/22 8:24 AM

208 CHAPTER 7 / BlOCk CiPHER OPERATiOn

The simplest mode is the electronic codebook (ECB) mode, in which plaintext
is handled one block at a time and each block of plaintext is encrypted using the
same key (Figure 7.3). The term codebook is used because, for a given key, there is
a unique ciphertext for every b-bit block of plaintext. Therefore, we can imagine a
gigantic codebook in which there is an entry for every possible b-bit plaintext pat-
tern showing its corresponding ciphertext.

For a message longer than b bits, the procedure is simply to break the message
into b-bit blocks, padding the last block if necessary. Decryption is performed one
block at a time, always using the same key. In Figure 7.3, the plaintext (padded as
necessary) consists of a sequence of b-bit blocks, P1, P2, c , PN; the correspond-
ing sequence of ciphertext blocks is C1, C2, c , CN. We can define ECB mode as
follows.

ECB Cj = E(K, Pj) j = 1, c , N Pj = D(K, Cj) j = 1, c , N

The ECB mode should be used only to secure messages shorter than a single
block of underlying cipher (i.e., 64 bits for 3DES and 128 bits for AES), such as
to encrypt a secret key. Because in most of the cases messages are longer than the
encryption block mode, this mode has a minimum practical value.

The most significant characteristic of ECB is that if the same b-bit block
of plaintext appears more than once in the message, it always produces the same
ciphertext.

Mode Description Typical Application

Electronic Codebook (ECB) Each block of plaintext bits is
encoded independently using the
same key.

• Secure transmission of
single values (e.g., an
encryption key)

Cipher Block Chaining (CBC) The input to the encryption algo-
rithm is the XOR of the next block
of plaintext and the preceding
block of ciphertext.

• General-purpose block-
oriented transmission

• Authentication

Cipher Feedback (CFB) Input is processed s bits at a time.
Preceding ciphertext is used as
input to the encryption algorithm
to produce pseudorandom output,
which is XORed with plaintext to
produce next unit of ciphertext.

• General-purpose
stream-oriented
transmission

• Authentication

Output Feedback (OFB) Similar to CFB, except that the
input to the encryption algorithm
is the preceding encryption output,
and full blocks are used.

• Stream-oriented
transmission over noisy
channel (e.g., satellite
communication)

Counter (CTR) Each block of plaintext is XORed
with an encrypted counter. The
counter is incremented for each
subsequent block.

• General-purpose block-
oriented transmission

• Useful for high-speed
requirements

Table 7.1 Block Cipher Modes of Operation

M07_STAL7484_08_GE_C07.indd 208 08/04/22 8:24 AM

7.2 / ElECTROniC COdEBOOk 209

For lengthy messages, the ECB mode may not be secure. If the message is
highly structured, it may be possible for a cryptanalyst to exploit these regularities.
For example, if it is known that the message always starts out with certain predefined
fields, then the cryptanalyst may have a number of known plaintext–ciphertext pairs
to work with. If the message has repetitive elements with a period of repetition a
multiple of b bits, then these elements can be identified by the analyst. This may help
in the analysis or may provide an opportunity for substituting or rearranging blocks.

We now turn to more complex modes of operation. [KNUD00] lists the fol-
lowing criteria and properties for evaluating and constructing block cipher modes of
operation that are superior to ECB:

 ■ Overhead: The additional operations for the encryption and decryption opera-
tion when compared to encrypting and decrypting in the ECB mode.

 ■ Error recovery: The property that an error in the ith ciphertext block is inher-
ited by only a few plaintext blocks after which the mode resynchronizes.

 ■ Error propagation: The property that an error in the ith ciphertext block is
inherited by the ith and all subsequent plaintext blocks. What is meant here is
a bit error that occurs in the transmission of a ciphertext block, not a computa-
tional error in the encryption of a plaintext block.

Figure 7.3 Electronic Codebook (ECB) Mode

C1

P1

Encrypt

K

P2

C2

Encrypt

K

P N

CN

Encrypt

K

(a) Encryption

P1

C1

Decrypt

K

C2

P2

Decrypt

K

CN

PN

Decrypt

K

(b) Decryption

M07_STAL7484_08_GE_C07.indd 209 08/04/22 8:24 AM

210 CHAPTER 7 / BlOCk CiPHER OPERATiOn

 ■ Diffusion: How the plaintext statistics are reflected in the ciphertext. Low entropy
plaintext blocks should not be reflected in the ciphertext blocks. Roughly, low
entropy equates to predictability or lack of randomness (see Appendix B).

 ■ Security: Whether or not the ciphertext blocks leak information about the
plaintext blocks.

 7.3 CIPHER BLOCK CHAINING MODE

To overcome the security deficiencies of ECB, we would like a technique in which
the same plaintext block, if repeated, produces different ciphertext blocks. A simple
way to satisfy this requirement is the cipher block chaining (CBC) mode (Figure 7.4).
In this scheme, the input to the encryption algorithm is the XOR of the current
plaintext block and the preceding ciphertext block; the same key is used for each
block. In effect, we have chained together the processing of the sequence of plain-
text blocks. The input to the encryption function for each plaintext block bears no
fixed relationship to the plaintext block. Therefore, repeating patterns of b bits are
not exposed. As with the ECB mode, the CBC mode requires that the last block be
padded to a full b bits if it is a partial block.

Figure 7.4 Cipher Block Chaining (CBC) Mode

C1

P1

Encrypt

IV

K

P2

C2

Encrypt

K

PN

CN

CN21

CN21

Encrypt

K

(a) Encryption

P1

C1

Decrypt

IV

K

C2

P2

Decrypt

K

CN

PN

Decrypt

K

(b) Decryption

M07_STAL7484_08_GE_C07.indd 210 08/04/22 8:24 AM

7.3 / CiPHER BlOCk CHAining MOdE 211

For decryption, each cipher block is passed through the decryption algorithm.
The result is XORed with the preceding ciphertext block to produce the plaintext
block. To see that this works, we can write

 Cj = E(K, [Cj - 1 ⊕ Pj])

Then

D(K, Cj) = D(K, E(K, [Cj - 1 ⊕ Pj]))

D(K, Cj) = Cj - 1 ⊕ Pj

Cj - 1 ⊕ D(K, Cj) = Cj - 1 ⊕ Cj - 1 ⊕ Pj = Pj

To produce the first block of ciphertext, an initialization vector (IV) is XORed
with the first block of plaintext. On decryption, the IV is XORed with the output
of the decryption algorithm to recover the first block of plaintext. The IV is a data
block that is the same size as the cipher block. We can define CBC mode as

CBC
 C1 = E(K, [P1 ⊕ IV])

 Cj = E(K, [Pj ⊕ Cj - 1])j = 2, c , N

 P1 = D(K, C1) ⊕ IV

 Pj = D(K, Cj) ⊕ Cj - 1 j = 2, c , N

The IV must be known to both the sender and receiver but be unpredictable
by a third party. In particular, for any given plaintext, it must not be possible to
predict the IV that will be associated to the plaintext in advance of the generation
of the IV. For maximum security, the IV should be protected against unauthorized
changes. This could be done by sending the IV using ECB encryption. One reason
for protecting the IV is as follows: If an opponent is able to fool the receiver into
using a different value for IV, then the opponent is able to invert selected bits in the
first block of plaintext. To see this, consider

 C1 = E(K, [IV ⊕ P1])

 P1 = IV ⊕ D(K, C1)

Now use the notation that X[i] denotes the ith bit of the b-bit quantity X. Then

 P1[i] = IV[i] ⊕ D(K, C1)[i]

Then, using the properties of XOR, we can state

 P1[i]′ = IV[i]′ ⊕ D(K, C1)[i]

where the prime notation denotes bit complementation. This means that if an oppo-
nent can predictably change bits in IV, the corresponding bits of the received value
of P1 can be changed.

For other possible attacks based on prior knowledge of IV, see [VOYD83].
So long as it is unpredictable, the specific choice of IV is unimportant. SP 800-

38A recommends two possible methods: The first method is to apply the encryp-
tion function, under the same key that is used for the encryption of the plaintext,
to a nonce.2 The nonce must be a data block that is unique to each execution of

2NIST SP 800-90 (Recommendation for Random Number Generation Using Deterministic Random Bit
Generators) defines nonce as follows: A time-varying value that has at most a negligible chance of repeat-
ing, for example, a random value that is generated anew for each use, a timestamp, a sequence number,
or some combination of these.

M07_STAL7484_08_GE_C07.indd 211 08/04/22 8:24 AM

212 CHAPTER 7 / BlOCk CiPHER OPERATiOn

the encryption operation. For example, the nonce may be a counter, a timestamp,
or a message number. The second method is to generate a random data block
using a random number generator.

In conclusion, because of the chaining mechanism of CBC, it is an appropriate
mode for encrypting messages of length greater than b bits.

In addition to its use to achieve confidentiality, the CBC mode can be used for
authentication. This use is described in Chapter 12.

 7.4 CIPHER FEEDBACK MODE

For AES, DES, or any block cipher, encryption is performed on a block of b bits.
In the case of DES, b = 64 and in the case of AES, b = 128. However, it is pos-
sible to convert a block cipher into a stream cipher, using one of the three modes
to be discussed in this and the next two sections: cipher feedback (CFB) mode,
output feedback (OFB) mode, and counter (CTR) mode. A stream cipher elimi-
nates the need to pad a message to be an integral number of blocks. It also can
operate in real time. Thus, if a character stream is being transmitted, each char-
acter can be encrypted and transmitted immediately using a character-oriented
stream cipher.

One desirable property of a stream cipher is that the ciphertext be of the same
length as the plaintext. Thus, if 8-bit characters are being transmitted, each character
should be encrypted to produce a ciphertext output of 8 bits. If more than 8 bits are
produced, transmission capacity is wasted.

Figure 7.5 depicts the CFB scheme. In the figure, it is assumed that the unit of
transmission is s bits; a common value is s = 8. As with CBC, the units of plaintext
are chained together, so that the ciphertext of any plaintext unit is a function of
all the preceding plaintext. In this case, rather than blocks of b bits, the plaintext is
divided into segments of s bits.

First, consider encryption. The input to the encryption function is a b-bit shift
register that is initially set to some initialization vector (IV). The leftmost (most
significant) s bits of the output of the encryption function are XORed with the first
segment of plaintext P1 to produce the first unit of ciphertext C1, which is then trans-
mitted. In addition, the contents of the shift register are shifted left by s bits, and C1
is placed in the rightmost (least significant) s bits of the shift register. This process
continues until all plaintext units have been encrypted.

For decryption, the same scheme is used, except that the received ciphertext
unit is XORed with the output of the encryption function to produce the plaintext
unit. Note that it is the encryption function that is used, not the decryption function.
This is easily explained. Let MSBs(X) be defined as the most significant s bits of X.
Then

 C1 = P1 ⊕ MSBs[E(K, IV)]

Therefore, by rearranging terms:

 P1 = C1 ⊕ MSBs[E(K, IV)]

The same reasoning holds for subsequent steps in the process.

M07_STAL7484_08_GE_C07.indd 212 08/04/22 8:24 AM

7.4 / CiPHER FEEdBACk MOdE 213

We can define CFB mode as follows.

CFB

 I1 = IV

 Ij = LSBb - s(Ij - 1) }Cj - 1 j = 2, c , N

 Oj = E(K, Ij) j = 1, c , N

 Cj = Pj ⊕ MSBs(Oj) j = 1, c , N

 I1 = IV

 Ij = LSBb - s(Ij - 1) }Cj - 1 j = 2, c , N

 Oj = E(K, Ij) j = 1, c , N

 Pj = Cj ⊕ MSBs(Oj) j = 1, c , N

Although CFB can be viewed as a stream cipher, it does not conform to the
typical construction of a stream cipher. In a typical stream cipher, the cipher takes

Figure 7.5 s-bit Cipher Feedback (CFB) Mode

C1

IV
I1

O1

I1

O1

I2

O2

I2

O2

IN

ON

IN

ON

P1

Encrypt

Select
 s bits

Discard
b – s bits

K

(a) Encryption

NC 21

(b) Decryption

s bits

s bits s bits

C2

P2

Encrypt

Select
s bits

Discard
b – s bits

K

s bits

s bitsb – s bits
Shift register

s bits

CN

PN

Encrypt

Select
s bits

Discard
b – s bits

K

s bits

s bitsb – s bits
Shift register

P1

IV

C1

Encrypt

Select
 s bits

Discard
b – s bits

K

CN21

s bits
C2

s bits
CN

s bits

s bits s bits

P2

Encrypt

Select
s bits

Discard
b – s bits

K
s bitsb – s bits

Shift register
s bitsb – s bits

Shift register

s bits

PN

Encrypt

Select
s bits

Discard
b – s bits

K

M07_STAL7484_08_GE_C07.indd 213 08/04/22 8:24 AM

214 CHAPTER 7 / BlOCk CiPHER OPERATiOn

as input some initial value and a key and generates a stream of bits, which is then
XORed with the plaintext bits (see Figure 4.1). In the case of CFB, the stream of bits
that is XORed with the plaintext also depends on the plaintext.

In CFB encryption, like CBC encryption, the input block to each forward
 cipher function (except the first) depends on the result of the previous forward
 cipher function; therefore, multiple forward cipher operations cannot be performed
in parallel. In CFB decryption, the required forward cipher operations can be per-
formed in parallel if the input blocks are first constructed (in series) from the IV and
the ciphertext.

 7.5 OUTPUT FEEDBACK MODE

The output feedback (OFB) mode is similar in structure to that of CFB. For OFB,
the output of the encryption function is fed back to become the input for encrypting
the next block of plaintext (Figure 7.6). In CFB, the output of the XOR unit is fed
back to become input for encrypting the next block. The other difference is that the
OFB mode operates on full blocks of plaintext and ciphertext, whereas CFB oper-
ates on an s-bit subset. OFB encryption can be expressed as

 Cj = Pj ⊕ E(K, Oj - 1)

where

 Oj - 1 = E(K, Oj - 2)

Some thought should convince you that we can rewrite the encryption expres-
sion as:

 Cj = Pj ⊕ E(K, [Cj - 1 ⊕ Pj - 1])

By rearranging terms, we can demonstrate that decryption works.

 Pj = Cj ⊕ E(K, [Cj - 1 ⊕ Pj - 1])

We can define OFB mode as follows.

OFB

I1 = Nonce

Ij = Oj - 1 j = 2, c , N

Oj = E(K, Ij) j = 1, c , N

Cj = Pj ⊕ Oj j = 1, c , N - 1

CN
* = PN

* ⊕ MSBu(ON)

I1 = Nonce

Ij = Oj - 1 j = 2, c , N

Oj = E(K, Ij) j = 1, c , N

Pj = Cj ⊕ Oj j = 1, c , N - 1

PN
* = CN

* ⊕ MSBu(ON)

Let the size of a block be b. If the last block of plaintext contains u bits (indi-
cated by *), with u 6 b, the most significant u bits of the last output block ON are
used for the XOR operation; the remaining b - u bits of the last output block are
discarded.

As with CBC and CFB, the OFB mode requires an initialization vector. In
the case of OFB, the IV must be a nonce; that is, the IV must be unique to each
execution of the encryption operation. The reason for this is that the sequence of

M07_STAL7484_08_GE_C07.indd 214 08/04/22 8:24 AM

7.5 / OuTPuT FEEdBACk MOdE 215

encryption output blocks, Oi, depends only on the key and the IV and does not
depend on the plaintext. Therefore, for a given key and IV, the stream of output bits
used to XOR with the stream of plaintext bits is fixed. If two different messages had
an identical block of plaintext in the identical position, then an attacker would be
able to determine that portion of the Oi stream.

One advantage of the OFB method is that bit errors in transmission do not
propagate. For example, if a bit error occurs in C1, only the recovered value of P1 is
affected; subsequent plaintext units are not corrupted. With CFB, C1 also serves as
input to the shift register and therefore causes additional corruption downstream.

The disadvantage of OFB is that it is more vulnerable to a message stream
modification attack than is CFB. Consider that complementing a bit in the cipher-
text complements the corresponding bit in the recovered plaintext. Thus, controlled

Figure 7.6 Output Feedback (OFB) Mode

(a) Encryption

P1

C1

Nonce

Encrypt

K

P2 PN

C2

Encrypt

K

CN

Encrypt

K

(b) Decryption

C1

I1 I2 IN

I1 I2 IN

O1 O2 ON

O1 O2 ON

P1

Nonce

Encrypt

K

C2 CN

P2

Encrypt

K

PN

Encrypt

K

M07_STAL7484_08_GE_C07.indd 215 08/04/22 8:24 AM

216 CHAPTER 7 / BlOCk CiPHER OPERATiOn

changes to the recovered plaintext can be made. This may make it possible for an
opponent, by making the necessary changes to the checksum portion of the mes-
sage as well as to the data portion, to alter the ciphertext in such a way that it is not
detected by an error-correcting code. For a further discussion, see [VOYD83].

OFB has the structure of a typical stream cipher, because the cipher generates
a stream of bits as a function of an initial value and a key, and that stream of bits is
XORed with the plaintext bits (see Figure 4.1). The generated stream that is XORed
with the plaintext is itself independent of the plaintext; this is highlighted by dashed
boxes in Figure 7.6. One distinction from the stream ciphers we discuss in Chapter 8
is that OFB encrypts plaintext a full block at a time, where typically a block is 64 or
128 bits. Many stream ciphers encrypt one byte at a time.

 7.6 COUNTER MODE

Although interest in the counter (CTR) mode has increased recently with appli-
cations to ATM (asynchronous transfer mode) network security and IPsec
(IP security), this mode was proposed in 1979 (e.g., [DIFF79]).

Figure 7.7 depicts the CTR mode. A counter equal to the plaintext block size is
used. The only requirement stated in SP 800-38A is that the counter value must be
different for each plaintext block that is encrypted. Typically, the counter is initial-
ized to some value and then incremented by 1 for each subsequent block (modulo 2b,
where b is the block size). For encryption, the counter is encrypted and then XORed
with the plaintext block to produce the ciphertext block; there is no chaining. For
decryption, the same sequence of counter values is used, with each encrypted counter
XORed with a ciphertext block to recover the corresponding plaintext block. Thus,
the initial counter value must be made available for decryption. Given a sequence of
counters T1, T2, c , TN, we can define CTR mode as follows.

CTR
Cj = Pj ⊕ E(K, Tj) j = 1, c , N - 1

CN
* = PN

* ⊕ MSBu[E(K, TN)]

Pj = Cj ⊕ E(K, Tj) j = 1, c , N - 1

PN
* = CN

* ⊕ MSBu[E(K, TN)]

For the last plaintext block, which may be a partial block of u bits, the most sig-
nificant u bits of the last output block are used for the XOR operation; the remain-
ing b - u bits are discarded. Unlike the ECB, CBC, and CFB modes, we do not need
to use padding because of the structure of the CTR mode.

As with the OFB mode, the initial counter value must be a nonce; that is, T1
must be different for all of the messages encrypted using the same key. Further,
all Ti values across all messages must be unique. If, contrary to this requirement, a
counter value is used multiple times, then the confidentiality of all of the plaintext
blocks corresponding to that counter value may be compromised. In particular, if
any plaintext block that is encrypted using a given counter value is known, then
the output of the encryption function can be determined easily from the associated
ciphertext block. This output allows any other plaintext blocks that are encrypted
using the same counter value to be easily recovered from their associated ciphertext
blocks.

M07_STAL7484_08_GE_C07.indd 216 08/04/22 8:24 AM

7.6 / COunTER MOdE 217

One way to ensure the uniqueness of counter values is to continue to incre-
ment the counter value by 1 across messages. That is, the first counter value of the
each message is one more than the last counter value of the preceding message.

[LIPM00] lists the following advantages of CTR mode.

 ■ Hardware efficiency: Unlike the three chaining modes, encryption (or decryp-
tion) in CTR mode can be done in parallel on multiple blocks of plaintext or
ciphertext. For the chaining modes, the algorithm must complete the computa-
tion on one block before beginning on the next block. This limits the maximum
throughput of the algorithm to the reciprocal of the time for one execution of
block encryption or decryption. In CTR mode, the throughput is only limited
by the amount of parallelism that is achieved.

Figure 7.7 Counter (CTR) Mode

(a) Encryption

P1

C1

Counter 1

Encrypt

K

Counter 2 Counter N

P2 PN

C2

Encrypt

K

CN

Encrypt

K

(b) Decryption

C1

P1

Counter 1

Encrypt

K

Counter 2 Counter N

C2 CN

P2

Encrypt

K

PN

Encrypt

K

M07_STAL7484_08_GE_C07.indd 217 08/04/22 8:24 AM

218 CHAPTER 7 / BlOCk CiPHER OPERATiOn

 ■ Software efficiency: Similarly, because of the opportunities for parallel execu-
tion in CTR mode, processors that support parallel features, such as aggressive
pipelining, multiple instruction dispatch per clock cycle, a large number of reg-
isters, and SIMD instructions, can be effectively utilized.

 ■ Preprocessing: The execution of the underlying encryption algorithm does
not depend on input of the plaintext or ciphertext. Therefore, if sufficient
memory is available and security is maintained, preprocessing can be used to
prepare the output of the encryption boxes that feed into the XOR functions,
as in Figure 7.7. When the plaintext or ciphertext input is presented, then
the only computation is a series of XORs. Such a strategy greatly enhances
throughput.

 ■ Random access: The ith block of plaintext or ciphertext can be processed in
random-access fashion. With the chaining modes, block Ci cannot be com-
puted until the i - 1 prior blocks are computed. There may be applications in
which a ciphertext is stored and it is desired to decrypt just one block; for such
applications, the random access feature is attractive.

 ■ Provable security: It can be shown that CTR is at least as secure as the other
modes discussed in this chapter.

 ■ Simplicity: Unlike ECB and CBC modes, CTR mode requires only the imple-
mentation of the encryption algorithm and not the decryption algorithm.
This matters most when the decryption algorithm differs substantially from
the encryption algorithm, as it does for AES. In addition, the decryption key
scheduling need not be implemented.

Note that, with the exception of ECB, all of the NIST-approved block cipher
modes of operation involve feedback. This is clearly seen in Figure 7.8. To high-
light the feedback mechanism, it is useful to think of the encryption function
as taking input from an input register whose length equals the encryption block
length and with output stored in an output register. The input register is updated
one block at a time by the feedback mechanism. After each update, the encryp-
tion algorithm is executed, producing a result in the output register. Meanwhile, a
block of plaintext is accessed. Note that both OFB and CTR produce output that
is independent of both the plaintext and the ciphertext. Thus, they are natural
candidates for stream ciphers that encrypt plaintext by XOR one full block at a
time.

 7.7 XTS-AES MODE FOR BLOCK-ORIENTED
STORAGE DEVICES

In 2010, NIST approved an additional block cipher mode of operation, XTS-AES.
This mode is also an IEEE standard, IEEE Std 1619-2007, which was developed
by the IEEE Security in Storage Working Group (P1619). The standard describes
a method of encryption for data stored in sector-based devices where the threat
model includes possible access to stored data by the adversary. The standard has
received widespread industry support.

M07_STAL7484_08_GE_C07.indd 218 08/04/22 8:24 AM

7.7 / XTs-AEs MOdE FOR BlOCk-ORiEnTEd sTORAgE dEviCEs 219

Tweakable Block Ciphers

The XTS-AES mode is based on the concept of a tweakable block cipher, intro-
duced in [LISK02]. The form of this concept used in XTS-AES was first described
in [ROGA04a].

Before examining XTS-AES, let us consider the general structure of a tweak-
able block cipher. A tweakable block cipher is one that has three inputs: a plain-
text P, a symmetric key K, and a tweak T; and produces a ciphertext output C. We
can write this as C = E(K, T, P). The tweak need not be kept secret. Whereas the
purpose of the key is to provide security, the purpose of the tweak is to provide

Figure 7.8 Feedback Characteristic of Modes of Operation

Plaintext block

Plaintext block

Encrypt

Input register

Output register

Ciphertext Ciphertext

(a) Cipher block chaining (CBC) mode

Key

Encrypt

Input register

Output register

Key

(b) Cipher feedback (CFB) mode

Plaintext block

Ciphertext

Key

Encrypt

Input register

Output register

(c) Output feedback (OFB) mode

Plaintext block

Ciphertext

Key

Encrypt

Input register

Output register

Counter

(d) Counter (CTR) mode

M07_STAL7484_08_GE_C07.indd 219 08/04/22 8:24 AM

220 CHAPTER 7 / BlOCk CiPHER OPERATiOn

variability. That is, the use of different tweaks with the same plaintext and same key
produces different outputs. The basic structure of several tweakable block ciphers
that have been implemented is shown in Figure 7.9. Encryption can be expressed as:

 C = H(T) ⊕ E(K, H(T) ⊕ P)

where H is a hash function. For decryption, the same structure is used with the plain-
text as input and decryption as the function instead of encryption. To see that this
works, we can write

H(T) ⊕ C = E(K, H(T) ⊕ P)

D[K, H(T) ⊕ C] = H(T) ⊕ P

H(T) ⊕ D(K, H(T) ⊕ C) = P

It is now easy to construct a block cipher mode of operation by using a differ-
ent tweak value on each block. In essence, the ECB mode is used but for each block
the tweak is changed. This overcomes the principal security weakness of ECB, which
is that two encryptions of the same block yield the same ciphertext.

Storage Encryption Requirements

The requirements for encrypting stored data, also referred to as “data at rest” dif-
fer somewhat from those for transmitted data. The P1619 standard was designed to
have the following characteristics:

1. The ciphertext is freely available for an attacker. Among the circumstances
that lead to this situation:

a. A group of users has authorized access to a database. Some of the records in
the database are encrypted so that only specific users can successfully read/

Figure 7.9 Tweakable Block Cipher

K

Hash
function

Tj

H(Tj)

Pj

Cj

Encrypt

(a) Encryption

K

Hash
function

Tj Cj

Pj

Decrypt

(b) Decryption

M07_STAL7484_08_GE_C07.indd 220 08/04/22 8:24 AM

7.7 / XTs-AEs MOdE FOR BlOCk-ORiEnTEd sTORAgE dEviCEs 221

write them. Other users can retrieve an encrypted record but are unable to
read it without the key.

b. An unauthorized user manages to gain access to encrypted records.
c. A data disk or laptop is stolen, giving the adversary access to the encrypted

data.
2. The data layout is not changed on the storage medium and in transit. The

encrypted data must be the same size as the plaintext data.

3. Data are accessed in fixed sized blocks, independently from each other. That is,
an authorized user may access one or more blocks in any order.

4. Encryption is performed in 16-byte blocks, independently from other blocks
(except the last two plaintext blocks of a sector, if its size is not a multiple of
16 bytes).

5. There are no other metadata used, except the location of the data blocks
within the whole data set.

6. The same plaintext is encrypted to different ciphertexts at different locations,
but always to the same ciphertext when written to the same location again.

7. A standard conformant device can be constructed for decryption of data
encrypted by another standard conformant device.

The P1619 group considered some of the existing modes of operation for use with
stored data. For CTR mode, an adversary with write access to the encrypted media can
flip any bit of the plaintext simply by flipping the corresponding ciphertext bit.

Next, consider requirement 6 and the use of CBC. To enforce the require-
ment that the same plaintext encrypts to different ciphertext in different loca-
tions, the IV could be derived from the sector number. Each sector contains
multiple blocks. An adversary with read/write access to the encrypted disk can
copy a ciphertext sector from one position to another within the same block,
and an application reading the sector off the new location will still get the same
plaintext sector (except perhaps the first 128 bits). Another weakness is that an
adversary can flip any bit of the plaintext by flipping the corresponding cipher-
text bit of the previous block, with the side-effect of “randomizing” the previous
block.

Operation on a Single Block

Figure 7.10 shows the encryption and decryption of a single block. The operation in-
volves two instances of the AES algorithm with two keys. The following parameters
are associated with the algorithm.

Key The 256 or 512 bit XTS-AES key; this is parsed as a concatenation of two
fields of equal size called Key1 and Key2, such that Key = Key1 }Key2.

Pj The jth block of plaintext. All blocks except possibly the final block have a
length of 128 bits. A plaintext data unit, typically a disk sector, consists of a
sequence of plaintext blocks P1, P2, c , Pm.

Cj The jth block of ciphertext. All blocks except possibly the final block have a
length of 128 bits.

M07_STAL7484_08_GE_C07.indd 221 08/04/22 8:24 AM

222 CHAPTER 7 / BlOCk CiPHER OPERATiOn

j The sequential number of the 128-bit block inside the data unit.

i The value of the 128-bit tweak. Each data unit (sector) is assigned a
tweak value that is a nonnegative integer. The tweak values are assigned
 consecutively, starting from an arbitrary nonnegative integer.

a A primitive element of GF(2128) that corresponds to polynomial x
(i.e., 0000 c 0102).

aj a multiplied by itself j times, in GF(2128).

⊕ Bitwise XOR.

⊗ Modular multiplication of two polynomials with binary coefficients modulo
x128 + x7 + x2 + x + 1. Thus, this is multiplication in GF(2128).

Figure 7.10 XTS-AES Operation on Single Block

 Key2

Key1

AES
Encrypt

i

T

CC

PP

Pj

Cj

AES
Encrypt

(a) Encryption

(b) Decryption

Key2

Key1

AES
Encrypt

i

T

CC

PP

Cj

Pj

AES
Decrypt

j

j

a

a

M07_STAL7484_08_GE_C07.indd 222 08/04/22 8:24 AM

7.7 / XTs-AEs MOdE FOR BlOCk-ORiEnTEd sTORAgE dEviCEs 223

In essence, the parameter j functions much like the counter in CTR mode. It
assures that if the same plaintext block appears at two different positions within a
data unit, it will encrypt to two different ciphertext blocks. The parameter i functions
much like a nonce at the data unit level. It assures that, if the same plaintext block
appears at the same position in two different data units, it will encrypt to two differ-
ent ciphertext blocks. More generally, it assures that the same plaintext data unit will
encrypt to two different ciphertext data units for two different data unit positions.

The encryption and decryption of a single block can be described as

XTS-AES block
operation

 T = E(K2, i) ⊗ aj

 PP = P ⊕ T

 CC = E(K1, PP)
 C = CC ⊕ T

 T = E(K2, i) ⊗ aj

 CC = C ⊕ T

 PP = D(K1, CC)
 P = PP ⊕ T

To see that decryption recovers the plaintext, let us expand the last line of both en-
cryption and decryption. For encryption, we have

 C = CC ⊕ T = E(K1, PP) ⊕ T = E(K1, P ⊕ T) ⊕ T

and for decryption, we have

 P = PP ⊕ T = D(K1, CC) ⊕ T = D(K1, C ⊕ T) ⊕ T

Now, we substitute for C:

 P = D(K1, C ⊕ T) ⊕ T

 = D(K1, [E(K1, P ⊕ T) ⊕ T] ⊕ T) ⊕ T

 = D(K1, E(K1, P ⊕ T)) ⊕ T

 = (P ⊕ T) ⊕ T = P

Operation on a Sector

The plaintext of a sector or data unit is organized into blocks of 128 bits. Blocks are
labeled P0, P1, c , Pm. The last block my be null or may contain from 1 to 127 bits.
In other words, the input to the XTS-AES algorithm consists of m 128-bit blocks
and possibly a final partial block.

For encryption and decryption, each block is treated independently and
encrypted/decrypted as shown in Figure 7.10. The only exception occurs when the
last block has less than 128 bits. In that case, the last two blocks are encrypted/
decrypted using a ciphertext-stealing technique instead of padding. Figure 7.11
shows the scheme. Pm - 1 is the last full plaintext block, and Pm is the final plaintext
block, which contains s bits with 1 … s … 127. Cm - 1 is the last full ciphertext block,
and Cm is the final ciphertext block, which contains s bits. This technique is com-
monly called ciphertext stealing because the processing of the last block “steals” a
temporary ciphertext of the penultimate block to complete the cipher block.

Let us label the block encryption and decryption algorithms of Figure 7.10 as

Block encryption: XTS-AES-blockEnc(K, Pj, i, j)
Block decryption: XTS-AES-blockDec(K, Cj, i, j)

M07_STAL7484_08_GE_C07.indd 223 08/04/22 8:24 AM

224 CHAPTER 7 / BlOCk CiPHER OPERATiOn

Then, XTS-AES mode is defined as follows:

XTS-AES mode with null
final block

Cj = XTS@AES@blockEnc(K, Pj, i, j) j = 0, c , m - 1

Pj = XTS@AES@blockEnc(K, Cj, i, j) j = 0, c , m - 1

XTS-AES mode with final
block containing s bits

Cj = XTS@AES@blockEnc(K, Pj, i, j) j = 0, c , m - 2
XX = XTS@AES@blockEnc(K, Pm - 1, i, m - 1)
CP = LSB128 - s(XX)
YY = Pm }CP

Cm - 1 = XTS@AES@blockEnc(K, YY, i, m)
Cm = MSBs(XX)

Pj = XTS@AES@blockDec(K, Cj, i, j) j = 0, c , m - 2
YY = XTS@AES@blockDec(K, Cm - 1, i, m - 1)
CP = LSB128 - s(YY)
XX = Cm }CP

Pm - 1 = XTS@AES@blockDec(K, XX, i, m)
Pm = MSBs(YY)

Figure 7.11 XTS-AES Mode

C0

P0

XTS-AES
block

encryption

Key

i, 0

C1

 P1

XTS-AES
block

encryption

Key

i, 1

CP

XX

XX

YY

YY

Cm

CPPmPm21

XTS-AES
block

encryption

Key

i, m21

Cm21

Cm21

XTS-AES
block

encryption

Key

i, m

Cm
(a) Encryption

(b) Decryption

P0

C0

XTS-AES
block

decryption

Key

i, 0

P1

 C1

XTS-AES
block

decryption

Key

i, 1

CPPm

CPCmCm21

XTS-AES
block

decryption

Key

i, m

Pm21

Pm21

XTS-AES
block

decryption

Key

i, m21

Pm

M07_STAL7484_08_GE_C07.indd 224 08/04/22 8:24 AM

7.8 / FORMAT-PREsERving EnCRyPTiOn 225

As can be seen, XTS-AES mode, like CTR mode, is suitable for parallel opera-
tion. Because there is no chaining, multiple blocks can be encrypted or decrypted
simultaneously. Unlike CTR mode, XTS-AES mode includes a nonce (the param-
eter i) as well as a counter (parameter j).

 7.8 FORMAT-PRESERVING ENCRYPTION

Format-preserving encryption (FPE) refers to any encryption technique that takes a
plaintext in a given format and produces a ciphertext in the same format. For example,
credit cards consist of 16 decimal digits. An FPE that can accept this type of input
would produce a ciphertext output of 16 decimal digits. Note that the ciphertext need
not be, and in fact is unlikely to be, a valid credit card number. But it will have the
same format and can be stored in the same way as credit card number plaintext.

A simple encryption algorithm is not format preserving, with the exception
that it preserves the format of binary strings. For example, Table 7.2 shows three
types of plaintext for which it might be desired to perform FPE. The third row shows
examples of what might be generated by an FPE algorithm. The fourth row shows
(in hexadecimal) what is produced by AES with a given key.

Motivation

FPE facilitates the retrofitting of encryption technology to legacy applications,
where a conventional encryption mode might not be feasible because it would dis-
rupt data fields/pathways. FPE has emerged as a useful cryptographic tool, whose
applications include financial-information security, data sanitization, and transpar-
ent encryption of fields in legacy databases.

The principal benefit of FPE is that it enables protection of particular data
 elements in a legacy database that did not provide encryption of those data ele-
ments, while still enabling workflows that were in place before FPE was in use. With
FPE, as opposed to ordinary AES encryption or 3DES encryption, no database
schema changes and minimal application changes are required. Only applications
that need to see the plaintext of a data element need to be modified and generally
these modifications will be minimal.

Some examples of legacy applications where FPE is desirable:

 ■ COBOL data-processing applications: Any changes in the structure of a record
requires corresponding changes in all code that references that record struc-
ture. Typical code sizes involve hundreds of modules, each containing around
5,000–10,000 lines on average.

Credit Card Tax ID Bank Account Number

Plaintext 8123 4512 3456 6780 219-09-9999 800N2982K-22

FPE 8123 4521 7292 6780 078-05-1120 709G9242H-35

AES (hex) af411326466add24
c86abd8aa525db7a

7b9af4f3f218ab25
07c7376869313afa

9720ec7f793096ff
d37141242e1c51bd

Table 7.2 Comparison of Format-Preserving Encryption and AES

M07_STAL7484_08_GE_C07.indd 225 08/04/22 8:24 AM

226 CHAPTER 7 / BlOCk CiPHER OPERATiOn

 ■ Database applications: Fields that are specified to take only character strings
cannot be used to store conventionally encrypted binary ciphertext. Base64
encoding of such binary ciphertext is not always feasible without increase in
data lengths, requiring augmentation of corresponding field lengths.

 ■ FPE-encrypted characters can be significantly compressed for efficient trans-
mission. This cannot be said about AES-encrypted binary ciphertext.

Difficulties in Designing an FPE

A general-purpose standardized FPE should meet a number of requirements:

1. The ciphertext is of the same length and format as the plaintext.

2. It should be adaptable to work with a variety of character and number types.
Examples include decimal digits, lowercase alphabetic characters, and the full
character set of a standard keyboard or international keyboard.

3. It should work with variable plaintext lengths.

4. Security strength should be comparable to that achieved with AES.

5. Security should be strong even for very small plaintext lengths.

Meeting the first requirement is not at all straightforward. As illustrated in
Table 7.2, a straightforward encryption with AES yields a 128-bit binary block that
does not resemble the required format. Also, a standard symmetric block cipher is
not easily adaptable to produce an FPE.

Consider a simple example. Assume that we want an algorithm that can
encrypt decimal digit strings of maximum length of 32 digits. The input to the algo-
rithm can be stored in 16 bytes (128 bits) by encoding each digit as four bits and
using the corresponding binary value for each digit (e.g., 6 is encoded as 0101). Next,
we use AES to encrypt the 128-bit block, in the following fashion:

1. The plaintext input X is represented by the string of 4-bit decimal digits
X[1] . . . X[16]. If the plaintext is less than 16 digits long, it is padded out to the
left (most significant) with zeros.

2. Treating X as a 128-bit binary string and using key K, form ciphertext
Y = AESK(X).

3. Treat Y as a string of length 16 of 4-bit elements.

4. Some of the entries in Y may have values greater than 9 (e.g., 1100). To gener-
ate ciphertext Z in the required format, calculate

 Z[i] = Y[i] mod 10, 1 … i … 16

This generates a ciphertext of 16 decimal digits, which conforms to the
desired format. However, this algorithm does not meet the basic requirement of
any encryption algorithm of reversibility. It is impossible to decrypt Z to recover
the original plaintext X because the operation is one-way; that is, it is a many-
to-one function. For example, 12 mod 10 = 2 mod 10 = 2. Thus, we need to
design a reversible function that is both a secure encryption algorithm and format
preserving.

M07_STAL7484_08_GE_C07.indd 226 08/04/22 8:24 AM

7.8 / FORMAT-PREsERving EnCRyPTiOn 227

A second difficulty in designing an FPE is that some of the input strings are
quite short. For example, consider the 16-digit credit card number (CCN). The first
six digits provide the issuer identification number (IIN), which identifies the insti-
tution that issued the card. The final digit is a check digit to catch typographical
errors or other mistakes. The remaining nine digits are the user’s account num-
ber. However, a number of applications require that the last four digits be in the
clear (the check digit plus three account digits) for applications such as credit card
receipts, which leaves only six digits for encryption. Now suppose that an adversary
is able to obtain a number of plaintext/ciphertext pairs. Each such pair corresponds
to not just one CCN, but multiple CCNs that have the same middle six digits. In a
large database of credit card numbers, there may be multiple card numbers with
the same middle six digits. An adversary may be able to assemble a large diction-
ary mapping known as six-digit plaintexts to their corresponding ciphertexts. This
could be used to decrypt unknown ciphertexts from the database. As pointed out
in [BELL10a], in a database of 100 million entries, on average about 100 CCNs
will share any given middle-six digits. Thus, if the adversary has learned k CCNs
and gains access to such a database, the adversary can decrypt approximately
100k CCNs.

The solution to this second difficulty is to use a tweakable block cipher; this
concept is described in Section 7.7. For example, the tweak for CCNs could be the first
two and last four digits of the CCN. Prior to encryption, the tweak is added, digit-by-
digit mod 10, to the middle six-digit plaintext, and the result is then encrypted. Two
different CCNs with identical middle six digits will yield different tweaked inputs
and therefore different ciphertexts. Consider the following:

CCN Tweak Plaintext Plaintext + Tweak

4012 8812 3456 1884 401884 123456 524230

5105 1012 3456 6782 516782 123456 639138

Two CCNs with the same middle six digits have different tweaks and therefore
different values to the middle six digits after the tweak is added.

Feistel Structure for Format-Preserving Encryption

As the preceding discussion shows, the challenge with FPE is to design an algo-
rithm for scrambling the plaintext that is secure, preserves format, and is reversible.
A number of approaches have been proposed in recent years [ROGA10, BELL09]
for FPE algorithms. The majority of these proposals use a Feistel structure. Although
IBM introduced this structure with their Lucifer cipher [SMIT71] almost half a cen-
tury ago, it remains a powerful basis for implementing ciphers.

This section provides a general description of how the Feistel structure can
be used to implement an FPE. In the following section, we look at three specific
Feistel-based algorithms that are in the process of receiving NIST approval.

encRyption and decRyption Figure 7.12 shows the Feistel structure used in all of
the NIST algorithms, with encryption shown on the left-hand side and decryption
on the right-hand side. The structure in Figure 7.12 is the same as that shown in

M07_STAL7484_08_GE_C07.indd 227 08/04/22 8:24 AM

228 CHAPTER 7 / BlOCk CiPHER OPERATiOn

Figure 4.3 but, to simplify the presentation, it is untwisted, not illustrating the swap
that occurs at the end of each round.

The input to the encryption algorithm is a plaintext character string of
n = u + v characters. If n is even, then u = v, otherwise u and v differ by 1. The two
parts of the string pass through an even number of rounds of processing to produce
a ciphertext block of n characters and the same format as the plaintext. Each round
i has inputs Ai and Bi, derived from the preceding round (or plaintext for round 0).

All rounds have the same structure. On even-numbered rounds, a substitution
is performed on the left part (length u) of the data, Ai. This is done by applying the
round function FK to the right part (length v) of the data, Bi, and then performing

Figure 7.12 Feistel Structure for Format-Preserving Encryption

Input (plaintext)

Output (ciphertext)

(a) Encryption (b) Decryption

R
ou

nd
 0

R
ou

nd
 1

A0

C0

C1

u characters v characters
B0

n, T, 0

n, T, 1

A2 B1 B2 C1

1 FK

1

B1 C0 A1 B0

FK

R
ou

nd
 r–

2
R

ou
nd

 r–
1

Ar-2

Cr-2

Br-2

n, T, r-2

n, T, r-1

Ar Br-1 Br Cr-1

1 FK

1

Br-1 Cr-2 Ar-1 Br-2

FK

Output (plaintext)

Input (ciphertext)

R
ou

nd
 r–

1
R

ou
nd

 r–
2

A0 C0

C0

C1

u characters v characters
B0 A1

n, T, 0

n, T, 1

A2 C2 B2 A3

2 FK

2

B1 A2 A1 C1

FK

R
ou

nd
 1

R
ou

nd
 0

Ci–2

Cr-1

Cr-1

n, T, i–2

n, T, r-1

Ar Br

2 FK

2

Br-1 Ar Ar-1 Cr-1

Ar-2 Cr-2 Br–2 Ar-1

FK

M07_STAL7484_08_GE_C07.indd 228 08/04/22 8:24 AM

7.8 / FORMAT-PREsERving EnCRyPTiOn 229

a modular addition of the output of FK with Ai. The modular addition function and
the selection of modulus are described subsequently. On odd-numbered rounds, the
substitution is done on the right part of the data. FK is a one-way function that con-
verts the input into a binary string, performs a scrambling transformation on the
string, and then converts the result back into a character string of suitable format
and length. The function has as parameters the secret key K, the plaintext length n, a
tweak T, and the round number i.

Note that on even-numbered rounds, FK has an input of v characters, and that
the modular addition produces a result of u characters, whereas on odd-numbered
rounds, FK has an input of u characters, and that the modular addition produces a
result of v characters. The total number of rounds is even, so that the output consists
of an A portion of length u concatenated with a B portion of length v, matching the
partition of the plaintext.

The process of decryption is essentially the same as the encryption process.
The differences are: (1) the addition function is replaced by a subtraction function
that is its inverse; and (2) the order of the round indices is reversed.

To demonstrate that the decryption produces the correct result, Figure 7.12b
shows the encryption process going down the left-hand side and the decryption pro-
cess going up the right-hand side. The diagram indicates that, at every round, the
intermediate value of the decryption process is equal to the corresponding value of
the encryption process. We can walk through the figure to validate this, starting at
the bottom. The ciphertext is produced at the end of round r - 1 as a string of the
form A

 r }B
 r, with Ar and Br having string lengths u and v, respectively. Encryption

round r - 1 can be described with the following equations:

 Ar = Br - 1

 Br = Ar - 1 + FK[Br - 1]

Because we define the subtraction function to be the inverse of the addition
function, these equations can be rewritten:

 Br - 1 = Ar

 Ar - 1 = Br - FK[Br - 1]

It can be seen that the last two equations describe the action of round 0 of the
decryption function, so that the output of round 0 of decryption equals the input
of round r - 1 of encryption. This correspondence holds all the way through the r
iterations, as is easily shown.

Note that the derivation does not require that F be a reversible function. To
see this, take a limiting case in which F produces a constant output (e.g., all ones)
regardless of the values of its input. The equations still hold.

chaRacteR StRingS The NIST algorithms, and the other FPE algorithms that have
been proposed, are used with plaintext consisting of a string of elements, called
 characters. Specifically, a finite set of two or more symbols is called an alphabet,
and the elements of an alphabet are called characters. A character string is a finite
sequence of characters from an alphabet. Individual characters may repeat in the
string. The number of different characters in an alphabet is called the base, also

M07_STAL7484_08_GE_C07.indd 229 08/04/22 8:24 AM

230 CHAPTER 7 / BlOCk CiPHER OPERATiOn

referred to as the radix of the alphabet. For example, the lowercase English alphabet
a, b, c, . . . has a radix, or base, of 26. For purposes of encryption and decryption, the
plaintext alphabet must be converted to numerals, where a numeral is a nonnegative
integer that is less than the base. For example, for the lowercase alphabet, the assign-
ment could be characters a, b, c, . . . , z map into 0, 1, 2, . . . , 25.

A limitation of this approach is that all of the elements in a plaintext format
must have the same radix. So, for example, an identification number that consists
of an alphabetic character followed by nine numeric digits cannot be handled in
format-preserving fashion by the FPEs that have been implemented so far.

The NIST document defines notation for specifying these conversions
(Table 7.3a). To begin, it is assumed that the character string is represented by a
numeral string. To convert a numeral string X into a number x, the function
NUMradix(X) is used. Viewing X as the string X[1] . . . X [m] with the most significant
numeral first, the function is defined as

 NUMradix(X) = a
m

i = 1
X[i] radixm - i = a

m - 1

i = 0
X[m - i] radixi

Observe that 0 … NUMradix(X) 6 radixm and that 0 … X[i] 6 radix.

[x]s Converts an integer into a byte string; it is the string of s bytes that encodes the
number x, with 0 … x 6 28s. The equivalent notation is STR2

8s(x).

LEN(X) Length of the character string X.

NUMradix(X) Converts strings to numbers. The number that the numeral string X represents in
base radix, with the most significant character first. In other words, it is the non-
negative integer less than radixLEN(X) whose most-significant-character-first repre-
sentation in base radix is X.

PRFK(X) A pseudorandom function that produces a 128-bit output with X as the input,
using encryption key K.

STRradix
m (x) Given a nonnegative integer x less than radixm, this function produces a repre-

sentation of x as a string of m characters in base radix, with the most significant
character first.

[i .. j] The set of integers between two integers i and j, including i and j.

X[i .. j] The substring of characters of a string X from X[i] to X[j], including X[i] and X[j].

REV(X) Given a bit string, X, the string that consists of the bits of X in reverse order.

(a) Notation

radix The base, or number of characters, in a given plaintext alphabet.

tweak Input parameter to the encryption and decryption functions whose confidentiality
is not protected by the mode.

tweakradix The base for tweak strings

minlen Minimum message length, in characters.

maxlen Maximum message length, in characters.

maxTlen Maximum tweak length

(b) Parameters

Table 7.3 Notation and Parameters Used in FPE Algorithms

M07_STAL7484_08_GE_C07.indd 230 08/04/22 8:24 AM

7.8 / FORMAT-PREsERving EnCRyPTiOn 231

For example, consider the string zaby in radix 26, which converts to the
 numeral string 25 0 1 24. This converts to the number x = (25 * 263) + (1 * 261)
+ 24 = 439450. To go in the opposite direction and convert from a number
x 6 radixm to a numeral string X of length m, the function STRradix

m (x) is used:

STRradix
m (x) = X[1] c X[m], where

X[i] = j x

radixm - i kmod radix, i = 1, c, m

With the mapping of characters to numerals and the use of the NUM func-
tion, a plaintext character string can be mapped to a number and stored as an
 unsigned integer. We would like to treat this unsigned integer as a bit string that
can be input to a bit-scrambling algorithm in FK. However, different platforms store
 unsigned integers differently, some in little-endian and some in big-endian fashion.
So one more step is needed. By the definition of the STR function, STR2

8s(x) will
generate a bit string of length 8s, equivalently a byte string of length s, which is a
binary integer with the most significant bit first, regardless of how x is stored as an
unsigned integer. For convenience the following notation is used: [x]s = STR2

8s(x).
Thus, [NUMradix(X)]s will convert the character string X into an unsigned integer
and then convert that to a byte string of length s bytes with the most significant
bit first.

Continuing, the preceding example should help clarify the issues involved.

Character string “zaby”

Numeral string X representation of
character string

25 0 1 24

Convert X to number
x = NUM26(X)

decimal: 439450
hex: 6B49A
binary: 1101011010010011010

x stored on big-endian byte order
machine as a 32-bit unsigned
 integer

hex: 00 06 B4 9A
binary: 00000000000001101011010010011010

x stored on little-endian byte
order machine as a 32-bit unsigned
 integer

hex: 9A B4 06 00
binary: 10011010101101000000011000000000

Convert x, regardless of endian
 format, to a bit string of length
32 bits (4 bytes), expressed as [x]4

00000000000001101011010010011010

the Function FK We can now define in general terms the function FK. The core
of FK is some type of randomizing function whose input and output are bit strings.
For convenience, the strings should be multiples of 8 bits, forming byte strings.
Define m to be u for even rounds and v for odd rounds; this specifies the de-
sired output character string length. Define b to be the number of bytes needed
to store the number representing a character string of m bytes. Then the round,

M07_STAL7484_08_GE_C07.indd 231 08/04/22 8:24 AM

232 CHAPTER 7 / BlOCk CiPHER OPERATiOn

including FK, consists of the following general steps (A and B refer to Ai and Bi
for round i):

1. Q d [NUMradix(X)]bE Converts numeral string X into byte string Q of
length b bytes.

2. Y d RAN[Q] A pseudorandom function PRNF that produces
a pseudorandom byte string Y as a function of
the bits of Q.

3. y d NUM2(Y) Converts Y into unsigned integer.

4. c d (NUMradix(A) + y) mod radixm Converts numeral string A into an integer and
adds to y, modulo radixm.

5. C d STRradix
m (c) Converts c into a numeral string C of length m.

6. A d B;
B d C

Completes the round by placing the unchanged
value of B from the preceding round into A, and
placing C into B.

Steps 1 through 3 constitute the round function FK. Step 3 is presented with Y,
which is an unstructured bit string. Because different platforms may store unsigned
integers using different word lengths and endian conventions, it is necessary to per-
form NUM2(Y) to get an unsigned integer y. The stored bit sequence for y may or
may not be identical to the bit sequence for Y.

As mentioned, the pseudorandom function in step 2 need not be reversible. Its
purpose is to provide a randomized, scrambled bit string. For DES, this is achieved
by using fixed S-boxes, as described in Appendix C. Virtually all FPE schemes that
use the Feistel structure use AES as the basis for the scrambling function to achieve
stronger security.

RelationShip Between Radix, MeSSage length, and Bit length Consider
a numeral string X of length len and base radix. If we convert this to a number
x = NUMradix(X), then the maximum value of x is radixlen - 1. The number of bits
needed to encode x is

 bitlen = <LOG2(radixlen)= = <lenLOG2(radix)=

Observe that an increase in either radix or len increases bitlen. Often, we want
to limit the value of bitlen to some fixed upper limit, for example, 128 bits, which is
the size of the input to AES encryption. We also want the FPE to handle a variety of
radix values. The typical FPE, and all of those discussed subsequently, allow a given
range of radix values and then define a maximum character string length in order to
provide the algorithm with a fixed value of bitlen. Let the range of radix values be
from 2 to maxradix, and the maximum allowable character string value be maxlen.
Then the following relationship holds:

 maxlen … :bitlen/LOG2(radix); , or equivalently

 maxlen … :bitlen * LOGradix(2);
For example, for a radix of 10, maxlen … :0.3 * bitlen; ; for a radix of 26,

maxlen … :0.21 * bitlen; . The larger the radix, the smaller the maximum character
length for a given bit length.

M07_STAL7484_08_GE_C07.indd 232 08/04/22 8:24 AM

7.8 / FORMAT-PREsERving EnCRyPTiOn 233

NIST Methods for Format-Preserving Encryption

In 2013, NIST issued SP 800-38G: Recommendation for Block Cipher Modes of
Operation: Methods for Format-Preserving Encryption. This Recommendation spec-
ifies three methods for format-preserving encryption, called FF1, FF2, and FF3. The
three methods all use the Feistel structure shown in Figure 7.12. They employ some-
what different round functions FK, which are built using AES. Important differences
are the following:

 ■ FF1 supports the greatest range of lengths for the plaintext character string
and the tweak. To achieve this, the round function uses a cipher-block-chaining
(CBC) style of encryption, whereas FF2 and FF3 employ simple electronic
codebook (ECB) encryption.

 ■ FF2 uses a subkey generated from the encryption key and the tweak, whereas
FF1 and FF3 use the encryption key directly. The use of a subkey may help
protect the original key from side-channel analysis, which is an attack based
on information gained from the physical implementation of a cryptosystem,
rather than brute force or cryptanalysis. Examples of such attacks are attempts
to deduce key bits based on power consumption or execution time.

 ■ FF3 offers the lowest round count, eight, compared to ten for FF1 and FF2,
and is the least flexible in the tweaks that it supports.

algoRithM FF1 Algorithm FF1 was submitted to NIST as a proposed FPE mode
[BELL10a, BELL10b] with the name FFX[Radix]. FF1 uses a pseudorandom func-
tion PRFK(X) that produces a 128-bit output with inputs X that is a multiple of 128
bits and encryption key K (Figure 7.13). In essence, PRFK(X) use CBC encryption
(Figure 7.4) with X as the plaintext input, encryption key K, and an initial vector
(IV) of all zeros. The output is the last block of ciphertext produced. This is also

Prerequisites:

Approved, 128-bit block cipher, CIPH;
Key, K, for the block cipher;

Input:

Nonempty bit string, X, such that LEN(X) is a multiple of 128.
Output:
128-bit block, Y

Steps:

 1. Let m = LEN(X)/128.

 2. Partition X into m 128-bit blocks X1, c , Xm, so that X = X1 } c}Xm

 3. Let Y0 = [0]16

 4. For j from 1 to m:

 5. let Yj = CIPHK(Yj - 1 ⊕ Xj).

 6. Return Ym.

Figure 7.13 Algorithm PRF(X)

M07_STAL7484_08_GE_C07.indd 233 08/04/22 8:25 AM

234 CHAPTER 7 / BlOCk CiPHER OPERATiOn

equivalent to the message authentication code known as CBC-MAC, or CMAC,
described in Chapter 12.

The FF1 encryption algorithm is illustrated in Figure 7.14. The shaded lines
correspond to the function FK. The algorithm has 10 rounds and the following
 parameters (Table 7.3b):

 ■ radix ∈ [2 .. 216]

 ■ radixminlen Ú 100

 ■ minlen Ú 2

 ■ maxlen 6 232. For the maximum radix value of 216, the maximum bit length to
store the integer value of X is 16 * 232 bits; for the minimum radix value of 2,
the maximum bit length to store the integer value of X is 232 bits.

 ■ maxTlen 6 232

The inputs to the encryption algorithm are a character string X of length n
and a tweak T of length t. The tweak is optional in that it may be the empty string.

Prerequisites:

Approved, 128-bit block cipher, CIPH;
Key, K, for the block cipher;
Base, radix, for the character alphabet;
Range of supported message lengths, [minlen .. maxlen];
Maximum byte length for tweaks, maxTlen.

Inputs:

Character string, X, in base radix of length n such that n ∈ [minlen .. maxlen];
Tweak T, a byte string of byte length t, such that t ∈ [0 .. maxTlen].

Output:

Character string, Y, such that LEN(Y) = n.

Steps:

1. Let u = :n/2; ; v = n - u.
2. Let A = X[1 .. u]; B = X[u + 1 .. n].
3. Let b = < <v LOG2(radix)=/8=; d = 4<b/4= + 4
4. Let P = [1]1 } [2]1 } [1]1 } [radix]3 } [10]1 } [u mod 256]1 } [n]4 } [t]4.
5. For i from 0 to 9:

i. Let Q = T } [0](-t - b - 1) mod 16 } [i]1 } [NUMradix(B)]b.
ii. Let R = PRFK(P }Q).

iii. Let S be the first d bytes of the following string of [d/16] 128-bit blocks:
R }CIPHK(R ⊕ [1]16) }CIPHK(R ⊕ [2]16) } c }CIPHK(R ⊕ [<d/16= - 1]16).

iv. Let y = NUM2(S).
v. If i is even, let m = u; else, let m = v.

vi. Let c = (NUMradix(A) + y) mod radixm.
vii. Let C = STRradix

m (c).
viii. Let A = B.

ix. Let B = C.

6. Return Y = A }B.

Figure 7.14 Algorithm FF1 (FFX[Radix])

M07_STAL7484_08_GE_C07.indd 234 08/04/22 8:25 AM

7.8 / FORMAT-PREsERving EnCRyPTiOn 235

The output is the encrypted character string Y of length n. What follows is a step-by-
step description of the algorithm.

 1., 2. The input X is split into two substrings A and B. If n is even, A and B are
of equal length. Otherwise, B is one character longer than A.

 3. The expression <v LOG2(radix)= equals the number of bits needed to
encode B, which is v characters long. Encoding B as a byte string, b is
the number of bytes in the encoding. The definition of d ensures that the
output of the Feistel round function is at least 4 bytes longer than this
encoding of B, which minimizes any bias in the modular reduction in
step 5.vi, as explained subsequently.

 4. P is a 128-bit (16-byte) block that is a function of radix, u, n, and t. It
serves as the first block of plaintext input to the CBC encryption mode
used in 5.ii, and is intended to increase security.

 5. The loop through the 10 rounds of encryption.

 5.i The tweak, T, the substring, B, and the round number, i, are encoded
as a binary string, Q, which is one or more 128-bit blocks in length. To
understand this step, first note that the value NUMradix(B) produces a
numeral string that represents B in base radix. How this numeral string is
formatted and stored is outside the scope of the standard. Then, the value
[NUMradix(B)]b produces the representation of the numerical value of B
as a binary number in a string of b bytes. We also have the length of T
is t bytes, and the round number is stored in a single byte. This yields a
length of (t + b + 1) bytes. This is padded out with z = (- t - b - 1)
mod 16 bytes. From the rules of modular arithmetic, we know that
(z + t + b + 1) mod 16 = 0. Thus the length of Q is one or more 128-
bit blocks.

 5.ii The concatenation of P and Q is input to the pseudorandom func-
tion PRF to produce a 128-bit output R. This function is the pseudo-
random core of the Feistel round function. It scrambles the bits of Bi
 (Figure 7.12).

 5.iii This step either truncates or expands R to a byte string S of length d
bytes. That is, if d … 16 bytes, then R is the first d bytes of R. Otherwise
the 16-byte R is concatenated with successive encryptions of R XORed
with successive constants to produce the shortest string of 16-byte blocks
whose length is greater than or equal to d bytes.

 5.iv This step begins the process of converting the results of the scrambling
of Bi into a form suitable for combining with Ai. In this step, the d-byte
string S is converted into a numeral string in base 2 that represents S.
That is, S is represented as a binary string y.

 5.v This step determines the length m of the character string output that is
required to match the length of the B portion of the round output. For
even-numbered rounds, the length is u characters, and for odd- numbered
rounds it is v characters, as shown in Figure 7.12.

 5.vi The numerical values of A and y are added modulo radixm. This truncates
the value of the sum to a value c that can be stored in m characters.

M07_STAL7484_08_GE_C07.indd 235 08/04/22 8:25 AM

236 CHAPTER 7 / BlOCk CiPHER OPERATiOn

 5.vii This step converts the c into the proper representation C as a string of m
characters.

 5.viii, 5.ix These steps complete the round by placing the unchanged value of B
from the preceding round into A, and placing C into B.

 6. After the final round, the result is returned as the concatenation of A and B.

It may be worthwhile to clarify the various uses of the NUM function in FF1.
NUM converts strings with a given radix into integers. In step 5.i, B is a character
string in base radix, so NUMradix(B) converts this into an integer, which is stored as a
byte string, suitable for encryption in step 5.ii. For step 5.iv, S is a byte string output
of an encryption function, which can be viewed a bit string, so NUM2(S) converts
this into an integer.

Finally, a brief explanation of the variable d is in order, which is best explained
by example. Let radix = 26 and v = 30 characters. Then b = 18 bytes, and d = 24
bytes. Step 5.ii produces an output R of 16 bytes. We desire a scrambled output of
b bytes to match the input, and so R needs to be padded out. Rather than padding
with a constant value such as all zeros, step 5.iii pads out with random bits. The
result, in step 5.iv is a number greater than radixm of fully randomized bits. The use
of randomized padding avoids a potential security risk of using a fixed padding.

algoRithM FF2 Algorithm FF2 was submitted to NIST as a proposed FPE mode
with the name VAES3 [VANC11]. The encryption algorithm is defined in Figure 7.15.
The shaded lines correspond to the function FK. The algorithm has the following
parameters:

 ■ radix ∈ [2 .. 28]

 ■ tweakradix ∈ [2 .. 28]

 ■ radixminlen Ú 100

 ■ minlen Ú 2

 ■ maxlen … 2:120/LOG2(radix); if radix is a power of 2. For the maximum radix
value of 28, maxlen … 30; for the minimum radix value of 2, maxlen … 240. In
both cases, the maximum bit length to store the integer value of X is 240 bits,
or 30 bytes.

 ■ maxlen … 2:98/LOG2(radix); if radix is a not a power of 2. For the maxi-
mum radix value of 255, maxlen … 24; for the minimum radix value of 3,
maxlen … 124.

 ■ maxTlen … :104/LOG2(tweakradix); . For the maximum tweakradix value of
28, maxTlen … 13.

For FF2, the plaintext character alphabet and that of the tweak may be different.
The first two steps of FF2 are the same as FF1, setting values for v, u, A, and B.

FF2 proceeds with the following steps:

3. P is a 128-bit (16-byte) block. If there is a tweak, then P is a function of
 radix, t, n, and the 13-byte numerical value of the tweak. If there is no tweak
(t = 0), then P is a function of radix and n. P is used to form an encryption key
in step 4.

4. J is the encryption of P using the input key K.

M07_STAL7484_08_GE_C07.indd 236 08/04/22 8:25 AM

7.8 / FORMAT-PREsERving EnCRyPTiOn 237

5. The loop through the 10 rounds of encryption.

5.i B is converted into a 15-byte number, prepended by the round number to
form a 16-byte block Q.

5.ii Q is encrypted using the encryption key J to yield Y.

The remaining steps are the same as for FF1. The essential difference is in the
way in which all of the parameters are incorporated into the encryption that takes
place in the block FK. In both cases, the encryption is not simply an encryption of B
using key K. For FF1, B is combined with the tweak, the round number, t, n, u, and
radix to form a string of multiple 16-byte blocks. Then CBC encryption is used with
K to produce a 16-byte output. For FF2, all of the parameters besides B are com-
bined to form a 16-byte block, which is then encrypted with K to form the key value
J. J is then used as the key for the one-block encryption of B.

The structure of FF2 explains the maximum length restrictions. In step 3, P
incorporates the radix, tweak length, the numeral string length, and the tweak into
the calculation. As input to AES, P is restricted to 16 bytes. With a maximum radix
value of 28, the radix value can be stored in one byte (byte value 0 corresponds
to 256). The string length n and tweak length t each easily fits into one byte. This
leaves a restriction that the value of the tweak should be stored in at most 13 bytes,

Approved, 128-bit block cipher, CIPH;
Key, K, for the block cipher;
Base, tweakradix, for the tweak character alphabet;
Range of supported message lengths, [minlen .. maxlen];
Maximum supported tweak length, maxTlen.

Inputs:

Numeral string, X, in base radix, of length n such that n ∈ [minlen .. maxlen];
Tweak numeral string, T, in base tweakradix, of length t such that t ∈ [0 .. maxTlen].

Output:
Numeral string, Y, such that LEN(Y) = n.

Steps:

1. Let u = :n/2; ; v = n - u.
2. Let A = X[1 .. u]; B = X[u + 1 .. n].
3. If t 7 0, P = [radix]1 } [t]1 } [n]1 } [NUMtweakradix(T)]13; else P = [radix]1 } [0]1 } [n]1 } [0]13.
4. Let J = CIPHK(P).
5. For i from 0 to 9:

i. Let Q d [i]1 } [NUMradix(B)]15

ii. Let Y d CIPHJ(Q).
iii. Let y d NUM2(Y).
iv. If i is even, let m = u; else, let m = v.

v. Let c = (NUMradix(A) + y) mod radixm.
vi. Let C = STRradix

m (c).
vii. Let A = B.

viii. Let B = C.

6. Return Y = A }B.

Figure 7.15 Algorithm FF2 (VAES3)

M07_STAL7484_08_GE_C07.indd 237 08/04/22 8:25 AM

238 CHAPTER 7 / BlOCk CiPHER OPERATiOn

or 104 bits. The number of bits to store the tweak is LOG2(tweakradixTlen). This
leads to the restriction maxTlen Ú :104/LOG2(tweakradix); . Similarly step 5i
incorporates B and the round number into a 16-byte input to AES, leaving
15 bytes to encode B, or 120 bits, so that the length must be less than or equal to
:120/LOG2(radix); . The parameter maxlen refers to the entire block, consisting of
partitions A and B, thus maxlen Ú 2:120/LOG2(radix); .

There is a further restriction on maxlen for a radix that is not a power of 2.
As explained in [VANC11], when the radix is not a power of 2, modular arithme-
tic causes the value (y mod radixm) to not have uniform distribution in the output
space, which can result in a cryptographic weakness.

algoRithM FF3 Algorithm FF3 was submitted to NIST as a proposed FPE mode
with the name BPS-BC [BRIE10]. The encryption algorithm is illustrated in
Figure 7.16. The shaded lines correspond to the function FK. The algorithm has the
following parameters:

 ■ radix ∈ [2 .. 216]

 ■ radixminlen Ú 100

 ■ minlen Ú 2

Approved, 128-bit block cipher, CIPH;
Key, K, for the block cipher;
Base, radix, for the character alphabet such that radix ∈ [2..216];
Range of supported message lengths, [minlen .. maxlen], such that minlen Ú 2 and
maxlen … 2:logradix(296); .

Inputs:

Numeral string, X, in base radix of length n such that n ∈ [minlen .. maxlen];
Tweak bit string, T, such that LEN(T) = 64.

Output:
Numeral string, Y, such that LEN(Y) = n.

Steps:

1. Let u = <n/2=; v = n - u.
2. Let A = X[1 .. u]; B = X[u + 1 .. n].
3. Let TL = T[0 .. 31] and TR = T[32 .. 63].
4. For i from 0 to 7:

i. If i is even, let m = u and W = TR, else let m = v and W = TL.
ii. Let P = REV([NUMradix(REV(B))]12) } [W ⊕ REV([i]4]).

iii. Let Y = CIPHK(P).
iv. Let y = NUM2(REV(Y)).

v. Let c = (NUMradix(REV(A)) + y) mod radixm.
vi. Let C = REV(STRradix

m (c)).
vii. Let A = B.

viii. Let B = C.

5. Return A }B.

Figure 7.16 Algorithm FF3 (BPS-BC)

M07_STAL7484_08_GE_C07.indd 238 08/04/22 8:25 AM

7.9 / kEy TERMs, REviEw QuEsTiOns, And PROBlEMs 239

 ■ maxlen … 2:LOGradix(296); . For the maximum radix value of 216, maxlen … 12;
for the minimum radix value of 2, maxlen … 192. In both cases, the maximum
bit length to store the integer value of X is 192 bits, or 24 bytes.

 ■ Tweak length = 64 bits

FF3 proceeds with the following steps:

1., 2. The input X is split into two substrings A and B. If n is even, A and B are
of equal length. Otherwise, A is one character longer than B, in contrast
to FF1 and FF2, where B is one character longer than A.

3. The tweak is partitioned into a 32-bit left tweak TL and a 32-bit right
tweak TR.

4. The loop through the 8 rounds of encryption.

4.i As in FF1 and FF2, this step determines the length m of the character
string output that is required to match the length of the B portion of the
round output. The step also determines whether TL or TR will be used as
W in step 4ii.

4.ii The bits of B are reversed, then NUMradix(B) produces a 12-byte numeral
string in base radix; the results are again reversed. A 32-bit encoding of
the round number i is stored in a 4-byte unit, which is reversed and then
XORed with W. P is formed by concatenating these two results to form a
16-byte block.

4.iii P is encrypted using the encryption key K to yield Y.

4.iv This is similar to step 5.iv in FF1, except that Y is reversed before convert-
ing it into a numeral string in base 2.

4.v The numerical values of the reverse of A and y are added modulo radixm.
This truncates the value of the sum to a value c that can be stored in m
characters.

4.vi This step converts c to a numeral string C.

The remaining steps are the same as for FF1.

Key Terms

block cipher modes of
operation

ciphertext stealing

meet-in-the-middle attack
nonce
triple DES (3DES)

Tweakable block cipher

 7.9 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

M07_STAL7484_08_GE_C07.indd 239 08/04/22 8:25 AM

240 CHAPTER 7 / BlOCk CiPHER OPERATiOn

Review Questions

 7.1 What is a tweakable block cipher?
 7.2 Why does double encryption of a plaintext with DES, with two different keys of

56 bits, not provide 112 bits of security?
 7.3 Why is double encryption in DES with two different keys not likely to be equivalent

to single encryption with a different key?
 7.4 List and briefly define the block cipher modes of operation.
 7.5 Why is the ECB mode not secure for encrypting large amounts of data or structured data?

Problems

 7.1 You want to build a hardware device to do block encryption in the cipher block chain-
ing (CBC) mode using an algorithm stronger than DES. 3DES is a good candidate.
Figure 7.17 shows two possibilities, both of which follow from the definition of CBC.
Which of the two would you choose:
a. For security?
b. For performance?

 7.2 Can you suggest a security improvement to either option in Figure 7.17, using only
three DES chips and some number of XOR functions? Assume you are still limited to
two keys.

Figure 7.17 Use of Triple DES in CBC Mode

Pn

K1 E

An-1

An

K2 D

K1 E

Bn-1

Bn
Cn-1

Cn

(b) Three-loop CBC

Pn

K1, K2 EDE

Cn-1

Cn

(a) One-loop CBC

M07_STAL7484_08_GE_C07.indd 240 08/04/22 8:25 AM

7.9 / Key Terms, review QuesTions, and Problems 241

 7.3 The Merkle–Hellman attack on 3DES begins by assuming a value of A = 0
(Figure 7.1b). Then, for each of the 256 possible values of K1, the plaintext P that pro-
duces A = 0 is determined. Describe the rest of the algorithm.

 7.4 With the ECB mode, if there is an error in a block of the transmitted ciphertext, only
the corresponding plaintext block is affected. However, in the CBC mode, this error
propagates. For example, an error in the transmitted C1 (Figure 7.4) obviously cor-
rupts P1 and P2.
a. Are any blocks beyond P2 affected?
b. Suppose that there is a bit error in the source version of P1. Through how many

ciphertext blocks is this error propagated? What is the effect at the receiver?
 7.5 Why should the initialization vector be protected against unauthorised use in the

CBC mode of encryption?
 7.6 By the end of the 1970s, it was already realized by practitioners of cryptography that a

DES key size of 56 bits was small enough to permit brute-force key search attacks by
adversaries having enough hardware. A proposal to increase the key size of a modi-
fied version of DES (potentially to 184 bits) was made by Rivest in 1984. The method
is known as DESX and encrypts a message m with keys k1, k2, and k3 of size 64, 56, and
64 bits, respectively, as follows: DES-X(k1, k2, k3, m) = k1 ⊕ DES(k2, m ⊕ k3).

 Show that it only gives a security of 120 bits against key search when the attacker has
a few pairs of plaintext-ciphertext available. In fact, due to this attack, Rivest sug-
gested keeping k1 = k3 with a security level of 120 bits.

 7.7 Given n blocks of message, the ECB mode produces exactly n blocks of ciphertext.
However, the CBC mode produces (n + 1) blocks, due to the use of IV. Other modes
such as CFB, OFB, and CTR also use an IV to encrypt messages. Show that secure
encryption of multiple blocks of plaintext necessarily requires the use of IV (or some
other form of randomization in the encryption process).

 7.8 If a block of ciphertext gets corrupted during transmission in the OFB mode, how
does it affect the decryption?

 7.9 Is it possible to parallelize encryption in the CFB mode? What about decryption?
 7.10 What are the advantages of CTR mode over the CBC mode? Explain in terms of the

implementation benefits in software, hardware, and decryption throughput.
 7.11 Padding may not always be appropriate. For example, one might wish to store the

encrypted data in the same memory buffer that originally contained the plaintext. In
that case, the ciphertext must be the same length as the original plaintext. We saw the
use of ciphertext stealing in the case of XTS-AES to deal with partial blocks. Figure 7.18a
shows the use of ciphertext stealing to modify CBC mode, called CBC-CTS.
a. Explain how it works.
b. Describe how to decrypt Cn - 1 and Cn.

 7.12 Figure 7.18b shows an alternative to CBC-CTS for producing ciphertext of equal
length to the plaintext when the plaintext is not an integer multiple of the block size.
a. Explain the algorithm.
b. Explain why CBC-CTS is preferable to this approach illustrated in Figure 7.18b.

 7.13 Draw a figure similar to those of Figure 7.8 for XTS-AES mode.
 7.14 Work out the following problems from first principles without converting to binary

and counting the bits. Then, compare with the formulae presented for encoding a

M07_STAL7484_08_GE_C07.indd 241 12/04/22 10:57 AM

242 CHAPTER 7 / BlOCk CiPHER OPERATiOn

character string into an integer, and vice-versa, in the specified radix. (Hint: Consider
the next-lower and next-higher power of two for each integer.)
a. How many bits are exactly required to encode the following integers? (The num-

ber shown as an integer’s subscript refers to the radix of that integer.)
i. 204710

ii. 204810
iii. 3276710
iv. 3276810
v. 3276716

vi. 3276816
vii. 537F16

viii. 2943110
b. Exactly how many bytes are required to represent the numbers in (a) above?

 7.15 a. In radix-26, write down the numeral string X for each of the following character
strings, followed by the number of “digits” (i.e., the length of the numeral string)
in each case.
i. “hex”

ii. “cipher”
iii. “not”
iv. “symbol”

Figure 7.18 Block Cipher Modes for Plaintext not a Multiple of Block Size

IV P1

C1

K K K K

+

PN-2

CN-2

CN-3

• • •

+

Encrypt Encrypt Encrypt Encrypt

Encrypt Encrypt

(a) Ciphertext stealing mode

(b) Alternative method

Encrypt Encrypt

+

CN X

PN-1

+

CN-1

PN 00…0

IV
P1

(bb bits)

C1
(bb bits)

K K K K

+

PN-2
(bb bits)

CN-2
(bb bits)

CN-3

• • •

+

select
leftmost

j bits

PN-1
(bb bits)

CN-1
(bb bits)

+

PN
(j bits)

CN
(j bits)

+

M07_STAL7484_08_GE_C07.indd 242 08/04/22 8:25 AM

7.9 / kEy TERMs, REviEw QuEsTiOns, And PROBlEMs 243

b. For each case of problem (a), determine the number x = NUM26(X)
c. Determine the byte form [x] for each number x computed in problem (b).
d. What is the smallest power of the radix (26) that is greater than each of the

 numerical strings determined in (b)?
e. Is it related to the length of the numeral string in each case, in problem (a)? If so,

what is this relationship?
 7.16 Refer to algorithms FF1 and FF2.

a. For step 1, for each algorithm, u d :n/2; and v d <n - u=. Show that for any
three integers x, y, and n:

if x = :n/2; and y = <n - x=, then:
i. Either x = n/2, or x = (n - 1)/2.

ii. Either y = n/2, or y = (n + 1)/2.
iii. x … y. (Under what condition is x = y?)

b. What is the significance of result in the previous sub-problem (iii), in terms of the
lengths u and v of the left and right half-strings, respectively?

 7.17 In step 3 of Algorithm FF1, what do b and d represent? What is the unit of measure-
ment (bits, bytes, digits, characters) of each of these quantities?

 7.18 In the inputs to algorithms FF1, FF2, and FF3, why are the specified radix ranges
 important? For example, why should radix ∈ [0..28] for Algorithm FF2, or
radix ∈ [2..216] in the case of Algorithm FF3?

Programming Problems

 7.1 Create software that can encrypt and decrypt in cipher block chaining mode using one
of the following ciphers: affine modulo 256, Hill modulo 256, S-DES, DES.

 Test data for S-DES using a binary initialization vector of 1010 1010. A binary plain-
text of 0000 0001 0010 0011 encrypted with a binary key of 01111 11101 should give
a binary plaintext of 1111 0100 0000 1011. Decryption should work correspondingly.

 7.2 Create software that can encrypt and decrypt in 4-bit cipher feedback mode using one
of the following ciphers: additive modulo 256, affine modulo 256, S-DES;

or
 8-bit cipher feedback mode using one of the following ciphers: 2 * 2 Hill modulo 256.

Test data for S-DES using a binary initialization vector of 1010 1011. A binary plain-
text of 0001 0010 0011 0100 encrypted with a binary key of 01111 11101 should give
a binary plaintext of 1110 1100 1111 1010. Decryption should work correspondingly.

 7.3 Create software that can encrypt and decrypt in counter mode using one of the follow-
ing ciphers: affine modulo 256, Hill modulo 256, S-DES.

 Test data for S-DES using a counter starting at 0000 0000. A binary plaintext of 0000
0001 0000 0010 0000 0100 encrypted with a binary key of 01111 11101 should give
a binary plaintext of 0011 1000 0100 1111 0011 0010. Decryption should work cor-
respondingly.

 7.4 Implement a differential cryptanalysis attack on 3-round S-DES.

M07_STAL7484_08_GE_C07.indd 243 08/04/22 8:25 AM

244

8.1 Principles of Pseudorandom Number Generation

The Use of Random Numbers
TRNGs, PRNGs, and PRFs
PRNG Requirements
Algorithm Design

8.2 Pseudorandom Number Generators

Linear Congruential Generators
Blum Blum Shub Generator

8.3 Pseudorandom Number Generation Using a Block Cipher

PRNG Using Block Cipher Modes of Operation
NIST CTR_DRBG

8.4 Stream Ciphers

8.5 RC4

Initialization of S
Stream Generation
Strength of RC4

8.6 Stream Ciphers Using Feedback Shift Registers

Linear Feedback Shift Registers
Nonlinear Feedback Shift Registers
Grain-128a

8.7 True Random Number Generators

Entropy Sources
Comparison of PRNGs and TRNGs
Conditioning
Health Testing
Intel Digital Random Number Generator

8.8 Key Terms, Review Questions, and Problems

Random Bit Generation
and Stream Ciphers

CHAPTER8

M08_STAL7484_08_GE_C08.indd 244 20/04/22 12:02

 Random Bit GeneRation and StReam CipheRS 245

An important cryptographic function is the generation of random bit streams. Random
bits streams are used in a wide variety of contexts, including key generation and
 encryption. In essence, there are two fundamentally different strategies for generating
random bits or random numbers. One strategy, which until recently dominated in cryp-
tographic applications, computes bits deterministically using an algorithm. This class
of random bit generators is known as pseudorandom number generators (PRNGs) or
deterministic random bit generators (DRBGs). The other strategy is to produce bits
non-deterministically using some physical source that produces some sort of random
output. This latter class of random bit generators is known as true random number gen-
erators (TRNGs) or non-deterministic random bit generators (NRBGs).

The chapter begins with an analysis of the basic principles of PRNGs. Next, we
look at some common PRNGs, including PRNGs based on the use of a symmetric
block cipher. The chapter then moves on to the topic of symmetric stream ciphers,
which are based on the use of a PRNG.

The remainder of the chapter is devoted to TRNGs. We look first at the basic
principles and structure of TRNGs, and then examine a specific product, the Intel
Digital Random Number Generator.

Throughout this chapter, reference is made to four important NIST documents:

■■ SP 800-90A (Recommendation for Random Number Generation Using
Deterministic Random Bit Generators, June 2015): Specifies mechanisms for
the generation of random bits using deterministic methods.

■■ SP 800-90B (Recommendation for the Entropy Sources Used for Random Bit
Generation, January 2018): Covers design principles and requirements for
entropy sources (ES), the devices from which we get unpredictable random-
ness and NRNGs.

■■ SP 800-90C (Recommendation for Random Bit Generator (RBG)
Constructions, April 2016): Discusses how to combine the entropy sources in
90B with the DRNG’s from 90A to provide large quantities of unpredictable
bits for cryptographic applications.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

■◆ Explain the concepts of randomness and unpredictability with respect to
random numbers.

■◆ Understand the differences among true random number generators,
 pseudorandom number generators, and pseudorandom functions.

■◆ Present an overview of requirements for pseudorandom number generators.

■◆ Explain how a block cipher can be used to construct a pseudorandom
number generator.

■◆ Present an overview of stream ciphers and RC4.

■◆ Explain the significance of skew.

M08_STAL7484_08_GE_C08.indd 245 20/04/22 12:02

246 ChapteR 8 / Random Bit GeneRation and StReam CipheRS

■■ SP 800-22 (A Statistical Test Suite for Random and Pseudorandom Number
Generators for Cryptographic Applications, April 2010) discusses the selection
and testing of NRBGs and DRBGs.

These specifications have heavily influenced the implementation of random bit
generators in industry both in the U.S. and worldwide.

 8.1 PRINCIPLES OF PSEUDORANDOM NUMBER GENERATION

Random numbers play an important role in the use of encryption for various net-
work security applications. In this section, we provide a brief overview of the use of
random numbers in cryptography and network security and then focus on the prin-
ciples of pseudorandom number generation.

The Use of Random Numbers

A number of network security algorithms and protocols based on cryptography
make use of random binary numbers. For example,

■■ Key distribution and reciprocal (mutual) authentication schemes, such as those
discussed in Chapters 14 and 15. In such schemes, two communicating parties
cooperate by exchanging messages to distribute keys and/or authenticate each
other. In many cases, nonces are used for handshaking to prevent replay attacks.
The use of random numbers for the nonces frustrates an opponent’s efforts to
determine or guess the nonce, in order to repeat an obsolete transaction.

■■ Session key generation. We will see a number of protocols in this book where a
secret key for symmetric encryption is generated for use for a particular trans-
action (or session) and is valid for a short period of time. This key is generally
called a session key.

■■ Generation of keys for the RSA public-key encryption algorithm (described
in Chapter 9).

■■ Generation of a bit stream for symmetric stream encryption (described in this
chapter).

These applications give rise to two distinct and not necessarily compatible
 requirements for a sequence of random numbers: randomness and unpredictability.

Randomness Traditionally, the concern in the generation of a sequence of alleg-
edly random numbers has been that the sequence of numbers be random in some
well-defined statistical sense. The following two criteria are used to validate that a
sequence of numbers is random:

■■ Uniform distribution: The distribution of bits in the sequence should be
 uniform; that is, the frequency of occurrence of ones and zeros should be
 approximately equal.

■■ Independence: No one subsequence in the sequence can be inferred from the
others.

M08_STAL7484_08_GE_C08.indd 246 20/04/22 12:02

8.1 / pRinCipleS of pSeudoRandom numBeR GeneRation 247

Although there are well-defined tests for determining that a sequence of bits
matches a particular distribution, such as the uniform distribution, there is no such
test to “prove” independence. Rather, a number of tests can be applied to demon-
strate if a sequence does not exhibit independence. The general strategy is to apply
a number of such tests until the confidence that independence exists is sufficiently
strong. That is, if each of a number of tests fails to show that a sequence of bits is not
independent, then we can have a high level of confidence that the sequence is in fact
independent.

In the context of our discussion, the use of a sequence of numbers that appear
statistically random often occurs in the design of algorithms related to cryptography.
For example, a fundamental requirement of the RSA public-key encryption scheme
discussed in Chapter 9 is the ability to generate prime numbers. In general, it is diffi-
cult to determine if a given large number N is prime. A brute-force approach would
be to divide N by every odd integer less than 2N. If N is on the order, say, of 10150,
which is a not uncommon occurrence in public-key cryptography, such a brute-force
approach is beyond the reach of human analysts and their computers. However, a
number of effective algorithms exist that test the primality of a number by using a
sequence of randomly chosen integers as input to relatively simple computations.
If the sequence is sufficiently long (but far, far less than 210150), the primality of a
number can be determined with near certainty. This type of approach, known as ran-
domization, crops up frequently in the design of algorithms. In essence, if a problem
is too hard or time-consuming to solve exactly, a simpler, shorter approach based
on randomization is used to provide an answer with any desired level of confidence.

UnpRedictability In applications such as reciprocal authentication, session key
generation, and stream ciphers, the requirement is not just that the sequence of
numbers be statistically random but that the successive members of the sequence
are unpredictable. With “true” random sequences, each number is statistically inde-
pendent of other numbers in the sequence and therefore unpredictable. Although
true random numbers are used in some applications, they have their limitations,
such as inefficiency, as is discussed shortly. Thus, it is more common to implement
algorithms that generate sequences of numbers that appear to be random but are in
fact not random. In this latter case, care must be taken that an opponent not be able
to predict future elements of the sequence on the basis of earlier elements.

TRNGs, PRNGs, and PRFs

Cryptographic applications typically make use of algorithmic techniques for ran-
dom number generation. These algorithms are deterministic and therefore produce
sequences of numbers that are not statistically random. However, if the algorithm is
good, the resulting sequences will pass many tests of randomness. Such numbers are
referred to as pseudorandom numbers.

You may be somewhat uneasy about the concept of using numbers generated
by a deterministic algorithm as if they were random numbers. Despite what might be
called philosophical objections to such a practice, it generally works. That is, under
most circumstances, pseudorandom numbers will perform as well as if they were
random for a given use. The phrase “as well as” is unfortunately subjective, but the

M08_STAL7484_08_GE_C08.indd 247 20/04/22 12:02

248 ChapteR 8 / Random Bit GeneRation and StReam CipheRS

use of pseudorandom numbers is widely accepted. The same principle applies in
statistical applications, in which a statistician takes a sample of a population and
assumes that the results will be approximately the same as if the whole population
were measured.

Figure 8.1 contrasts a true random number generator (TRNG) with two forms
of pseudorandom number generators. A TRNG takes as input a source that is
 effectively random; the source is often referred to as an entropy source. We discuss
such sources in Section 8.6. In essence, the entropy source is drawn from the physi-
cal environment of the computer and could include things such as keystroke timing
patterns, disk electrical activity, mouse movements, and instantaneous values of the
system clock. The source, or combination of sources, serve as input to an algorithm
that produces random binary output. The TRNG may simply involve conversion of
an analog source to a binary output. The TRNG may involve additional processing
to overcome any bias in the source; this is discussed in Section 8.6.

In contrast, a PRNG takes as input a fixed value, called the seed, and produces
a sequence of output bits using a deterministic algorithm. Quite often, the seed is
generated by a TRNG. Typically, as shown, there is some feedback path by which
some of the results of the algorithm are fed back as input as additional output bits
are produced. The important thing to note is that the output bit stream is deter-
mined solely by the input value or values, so that an adversary who knows the algo-
rithm and the seed can reproduce the entire bit stream.

Figure 8.1 shows two different forms of PRNGs, based on application.

■■ Pseudorandom number generator: An algorithm that is used to produce an
open-ended sequence of bits is referred to as a PRNG. A common application
for an open-ended sequence of bits is as input to a symmetric stream cipher,
as discussed in Section 8.4. Also, see Figure 4.1a.

Figure 8.1 Random and Pseudorandom Number Generators

Conversion
to binary

Source of
true

randomness

Random
bit stream

(a) TRNG

TRNG 5 true random number generator
PRNG 5 pseudorandom number generator
PRF 5 pseudorandom function

Deterministic
algorithm

Seed

Pseudorandom
bit stream

(b) PRNG

Deterministic
algorithm

Seed

Pseudorandom
value

(c) PRF

Context-
specific
values

M08_STAL7484_08_GE_C08.indd 248 20/04/22 12:02

8.1 / pRinCipleS of pSeudoRandom numBeR GeneRation 249

■■ Pseudorandom function (PRF): A PRF is used to produce a pseudorandom
string of bits of some fixed length. Examples are symmetric encryption keys
and nonces. Typically, the PRF takes as input a seed plus some context specific
values, such as a user ID or an application ID. A number of examples of PRFs
will be seen throughout this book, notably in Chapters 19 and 20.

Other than the number of bits produced, there is no difference between
a PRNG and a PRF. The same algorithms can be used in both applications. Both
require a seed and both must exhibit randomness and unpredictability. Further,
a PRNG application may also employ context-specific input. In what follows, we
make no distinction between these two applications.

PRNG Requirements

When a PRNG or PRF is used for a cryptographic application, then the basic
 requirement is that an adversary who does not know the seed is unable to determine
the pseudorandom string. For example, if the pseudorandom bit stream is used in a
stream cipher, then knowledge of the pseudorandom bit stream would enable the
adversary to recover the plaintext from the ciphertext. Similarly, we wish to protect
the output value of a PRF. In this latter case, consider the following scenario. A 128-
bit seed, together with some context-specific values, are used to generate a 128-bit
secret key that is subsequently used for symmetric encryption. Under normal cir-
cumstances, a 128-bit key is safe from a brute-force attack. However, if the PRF
does not generate effectively random 128-bit output values, it may be possible for an
adversary to narrow the possibilities and successfully use a brute force attack.

This general requirement for secrecy of the output of a PRNG or PRF leads
to specific requirements in the areas of randomness, unpredictability, and the char-
acteristics of the seed. We now look at these in turn.

Randomness In terms of randomness, the requirement for a PRNG is that the gen-
erated bit stream appear random even though it is deterministic. There is no single
test that can determine if a PRNG generates numbers that have the characteristic
of randomness. The best that can be done is to apply a sequence of tests to the
PRNG. If the PRNG exhibits randomness on the basis of multiple tests, then it can
be assumed to satisfy the randomness requirement. NIST SP 800-22 specifies that
the tests should seek to establish the following three characteristics.

■■ Uniformity: At any point in the generation of a sequence of random or pseu-
dorandom bits, the occurrence of a zero or one is equally likely, that is, the
probability of each is exactly 1/2. The expected number of zeros (or ones) is
n/2, where n = the sequence length.

■■ Scalability: Any test applicable to a sequence can also be applied to subse-
quences extracted at random. If a sequence is random, then any such extracted
subsequence should also be random. Hence, any extracted subsequence should
pass any test for randomness.

■■ Consistency: The behavior of a generator must be consistent across starting
values (seeds). It is inadequate to test a PRNG based on the output from
a single seed or a TRNG on the basis of an output produced from a single
physical output.

M08_STAL7484_08_GE_C08.indd 249 20/04/22 12:02

250 ChapteR 8 / Random Bit GeneRation and StReam CipheRS

SP 800-22 lists 15 separate tests of randomness. An understanding of these
tests requires a basic knowledge of statistical analysis, so we don’t attempt a techni-
cal description here. Instead, to give some flavor for the tests, we list three of the
tests and the purpose of each test, as follows.

■■ Frequency test: This is the most basic test and must be included in any test
suite. The purpose of this test is to determine whether the number of ones and
zeros in a sequence is approximately the same as would be expected for a truly
random sequence.

■■ Runs test: The focus of this test is the total number of runs in the sequence,
where a run is an uninterrupted sequence of identical bits bounded before
and after with a bit of the opposite value. The purpose of the runs test is to
determine whether the number of runs of ones and zeros of various lengths is
as expected for a random sequence.

■■ Maurer’s universal statistical test: The focus of this test is the number of
bits between matching patterns (a measure that is related to the length of a
compressed sequence). The purpose of the test is to detect whether or not
the sequence can be significantly compressed without loss of information.
A significantly compressible sequence is considered to be non-random.

UnpRedictability A stream of pseudorandom numbers should exhibit two forms of
unpredictability:

■■ Forward unpredictability: If the seed is unknown, the next output bit in the
sequence should be unpredictable in spite of any knowledge of previous bits
in the sequence.

■■ Backward unpredictability: It should also not be feasible to determine the
seed from knowledge of any generated values. No correlation between a seed
and any value generated from that seed should be evident; each element of the
sequence should appear to be the outcome of an independent random event
whose probability is 1/2.

The same set of tests for randomness also provide a test of unpredictability. If
the generated bit stream appears random, then it is not possible to predict some bit
or bit sequence from knowledge of any previous bits. Similarly, if the bit sequence
appears random, then there is no feasible way to deduce the seed based on the bit
sequence. That is, a random sequence will have no correlation with a fixed value (the
seed).

seed ReqUiRements For cryptographic applications, the seed that serves as input to
the PRNG must be secure. Because the PRNG is a deterministic algorithm, if the
adversary can deduce the seed, then the output can also be determined. Therefore,
the seed must be unpredictable. In fact, the seed itself must be a random or pseudo-
random number.

Typically, the seed is generated by a TRNG, as shown in Figure 8.2. This is
the scheme recommended by SP 800-90A. The reader may wonder, if a TRNG is
available, why it is necessary to use a PRNG. If the application is a stream cipher,
then a TRNG is not practical. The sender would need to generate a keystream of

M08_STAL7484_08_GE_C08.indd 250 20/04/22 12:02

8.1 / pRinCipleS of pSeudoRandom numBeR GeneRation 251

bits as long as the plaintext and then transmit the keystream and the ciphertext
 securely to the receiver. If a PRNG is used, the sender need only find a way to
deliver the stream cipher key, which is typically 128 or 256 bits, to the receiver in a
secure fashion.

Even in the case of a PRF application, in which only a limited number of bits
is generated, it is generally desirable to use a TRNG to provide the seed to the
PRF and use the PRF output rather than use the TRNG directly. As is explained
in Section 8.6, a TRNG may produce a binary string with some bias. The PRF
would have the effect of conditioning the output of the TRNG so as to eliminate
that bias.

Finally, the mechanism used to generate true random numbers may not be
able to generate bits at a rate sufficient to keep up with the application requiring the
random bits.

Algorithm Design

Cryptographic PRNGs have been the subject of much research over the years,
and a wide variety of algorithms have been developed. These fall roughly into two
categories.

■■ Purpose-built algorithms: These are algorithms designed specifically and
solely for the purpose of generating pseudorandom bit streams. Some of these
algorithms are used for a variety of PRNG applications; several of these are
described in the next section. Others are designed specifically for use in a
stream cipher. This topic is examined later in this chapter.

■■ Algorithms based on existing cryptographic algorithms: Cryptographic
 algorithms have the effect of randomizing input data. Indeed, this is a require-
ment of such algorithms. For example, if a symmetric block cipher produced

Figure 8.2 Generation of Seed Input to PRNG

Entropy
source

Pseudorandom
number generator

(PRNG)

Seed

Pseudorandom
bit stream

True random
number generator

(TRNG)

M08_STAL7484_08_GE_C08.indd 251 20/04/22 12:02

252 ChapteR 8 / Random Bit GeneRation and StReam CipheRS

ciphertext that had certain regular patterns in it, it would aid in the process of
cryptanalysis. Thus, cryptographic algorithms can serve as the core of PRNGs.
SP 800-90A recommends three categories of such algorithms:

–Symmetric block ciphers: This approach is discussed in Section 8.3.

–Hash functions and message authentication codes: These approaches are
examined in Chapter 12.

Any of these approaches can yield a cryptographically strong PRNG.
A purpose-built algorithm may be provided by an operating system for general use.
For applications that already use certain cryptographic algorithms for encryption
or authentication, it makes sense to reuse the same code for the PRNG. Thus, all of
these approaches are in common use.

 8.2 PSEUDORANDOM NUMBER GENERATORS

In this section, we look at two types of algorithms for PRNGs.

Linear Congruential Generators

A widely used technique for pseudorandom number generation is an algorithm first
proposed by Lehmer [LEHM51], which is known as the linear congruential method.
The algorithm is parameterized with four numbers, as follows:

m the modulus m 7 0
a the multiplier 0 6 a 6 m
c the increment 0 … c 6 m
X0 the starting value, or seed 0 … X0 6 m

The sequence of random numbers {Xn} is obtained via the following iterative
equation:

 Xn + 1 = (aXn + c) mod m

If m, a, c, and X0 are integers, then this technique will produce a sequence of integers
with each integer in the range 0 … Xn 6 m.

The selection of values for a, c, and m is critical in developing a good ran-
dom number generator. For example, consider a = c = 1. The sequence produced
is obviously not satisfactory. Now consider the values a = 7, c = 0, m = 32, and
X0 = 1. This generates the sequence {7, 17, 23, 1, 7, etc.}, which is also clearly
 unsatisfactory. Of the 32 possible values, only four are used; thus, the sequence is said
to have a period of 4. If, instead, we change the value of a to 5, then the sequence is
{5, 25, 29, 17, 21, 9, 13, 1, 5, etc. }, which increases the period to 8.

We would like m to be very large, so that there is the potential for producing
a long series of distinct random numbers. A common criterion is that m be nearly
equal to the maximum representable nonnegative integer for a given computer.
Thus, a value of m near to or equal to 231 is typically chosen.

M08_STAL7484_08_GE_C08.indd 252 20/04/22 12:02

8.2 / pSeudoRandom numBeR GeneRatoRS 253

[PARK88] proposes three tests to be used in evaluating a random number
generator:

T1: The function should be a full-period generating function. That is, the function
should generate all the numbers from 0 through m - 1 before repeating.

T2: The generated sequence should appear random.
T3: The function should implement efficiently with 32-bit arithmetic.

With appropriate values of a, c, and m, these three tests can be passed. With
respect to T1, it can be shown that if m is prime and c = 0, then for certain values
of a the period of the generating function is m - 1, with only the value 0 missing.
For 32-bit arithmetic, a convenient prime value of m is 231 - 1. Thus, the generating
function becomes

 Xn + 1 = (aXn) mod (231 - 1)

Of the more than 2 billion possible choices for a, only a handful of multipliers
pass all three tests. One such value is a = 75 = 16807, which was originally selected
for use in the IBM 360 family of computers [LEWI69]. This generator is widely
used and has been subjected to a more thorough testing than any other PRNG. It is
 frequently recommended for statistical and simulation work (e.g., [JAIN91]).

The strength of the linear congruential algorithm is that if the multiplier and
modulus are properly chosen, the resulting sequence of numbers will be statisti-
cally indistinguishable from a sequence drawn at random (but without replacement)
from the set 1, 2, c , m - 1. But there is nothing random at all about the algo-
rithm, apart from the choice of the initial value X0. Once that value is chosen, the
remaining numbers in the sequence follow deterministically. This has implications
for cryptanalysis.

If an opponent knows that the linear congruential algorithm is being used and
if the parameters are known (e.g., a = 75, c = 0, m = 231 - 1), then once a single
number is discovered, all subsequent numbers are known. Even if the opponent
knows only that a linear congruential algorithm is being used, knowledge of a small
part of the sequence is sufficient to determine the parameters of the algorithm.
Suppose that the opponent is able to determine values for X0, X1, X2, and X3. Then

 X1 = (aX0 + c) mod m
 X2 = (aX1 + c) mod m
 X3 = (aX2 + c) mod m

These equations can be solved for a, c, and m.
Thus, although it is nice to be able to use a good PRNG, it is desirable to

make the actual sequence used nonreproducible, so that knowledge of part of the
sequence on the part of an opponent is insufficient to determine future elements of
the sequence. This goal can be achieved in a number of ways. For example, [BRIG79]
suggests using an internal system clock to modify the random number stream. One
way to use the clock would be to restart the sequence after every N numbers using
the current clock value (mod m) as the new seed. Another way would be simply to
add the current clock value to each random number (mod m).

M08_STAL7484_08_GE_C08.indd 253 20/04/22 12:02

254 ChapteR 8 / Random Bit GeneRation and StReam CipheRS

Blum Blum Shub Generator

A popular approach to generating secure pseudorandom numbers is known as
the Blum Blum Shub (BBS) generator (see Figure 8.3), named for its developers
[BLUM86]. It has perhaps the strongest public proof of its cryptographic strength
of any purpose-built algorithm. The procedure is as follows. First, choose two large
prime numbers, p and q, that both have a remainder of 3 when divided by 4. That is,

 p K q K 3(mod 4)

This notation, explained more fully in Chapter 2, simply means that (p mod 4) =
(q mod 4) = 3. For example, the prime numbers 7 and 11 satisfy 7 K 11 K 3(mod 4).
Let n = p * q. Next, choose a random number s, such that s is relatively prime to n;
this is equivalent to saying that neither p nor q is a factor of s. Then the BBS genera-
tor produces a sequence of bits Bi according to the following algorithm:

X0 = s2 mod n
for i = 1 to ∞

Xi = (Xi−1)2 mod n
Bi = Xi mod 2

Thus, the least significant bit is taken at each iteration. Table 8.1 shows an example
of BBS operation. Here, n = 192649 = 383 * 503, and the seed s = 101355.

The BBS is referred to as a cryptographically secure pseudorandom bit
 generator (CSPRBG). A CSPRBG is defined as one that passes the next-bit test,
which, in turn, is defined as follows [MENE97]: A pseudorandom bit generator is
said to pass the next-bit test if there is not a polynomial-time algorithm1 that, on
input of the first k bits of an output sequence, can predict the (k + 1)st bit with
probability significantly greater than 1/2. In other words, given the first k bits of the

sequence, there is not a practical algorithm that can even allow you to state that the
next bit will be 1 (or 0) with probability greater than 1/2. For all practical purposes,
the sequence is unpredictable. The security of BBS is based on the difficulty of
 factoring n. That is, given n, we need to determine its two prime factors p and q.

 8.3 PSEUDORANDOM NUMBER GENERATION USING
A BLOCK CIPHER

A popular approach to PRNG construction is to use a symmetric block cipher as the
heart of the PRNG mechanism. For any block of plaintext, a symmetric block cipher
produces an output block that is apparently random. That is, there are no patterns
or regularities in the ciphertext that provide information that can be used to deduce
the plaintext. Thus, a symmetric block cipher is a good candidate for building a pseu-
dorandom number generator.

If an established, standardized block cipher is used, such as DES or AES, then
the security characteristics of the PRNG can be established. Further, many applica-
tions already make use of DES or AES, so the inclusion of the block cipher as part
of the PRNG algorithm is straightforward.

PRNG Using Block Cipher Modes of Operation

Two approaches that use a block cipher to build a PNRG have gained widespread
acceptance: the CTR mode and the OFB mode. The CTR mode is recommended in
NIST SP 800-90A, in the ANSI standard X9.82 (Random Number Generation), and
in RFC 4086 (Randomness Requirements for Security, June 2005). The OFB mode is
recommended in X9.82 and RFC 4086.

Figure 8.4 illustrates the two methods. In each case, the seed consists of two
parts: the encryption key value and a value V that will be updated after each block
of pseudorandom numbers is generated. Thus, for AES-128, the seed consists of a
128-bit key and a 128-bit V value. In the CTR case, the value of V is incremented 1A polynomial-time algorithm of order k is one whose running time is bounded by a polynomial of order k.

Figure 8.3 Blum Blum Shub Block Diagram

Generate
x2 mod n

Select least
significant bit

Initialize
with seed s

[0, 1]

M08_STAL7484_08_GE_C08.indd 254 20/04/22 12:02

8.3 / pSeudoRandom numBeR GeneRation uSinG a BloCk CipheR 255

sequence, there is not a practical algorithm that can even allow you to state that the
next bit will be 1 (or 0) with probability greater than 1/2. For all practical purposes,
the sequence is unpredictable. The security of BBS is based on the difficulty of
 factoring n. That is, given n, we need to determine its two prime factors p and q.

 8.3 PSEUDORANDOM NUMBER GENERATION USING
A BLOCK CIPHER

A popular approach to PRNG construction is to use a symmetric block cipher as the
heart of the PRNG mechanism. For any block of plaintext, a symmetric block cipher
produces an output block that is apparently random. That is, there are no patterns
or regularities in the ciphertext that provide information that can be used to deduce
the plaintext. Thus, a symmetric block cipher is a good candidate for building a pseu-
dorandom number generator.

If an established, standardized block cipher is used, such as DES or AES, then
the security characteristics of the PRNG can be established. Further, many applica-
tions already make use of DES or AES, so the inclusion of the block cipher as part
of the PRNG algorithm is straightforward.

PRNG Using Block Cipher Modes of Operation

Two approaches that use a block cipher to build a PNRG have gained widespread
acceptance: the CTR mode and the OFB mode. The CTR mode is recommended in
NIST SP 800-90A, in the ANSI standard X9.82 (Random Number Generation), and
in RFC 4086 (Randomness Requirements for Security, June 2005). The OFB mode is
recommended in X9.82 and RFC 4086.

Figure 8.4 illustrates the two methods. In each case, the seed consists of two
parts: the encryption key value and a value V that will be updated after each block
of pseudorandom numbers is generated. Thus, for AES-128, the seed consists of a
128-bit key and a 128-bit V value. In the CTR case, the value of V is incremented 1A polynomial-time algorithm of order k is one whose running time is bounded by a polynomial of order k.

Table 8.1 Example Operation of BBS Generator

i Xi Bi

0 20749
1 143135 1
2 177671 1
3 97048 0
4 89992 0
5 174051 1
6 80649 1
7 45663 1
8 69442 0
9 186894 0
10 177046 0

i Xi Bi

11 137922 0
12 123175 1
13 8630 0
14 114386 0
15 14863 1
16 133015 1
17 106065 1
18 45870 0
19 137171 1
20 48060 0

M08_STAL7484_08_GE_C08.indd 255 20/04/22 12:02

256 ChapteR 8 / Random Bit GeneRation and StReam CipheRS

by 1 after each encryption. In the case of OFB, the value of V is updated to equal the
value of the preceding PRNG block. In both cases, pseudorandom bits are produced
one block at a time (e.g., for AES, PRNG bits are generated 128 bits at a time).

The CTR algorithm for PRNG, called CTR_DRBG, can be summarized
as follows.

while (len (temp) < requested_number_of_bits) do
 V = (V + 1) mod 2128

 output_block = E(Key, V)
 temp = temp || output_block

The OFB algorithm can be summarized as follows.

while (len (temp) < requested_number_of_bits) do
 V = E(Key, V)
 temp = temp || V

To get some idea of the performance of these two PRNGs, consider the follow-
ing short experiment. A random bit sequence of 256 bits was obtained from random.
org, which uses three radios tuned between stations to pick up atmospheric noise.
These 256 bits form the seed, allocated as

Key: cfb0ef3108d49cc4562d5810b0a9af60

V: 4c89af496176b728ed1e2ea8ba27f5a4

The total number of one bits in the 256-bit seed is 124, or a fraction of 0.48,
which is reassuringly close to the ideal of 0.5.

For the OFB PRNG, Table 8.2 shows the first eight output blocks (1024 bits)
with two rough measures of security. The second column shows the fraction of one
bits in each 128-bit block. This corresponds to one of the NIST tests. The results indi-
cate that the output is split roughly equally between zero and one bits. The third col-
umn shows the fraction of bits that match between adjacent blocks. If this number

Figure 8.4 PRNG Mechanisms Based on Block Ciphers

(a) CTR mode

V

Encrypt

Pseudorandom bits

K

1

1

(b) OFB mode

V

Encrypt

Pseudorandom bits

K

M08_STAL7484_08_GE_C08.indd 256 20/04/22 12:02

http://random.org
http://random.org

8.3 / pSeudoRandom numBeR GeneRation uSinG a BloCk CipheR 257

Output Block
Fraction of
One Bits

Fraction of Bits
that Match with
Preceding Block

1786f4c7ff6e291dbdfdd90ec3453176 0.57 —
5e17b22b14677a4d66890f87565eae64 0.51 0.52
fd18284ac82251dfb3aa62c326cd46cc 0.47 0.54
c8e545198a758ef5dd86b41946389bd5 0.50 0.44
fe7bae0e23019542962e2c52d215a2e3 0.47 0.48
14fdf5ec99469598ae0379472803accd 0.49 0.52
6aeca972e5a3ef17bd1a1b775fc8b929 0.57 0.48
f7e97badf359d128f00d9b4ae323db64 0.55 0.45

Table 8.2 Example Results for PRNG Using OFB

Output Block
Fraction of
One Bits

Fraction of Bits
that Match with
Preceding Block

1786f4c7ff6e291dbdfdd90ec3453176 0.57 —

60809669a3e092a01b463472fdcae420 0.41 0.41

d4e6e170b46b0573eedf88ee39bff33d 0.59 0.45

5f8fcfc5deca18ea246785d7fadc76f8 0.59 0.52

90e63ed27bb07868c753545bdd57ee28 0.53 0.52

0125856fdf4a17f747c7833695c52235 0.50 0.47
f4be2d179b0f2548fd748c8fc7c81990 0.51 0.48
1151fc48f90eebac658a3911515c3c66 0.47 0.45

Table 8.3 Example Results for PRNG Using CTR

differs substantially from 0.5, that suggests a correlation between blocks, which
could be a security weakness. The results suggest no correlation.

Table 8.3 shows the results using the same key and V values for CTR mode.
Again, the results are favorable.

NIST CTR_DRBG

We now look more closely at the details of the PRNG defined in NIST SP 800-90A
based on the CTR mode of operation. The PRNG is referred to as CTRDRBG
(counter mode–deterministic random bit generator). CTR_DRBG is widely imple-
mented and is part of the hardware random number generator implemented on all
recent Intel processor chips (discussed in Section 8.6).

The DRBG assumes that an entropy source is available to provide random
bits. Typically, the entropy source will be a TRNG based on some physical source.
Other sources are possible if they meet the required entropy measure of the
 application. Entropy is an information theoretic concept that measures unpredict-
ability, or randomness; see Appendix B for details. The encryption algorithm used
in the DRBG may be 3DES with three keys or AES with a key size of 128, 192, or
256 bits.

M08_STAL7484_08_GE_C08.indd 257 20/04/22 12:02

258 ChapteR 8 / Random Bit GeneRation and StReam CipheRS

Four parameters are associated with the algorithm:

■■ Output block length (outlen): Length of the output block of the encryption
algorithm.

■■ Key length (keylen): Length of the encryption key.

■■ Seed length (seedlen): The seed is a string of bits that is used as input to a
DRBG mechanism. The seed will determine a portion of the internal state of
the DRBG, and its entropy must be sufficient to support the security strength
of the DRBG. seedlen = outlen + keylen.

■■ Reseed interval (reseed_interval): Length of the encryption key. It is the maxi-
mum number of output blocks generated before updating the algorithm with
a new seed.

Table 8.4 lists the values specified in SP 800-90A for these parameters.

initialize Figure 8.5 shows the two principal functions that comprise CTR_DRBG.
We first consider how CTR_DRBG is initialized, using the initialize and update
function (Figure 8.5a). Recall that the CTR block cipher mode requires both an
 encryption key K and an initial counter value, referred to in SP 800-90A as the
counter V. The combination of K and V is referred to as the seed. To start the DRGB
operation, initial values for K and V are needed, and can be chosen arbitrarily. As an
example, the Intel Digital Random Number Generator, discussed in Section 8.6,
uses the values K = 0 and V = 0. These values are used as parameters for the CTR
mode of operation to produce at least seedlen bits. In addition, exactly seedlen bits
must be supplied from what is referred to as an entropy source. Typically, the entropy
source would be some form of TRNG.

With these inputs, the CTR mode of encryption is iterated to produce a
 sequence of output blocks, with V incremented by 1 after each encryption. The pro-
cess continues until at least seedlen bits have been generated. The leftmost seedlen
bits of output are then XORed with the seedlen entropy bits to produce a new seed.
In turn, the leftmost keylen bits of the seed form the new key and the rightmost
 outlen bits of the seed form the new counter value V.

GeneRate Once values of Key and V are obtained, the DRBG enters the generate
phase and is able to generate pseudorandom bits, one output block at a time
(Figure 8.5b). The encryption function is iterated to generate the number of pseudo-
random bits desired. Each iteration uses the same encryption key. The counter value
V is incremented by 1 for each iteration.

3DES AES-128 AES-192 AES-256

outlen 64 128 128 128
keylen 168 128 192 256
seedlen 232 256 320 384
reseed_interval …232 …248 …248 …248

Table 8.4 CTR_DRBG Parameters

M08_STAL7484_08_GE_C08.indd 258 20/04/22 12:02

8.3 / pSeudoRandom numBeR GeneRation uSinG a BloCk CipheR 259

Update To enhance security, the number of bits generated by any PRNG should be
limited. CTR_DRGB uses the parameter reseed_interval to set that limit. During the
generate phase, a reseed counter is initialized to 1 and then incremented with each
iteration (each production of an output block). When the reseed counter reaches
reseed_interval, the update function is invoked (Figure 8.5a). The update function is
the same as the initialize function. In the update case, the Key and V values last used
by the generate function serve as the input parameters to the update function. The
update function takes seedlen new bits from an entropy source and produces a new
seed (Key, V). The generate function can then resume production of pseudorandom

Figure 8.5 CTR_DRBG Functions

Encrypt

Iterate1

V

Entropy
source

1st
time

1

Key

B0

Key

(a) Initialize and update function

(b) Generate function

Bi

V

Key V

Encrypt

Iterate1

1

M08_STAL7484_08_GE_C08.indd 259 20/04/22 12:02

260 ChapteR 8 / Random Bit GeneRation and StReam CipheRS

bits. Note that the result of the update function is to change both the Key and V
values used by the generate function.

 8.4 STREAM CIPHERS

Stream ciphers can be viewed a pseudorandom equivalent of a one-time pad. The
one-time pad uses a long random key, of length equal to the plaintext message. A
stream cipher uses a short secret key and a pseudorandomly generated stream of
bits, computationally indistinguishable from a stream of random digits. Traditionally,
block ciphers have been more widely used, in a greater range of applications. This
is primarily due to the ability of block ciphers to easily be used in a variety of ways
using different modes of operation. In addition, block ciphers can be used as stream
ciphers via modes of operation such as Counter, OFB, and CBC.

In recent years, there has been a resurgence of interest in the use of stream
ciphers [BIRY04]. Stream ciphers are useful when there is a need to encrypt large
amounts of fast streaming data. And stream ciphers are well suited to use in de-
vices with very limited memory and processing power, called constrained devices.
Examples include small wireless sensors as part of an Internet of Things (IoT) and
radio frequency identification (RFID) tags.

Figure 8.6 shows the structure of a typical stream cipher. There are three
 internal elements. There is a secret state si (i.e., memory) that evolves with time dur-
ing encryption and decryption; the initial state is designated as s0. A state transition
function f, at each bit generation time, computes a new state value from the old
state value. An output function g produces the stream of bits used for encryption
and decryption, known as the keystream zi. A secret key K provides input to the
stream cipher, and is used to initialize the state. K may also serve as an input
parameter to f. Some stream ciphers also include an initialization vector IV that is

Figure 8.6 Generic Structure of a Typical Stream Cipher

g

pi pi

ci

plaintext pi
ciphertext ci
keystream zi

state si
next-state function f
keystream function g

key K
Initialization Value IV

zi

f

Stream Cipher Stream Cipher

K

IV

zi

g

f
K

IV

si si

M08_STAL7484_08_GE_C08.indd 260 20/04/22 12:02

8.4 / StReam CipheRS 261

used, along with K, to initialize the state. As is the case for block ciphers, the IV for
a stream cipher need not be secret. However, it should be unpredictable and unique.

The keystream is combined one byte at a time with the plaintext stream using
the bitwise exclusive-OR (XOR) operation. For example, if the next byte gener-
ated by the generator is 01101100 and the next plaintext byte is 11001100, then the
resulting ciphertext byte is

11001100 plaintext
∙ 01101100 key stream

10100000 ciphertext

Decryption requires the use of the same pseudorandom sequence:

10100000 ciphertext
∙ 01101100 key stream

11001100 plaintext

The stream cipher is similar to the one-time pad discussed in Chapter 3. The
difference is that a one-time pad uses a genuine random number stream, whereas a
stream cipher uses a pseudorandom number stream.

[KUMA97] lists the following important design considerations for a stream cipher.

1. The encryption sequence should have a large period. A pseudorandom num-
ber generator uses a function that produces a deterministic stream of bits that
eventually repeats. The longer the period of repeat the more difficult it will be
to do cryptanalysis. This is essentially the same consideration that was discussed
with reference to the Vigenère cipher, namely that the longer the keyword
the more difficult the cryptanalysis.

2. The keystream should approximate the properties of a true random number
stream as close as possible. For example, there should be an approximately
equal number of 1s and 0s. If the keystream is treated as a stream of bytes,
then all of the 256 possible byte values should appear approximately equally
often. The more random-appearing the keystream is, the more randomized the
ciphertext is, making cryptanalysis more difficult.

3. Note from Figure 8.6 that the output of the pseudorandom number genera-
tor is conditioned on the value of the input key. To guard against brute-force
 attacks, the key needs to be sufficiently long. The same considerations that
apply to block ciphers are valid here. Thus, with current technology, a key
length of at least 128 bits is desirable.

With a properly designed pseudorandom number generator, a stream cipher can
be as secure as a block cipher of comparable key length. A potential advantage of a
stream cipher is that stream ciphers that do not use block ciphers as a building block are
typically faster and use far less code than do block ciphers. The example in this chap-
ter, RC4, can be implemented in just a few lines of code. In recent years, this advan-
tage has diminished with the introduction of AES, which is quite efficient in software.
Furthermore, hardware acceleration techniques are now available for AES. For exam-
ple, the Intel AES Instruction Set has machine instructions for one round of encryption
and decryption and key generation. Using the hardware instructions results in speedups
of about an order of magnitude compared to pure software implementations [XU10].

M08_STAL7484_08_GE_C08.indd 261 20/04/22 12:02

262 ChapteR 8 / Random Bit GeneRation and StReam CipheRS

One advantage of a block cipher is that you can reuse keys. In contrast, if two plain-
texts are encrypted with the same key using a stream cipher, then cryptanalysis is often
quite simple [DAWS96]. If the two ciphertext streams are XORed together, the result is
the XOR of the original plaintexts. If the plaintexts are text strings, credit card numbers,
or other byte streams with known properties, then cryptanalysis may be successful.

For applications that require encryption/decryption of a stream of data, such as
over a data communications channel or a browser/Web link, a stream cipher might
be the better alternative. For applications that deal with blocks of data, such as file
transfer, email, and database, block ciphers may be more appropriate. However,
either type of cipher can be used in virtually any application.

A stream cipher can be constructed with any cryptographically strong PRNG,
such as the ones discussed in Sections 8.2 and 8.3. In the next section, we look at a
stream cipher that uses a PRNG designed specifically for the stream cipher.

 8.5 RC4

RC4 is a stream cipher designed in 1987 by Ron Rivest for RSA Security. It is a variable
key size stream cipher with byte-oriented operations. The algorithm is based on the use
of a random permutation. Analysis shows that the period of the cipher is overwhelm-
ingly likely to be greater than 10100 [ROBS95a]. Eight to sixteen machine operations are
required per output byte, and the cipher can be expected to run very quickly in software.
RC4 is used in the WiFi Protected Access (WPA) protocol that are part of the IEEE
802.11 wireless LAN standard. It is optional for use in Secure Shell (SSH) and Kerberos.
RC4 was kept as a trade secret by RSA Security. In September 1994, the RC4 algorithm
was anonymously posted on the Internet on the Cypherpunks anonymous remailers list.

The RC4 algorithm is remarkably simple and quite easy to explain.
A variable-length key of from 1 to 256 bytes (8 to 2048 bits) is used to initialize a
256-byte state vector S, with elements S[0],S[1], . . . ,S[255]. At all times, S contains
a permutation of all 8-bit numbers from 0 through 255. For encryption and decryp-
tion, a byte k is generated from S by selecting one of the 255 entries in a systematic
fashion. As each value of k is generated, the entries in S are once again permuted.

Initialization of S

To begin, the entries of S are set equal to the values from 0 through 255 in ascending
order; that is, S[0] = 0, S[1] = 1, c , S[255] = 255. A temporary vector, T, is also
created. If the length of the key K is 256 bytes, then K is transferred to T. Otherwise,
for a key of length keylen bytes, the first keylen elements of T are copied from K, and
then K is repeated as many times as necessary to fill out T. These preliminary opera-
tions can be summarized as

/* Initialization */
for i = 0 to 255 do
S[i] = i;
T[i] = K[i mod keylen];

M08_STAL7484_08_GE_C08.indd 262 20/04/22 12:02

8.5 / RC4 263

Next we use T to produce the initial permutation of S. This involves starting
with S[0] and going through to S[255], and for each S[i], swapping S[i] with another
byte in S according to a scheme dictated by T[i]:

/* Initial Permutation of S */
j = 0;
for i = 0 to 255 do

 j = (j + S[i] + T[i]) mod 256;
 Swap (S[i], S[j]);

Because the only operation on S is a swap, the only effect is a permutation.
S still contains all the numbers from 0 through 255.

Stream Generation

Once the S vector is initialized, the input key is no longer used. Stream
 generation involves cycling through all the elements of S[i], and for each S[i],
swapping S[i] with another byte in S according to a scheme dictated by the cur-
rent configuration of S. After S[255] is reached, the process continues, starting
over again at S[0]:

/* Stream Generation */
i, j = 0;
while (true)
i = (i + 1) mod 256;
j = (j + S[i]) mod 256;
Swap (S[i], S[j]);
t = (S[i] + S[j]) mod 256;
k = S[t];

To encrypt, XOR the value k with the next byte of plaintext. To decrypt, XOR
the value k with the next byte of ciphertext.

Figure 8.7 illustrates the RC4 logic.

Strength of RC4

More recently, [PAUL07] revealed a more fundamental vulnerability in the RC4 key
scheduling algorithm that reduces the amount of effort to discover the key. Recent
cryptanalysis results [ALFA13] exploit biases in the RC4 keystream to recover re-
peatedly encrypted plaintexts. As a result of the discovered weaknesses, particu-
larly those reported in [ALFA13], the IETF issued RFC 7465 prohibiting the use
of RC4 in TLS (Prohibiting RC4 Cipher Suites, February 2015). In its latest TLS
guidelines, NIST also prohibited the use of RC4 for government use (SP 800-52,
Guidelines for the Selection, Configuration, and Use of Transport Layer Security
(TLS) Implementations, September 2013).

M08_STAL7484_08_GE_C08.indd 263 20/04/22 12:02

264 ChapteR 8 / Random Bit GeneRation and StReam CipheRS

 8.6 STREAM CIPHERS USING FEEDBACK SHIFT REGISTERS

With the increasing use of highly constrained devices, such as those used in the
IoT, there has been increasing interest in developing new stream ciphers that take
up minimal memory, are highly efficient, and have minimal power consumption
requirements. Most of the recently developed stream ciphers are based on the use of
feedback shift registers (FSRs). Feedback shift registers exhibit the desired perfor-
mance behavior, are well-suited to compact hardware implementation, and there are
well-developed theoretical results on the statistical properties of the bit sequences
they produce.

An FSR consists of a sequence of 1-bit memory cells. Each cell has an output
line, which indicates the value currently stored, and an input line. At discrete time
instants, known as clock times, the value in each storage device is replaced by the
value indicated by its input line. The effect is as follows: The rightmost (least signifi-
cant) bit is shifted out as the output bit for this clock cycle. The other bits are shifted
one bit position to the right. The new leftmost (most significant) bit is calculated as
a function of the other bits in the FSR.

Figure 8.7 RC4

25525425343210S

T

S

(a) Initial state of S and T

(b) Initial permutation of S

Swap

T

K

T[i]

j 5 j 1 S[i] 1 T[i]

t 5 S[i] 1 S[j]

]j[S]i[S

Keylen

i

S

(c) Stream generation

Swap

j 5 j 1 S[i]

]t[S]j[S]i[S

k

i

M08_STAL7484_08_GE_C08.indd 264 20/04/22 12:02

8.6 / StReam CipheRS uSinG feedBaCk Shift ReGiSteRS 265

This section introduces the two types of feedback shift registers: linear feed-
back shift registers (LFSRs) and nonlinear feedback shift registers. We then exam-
ine a contemporary example: the Grain stream cipher.

Linear Feedback Shift Registers

In general, a function f is linear if f1x + y2 = f1x2 + f1y2 , and af1x2 = f1ax2 .
For the specific case of an FSR, an FSR is linear if the feedback function only
involves modulo-2 (logical exclusive-OR) addition of bits in the register.

The circuit is implemented as follows:

1. The LFSR contains n bits.

2. There are from 1 to (n - 1) XOR gates.

3. The presence or absence of a gate corresponds to the presence or absence
of a term in the characteristic polynomial (explained subsequently), P1X2 ,
excluding the Xn term.

Two equivalent ways of characterizing the LFSR are used. We can think of the
generator as implementing a sum of XOR terms:

 Bn = A1Bn - 1 A2Bn - 2 A3Bn - 3 • • • AnB0 = a
n

i = 1
Ai Bn - i (8.1)

Figure 8.8 illustrates this equation. At each clock signal, the Bi values are cal-
culated and shifted right. Thus, the calculated value of Bn becomes the value in the
Bn - 1 cell, and so on down to B0, which is shifted out as the output bit. An actual
implementation would not have the multiply circuits; instead, for Ai = 0, the cor-
responding XOR circuit is eliminated. Figure 8.9a is an example of a 4-bit LFSR that
implements the equation:

 B4 = B0 ∙ B1 (8.2)

• • • B1 B0

• • •

Bn 2 Output

AnAn 1A2A1

Bn 1Bn

1-bit shift register Exclusive-OR5 55 Multiply circuit (logical AND)

2

22

Figure 8.8 Binary Linear Feedback Shift Register Sequence Generator

M08_STAL7484_08_GE_C08.indd 265 20/04/22 12:02

266 ChapteR 8 / Random Bit GeneRation and StReam CipheRS

The shift register technique has several important advantages. The sequences
generated by an LFSR can be nearly random with long periods. In addition, LFSRs
are easy to implement in hardware and can run at high speeds.

It can be shown that the output of an n-bit LFSR is periodic with maximum
period N = 2n - 1. The all-zeros sequence occurs only if either the initial
 contents of the LFSR are all zero or the coefficients in Equation (8.1) are all
zero (no feedback). A feedback configuration can always be found that gives
a period of N; the resulting sequences are called maximal-length sequences, or
m-sequences.

(b) Example with initial state of 1000

(a) Shift-register implementation

Initial 5 0

State

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15 5 0

1

0

0

1

1

0

1

0

1

1

1

1

0

0

0

1

0

1

0

0

1

1

0

1

0

1

1

1

1

0

0

0

0

0

1

0

0

1

1

0

1

0

1

1

1

1

0

0

0

0

0

1

0

0

1

1

0

1

0

1

1

1

1

0

0

0

1

1

0

1

0

1

1

1

1

0

0

0

1

0

0

0

0

1

0

0

1

1

0

1

0

1

1

1

1

0

B3 B2 B1 B0 B0 Å B1 output

B1 B0 OutputB2B3

X 4X3 111

Figure 8.9 4-Bit Linear Feedback Shift Register

M08_STAL7484_08_GE_C08.indd 266 20/04/22 12:02

8.6 / StReam CipheRS uSinG feedBaCk Shift ReGiSteRS 267

Figure 8.9b shows the generation of an m-sequence for the LFSR of
Figure 8.9a. The LFSR implements Equation (8.2) with an initial state of 1000
(B3 = 1, B2 = 0, B1 = 0, B0 = 0). Figure 8.9b shows the step-by-step operation
as the LFSR is clocked one bit at a time. Each row of the table shows the values
currently stored in the four shift register elements. In addition, the row shows the
value that appears at the output of the exclusive-OR circuit. Finally, the row shows
the value of the output bit, which is just B0. Note that the output repeats after 15 bits.
That is, the period of the sequence, or the length of the m-sequence, is 15 = 24-1.
This same periodic m-sequence is generated regardless of the initial state of the
LFSR (except for 0000), as shown in Figure 8.9. With each different initial state, the
m-sequence begins at a different point in its cycle, but it is the same sequence.

For any given size of LFSR, a number of different unique m-sequences can be
generated by using different values for the Ai in Equation (8.1).

An equivalent definition of an LFSR configuration is a characteristic
polynomial. The characteristic polynomial P1X2 that corresponds to Equation (8.1)
has the form:

 P1X2 = 1 + A1X + A2X
2 + • • • + An - 1X

n - 1 + AnXn = 1 + a
n

i = 1
Ai X

i (8.3)

One useful attribute of the characteristic polynomial is that it can be used to
find the sequence generated by the corresponding LFSR, by taking the reciprocal
of the polynomial. For example, for the 3-bit LSFR with P1X2 = 1 + X + X3 ,

Figure 8.10 1> 11 + X + X32

1 1 X 1 X3 1

1

1 1 1

1 1

X

1 1X

X

X

X3

X3

X3

X2

X2 + 1X4 X7 X8

X4

1 1X2 X4

X4

X31 1X2 X5

X51

X51

1X4 X7

X7

X81

1 1 • • •

1X7 X10

X8 1 X10

X91 1X8 X11

M08_STAL7484_08_GE_C08.indd 267 20/04/22 12:02

268 ChapteR 8 / Random Bit GeneRation and StReam CipheRS

we perform the division 1>(1 + X + X3). Figure 8.10 depicts the long division. The
result is:

1 + X + X2 + (0 * X3) + X4 + (0 * X5) + (0 * X6)

after which the pattern repeats. This means that the shift register output is 1110100.
Because the period of this sequence is 7 = 23 - 1, this is an m-sequence.

Notice that we are doing division somewhat differently from the normal method.
This is because the subtractions are done modulo 2, or using the XOR function, and
in this system, subtraction produces the same result as addition.

A characteristic polynomial produces an m-sequence if and only if it is a primi-
tive polynomial.2 Thus, P1X2 = 1 + X + X3 is a primitive polynomial. Similarly,
the polynomial corresponding to Figure 8.9a is P1X2 = 1 + X + X4, which is a
primitive polynomial.

Alternatively, some sources in the literature define a generating polynomial as
follows:

G1X2 = Xn Pa 1
X
b = Xn + a

n

i = 1
Ai X

n - i

There is no practical difference; both P1X2 and G1X2 generate the same out-
put bit sequence.

Although a LFSR defined by a primitive polynomial produces a good pseu-
dorandom number bit stream, a single LFSR by itself is not suitable as a stream
cipher. The stream cipher would simply consist of taking the XOR of successive bits
of plaintext with successive bits generated by the LFSR. If an n-bit LFSR is used as
a stream cipher, then the initial contents of the register constitute the key. It can be
shown that if the feedback function is known (i.e., the values of the Ai are known)
and if an adversary can determine n consecutive bits of the stream, then the adver-
sary can determine the entire stream. This is due to the linearity of the feedback
function. Further, if the feedback function is not known, then 2n bits of the output
stream suffice to determine the entire stream.

One way to develop an LFSR-based stream cipher is to use multiple LFSRs,
perhaps of different lengths, that are combined in some fashion. Another way is to
incorporate a nonlinear feedback shift register (NFSR).

Nonlinear Feedback Shift Registers

The term linear, in the context of LFSR, means that the coefficients Ai in Equations
8.1 and 8.3 are constants; in particular these are Boolean constants (0 or 1). For an
NFSR, the coefficients may be variables. An example is Figure 8.11, which can be
expressed as:

B5 = B4 ∙ B3B2

2Primitive polynomials are defined in Chapter 5.

M08_STAL7484_08_GE_C08.indd 268 20/04/22 12:02

8.6 / StReam CipheRS uSinG feedBaCk Shift ReGiSteRS 269

or, equivalently:

P1X2 = 1 + X + X2X4

As with LFSRs, an NFSR is not by itself suitable as a stream cipher. There is
no theory to analyze them. However, it may be combined with an NFSR to produce
a stream cipher of known maximum period and high security.

Grain-128a

Grain is a family of hardware-efficient stream ciphers. Grain was accepted as part
of the eSTREAM effort to approve a number of new stream ciphers (described
in Chapter 23). The eSTREAM specification, called Grain v1, defines two stream
ciphers, one with an 80-bit key and a 64-bit initialization vector (IV), and one with
a 128-bit key and 80-bit IV. Grain has since been revised and expanded to include
authentication, referred to as Grain-128a [AGRE11, HELL06]. The eSTREAM
final report [BABB08] states that Grain has pushed the state of the art in terms of
compact implementation.

Grain-128a consists of two shift registers, one with linear feedback and the
second with nonlinear feedback, and a filter function. The registers are coupled by
very lightweight, but judiciously chosen Boolean functions. The LFSR guarantees
a minimum period for the keystream, and it also provides balancedness in the
 output. The NFSR, together with a nonlinear filter, introduces nonlinearity to
the cipher. The input to the NFSR is masked with the output of the LFSR so that the
state of the NFSR is balanced.

oUtpUt foR encRyption Figure 8.12a shows the structure of Grain-128a for pro-
ducing a stream of output bits to be used for encrypting a stream of plaintext by a
simple bitwise XOR operation. Grain-128a uses a convention of numbering the bits
in the registers increasing from left to right and doing a left shift, with the leftmost
bit as output. The LFSR at iteration i is defined as follows:

si+ 128 = si ∙ si+ 7 ∙ si+ 38 ∙ si+ 70 ∙ si+ 81 ∙ si+ 96

The equivalent generator function is:

f1x2 = 1 + x32 + x47 + x58 + x90 + x121 + x128

B1 B0 OutputB2B4 B3

Figure 8.11 A Nonlinear Feedback Shift Register

M08_STAL7484_08_GE_C08.indd 269 20/04/22 12:02

270 ChapteR 8 / Random Bit GeneRation and StReam CipheRS

The NFSR is defines as follows:

bi+ 128 = si ∙ bi ∙ bi+ 26 ∙ bi+ 56 ∙ bi+ 91 ∙ bi+ 96

∙ bi+ 3bi+ 67 ∙ bi+ 11bi+ 13 ∙ bi+ 17bi+ 18

∙ bi+ 27bi+ 59 ∙ bi+ 40bi+ 48 ∙ bi+ 61bi+ 65

∙ bi+ 68bi+ 84 ∙ bi+ 88bi+ 92bi+ 93bi+ 95

∙ bi+ 22bi+ 24bi+ 25 ∙ bi+ 70bi+ 78bi+ 82

The equivalent generator function, which is a primitive polynomial, is:

g11x2 = 1 + x32 + x37 + x72 + x102 + x128

g21x2 = x44x60 + x61x125 + x63x67 + x69x101 + x80x88 + x110x111

+ x115x117 + x46x50x58 + x103x104x106 + x33x35x36x40

g1x2 = g11x2 + g21x2
Thus, the NFSR output has both linear and nonlinear components. Note that the
generator function for the NFSR does not feed directly back into the register but is
XORed with the LFSR output si, which masks the input to the NFSR.

The actual generation of an output bit from the grain structure proceeds in
several stages. The filter function h takes 9 variables from the two shift registers.
It is designed to be balanced, highly nonlinear, and produce secure output. It is
defined as:

h = bi+ 12si+ 8 ∙ si+ 13si+ 20 ∙ si+ 95si+ 42 ∙ si+ 60si+ 79si+ 94

Next, a pre-output function masks h with 1 bit of the LFSR and 7 bits of the
NFSR, using the following simple linear function:

yi = h ∙ si+ 93 ∙ a
j∈A

bi+ j

where A = 52, 15, 36, 45, 64, 73, 896 . The output function is defined as

zi = y64 + 2i

That is, the output consists of every second bit after skipping the first 64 bits.
These 64 initial bits and the other half may be used for authentication, as described
subsequently.

Because the LFSR is 128 bits and uses a primitive polynomial, the period is
guaranteed to be at least 2128 - 1. Because of the NFSR and the fact that the input
to this is masked with the output of the LFSR, the exact period will depend on the
key and the IV used. The input to the NFSR is masked with the output of the LFSR
in order to make sure that the NFSR state is balanced.

Key and iV initialization Grain-128a is initialized by placing the 128-bit key in
the 128-bit NFSR. The 128-bit LFSR is initialized using the 96 bits IVi of the IV as
follows:

M08_STAL7484_08_GE_C08.indd 270 20/04/22 12:02

8.6 / StReam CipheRS uSinG feedBaCk Shift ReGiSteRS 271

si = •
IVi 0 … i … 95
1 96 … i … 126
0 i = 127

Then, the two registers, comprising 256 bits, are clocked 256 times without pro-
ducing any keystream. Instead, the pre-output function is fed back and XORed with
the input to both the NFSR and LFSR (Figure 8.12b). This operation fully replaces
the IV and key with the initial state of the registers. This process effectively scram-
bles the contents of the shift registers before the keystream is generated.

NFSR

24
5 6

7 2

g2

bi+127bi

zi

si+127si

g2

h

g

7 1

LFSR

y

f

(b) Key initialization

(a) Output generator

NFSR

24
5 6

7 2

g2

bi1127bi si1127si

g2

h

g

7 1

LFSR

f

Figure 8.12 Grain-128a Stream Cipher

M08_STAL7484_08_GE_C08.indd 271 20/04/22 12:02

272 ChapteR 8 / Random Bit GeneRation and StReam CipheRS

encRyption Encryption is now easily defined. Assume a message of length L de-
fined by the bits m0, c , mL - 1. Then the ciphertext bits ci are calculated as:

ci = zi ∙ mi

And the message is recovered from the ciphertext as follows:

mi = zi ∙ ci

aUthentication Optionally, Grain-128a generates a 32-bit authentication tag. For
this purpose, there is a 32-bit register called the accumulator, with the bits at time
i denoted by a0

i , c , a31
i . There is also a 32-bit shift register, with the bits at time i

denoted by ri, c , ri+ 31. The accumulator is initialized with the first 32 bits of yi and
the register is initialized with the second sequence of 32 bits of yi. Recall that these
64 bits were excluded in forming zi. At each time i, the shift register is updated by as-
signing ri+ 32 = y64 + 2i+ 1, and then shifting left 1 bit. Thus, the bits not used in encryp-
tion are used for authentication. At each time i, all of the bits of the accumulator are
updated as aj

i+ 1 = aj
i ∙ miri+ j for 0 … j … 31 and 0 … i … L. The final content of

the accumulator, a0
L + 1, c , a31

L + 1, is the authentication tag.

 8.7 TRUE RANDOM NUMBER GENERATORS

Entropy Sources

A true random number generator (TRNG) uses a nondeterministic source to pro-
duce randomness. Most operate by measuring unpredictable natural processes, such
as pulse detectors of ionizing radiation events, gas discharge tubes, and leaky capaci-
tors. Intel has developed a commercially available chip that samples thermal noise
by sampling the output of a coupled pair of inverters. LavaRnd is an open source
project for creating truly random numbers using inexpensive cameras, open source
code, and inexpensive hardware. The system uses a saturated CCD in a light-tight
can as a chaotic source to produce the seed. Software processes the result into truly
random numbers in a variety of formats.

RFC 4086 lists the following possible sources of randomness that, with care,
easily can be used on a computer to generate true random sequences.

■■ Sound/video input: Many computers are built with inputs that digitize some
real-world analog source, such as sound from a microphone or video input
from a camera. The “input” from a sound digitizer with no source plugged in or
from a camera with the lens cap on is essentially thermal noise. If the system
has enough gain to detect anything, such input can provide reasonably high
quality random bits.

■■ Disk drives: Disk drives have small random fluctuations in their rotational
speed due to chaotic air turbulence [JAKO98]. The addition of low-level disk
seek-time instrumentation produces a series of measurements that contain this
randomness. Such data is usually highly correlated, so significant processing is
needed. Nevertheless, experimentation a decade ago showed that, with such

M08_STAL7484_08_GE_C08.indd 272 20/04/22 12:02

8.7 / tRue Random numBeR GeneRatoRS 273

processing, even slow disk drives on the slower computers of that day could
easily produce 100 bits a minute or more of excellent random data.

There is also an online service (random.org), which can deliver random
 sequences securely over the Internet.

Comparison of PRNGs and TRNGs

Table 8.5 summarizes the principal differences between PRNGs and TRNGs.
PRNGs are efficient, meaning they can produce many numbers in a short time, and
deterministic, meaning that a given sequence of numbers can be reproduced at a
later date if the starting point in the sequence is known. Efficiency is a nice char-
acteristic if your application needs many numbers, and determinism is handy if you
need to replay the same sequence of numbers again at a later stage. PRNGs are
typically also periodic, which means that the sequence will eventually repeat itself.
While periodicity is hardly ever a desirable characteristic, modern PRNGs have a
period that is so long that it can be ignored for most practical purposes.

TRNGs are generally rather inefficient compared to PRNGs, taking consider-
ably longer time to produce numbers. This presents a difficulty in many applications.
For example, cryptography system in banking or national security might need to gen-
erate millions of random bits per second. TRNGs are also nondeterministic, meaning
that a given sequence of numbers cannot be reproduced, although the same sequence
may of course occur several times by chance. TRNGs have no period.

Conditioning3

A TRNG may produce an output that is biased in some way, such as having more
ones than zeros or vice versa. More generally, NIST SP 800-90B defines a random
process as biased with respect to an assumed discrete set of potential outcomes
(i.e., possible output values) if some of those outcomes have a greater probability
of occurring than do others. For example, a physical source such as electronic noise
may contain a superposition of regular structures, such as waves or other periodic
phenomena, which may appear to be random, yet are determined to be non-random
using statistical tests.

In addition to bias, another concept used by SP 800-98B is that of entropy rate. SP
800-90B defines entropy rate as the rate at which a digitized noise source (or entropy
source) provides entropy; it is computed as the assessed amount of entropy provided by
a bit string output from the source, divided by the total number of bits in the bit string

3 The reader unfamiliar with the concepts of entropy and min-entropy should read Appendix B before
proceeding.

Pseudorandom Number
Generators

True Random Number
Generators

Efficiency Very efficient Generally inefficient
Determinism Deterministic Nondeterministic
Periodicity Periodic Aperiodic

Table 8.5 Comparison of PRNGs and TRNGs

M08_STAL7484_08_GE_C08.indd 273 20/04/22 12:02

http://random.org

274 ChapteR 8 / Random Bit GeneRation and StReam CipheRS

(yielding assessed bits of entropy per output bit). This will be a value between 0 (no
entropy) and 1 (full entropy). Entropy rate is a measure of the randomness or unpre-
dictability of a bit string. Another way of expressing it is that the entropy rate is k/n for
a random source of length n bits and min- entropy k. Min-entropy is a measure of the
number of random bits and is explained in Appendix B. In essence, a block of bits or a
bit stream that is unbiased, and in which each bit and each group of bits is independent
of all other bits and groups of bits will have an entropy rate of 1.

For hardware sources of random bits, the recommended approach is to assume
that there may be bias and/or an entropy rate of less than 1 and to apply techniques
to further “randomize” the bits. Various methods of modifying a bit stream for this
purpose have been developed. These are referred to as conditioning algorithms or
deskewing algorithms.

Typically, conditioning is done by using a cryptographic algorithm to “ scramble”
the random bits so as to eliminate bias and increase entropy. The two most common
approaches are the use of a hash function or a symmetric block cipher.

hash fUnction As we describe in Chapter 11, a hash function produces an n-bit
output from an input of arbitrary length. A simple way to use a hash function for
conditioning is as follows. Blocks of m input bits, with m Ú n, are passed through
the hash function and the n output bits are used as random bits. To generate a stream
of random bits, successive input blocks pass through the hash function to produce
successive hashed output blocks.

Operating systems typically provide a built-in mechanism for generating ran-
dom numbers. For example, Linux uses four entropy sources: mouse and keyboard
activity, disk I/O operations, and specific interrupts. Bits are generated from these
four sources and combined in a pooled buffer. When random bits are needed, the
appropriate number of bits are read from the buffer and passed through the SHA-1
hash function [GUTT06].

A more complex approach is the hash derivation function specified in
SP800-90A. Hash_df can be defined as follows:

Parameters:

input_string: The string to be hashed.

outlen: Output length.

no_of_bits_to_return: The number of bits to be returned by Hash_df. The maxi-
mum length (max_number_of_bits) is implementation dependent, but shall be
less than or equal to (255 * outlen). no_of_bits_to_return is represented as a
32-bit integer.

requested_bits: The result of performing the Hash_df.

Hash_df Process:

1. temp = the Null string

2. len = l no_of_bits_to_return

outlen
m

M08_STAL7484_08_GE_C08.indd 274 20/04/22 12:02

8.7 / tRue Random numBeR GeneRatoRS 275

3. counter = 0x01 Comment: An 8-bit binary value representing the integer “1”.

4. For i = 1 to len do Comment: In 4.1, no_of_bits_to_return is used as a 32-bit
string.

4.1. temp = temp } Hash (counter } no_of_bits_to_return } input_string).

4.2. counter = counter + 1.

5. requested_bits = leftmost (temp, no_of_bits_to_return).

6. Return (SUCCESS, requested_bits).

This algorithm takes an input block of bits of arbitrary length and returns the
requested number of bits, which may be up to 255 times as long as the hash output
length.

The reader may be uneasy that the output consists of hashed blocks in which
the input to the hash function for each block is the same input string and differs
only by the value of the counter. However, cryptographically strong hash functions,
such as the SHA family, provide excellent diffusion (as defined in Chapter 4) so that
change in the counter value results in dramatically different outputs.

blocK cipheR Instead of a hash function, a block cipher such as AES can be
used to scramble the TRNG bits. Using AES, a simple approach would be to take
128-bit blocks of TRNG bits and encrypt each block with AES and some arbitrary
key. SP 800-90B outlines an approach similar to the hash_df function described pre-
viously. The Intel implementation discussed subsequently provides an example of
using AES for conditioning.

Health Testing

Figure 8.13 provides a general model for a nondeterministic random bit generator.
A hardware noise source produces a true random output. This is digitized to pro-
duce true, or nondeterministic, source of bits. This bit source then passes through a
conditioning module to mitigate bias and maximize entropy.

Figure 8.13 also shows a health-testing module, which is used on the outputs
of both the digitizer and conditioner. In essence, health testing is used to validate
that the noise source is working as expected and that the conditioning module is
produced output with the desired characteristics. Both forms of health testing are
recommended by SP 800-90B.

health tests on the noise soURce The nature of the health testing of the noise
source depends strongly on the technology used to produce noise. In general, we
can assume that the digitized output of the noise source will exhibit some bias. Thus,
the traditional statistical tests, such as those defined in SP 800-22 and discussed in
Section 8.1, are not useful for monitoring the noise source, because the noise source
is likely to always fail. Rather, the tests on the noise source need to be tailored to the
expected statistical behavior of the correctly operating noise source. The goal is not
to determine if the source is unbiased, which it isn’t, but if it is operating as expected.

SP 800-90B specifies that continuous tests be done on digitized samples
 obtained from the noise source (point A in Figure 8.13). The purpose is to test
for variability. More specifically, the purpose is to determine if the noise source is

M08_STAL7484_08_GE_C08.indd 275 20/04/22 12:02

276 ChapteR 8 / Random Bit GeneRation and StReam CipheRS

producing at the expected entropy rate. SP 800-90B mandates the use of two tests:
the Repetition Count Test and the Adaptive Proportion Test.

The Repetition Count Test is designed to quickly detect a catastrophic failure
that causes the noise source to become “stuck” on a single output value for a long
time. For this test, it is assumed that a given noise source is assessed to have a given
min-entropy value of H. The entropy is expressed as the amount of entropy per sam-
ple, where a sample could be a single bit or some block of bits of length n. With an
assessed value of H, it is straightforward to calculate the probability that a sequence
of C consecutive samples will yield identical sample values. For example, a noise
source with one bit of min-entropy per sample has no more than a 1/2 probability
of repeating some sample value twice in a row, no more than 1/4 probability of
repeating some sample value three times in a row, and in general, no more than
(1/2)C - 1 probability of repeating some sample value C times in a row. To generalize,
for a noise source with H bits of min-entropy per sample, we have:

 Pr[C identical samples in a row] … (2-H)(C - 1)

The Repetition Count Test involves looking for consecutive identical samples.
If the count reaches some cutoff value C, then an error condition is raised. To deter-
mine the value of C used in the test, the test must be configured with a parame-
ter W, which is the acceptable false-positive probability associated with an alarm
triggered by C repeated sample values. To avoid false positives, W should be set at
some very small number greater than 0. Given W, we can now determine the value
of C. Specifically, we want C to be the smallest number that satisfies the equation
W … (2-H)(C - 1). Reworking terms, this gives us a value of:

Figure 8.13 NRBG Model

Nondeterministic bit source

Noise source

Digitization

Conditioning

A

B

Output

Health
testing

NONDETERMINISTIC

RANDOM

BIT GENERATOR

M08_STAL7484_08_GE_C08.indd 276 20/04/22 12:02

8.7 / tRue Random numBeR GeneRatoRS 277

 C = l 1 +
- log(W)

H
m

For example, for W = 2-30, an entropy source with H = 7.3 bits per sample

would have a cutoff value C of l 1 +
30
7.3

m = 6.

The Repetition Count Test starts by recording a sample value and then count-
ing the number of repetitions of the same value. If the counter reaches the cutoff
value C, an error is reported. If a sample value is encountered that differs from the
preceding sample, then the counter is reset to 1 and the algorithm starts over.

The Adaptive Proportion Test is designed to detect a large loss of entropy, such
as might occur as a result of some physical failure or environmental change affecting
the noise source. The test continuously measures the local frequency of occurrence
of some sample value in a sequence of noise source samples to determine if the
sample occurs too frequently.

The test starts by recording a sample value and then observes N successive
sample values. If the initial sample value is observed at least C times, then an error
condition is reported. SP 800-90B recommends that a probability of a false positive
of W = 2-30 be used for the test and provides guidance on the selection of values
for N and C.

health tests on the conditioninG fUnction SP 800-90B specifies that health
tests should also be applied to the output of the conditioning component (point B
in Figure 8.13), but does not indicate which tests to use. The purpose of the health
tests on the conditioning component is to assure that the output behaves as a true
random bit stream. Thus, it is reasonable to use the tests for randomness defined in
SP 800-22, and described in Section 8.1.

Intel Digital Random Number Generator

As was mentioned, TRNGs have traditionally been used only for key generation and
other applications where only a small number of random bits were required. This is
because TRNGs have generally been inefficient, with a low bit rate of random bit
production.

The first commercially available TRNG that achieves bit production rates
comparable with that of PRNGs is the Intel digital random number generator
(DRNG) [TAYL11, MECH14], offered on new multicore chips since May 2012.4

Two notable aspects of the DRNG:

1. It is implemented entirely in hardware. This provides greater security than a
facility that includes a software component. A hardware-only implementa-
tion should also be able to achieve greater computation speed than a software
module.

4It is unfortunate that Intel chose the acronym DRNG for an NRBG. It confuses with DRBG, which is
a pseudorandom number bit generator.

M08_STAL7484_08_GE_C08.indd 277 20/04/22 12:02

278 ChapteR 8 / Random Bit GeneRation and StReam CipheRS

2. The entire DRNG is on the same multicore chip as the processors. This elimi-
nates the I/O delays found in other hardware random number generators.

dRnG haRdwaRe aRchitectURe Figure 8.14 shows the overall structure of the
DRNG. The first stage of the DRNG generates random numbers from thermal
noise. The heart of the stage consists of two inverters (NOT gates), with the output
of each inverter connected to the input of the other. Such an arrangement has two
stable states, with one inverter having an output of logical 1 and the other having an
output of logical 0. The circuit is then configured so that both inverters are forced
to have the same indeterminate state (both inputs and both outputs at logical 1) by
clock pulses. Random thermal noise within the inverters soon jostles the two invert-
ers into a mutually stable state. Additional circuitry is intended to compensate for
any biases or correlations. This stage is capable, with current hardware, of generating
random bits at a rate of 4 Gbps.

The output of the first stage is generated 512 bits at a time. To assure that
the bit stream does not have skew or bias, a conditioner randomizes its input using
a cryptographic function. In this case, the function is referred to as CBC-MAC or

Figure 8.14 Intel Processor Chip with Random Number Generator

Hardware
AES-CBC-
MAC based
conditioner

Digital Random Number Generator

Processor
chip

Hardware
SP 800-90A
AES-CTR

based
DRBGHardware

entropy
source

RDSEED
instructionCore 0

Core N21 RDSEED
instruction

RDRAND
instruction

RDRAND
instruction

Hardware
SP 800-
90B & C
ENRNG

M08_STAL7484_08_GE_C08.indd 278 20/04/22 12:02

8.7 / tRue Random numBeR GeneRatoRS 279

CMAC, as specified in NIST SP 800-38B. In essence, CMAC encrypts its input using
the cipher block chaining (CBC) mode (Figure 8.4) and outputs the final block.
We examine CMAC in detail in Chapter 12. The output of this stage is generated
256 bits at a time and is intended to exhibit true randomness with no skew or bias.

While the hardware’s circuitry generates random numbers from thermal
noise much more quickly than its predecessors, it is still not fast enough for some
of today’s computing requirements. To enable the DRNG to generate random
 numbers as quickly as a software DRBG, and also maintain the high quality of the
random numbers, a third stage is added. This stage uses the 256-bit random numbers
to seed a cryptographically secure DRBG that creates 128-bit numbers. From one
256-bit seed, the DRBG can output many pseudorandom numbers, exceeding the
3-Gbps rate of the entropy source. An upper bound of 511 128-bit samples can
be generated per seed. The algorithm used for this stage is CTR_DRBG, described
in Section 8.3.

The output of the PRNG stage is available to each of the cores on the chip via
the RDRAND instruction. RDRAND retrieves a 16-, 32-, or 64-bit random value
and makes it available in a software-accessible register.

Preliminary data from a pre-production sample on a system with a third
generation Intel® Core™ family processor produced the following performance
[INTE12]: up to 70 million RDRAND invocations per second, and a random data
production rate of over 4 Gbps.

The output of the conditioner is also made available to another module,
known as an enhanced nondeterministic random number generator (ENRNG) that
provides random numbers that can be used as seeds for various cryptographic algo-
rithms. The ENRNG is compliant with specifications in SP 800-90B and 900-90C.
The output of the ENRNG stage is available to each of the cores on the chip via
the RDSEED instruction. RDSEED retrieves a hardware-generated random seed
value from the ENRNG and stores it in the destination register given as an argu-
ment to the instruction.

dRnG loGical stRUctURe Figure 8.15 provides a simplified view of the logical
flow of the Intel DRBG. As was described, the heart of the hardware entropy source
is a pair of inverters that feed each other. Two transistors, driven by the same clock,
force the inputs and outputs of both inverters to the logical 1 state. Because this is
an unstable state, thermal noise will cause the configuration to settle randomly into
a stable state with either Node A at logical 1 and Node B at logical 0, or the reverse.
Thus the module generates random bits at the clock rate.

The output of the entropy source is collected 512 bits at a time and used to
feed to two CBC hardware implementations using AES encryption. Each imple-
mentation takes two blocks of 128 bits of “plaintext” and encrypts using the CBC
mode. The output of the second encryption is retained. For both CBC modules, an
all-zeros key is used initially. Subsequently, the output of the PRNG stage is fed
back to become the key for the conditioner stage.

The output of the conditioner stage consists of 256 bits. This block is provided
as input to the update function of the DRGB stage. The update function is initialized

M08_STAL7484_08_GE_C08.indd 279 20/04/22 12:02

280 ChapteR 8 / Random Bit GeneRation and StReam CipheRS

Figure 8.15 Intel DRNG Logical Structure

EncryptEncrypt

128 bits 128 bits

Clock

Transistor 1 Transistor 2

Inverters

Node A Node B

128 bits 128 bits

128 bits

Key V

K K K K

Encrypt Encrypt

Pseudorandom
bits

128 bits

101st
time

256 bits

EncryptEncrypt

128 bits

1

Hardware
entropy
source

AES CBC
Mac-based
conditioner

AES-CTR-
based
PRNG

K 5 0

with the all-zeros key and the counter value 0. The function is iterated twice to pro-
duce a 256-block, which is then XORed with the input from the conditioner stage.
The results are used as the 128-bit key and the 128-bit seed for the generate func-
tion. The generate function produces pseudorandom bits in 128-bit blocks.

M08_STAL7484_08_GE_C08.indd 280 20/04/22 12:02

8.8 / key teRmS, Review QueStionS, and pRoBlemS 281

 8.8 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

backward unpredictability
deskewing algorithm
entropy source
forward unpredictability
keystream

pseudorandom function (PRF)
pseudorandom number

 generator (PRNG)
seed
skew

stream cipher
true random number

 generator (TRNG)
unpredictability

Review Questions

 8.1 List two criteria to validate the randomness of a sequence of numbers.
 8.2 What is ANSI X9.17 PRNG?
 8.3 What is the recommended key length for a stream cipher to guard against brute force attacks?
 8.4 What is the difference between a one-time pad and a stream cipher?
 8.5 The 802.11 standard protocol used RC4 for its agility and simplicity for encryption

and decryption. There are a few simple steps in RC4 including the initialization of S to
a number from 0 to 255, followed by permutation. Explain the stream generation, and
main benefits and drawbacks of RC4.

 8.6 List a few applications of stream ciphers and block ciphers.

Problems

 8.1 If we take the linear congruential algorithm with an additive component of 0,

 Xn + 1 = (aXn) mod m

 Then it can be shown that if m is prime and if a given value of a produces the maxi-
mum period of m - 1, then ak will also produce the maximum period, provided that
k is less than m and that k and m - 1 are relatively prime. Demonstrate this by using
X0 = 1 and m = 31 and producing the sequences for ak = 3, 32, 33, and 34.

 8.2 a. What is the maximum period obtainable from the following generator?

 Xn + 1 = (aXn) mod 24

b. What should be the value of a?
c. What restrictions are required on the seed?

 8.3 You may wonder why the modulus m = 231 - 1 was chosen for the linear congruen-
tial method instead of simply 231, because this latter number can be represented with
no additional bits and the mod operation should be easier to perform. In general, the
modulus 2k - 1 is preferable to 2k. Why is this so?

 8.4 With the linear congruential algorithm, a choice of parameters that provides a full
period does not necessarily provide a good randomization. For example, consider the
following two generators:

 Xn + 1 = (11Xn) mod 13

 Xn + 1 = (2Xn) mod 13

 Write out the two sequences to show that both are full periods. Which one appears
more random to you?

M08_STAL7484_08_GE_C08.indd 281 20/04/22 12:02

282 ChapteR 8 / Random Bit GeneRation and StReam CipheRS

 8.5 In any use of pseudorandom numbers, whether for encryption, simulation, or statisti-
cal design, it is dangerous to trust blindly the random number generator that happens
to be available in your computer’s system library. [PARK88] found that many con-
temporary textbooks and programming packages make use of flawed algorithms for
pseudorandom number generation. This exercise will enable you to test your system.

The test is based on a theorem attributed to Ernesto Cesaro (see [KNUT98] for
a proof), which states the following: Given two randomly chosen integers, x and y, the
probability that gcd(x, y) = 1 is 6/p2. Use this theorem in a program to determine
statistically the value of p. The main program should call three subprograms: the ran-
dom number generator from the system library to generate the random integers; a
subprogram to calculate the greatest common divisor of two integers using Euclid’s
Algorithm; and a subprogram that calculates square roots. If these latter two pro-
grams are not available, you will have to write them as well. The main program should
loop through a large number of random numbers to give an estimate of the afore-
mentioned probability. From this, it is a simple matter to solve for your estimate of p.

If the result is close to 3.14, congratulations! If not, then the result is probably low,
usually a value of around 2.7. Why would such an inferior result be obtained?

 8.6 What RC4 key value will leave S unchanged during initialization? That is, after the
initial permutation of S, the entries of S will be equal to the values from 0 through 255
in ascending order.

 8.7 RC4 has a secret internal state which is a permutation of all the possible values of the
vector S and the two indices i and j.
a. Using a straightforward scheme to store the internal state, how many bits are used?
b. Suppose we think of it from the point of view of how much information is repre-

sented by the state. In that case, we need to determine how may different states
there are, then take the log to base 2 to find out how many bits of information this
represents. Using this approach, how many bits would be needed to represent the
state?

 8.8 Alice and Bob agree to communicate privately via email using a scheme based on
RC4, but they want to avoid using a new secret key for each transmission. Alice and
Bob privately agree on a 128-bit key k. To encrypt a message m, consisting of a string
of bits, the following procedure is used.
1. Choose a random 64-bit value v
2. Generate the ciphertext c = RC4(v }k) ∙ m
3. Send the bit string (v } c)

a. Suppose Alice uses this procedure to send a message m to Bob. Describe how
Bob can recover the message m from (v } c) using k.

b. If an adversary observes several values (v1 } c1), (v2 } c2), c transmitted
between Alice and Bob, how can he/she determine when the same key stream
has been used to encrypt two messages?

c. Approximately how many messages can Alice expect to send before the same
key stream will be used twice? Use the result from the birthday paradox
described in Appendix E.

d. What does this imply about the lifetime of the key k (i.e., the number of mes-
sages that can be encrypted using k)?

 8.9 Show that the polynomial P(X) = 1 + X + X4 is a primitive generator polynomial
for the circuit of Figure 8.9a by calculating 1/P(X) and showing that the coefficients
of the resulting polynomial repeat the output pattern in Figure 8.9b.

 8.10 This problem demonstrates that different LFSRs can be used to generate an
m-sequence.
a. Assume an initial state of 10000 in the LFSR of Figure 8.16a. In a manner similar

to Figure 8.9b, show the generation of an m-sequence.
b. Now assume the configuration of Figure 8.16b, with the same initial state, and re-

peat part (a). Show that this configuration also produces an m-sequence, but that
it is a different sequence from that produced by the first LFSR.

M08_STAL7484_08_GE_C08.indd 282 20/04/22 12:02

8.8 / key teRmS, Review QueStionS, and pRoBlemS 283

 8.11 Suppose you have a true random bit generator where each bit in the generated stream
has the same probability of being a 0 or 1 as any other bit in the stream and that the
bits are not correlated; that is the bits are generated from identical independent dis-
tribution. However, the bit stream is biased. The probability of a 1 is 0.5 + 0 and the
probability of a 0 is 0.5 - 0, where 0 6 0 6 0.5. A simple conditioning algorithm is
as follows: Examine the bit stream as a sequence of nonoverlapping pairs. Discard all
00 and 11 pairs. Replace each 01 pair with 0 and each 10 pair with 1.
a. What is the probability of occurrence of each pair in the original sequence?
b. What is the probability of occurrence of 0 and 1 in the modified sequence?
c. What is the expected number of input bits to produce x output bits?
d. Suppose that the algorithm uses overlapping successive bit pairs instead of non-

overlapping successive bit pairs. That is, the first output bit is based on input bits 1
and 2, the second output bit is based on input bits 2 and 3, and so on. What can you
say about the output bit stream?

 8.12 Another approach to conditioning is to consider the bit stream as a sequence of non-
overlapping groups of n bits each and output the parity of each group. That is, if a
group contains an odd number of ones, the output is 1; otherwise the output is 0.
a. Express this operation in terms of a basic Boolean function.
b. Assume, as in the preceding problem, that the probability of a 1 is 0.5 + 0. If each

group consists of 2 bits, what is the probability of an output of 1?
c. If each group consists of 4 bits, what is the probability of an output of 1?
d. Generalize the result to find the probability of an output of 1 for input groups of

n bits.
 8.13 It is important to note that the Repetition Count Test described in Section 8.6 is not a

very powerful health test. It is able to detect only catastrophic failures of an entropy
source. For example, a noise source evaluated at 8 bits of min-entropy per sample
has a cutoff value of 5 repetitions to ensure a false-positive rate of approximately
once per four billion samples generated. If that noise source somehow failed to the
point that it was providing only 6 bits of min-entropy per sample, how many samples
would be expected to be needed before the Repetition Count Test would notice the
problem?

Figure 8.16 Two Different Configurations of LFSRs of Length 5

(a)

B1 B0 OutputB2B4 B3

(b)

B1 B0 OutputB2B4 B3

M08_STAL7484_08_GE_C08.indd 283 20/04/22 12:02

M08_STAL7484_08_GE_C08.indd 284 20/04/22 12:02

This page is intentionally left blank

285

Public-Key Cryptography
and RSA

9.1 Principles of Public-Key Cryptosystems

Public-Key Cryptosystems
Applications for Public-Key Cryptosystems
Requirements for Public-Key Cryptography
Public-Key Cryptanalysis

9.2 The RSA Algorithm

Description of the Algorithm
Computational Aspects
The Security of RSA

9.3 Key Terms, Review Questions, and Problems

Part three: asymmetric ciPhers

CHAPTER9

M09_STAL7484_08_GE_C09.indd 285 20/04/22 12:18

286 CHAPTER 9 / PubliC-KEy CRyPTogRAPHy And RSA

The development of public-key, or asymmetric, cryptography is the greatest and per-
haps the only true revolution in the entire history of cryptography. From its earliest
beginnings to modern times, virtually all cryptographic systems have been based on
the elementary tools of substitution and permutation. After millennia of working with
algorithms that could be calculated by hand, a major advance in symmetric cryptogra-
phy occurred with the development of the rotor encryption/decryption machine. The
electromechanical rotor enabled the development of fiendishly complex cipher sys-
tems. With the availability of computers, even more complex systems were devised, the
most prominent of which was the Lucifer effort at IBM that culminated in the Data
Encryption Standard (DES). But both rotor machines and DES, although represent-
ing significant advances, still relied on the bread-and-butter tools of substitution and
permutation.

Public-key cryptography provides a radical departure from all that has gone be-
fore. For one thing, public-key algorithms are based on mathematical functions rather
than on substitution and permutation. More important, public-key cryptography is
asymmetric, involving the use of two separate keys, in contrast to symmetric encryp-
tion, which uses only one key. The use of two keys has profound consequences in the
areas of confidentiality, key distribution, and authentication, as we shall see.

Before proceeding, we should mention several common misconceptions con-
cerning public-key encryption. One such misconception is that public-key encryption
is more secure from cryptanalysis than is symmetric encryption. In fact, the security of
any encryption scheme depends on the length of the key and the computational work
involved in breaking a cipher. There is nothing in principle about either symmetric or
public-key encryption that makes one superior to another from the point of view of
resisting cryptanalysis.

A second misconception is that public-key encryption is a general-purpose tech-
nique that has made symmetric encryption obsolete. On the contrary, because of the
computational overhead of current public-key encryption schemes, there seems no
foreseeable likelihood that symmetric encryption will be abandoned. As one of the
inventors of public-key encryption has put it [DIFF88], “the restriction of public-key
cryptography to key management and signature applications is almost universally
accepted.”

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

◆◆ Present an overview of the basic principles of public-key cryptosystems.

◆◆ Explain the two distinct uses of public-key cryptosystems.

◆◆ List and explain the requirements for a public-key cryptosystem.

◆◆ Present an overview of the RSA algorithm.

◆◆ Understand the timing attack.

◆◆ Summarize the relevant issues related to the complexity of algorithms.

M09_STAL7484_08_GE_C09.indd 286 20/04/22 12:18

9.1 / PRinCiPlES of PubliC-KEy CRyPToSySTEmS 287

Finally, there is a feeling that key distribution is trivial when using public-key
encryption, compared to the rather cumbersome handshaking involved with key dis-
tribution centers for symmetric encryption. In fact, some form of protocol is needed,
generally involving a central agent, and the procedures involved are not simpler nor
any more efficient than those required for symmetric encryption (e.g., see analysis in
[NEED78]).

This chapter and the next provide an overview of public-key cryptography. First,
we look at its conceptual framework. Interestingly, the concept for this technique was
developed and published before it was shown to be practical to adopt it. Next, we ex-
amine the RSA algorithm, which is the most important encryption/decryption algo-
rithm that has been shown to be feasible for public-key encryption. Other important
public-key cryptographic algorithms are covered in Chapter 10.

Much of the theory of public-key cryptosystems is based on number theory. If
one is prepared to accept the results given in this chapter, an understanding of number
theory is not strictly necessary. However, to gain a full appreciation of public-key
 algorithms, some understanding of number theory is required. Chapter 2 provides the
necessary background in number theory.

Table 9.1 defines some key terms.

 9.1 PRINCIPLES OF PUBLIC-KEY CRYPTOSYSTEMS

The concept of public-key cryptography evolved from an attempt to attack two of
the most difficult problems associated with symmetric encryption. The first problem
is that of key distribution, which is examined in some detail in Chapter 14.

As Chapter 14 discusses, key distribution under symmetric encryption
requires either (1) that two communicants already share a key, which some-
how has been distributed to them; or (2) the use of a key distribution center.

Asymmetric Keys
Two related keys, a public key and a private key, that are used to perform complementary operations, such as
encryption and decryption or signature generation and signature verification.

Public Key Certificate
A digital document issued and digitally signed by the private key of a Certification Authority that binds the
name of a subscriber to a public key. The certificate indicates that the subscriber identified in the certificate
has sole control and access to the corresponding private key.

Public Key (Asymmetric) Cryptographic Algorithm
A cryptographic algorithm that uses two related keys, a public key and a private key. The two keys have the
property that deriving the private key from the public key is computationally infeasible.

Public Key Infrastructure (PKI)
A set of policies, processes, server platforms, software and workstations used for the purpose of administer-
ing certificates and public-private key pairs, including the ability to issue, maintain, and revoke public key
 certificates.

Table 9.1 Terminology Related to Asymmetric Encryption

Source: Glossary of Key Information Security Terms, NISTIR 7298.

M09_STAL7484_08_GE_C09.indd 287 20/04/22 12:18

288 CHAPTER 9 / PubliC-KEy CRyPTogRAPHy And RSA

Whitfield Diffie, one of the discoverers of public-key encryption (along with
Martin Hellman, both at Stanford University at the time), reasoned that this sec-
ond requirement negated the very essence of cryptography: the ability to main-
tain total secrecy over your own communication. As Diffie put it [DIFF88], “what
good would it do after all to develop impenetrable cryptosystems, if their users
were forced to share their keys with a KDC that could be compromised by either
burglary or subpoena?”

The second problem that Diffie pondered, and one that was apparently
unrelated to the first, was that of digital signatures. If the use of cryptography
was to become widespread, not just in military situations but for commercial
and private purposes, then electronic messages and documents would need the
equivalent of signatures used in paper documents. That is, could a method be
devised that would stipulate, to the satisfaction of all parties, that a digital mes-
sage had been sent by a particular person? This is a somewhat broader require-
ment than that of authentication, and its characteristics and ramifications are
explored in Chapter 13.

Diffie and Hellman achieved an astounding breakthrough in 1976 [DIFF76
a, b] by coming up with a method that addressed both problems and was radi-
cally different from all previous approaches to cryptography, going back over four
millennia.

In the next subsection, we look at the overall framework for public-key cryp-
tography. Then we examine the requirements for the encryption/decryption algo-
rithm that is at the heart of the scheme.

Public-Key Cryptosystems

Asymmetric algorithms rely on one key for encryption and a different but
related key for decryption. These algorithms have the following important
characteristic.

◆■ It is computationally infeasible to determine the decryption key given only
knowledge of the cryptographic algorithm and the encryption key.

In addition, some algorithms, such as RSA, also exhibit the following characteristic.

◆■ Either of the two related keys can be used for encryption, with the other used
for decryption.

A public-key encryption scheme has six ingredients (Figure 9.1a; compare
with Figure 3.1).

◆■ Plaintext: This is the readable message or data that is fed into the algorithm
as input.

◆■ Encryption algorithm: The encryption algorithm performs various transfor-
mations on the plaintext.

◆■ Public and private keys: This is a pair of keys that have been selected so that if
one is used for encryption, the other is used for decryption. The exact transfor-
mations performed by the algorithm depend on the public or private key that
is provided as input.

M09_STAL7484_08_GE_C09.indd 288 20/04/22 12:18

9.1 / PRinCiPlES of PubliC-KEy CRyPToSySTEmS 289

◆■ Ciphertext: This is the encrypted message produced as output. It depends on
the plaintext and the key. For a given message, two different keys will produce
two different ciphertexts.

◆■ Decryption algorithm: This algorithm accepts the ciphertext and the matching
key and produces the original plaintext.

Figure 9.1 Public-Key Cryptography

Plaintext
input

Bobs's
public-key

ring

Transmitted
ciphertext

Plaintext
outputEncryption algorithm

(e.g., RSA)
Decryption algorithm

Joy

Mike

Mike Bob

Ted

Alice

Alice's public
key

Alice's private
key

(a) Encryption with public key

Plaintext
input

Transmitted
ciphertext

Plaintext
outputEncryption algorithm

(e.g., RSA)
Decryption algorithm

Bob's private
key

Bob

Bob's public
key

Joy
Ted

(b) Encryption with private key

X

X

PUa

PUb

PRa

PRb

Y 5 E[PUa, X]

Y 5 E[PRb, X]

X 5
D[PRa, Y]

X 5
D[PUb, Y]

Alice

Bob Alice

Alice's
public key

ring

M09_STAL7484_08_GE_C09.indd 289 20/04/22 12:18

290 CHAPTER 9 / PubliC-KEy CRyPTogRAPHy And RSA

The essential steps are the following.

1. Each user generates a pair of keys to be used for the encryption and decryp-
tion of messages.

2. Each user places one of the two keys in a public register or other acces-
sible file. This is the public key. The companion key is kept private. As
Figure 9.1a suggests, each user maintains a collection of public keys obtained
from others.

3. If Bob wishes to send a confidential message to Alice, Bob encrypts the mes-
sage using Alice’s public key.

4. When Alice receives the message, she decrypts it using her private key. No
other recipient can decrypt the message because only Alice knows Alice’s pri-
vate key.

With this approach, all participants have access to public keys, and private keys
are generated locally by each participant and therefore need never be distributed.
As long as a user’s private key remains protected and secret, incoming communica-
tion is secure. At any time, a system can change its private key and publish the com-
panion public key to replace its old public key.

Table 9.2 summarizes some of the important aspects of symmetric and public-
key encryption. To discriminate between the two, we refer to the key used in sym-
metric encryption as a secret key. The two keys used for asymmetric encryption are
referred to as the public key and the private key.1 Invariably, the private key is kept
secret, but it is referred to as a private key rather than a secret key to avoid confu-
sion with symmetric encryption.

Let us take a closer look at the essential elements of a public-key encryp-
tion scheme, using Figure 9.2 (compare with Figure 3.2). There is some source
A that produces a message in plaintext, X = [X1, X2, c , XM]. The M elements
of X are letters in some finite alphabet. The message is intended for destina-
tion B. B generates a related pair of keys: a public key, PUb, and a private key,
PRb. PRb is known only to B, whereas PUb is publicly available and therefore
accessible by A.

With the message X and the encryption key PUb as input, A forms the cipher-
text Y = [Y1, Y2, c , YN]:

 Y = E(PUb, X)

The intended receiver, in possession of the matching private key, is able to invert the
transformation:

 X = D(PRb,Y)

1The following notation is used consistently throughout. A secret key is represented by Km, where m is
some modifier; for example, Ka is a secret key owned by user A. A public key is represented by PUa, for
user A, and the corresponding private key is PRa. Encryption of plaintext X can be performed with a
secret key, a public key, or a private key, denoted by E(Ka, X), E(PUa, X), and E(PRa, X), respectively.
Similarly, decryption of ciphertext Y can be performed with a secret key, a public key, or a private key,
denoted by D(Ka, Y), D(PUa, Y), and D(PRa, Y), respectively.

M09_STAL7484_08_GE_C09.indd 290 20/04/22 12:18

9.1 / PRinCiPlES of PubliC-KEy CRyPToSySTEmS 291

An adversary, observing Y and having access to PUb, but not having access to PRb
or X, must attempt to recover X and/or PRb. It is assumed that the adversary does
have knowledge of the encryption (E) and decryption (D) algorithms. If the adver-
sary is interested only in this particular message, then the focus of effort is to recover
X by generating a plaintext estimate Xn . Often, however, the adversary is interested
in being able to read future messages as well, in which case an attempt is made to
recover PRb by generating an estimate PRnb.

Conventional Encryption Public-Key Encryption

Needed to Work:

1. The same algorithm with the same key is
used for encryption and decryption.

2. The sender and receiver must share the
algorithm and the key.

Needed for Security:

1. The key must be kept secret.

2. It must be impossible or at least impractical
to decipher a message if the key is kept
secret.

3. Knowledge of the algorithm plus samples of
ciphertext must be insufficient to determine
the key.

Needed to Work:

1. One algorithm is used for encryption and a related
algorithm for decryption with a pair of keys, one for
encryption and one for decryption.

2. The sender and receiver must each have one of the
matched pair of keys (not the same one).

Needed for Security:

1. One of the two keys must be kept secret.

2. It must be impossible or at least impractical to
decipher a message if one of the keys is kept secret.

3. Knowledge of the algorithm plus one of the keys
plus samples of ciphertext must be insufficient to
determine the other key.

Table 9.2 Conventional and Public-Key Encryption

Figure 9.2 Public-Key Cryptosystem: Confidentiality

Message
source

Cryptanalyst

Key pair
source

Destination
X

PUb

Encryption
algorithm

Decryption
algorithm

PRb

PRb

X

Source A Destination B

Y 5 E[PUb, X] X 5
D[PRb, Y]

n

n

M09_STAL7484_08_GE_C09.indd 291 20/04/22 12:18

292 CHAPTER 9 / PubliC-KEy CRyPTogRAPHy And RSA

Figure 9.3 Public-Key Cryptosystem: Authentication

Message
source

Cryptanalyst

Key pair
source

Destination
X

PRa

PRa

PUa

Encryption
algorithm

Decryption
algorithm

Source A Destination B

Y 5 E[PRa, X] X 5
D[PUa, Y]

n

We mentioned earlier that either of the two related keys can be used for
encryption, with the other being used for decryption. This enables a rather differ-
ent cryptographic scheme to be implemented. Whereas the scheme illustrated in
Figure 9.2 provides confidentiality, Figures 9.1b and 9.3 show the use of public-key
encryption to provide authentication:

 Y = E(PRa,X)

 X = D(PUa,Y)

In this case, A prepares a message to B and encrypts it using A’s private key
before transmitting it. B can decrypt the message using A’s public key. Because the
message was encrypted using A’s private key, only A could have prepared the mes-
sage. Therefore, the entire encrypted message serves as a digital signature. In addi-
tion, it is impossible to alter the message without access to A’s private key, so the
message is authenticated both in terms of source and in terms of data integrity.

In the preceding scheme, the entire message is encrypted, which, although vali-
dating both author and contents, requires a great deal of storage. Each document
must be kept in plaintext to be used for practical purposes. A copy also must be
stored in ciphertext so that the origin and contents can be verified in case of a dis-
pute. A more efficient way of achieving the same results is to encrypt a small block
of bits that is a function of the document. Such a block, called an authenticator, must
have the property that it is infeasible to change the document without changing
the authenticator. If the authenticator is encrypted with the sender’s private key, it
serves as a signature that verifies origin, content, and sequencing. Chapter 13 exam-
ines this technique in detail.

M09_STAL7484_08_GE_C09.indd 292 20/04/22 12:18

9.1 / PRinCiPlES of PubliC-KEy CRyPToSySTEmS 293

It is important to emphasize that the encryption process depicted in Figures 9.1b
and 9.3 does not provide confidentiality. That is, the message being sent is safe from
alteration but not from eavesdropping. This is obvious in the case of a signature
based on a portion of the message, because the rest of the message is transmitted in
the clear. Even in the case of complete encryption, as shown in Figure 9.3, there is no
protection of confidentiality because any observer can decrypt the message by using
the sender’s public key.

It is, however, possible to provide both the authentication function and confi-
dentiality by a double use of the public-key scheme (Figure 9.4):

 Z = E(PUb, E(PRa,X))

 X = D(PUa, D(PRb,Z))

In this case, we begin as before by encrypting a message, using the sender’s private
key. This provides the digital signature. Next, we encrypt again, using the receiver’s
public key. The final ciphertext can be decrypted only by the intended receiver, who
alone has the matching private key. Thus, confidentiality is provided. The disadvan-
tage of this approach is that the public-key algorithm, which is complex, must be
exercised four times rather than two in each communication.

Applications for Public-Key Cryptosystems

Before proceeding, we need to clarify one aspect of public-key cryptosystems that
is otherwise likely to lead to confusion. Public-key systems are characterized by the
use of a cryptographic algorithm with two keys, one held private and one available
publicly. Depending on the application, the sender uses either the sender’s private
key or the receiver’s public key, or both, to perform some type of cryptographic

Figure 9.4 Public-Key Cryptosystem: Authentication and Secrecy

Message
source

Message
dest.

X Encryption
algorithm

Key pair
source

PUb PRb

Source A Destination B

Key pair
source

PRa PUa

Y Encryption
algorithm

Z Decryption
algorithm

Y Decryption
algorithm

X

M09_STAL7484_08_GE_C09.indd 293 20/04/22 12:18

294 CHAPTER 9 / PubliC-KEy CRyPTogRAPHy And RSA

function. In broad terms, we can classify the use of public-key cryptosystems into
three categories

◆■ Encryption/decryption: The sender encrypts a message with the recipient’s
public key, and the recipient decrypts the message with the recipient’s private
key.

◆■ Digital signature: The sender “signs” a message with its private key. Signing
is achieved by a cryptographic algorithm applied to the message or to a small
block of data that is a function of the message.

◆■ Key exchange: Two sides cooperate to exchange a session key, which is a secret
key for symmetric encryption generated for use for a particular transaction (or
session) and valid for a short period of time. Several different approaches are
possible, involving the private key(s) of one or both parties; this is discussed in
Chapter 10.

Some algorithms are suitable for all three applications, whereas others can be
used only for one or two of these applications. Table 9.3 indicates the applications
supported by the algorithms discussed in this book.

Requirements for Public-Key Cryptography

The cryptosystem illustrated in Figures 9.2 through 9.4 depends on a cryptographic
algorithm based on two related keys. Diffie and Hellman postulated this system
without demonstrating that such algorithms exist. However, they did lay out the
conditions that such algorithms must fulfill [DIFF76b].

1. It is computationally easy for a party B to generate a key pair (public key PUb,
private key PRb).

2. It is computationally easy for a sender A, knowing the public key and the mes-
sage to be encrypted, M, to generate the corresponding ciphertext:

C = E(PUb, M)

3. It is computationally easy for the receiver B to decrypt the resulting ciphertext
using the private key to recover the original message:

M = D(PRb, C) = D[PRb, E(PUb, M)]

4. It is computationally infeasible for an adversary, knowing the public key, PUb,
to determine the private key, PRb.

Algorithm Encryption/Decryption Digital Signature Key Exchange

RSA Yes Yes Yes

Elliptic Curve Yes Yes Yes

Diffie–Hellman No No Yes

DSS No Yes No

Table 9.3 Applications for Public-Key Cryptosystems

M09_STAL7484_08_GE_C09.indd 294 20/04/22 12:18

9.1 / PRinCiPlES of PubliC-KEy CRyPToSySTEmS 295

5. It is computationally infeasible for an adversary, knowing the public key, PUb,
and a ciphertext, C, to recover the original message, M.

We can add a sixth requirement that, although useful, is not necessary for all
public-key applications:

6. The two keys can be applied in either order:

M = D[PUb, E(PRb, M)] = D[PRb, E(PUb, M)]

These are formidable requirements, as evidenced by the fact that only a few
algorithms (RSA, elliptic curve cryptography, Diffie–Hellman, DSS) have received
widespread acceptance in the several decades since the concept of public-key cryp-
tography was proposed.

Before elaborating on why the requirements are so formidable, let us first
recast them. The requirements boil down to the need for a trap-door one-way func-
tion. A one-way function2 is one that maps a domain into a range such that every
function value has a unique inverse, with the condition that the calculation of the
function is easy, whereas the calculation of the inverse is infeasible:

 Y = f(X) easy

 X = f -1(Y) infeasible

Generally, easy is defined to mean a problem that can be solved in polynomial
time as a function of input length. Thus, if the length of the input is n bits, then the
time to compute the function is proportional to na, where a is a fixed constant. Such
algorithms are said to belong to the class P. The term infeasible is a much fuzzier
concept. In general, we can say a problem is infeasible if the effort to solve it grows
faster than polynomial time as a function of input size. For example, if the length
of the input is n bits and the time to compute the function is proportional to 2n,
the problem is considered infeasible. Unfortunately, it is difficult to determine if a
particular algorithm exhibits this complexity. Furthermore, traditional notions of
computational complexity focus on the worst-case or average-case complexity of
an algorithm. These measures are inadequate for cryptography, which requires that
it be infeasible to invert a function for virtually all inputs, not for the worst case or
even average case. [LAI18] provides an excellent introduction to complexity.

We now turn to the definition of a trap-door one-way function, which is easy
to calculate in one direction and infeasible to calculate in the other direction unless
certain additional information is known. With the additional information the inverse
can be calculated in polynomial time. We can summarize as follows: A trap-door
one-way function is a family of invertible functions fk, such that

 Y = fk(X) easy, if k and X are known

 X = fk
-1(Y) easy, if k and Y are known

 X = fk
-1(Y) infeasible, if Y is known but k is not known

2Not to be confused with a one-way hash function, which takes an arbitrarily large data field as its
 argument and maps it to a fixed output. Such functions are used for authentication (see Chapter 11).

M09_STAL7484_08_GE_C09.indd 295 20/04/22 12:18

296 CHAPTER 9 / PubliC-KEy CRyPTogRAPHy And RSA

Thus, the development of a practical public-key scheme depends on discovery of a
suitable trap-door one-way function.

Public-Key Cryptanalysis

As with symmetric encryption, a public-key encryption scheme is vulnerable to a
brute-force attack. The countermeasure is the same: Use large keys. However, there
is a tradeoff to be considered. Public-key systems depend on the use of some sort of
invertible mathematical function. The complexity of calculating these functions may
not scale linearly with the number of bits in the key but grow more rapidly than that.
Thus, the key size must be large enough to make brute-force attack impractical but
small enough for practical encryption and decryption. In practice, the key sizes that
have been proposed do make brute-force attack impractical but result in encryp-
tion/decryption speeds that are too slow for general-purpose use. Instead, as was
mentioned earlier, public-key encryption is currently confined to key management
and signature applications.

Another form of attack is to find some way to compute the private key given
the public key. To date, it has not been mathematically proven that this form of
attack is infeasible for a particular public-key algorithm. Thus, any given algorithm,
including the widely used RSA algorithm, is suspect. The history of cryptanalysis
shows that a problem that seems insoluble from one perspective can be found to
have a solution if looked at in an entirely different way.

Finally, there is a form of attack that is peculiar to public-key systems. This
is, in essence, a probable-message attack. Suppose, for example, that a message
were to be sent that consisted solely of a 56-bit DES key. An adversary could
encrypt all possible 56-bit DES keys using the public key and could discover the
encrypted key by matching the transmitted ciphertext. Thus, no matter how large
the key size of the public-key scheme, the attack is reduced to a brute-force attack
on a 56-bit key. This attack can be thwarted by appending some random bits to
such simple messages.

 9.2 THE RSA ALGORITHM

The pioneering paper by Diffie and Hellman [DIFF76b] introduced a new approach
to cryptography and, in effect, challenged cryptologists to come up with a crypto-
graphic algorithm that met the requirements for public-key systems. One of the
first successful responses to the challenge was developed in 1977 by Ron Rivest,
Adi Shamir, and Len Adleman at MIT and first published in 1978 [RIVE78]. The
Rivest-Shamir-Adleman (RSA) scheme has since that time reigned supreme as the
most widely accepted and implemented general-purpose approach to public-key
encryption.

The RSA scheme is a cipher in which the plaintext and ciphertext are integers
between 0 and n - 1 for some n. A typical size for n is 1024 bits, or 309 decimal
digits. That is, n is less than 21024. We examine RSA in this section in some detail,

M09_STAL7484_08_GE_C09.indd 296 20/04/22 12:18

9.2 / THE RSA AlgoRiTHm 297

beginning with an explanation of the algorithm. Then we examine some of the com-
putational and cryptanalytical implications of RSA.

Description of the Algorithm

RSA makes use of an expression with exponentials. Plaintext is encrypted in blocks,
with each block having a binary value less than some number n. That is, the block
size must be less than or equal to log2(n) + 1; in practice, the block size is i bits,
where 2i 6 n … 2i + 1. Encryption and decryption are of the following form, for
some plaintext block M and ciphertext block C.

 C = Me mod n

 M = Cd mod n = (Me)d mod n = Med mod n

Both sender and receiver must know the value of n. The sender knows the value
of e, and only the receiver knows the value of d. Thus, this is a public-key encryption
algorithm with a public key of PU = {e, n} and a private key of PR = {d, n}. For
this algorithm to be satisfactory for public-key encryption, the following require-
ments must be met.

1. It is possible to find values of e, d, and n such that Med mod n = M for all M 6 n.

2. It is relatively easy to calculate Me mod n and Cd mod n for all values of M 6 n.

3. It is infeasible to determine d given e and n.

For now, we focus on the first requirement and consider the other questions
later. We need to find a relationship of the form

 Med mod n = M

The preceding relationship holds if e and d are multiplicative inverses modulo f(n),
where f(n) is the Euler totient function. It is shown in Chapter 2 that for p, q prime,
f(pq) = (p - 1)(q - 1). The relationship between e and d can be expressed as

 ed mod f(n) = 1 (9.1)

This is equivalent to saying

 ed K 1 mod f(n)

 d K e-1 mod f(n)

That is, e and d are multiplicative inverses mod f(n). Note that, according to the
rules of modular arithmetic, this is true only if d (and therefore e) is relatively prime
to f(n). Equivalently, gcd(f(n), d) = 1. A proof that Equation (9.1) satisfies the
requirement for RSA can be found in the original RSA paper [RIVE78].

We are now ready to state the RSA scheme. The ingredients are the following:
p, q, two prime numbers (private, chosen)
n = pq (public, calculated)
e, with gcd(f(n), e) = 1; 1 6 e 6 f(n) (public, chosen)

d K e-1 (mod f(n)) (private, calculated)

M09_STAL7484_08_GE_C09.indd 297 20/04/22 12:18

298 CHAPTER 9 / PubliC-KEy CRyPTogRAPHy And RSA

The private key consists of {d, n} and the public key consists of {e, n}. Suppose
that user A has published its public key and that user B wishes to send the message
M to A. Then B calculates C = Me mod n and transmits C. On receipt of this cipher-
text, user A decrypts by calculating M = Cd mod n.

Figure 9.5 summarizes the RSA algorithm. It corresponds to Figure 9.1a: Alice
generates a public/private key pair; Bob encrypts using Alice’s public key; and Alice
decrypts using her private key. An example from [SING99] is shown in Figure 9.6.
For this example, the keys were generated as follows.

1. Select two prime numbers, p = 17 and q = 11.

2. Calculate n = pq = 17 * 11 = 187.

3. Calculate f(n) = (p - 1)(q - 1) = 16 * 10 = 160.

4. Select e such that e is relatively prime to f(n) = 160 and less than f(n); we
choose e = 7.

5. Determine d such that de K 1 (mod 160) and d 6 160. The correct value is
d = 23, because 23 * 7 = 161 = (1 * 160) + 1; d can be calculated using
the extended Euclid’s algorithm (Chapter 2).

The resulting keys are public key PU = {7, 187} and private key PR = {23, 187}.
The example shows the use of these keys for a plaintext input of M = 88. For
 encryption, we need to calculate C = 887 mod 187. Exploiting the properties of mod-
ular arithmetic, we can do this as follows.

 887 mod 187 = [(884 mod 187) * (882 mod 187)
 * (881 mod 187)] mod 187

 881 mod 187 = 88

 882 mod 187 = 7744 mod 187 = 77

 884 mod 187 = 59,969,536 mod 187 = 132

 887 mod 187 = (88 * 77 * 132) mod 187 = 894,432 mod 187 = 11

For decryption, we calculate M = 1123 mod 187:

 1123 mod 187 = [(111 mod 187) * (112 mod 187) * (114 mod 187)
 * (118 mod 187) * (118 mod 187)] mod 187

 111 mod 187 = 11

 112 mod 187 = 121

 114 mod 187 = 14,641 mod 187 = 55

 118 mod 187 = 214,358,881 mod 187 = 33

 1123 mod 187 = (11 * 121 * 55 * 33 * 33) mod 187
 = 79,720,245 mod 187 = 88

We now look at an example from [HELL79], which shows the use of RSA to
process multiple blocks of data. In this simple example, the plaintext is an alpha-
numeric string. Each plaintext symbol is assigned a unique code of two decimal

M09_STAL7484_08_GE_C09.indd 298 20/04/22 12:18

9.2 / THE RSA AlgoRiTHm 299

digits (e.g., a = 00, A = 26).3 A plaintext block consists of four decimal digits, or
two alphanumeric characters. Figure 9.7a illustrates the sequence of events for the
encryption of multiple blocks, and Figure 9.7b gives a specific example. The circled
numbers indicate the order in which operations are performed.

Computational Aspects

We now turn to the issue of the complexity of the computation required to use RSA.
There are actually two issues to consider: encryption/decryption and key generation.
Let us look first at the process of encryption and decryption and then consider key
generation.

3The complete mapping of alphanumeric characters to decimal digits is at box.com/Crypto8e in the docu-
ment RSAexample.pdf.

Figure 9.6 Example of RSA Algorithm

Encryption

Plaintext
88

Plaintext
88

Ciphertext
1188 mod 187 5 11

PU 5 7, 187

Decryption

7 11 mod 187 5 88

PR 5 23, 187

23

Figure 9.5 The RSA Algorithm

Key Generation by Alice

Select p, q p and q both prime, p q

Calculate n 5 p 3 q

Calculate f(n)5(p 2 1)(q 2 1)

Select integer e gcd (f(n), e) 5 1; 1 6 e 6 f(n)

Calculate d d K e-1 (mod f(n))

Public key PU 5 {e, n}

Private key PR 5 {d, n}

Encryption by Bob with Alice’s Public Key

Plaintext: M 6 n

Ciphertext: C 5 Me mod n

Decryption by Alice with Alice’s Private Key

Ciphertext: C

Plaintext: M 5 Cd mod n

M09_STAL7484_08_GE_C09.indd 299 20/04/22 12:18

http://box.com/Crypto8e
http://RSAexample.pdf

300 CHAPTER 9 / PubliC-KEy CRyPTogRAPHy And RSA

ExponEntiation in Modular arithMEtic Both encryption and decryption in RSA
involve raising an integer to an integer power, mod n. If the exponentiation is done
over the integers and then reduced modulo n, the intermediate values would be gar-
gantuan. Fortunately, as the preceding example shows, we can make use of a prop-
erty of modular arithmetic:

 [(a mod n) * (b mod n)] mod n = (a * b) mod n

Thus, we can reduce intermediate results modulo n. This makes the calculation
practical.

Another consideration is the efficiency of exponentiation, because with
RSA, we are dealing with potentially large exponents. To see how efficiency might
be increased, consider that we wish to compute x16. A straightforward approach
requires 15 multiplications:

x16 = x * x * x * x * x * x * x * x * x * x * x * x * x * x * x * x

Figure 9.7 RSA Processing of Multiple Blocks

Plaintext P

Decimal string

Sender

Receiver

(a) General approach (b) Example

Blocks of numbers
P1, P2,

P1 5 C1
d mod n

P2 5 C2
d mod n

Ciphertext C

C1 5 P1
e mod n

C2 5 P2
e mod n

Recovered
decimal text

n 5 pq

Random number
generator

e, p, q

Private key
d, n

Public key
e, n

How_are_you?

33 14 22 62 00 17 04 62 24 14 20 66

Sender

Receiver

P1 5 3314 P2 = 2262 P3 5 0017
P4 5 0462 P5 = 2414 P6 5 2066

C1 5 331411 mod 11023 5 10260
C2 5 226211 mod 11023 5 9489
C3 5 1711 mod 11023 5 1782
C4 5 46211 mod 11023 5 727
C5 5 241411 mod 11023 5 10032
C6 5 206611 mod 11023 5 2253

P1 5 102605891 mod 11023 5 3314
P2 5 94895891 mod 11023 5 2262
P3 5 17825891 mod 11023 5 0017
P4 5 7275891 mod 11023 5 0462
P5 5 100325891 mod 11023 5 2414
P6 522535891 mod 11023 5 2066

11023 5 73 151

5891 5 11–1 mod 10800
10800 5 (73 – 1)(151 – 1)
11023 5 73 51

Random number
generator

e 5 11
 n 5 11023

d 5 5891
 n 5 11023

e 5 11
 p 5 73, q 5 151

1

2

6

3

4

5

7

1

2

6

3

4

5

7

d 5 e–1 mod f(n)
 f(n) 5 (p – 1)(q – 1)

n 5 pq

3

3

Transmit Transmit

M09_STAL7484_08_GE_C09.indd 300 20/04/22 12:18

9.2 / THE RSA AlgoRiTHm 301

However, we can achieve the same final result with only four multiplications if we
 repeatedly take the square of each partial result, successively forming (x2, x4, x8, x16).
As another example, suppose we wish to calculate x11 mod n for some integers x
and n. Observe that x11 = x1 + 2 + 8 = (x)(x2)(x8). In this case, we compute x mod n,
x2 mod n, x4 mod n, and x8 mod n and then calculate [(x mod n) * (x2 mod n) *
(x8 mod n)] mod n.

More generally, suppose we wish to find the value ab mod n with a, b, and m
positive integers. If we express b as a binary number bkbk - 1 c b0, then we have

b = a
bi ≠ 0

2i

Therefore,

ab = a
¢ Σ2i

bi ≠ 0
≤

= q
bi ≠ 0

a(2i)

ab mod n = J q
bi ≠ 0

a(2i) R mod n = ¢ q
bi ≠ 0

Ja(2i) mod nR ≤ mod n

We can therefore develop the algorithm4 for computing ab mod n, shown in
Figure 9.8. Table 9.4 shows an example of the execution of this algorithm. Note that
the variable c is not needed; it is included for explanatory purposes. The final value
of c is the value of the exponent.

EfficiEnt opEration using thE public KEy To speed up the operation of the RSA
algorithm using the public key, a specific choice of e is usually made. The most com-
mon choice is 65537 (216 + 1); two other popular choices are 3 and 17. Each of these
choices has only two 1 bits, so the number of multiplications required to perform
exponentiation is minimized.

4The algorithm has a long history; this particular pseudocode expression is from [CORM09].

Figure 9.8 Algorithm for Computing ab mod n

c 0; f 1

c 2 × cdo

bi = 1

then c c + 1

if

f (f × f) mod n

f (f × a) mod n

for i k downto 0

return f

Note: The integer b is expressed as a
binary number bkbk - 1cb0.

M09_STAL7484_08_GE_C09.indd 301 20/04/22 12:18

302 CHAPTER 9 / PubliC-KEy CRyPTogRAPHy And RSA

However, with a very small public key, such as e = 3, RSA becomes vulner-
able to a simple attack. Suppose we have three different RSA users who all use
the value e = 3 but have unique values of n, namely (n1, n2, n3). If user A sends
the same encrypted message M to all three users, then the three ciphertexts are
C1 = M3 mod n1, C2 = M3 mod n2, and C3 = M3 mod n3. It is likely that n1, n2,
and n3 are pairwise relatively prime. Therefore, one can use the Chinese remainder
theorem (CRT) to compute M3 mod (n1n2n3). By the rules of the RSA algorithm,
M is less than each of the ni; therefore M3 6 n1n2n3. Accordingly, the attacker need
only compute the cube root of M3. This attack can be countered by adding a unique
pseudorandom bit string as padding to each instance of M to be encrypted. This
approach is discussed subsequently.

The reader may have noted that the definition of the RSA algorithm
(Figure 9.5) requires that during key generation the user selects a value of e that is
relatively prime to f(n). Thus, if a value of e is selected first and the primes p and q
are generated, it may turn out that gcd(f(n), e) ≠ 1. In that case, the user must
reject the p, q values and generate a new p, q pair.

EfficiEnt opEration using thE privatE KEy We cannot similarly choose a
small constant value of d for efficient operation. A small value of d is vul-
nerable to a brute-force attack and to other forms of cryptanalysis [WIEN90].
However, there is a way to speed up computation using the CRT. We wish to
compute the value M = Cd mod n. Let us define the following intermediate
results:

 Vp = Cd mod p Vq = Cd mod q

Following the CRT using Equation (8.8), define the quantities

 Xp = q * (q-1 mod p) Xq = p * (p-1 mod q)

The CRT then shows, using Equation (8.9), that

 M = (VpXp + VqXq) mod n

Furthermore, we can simplify the calculation of Vp and Vq using Fermat’s
theorem, which states that ap - 1 K 1 (mod p) if p and a are relatively prime. Some
thought should convince you that the following are valid.

 Vp = Cd mod p = Cd mod(p - 1) mod p Vq = Cd mod q = Cd mod(q - 1) mod q

i 9 8 7 6 5 4 3 2 1 0

bi 1 0 0 0 1 1 0 0 0 0
c 1 2 4 8 17 35 70 140 280 560
f 7 49 157 526 160 241 298 166 67 1

Table 9.4 Result of the Fast Modular Exponentiation Algorithm for ab mod n, where a = 7,
b = 560 = 1000110000, and n = 561

M09_STAL7484_08_GE_C09.indd 302 20/04/22 12:18

9.2 / THE RSA AlgoRiTHm 303

The quantities d mod (p - 1) and d mod (q - 1) can be precalculated. The
end result is that the calculation is approximately four times as fast as evaluating
M = Cd mod n directly [BONE02].

KEy gEnEration Before the application of the public-key cryptosystem, each par-
ticipant must generate a pair of keys. This involves the following tasks.

◆■ Determining two prime numbers, p and q.

◆■ Selecting either e or d and calculating the other.

First, consider the selection of p and q. Because the value of n = pq will be
known to any potential adversary, in order to prevent the discovery of p and q
by exhaustive methods, these primes must be chosen from a sufficiently large set
(i.e., p and q must be large numbers). On the other hand, the method used for find-
ing large primes must be reasonably efficient.

At present, there are no useful techniques that yield arbitrarily large primes, so
some other means of tackling the problem is needed. The procedure that is generally
used is to pick at random an odd number of the desired order of magnitude and test
whether that number is prime. If not, pick successive random numbers until one is
found that tests prime.

A variety of tests for primality have been developed (e.g., see [KNUT98] for
a description of a number of such tests). Almost invariably, the tests are probabi-
listic. That is, the test will merely determine that a given integer is probably prime.
Despite this lack of certainty, these tests can be run in such a way as to make the
probability as close to 1.0 as desired. As an example, one of the more efficient and
popular algorithms, the Miller–Rabin algorithm, is described in Chapter 2. With
this algorithm and most such algorithms, the procedure for testing whether a given
integer n is prime is to perform some calculation that involves n and a randomly
chosen integer a. If n “fails” the test, then n is not prime. If n “passes” the test,
then n may be prime or nonprime. If n passes many such tests with many different
randomly chosen values for a, then we can have high confidence that n is, in fact,
prime.

In summary, the procedure for picking a prime number is as follows.

1. Pick an odd integer n at random (e.g., using a pseudorandom number
generator).

2. Pick an integer a 6 n at random.

3. Perform the probabilistic primality test, such as Miller–Rabin, with a as a
 parameter. If n fails the test, reject the value n and go to step 1.

4. If n has passed a sufficient number of tests, accept n; otherwise, go to step 2.

This is a somewhat tedious procedure. However, remember that this process is per-
formed relatively infrequently: only when a new pair (PU, PR) is needed.

It is worth noting how many numbers are likely to be rejected before a
prime number is found. A result from number theory, known as the prime number
theorem, states that the primes near N are spaced on the average one every

M09_STAL7484_08_GE_C09.indd 303 20/04/22 12:18

304 CHAPTER 9 / PubliC-KEy CRyPTogRAPHy And RSA

ln (N) integers. Thus, on average, one would have to test on the order of ln(N) inte-
gers before a prime is found. Actually, because all even integers can be immediately
rejected, the correct figure is ln(N)/2. For example, if a prime on the order of magnitude
of 2200 were sought, then about ln(2200)/2 = 70 trials would be needed to find a prime.

Having determined prime numbers p and q, the process of key generation is
completed by selecting a value of e and calculating d or, alternatively, selecting a
value of d and calculating e. Assuming the former, then we need to select an e such
that gcd(f(n), e) = 1 and then calculate d K e-1 (mod f(n)). Fortunately, there is a
single algorithm that will, at the same time, calculate the greatest common divisor of
two integers and, if the gcd is 1, determine the inverse of one of the integers modulo
the other. The algorithm, referred to as the extended Euclid’s algorithm, is explained
in Chapter 2. Thus, the procedure is to generate a series of random numbers, testing
each against f(n) until a number relatively prime to f(n) is found. Again, we can
ask the question: How many random numbers must we test to find a usable number,
that is, a number relatively prime to f(n)? It can be shown easily that the probabil-
ity that two random numbers are relatively prime is about 0.6; thus, very few tests
would be needed to find a suitable integer (see Problem 2.18).

The Security of RSA

Five possible approaches to attacking the RSA algorithm are:

◆■ Brute force: This involves trying all possible private keys.

◆■ Mathematical attacks: There are several approaches, all equivalent in effort to
factoring the product of two primes.

◆■ Timing attacks: These depend on the running time of the decryption algorithm.

◆■ Hardware fault-based attack: This involves inducing hardware faults in the
processor that is generating digital signatures.

◆■ Chosen ciphertext attacks: This type of attack exploits properties of the RSA
algorithm.

The defense against the brute-force approach is the same for RSA as for other
cryptosystems, namely, to use a large key space. Thus, the larger the number of bits
in d, the better. However, because the calculations involved, both in key generation
and in encryption/decryption, are complex, the larger the size of the key, the slower
the system will run.

In this subsection, we provide an overview of mathematical and timing attacks.

thE factoring problEM We can identify three approaches to attacking RSA
mathematically.

1. Factor n into its two prime factors. This enables calculation of f(n) =
(p - 1) * (q - 1), which in turn enables determination of d K e-1 (mod f(n)).

2. Determine f(n) directly, without first determining p and q. Again, this enables
determination of d K e-1 (mod f(n)).

3. Determine d directly, without first determining f(n).

M09_STAL7484_08_GE_C09.indd 304 20/04/22 12:18

9.2 / THE RSA AlgoRiTHm 305

Most discussions of the cryptanalysis of RSA have focused on the task of
 factoring n into its two prime factors. Determining f(n) given n is equivalent to
factoring n [RIBE96]. With presently known algorithms, determining d given
e and n appears to be at least as time-consuming as the factoring problem [KALI95].
Hence, we can use factoring performance as a benchmark against which to evaluate
the security of RSA.

For a large n with large prime factors, factoring is a hard problem, but it is not as
hard as it used to be. A striking illustration of this is the following. In 1977, the three
inventors of RSA dared Scientific American readers to decode a cipher they printed
in Martin Gardner’s “Mathematical Games” column [GARD77]. They offered a $100
reward for the return of a plaintext sentence, an event they predicted might not occur
for some 40 quadrillion years. In April of 1994, a group working over the Internet
claimed the prize after only eight months of work [LEUT94]. This challenge used a
public key size (length of n) of 129 decimal digits, or around 428 bits. In the mean-
time, just as they had done for DES, RSA Laboratories had issued challenges for the
RSA cipher with key sizes of 100, 110, 120, and so on, digits. The latest challenge to
be met is the RSA-768 challenge with a key length of 232 decimal digits, or 768 bits.

A striking fact about the factoring of the successive challenges concerns the
method used. Until the mid-1990s, factoring attacks were made using an approach
known as the quadratic sieve. The attack on RSA-130 used a newer algorithm, the
generalized number field sieve (GNFS), and was able to factor a larger number than
RSA-129 at only 20% of the computing effort.

The threat to larger key sizes is twofold: the continuing increase in comput-
ing power and the continuing refinement of factoring algorithms. We have seen that
the move to a different algorithm resulted in a tremendous speedup. We can expect
further refinements in the GNFS, and the use of an even better algorithm is also a
possibility. In fact, a related algorithm, the special number field sieve (SNFS), can fac-
tor numbers with a specialized form considerably faster than the generalized number
field sieve. It is reasonable to expect a breakthrough that would enable a general
factoring performance in about the same time as SNFS, or even better [ODLY95].
Thus, we need to be careful in choosing a key size for RSA. The team that produced
the 768-bit factorization [KLEI10] observed that factoring a 1024-bit RSA modulus
would be about a thousand times harder than factoring a 768-bit modulus, and a
768-bit RSA modulus is several thousands times harder to factor than a 512-bit one.
Based on the amount of time between the 512-bit and 768-bit factorization successes,
the team felt it to be reasonable to expect that the 1024-bit RSA moduli could be
factored well within the next decade by a similar academic effort. Thus, they recom-
mended phasing out usage of 1024-bit RSA within the next few years (from 2010).

A number of government agencies have issued recommendations for RSA
key size:

◆■ NIST SP 800-131A (Transitions: Recommendation for Transitioning the Use of
Cryptographic Algorithms and Key Lengths, November 2015) recommends a
key length of 2048 bits or longer.

◆■ The European Union Agency for Network and Information Security, in
Algorithms, Key Size and Parameters Report – 2014 recommends a key length
of 3072 bits or longer for all new development.

M09_STAL7484_08_GE_C09.indd 305 20/04/22 12:18

306 CHAPTER 9 / PubliC-KEy CRyPTogRAPHy And RSA

◆■ The government of Canada’s Communications Security Establishment, in
Cryptographic Algorithms for UNCLASSIFIED, PROTECTED A, and
PROTECTED B Information (August 2016) recommends a length of at least
2048 bits, extended to at least 3072 bits by 2030.

In addition to specifying the size of n, a number of other constraints have been
suggested by researchers. To avoid values of n that may be factored more easily, the
algorithm’s inventors suggest the following constraints on p and q.

1. p and q should differ in length by only a few digits. Thus, for a 1024-bit key
(309 decimal digits), both p and q should be on the order of magnitude of
1075 to 10100.

2. Both (p - 1) and (q - 1) should contain a large prime factor.

3. gcd(p - 1, q - 1) should be small.

In addition, it has been demonstrated that if e 6 n and d 6 n1/4, then d can be easily
determined [WIEN90].

tiMing attacKs If one needed yet another lesson about how difficult it is to assess
the security of a cryptographic algorithm, the appearance of timing attacks provides
a stunning one. Paul Kocher, a cryptographic consultant, demonstrated that a
snooper can determine a private key by keeping track of how long a computer takes
to decipher messages [KOCH96, KALI96b]. Timing attacks are applicable not just
to RSA, but to other public-key cryptography systems. This attack is alarming for
two reasons: It comes from a completely unexpected direction, and it is a ciphertext-
only attack.

A timing attack is somewhat analogous to a burglar guessing the combi-
nation of a safe by observing how long it takes for someone to turn the dial
from number to number. We can explain the attack using the modular expo-
nentiation algorithm of Figure 9.8, but the attack can be adapted to work with
any implementation that does not run in fixed time. In this algorithm, modular
exponentiation is accomplished bit by bit, with one modular multiplication per-
formed at each iteration and an additional modular multiplication performed
for each 1 bit.

As Kocher points out in his paper, the attack is simplest to understand in an
extreme case. Suppose the target system uses a modular multiplication function that is
very fast in almost all cases but in a few cases takes much more time than an entire aver-
age modular exponentiation. The attack proceeds bit-by-bit starting with the leftmost
bit, bk. Suppose that the first j bits are known (to obtain the entire exponent, start with
j = 0 and repeat the attack until the entire exponent is known). For a given ciphertext,
the attacker can complete the first j iterations of the for loop. The operation of the
subsequent step depends on the unknown exponent bit. If the bit is set, d d (d * a)
mod n will be executed. For a few values of a and d, the modular multiplication will be
extremely slow, and the attacker knows which these are. Therefore, if the observed time
to execute the decryption algorithm is always slow when this particular iteration is slow
with a 1 bit, then this bit is assumed to be 1. If a number of observed execution times for
the entire algorithm are fast, then this bit is assumed to be 0.

M09_STAL7484_08_GE_C09.indd 306 20/04/22 12:18

9.2 / THE RSA AlgoRiTHm 307

In practice, modular exponentiation implementations do not have such extreme
timing variations, in which the execution time of a single iteration can exceed the
mean execution time of the entire algorithm. Nevertheless, there is enough variation
to make this attack practical. For details, see [KOCH96].

Although the timing attack is a serious threat, there are simple countermea-
sures that can be used, including the following.

◆■ Constant exponentiation time: Ensure that all exponentiations take the same
amount of time before returning a result. This is a simple fix but does degrade
performance.

◆■ Random delay: Better performance could be achieved by adding a random
delay to the exponentiation algorithm to confuse the timing attack. Kocher
points out that if defenders don’t add enough noise, attackers could still suc-
ceed by collecting additional measurements to compensate for the random
delays.

◆■ Blinding: Multiply the ciphertext by a random number before performing
exponentiation. This process prevents the attacker from knowing what cipher-
text bits are being processed inside the computer and therefore prevents the
bit-by-bit analysis essential to the timing attack.

RSA Data Security incorporates a blinding feature into some of its products.
The private-key operation M = Cd mod n is implemented as follows.

1. Generate a secret random number r between 0 and n - 1.

2. Compute C′ = C(re) mod n, where e is the public exponent.

3. Compute M′ = (C′)d mod n with the ordinary RSA implementation.

4. Compute M = M′r-1 mod n. In this equation, r-1 is the multiplicative inverse
of r mod n; see Chapter 2 for a discussion of this concept. It can be demon-
strated that this is the correct result by observing that red mod n = r mod n.

RSA Data Security reports a 2 to 10% performance penalty for blinding.

fault-basEd attacK Still another unorthodox approach to attacking RSA is re-
ported in [PELL10]. The approach is an attack on a processor that is generating
RSA digital signatures. The attack induces faults in the signature computation by
reducing the power to the processor. The faults cause the software to produce in-
valid signatures, which can then be analyzed by the attacker to recover the private
key. The authors show how such an analysis can be done and then demonstrate it by
extracting a 1024-bit private RSA key in approximately 100 hours, using a commer-
cially available microprocessor.

The attack algorithm involves inducing single-bit errors and observing the
results. The details are provided in [PELL10], which also references other proposed
hardware fault-based attacks against RSA.

This attack, while worthy of consideration, does not appear to be a seri-
ous threat to RSA. It requires that the attacker have physical access to the target
machine and that the attacker is able to directly control the input power to the

M09_STAL7484_08_GE_C09.indd 307 20/04/22 12:18

308 CHAPTER 9 / PubliC-KEy CRyPTogRAPHy And RSA

processor. Controlling the input power would for most hardware require more than
simply controlling the AC power, but would also involve the power supply control
hardware on the chip.

chosEn ciphErtExt attacK and optiMal asyMMEtric Encryption padding The
basic RSA algorithm is vulnerable to a chosen ciphertext attack (CCA). CCA is
defined as an attack in which the adversary chooses a number of ciphertexts and
is then given the corresponding plaintexts, decrypted with the target’s private key.
Thus, the adversary could select a plaintext, encrypt it with the target’s public key,
and then be able to get the plaintext back by having it decrypted with the private
key. Clearly, this provides the adversary with no new information. Instead, the ad-
versary exploits properties of RSA and selects blocks of data that, when processed
using the target’s private key, yield information needed for cryptanalysis.

A simple example of a CCA against RSA takes advantage of the following
property of RSA:

 E(PU, M1) * E(PU, M2) = E(PU, [M1 * M2]) (9.2)

We can decrypt C = Me mod n using a CCA as follows.

1. Compute X = (C * 2e) mod n.

2. Submit X as a chosen ciphertext and receive back Y = Xd mod n.

But now note that

 X = (C mod n) * (2e mod n)

 = (Me mod n) * (2e mod n)

 = (2M)e mod n

Therefore, Y = (2M) mod n. From this, we can deduce M. To overcome this
simple attack, practical RSA-based cryptosystems randomly pad the plaintext prior
to encryption. This randomizes the ciphertext so that Equation (9.2) no longer
holds. However, more sophisticated CCAs are possible, and a simple padding with
a random value has been shown to be insufficient to provide the desired security. To
counter such attacks, RSA Security Inc., a leading RSA vendor and former holder
of the RSA patent, recommends modifying the plaintext using a procedure known
as optimal asymmetric encryption padding (OAEP). A full discussion of the threats
and OAEP are beyond our scope; see [POIN02] for an introduction and [BELL94a]
for a thorough analysis. Here, we simply summarize the OAEP procedure.

Figure 9.9 depicts OAEP encryption. As a first step, the message M to be
encrypted is padded. A set of optional parameters, P, is passed through a hash func-
tion, H.5 The output is then padded with zeros to get the desired length in the over-
all data block (DB). Next, a random seed is generated and passed through another
hash function, called the mask generating function (MGF). The resulting hash value
is bit-by-bit XORed with DB to produce a maskedDB. The maskedDB is in turn
passed through the MGF to form a hash that is XORed with the seed to produce

5A hash function maps a variable-length data block or message into a fixed-length value called a hash
code. Hash functions are discussed in depth in Chapter 11.

M09_STAL7484_08_GE_C09.indd 308 20/04/22 12:18

9.3 / KEy TERmS, REviEw QuESTionS, And PRoblEmS 309

Figure 9.9 Encryption Using Optimal Asymmetric Encryption
Padding (OAEP)

Seed

Maskedseed

DB

MaskedDB

M

EM

Padding

H(P)

MGF

MGF

P

P 5 encoding parameters
M 5 message to be encoded
H 5 hash function

DB 5 data block
MGF 5 mask generating function
EM 5 encoded message

the maskedseed. The concatenation of the maskedseed and the maskedDB forms the
encoded message EM. Note that the EM includes the padded message, masked by the
seed, and the seed, masked by the maskedDB. The EM is then encrypted using RSA.

 9.3 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

digital signature
key exchange
one-way function

optimal asymmetric encryption
padding (OAEP)

private key
public key

public-key encryption
RSA
secret key
timing attack

M09_STAL7484_08_GE_C09.indd 309 20/04/22 12:18

310 CHAPTER 9 / PubliC-KEy CRyPTogRAPHy And RSA

Review Questions

 9.1 What is a public key certificate?
 9.2 What are the roles of the public and private key?
 9.3 What are three broad categories of applications of public-key cryptosystems?
 9.4 What requirements must a public-key cryptosystems fulfill to be a secure algorithm?
 9.5 How can a probable-message attack be used for public-key cryptanalysis?
 9.6 List the different approaches to attack the RSA algorithm.
 9.7 Describe the countermeasures to be used against the timing attack.

Problems

 9.1 Prior to the discovery of any specific public-key schemes, such as RSA, an existence proof
was developed whose purpose was to demonstrate that public-key encryption is possible
in theory. Consider the functions f1(x1) = z1; f2(x2, y2) = z2; f3(x3, y3) = z3, where all
values are integers with 1 … xi, yi, zi … N. Function f1 can be represented by a vector M1
of length N, in which the kth entry is the value of f1(k). Similarly, f2 and f3 can be repre-
sented by N * N matrices M2 and M3. The intent is to represent the encryption/decryp-
tion process by table lookups for tables with very large values of N. Such tables would be
impractically huge but could be constructed in principle. The scheme works as follows:
Construct M1 with a random permutation of all integers between 1 and N; that is, each
integer appears exactly once in M1. Construct M2 so that each row contains a random
permutation of the first N integers. Finally, fill in M3 to satisfy the following condition:

f3(f2(f1(k), p), k) = p for all k, p with 1 … k, p … N

To summarize,
1. M1 takes an input k and produces an output x.
2. M2 takes inputs x and p giving output z.
3. M3 takes inputs z and k and produces p.
The three tables, once constructed, are made public.
a. It should be clear that it is possible to construct M3 to satisfy the preceding condi-

tion. As an example, fill in M3 for the following simple case:

4 3 5 2 4 1

3 4 2 5 3 1

M1 = 2 M2 = 5 4 3 1 2 M3 =

5 1 3 2 5 4

1 2 1 4 3 5

Convention: The ith element of M1 corresponds to k = i. The ith row of M2 cor-
responds to x = i; the jth column of M2 corresponds to p = j. The ith row of M3
corresponds to z = i; the jth column of M3 corresponds to k = j.

b. Describe the use of this set of tables to perform encryption and decryption
 between two users.

c. Argue that this is a secure scheme.
 9.2 Perform encryption and decryption using the RSA algorithm, as in Figure 9.5, for the

following:
a. p = 3; q = 7, e = 5; M = 10
b. p = 5; q = 13, e = 5; M = 8
c. p = 7; q = 17, e = 11; M = 11

M09_STAL7484_08_GE_C09.indd 310 20/04/22 12:18

9.3 / Key Terms, review QuesTions, and Problems 311

d. p = 7; q = 13, e = 11; M = 2
e. p = 17; q = 23, e = 9; M = 7
Hint: Decryption is not as hard as you think; use some finesse.

 9.3 In a public-key system using RSA, you intercept the ciphertext C = 20 sent to a user
whose public key is e = 13, n = 77. What is the plaintext M?

 9.4 In an RSA system, the public key of a given user is e = 65, n = 2881. What is the pri-
vate key of this user? Hint: First use trial and error to determine p and q; then use the
extended Euclidean algorithm to find the multiplicative inverse of 31 modulo f(n).

 9.5 In using the RSA algorithm, if a small number of repeated encodings give back the
plaintext, what is the likely cause?

 9.6 Public-key cryptography has its norms and requirements that make cryptanalysis rela-
tively simple to understand and explain. In a scenario where party A sends a message
to party B using public-key cryptography, how difficult will it be for party B to deci-
pher the message? What is the formula to decrypt the message?

 9.7 In RSA, the algorithm encrypts a message and transforms it into a ciphertext equal to
the message itself with exponentiation modulo n or C = Me mod n. In this case, what
happens if the receiver has the value of n in advance?

 9.8 Suppose Bob uses the RSA cryptosystem with a very large modulus n for which the
factorization cannot be found in a reasonable amount of time. Suppose Alice sends
a message to Bob by representing each alphabetic character as an integer between
0 and 25 (A S 0, c , Z S 25) and then encrypting each number separately using
RSA with large e and large n. Is this method secure? If not, describe the most efficient
attack against this encryption method.

 9.9 Using a spreadsheet (such as Excel) or a calculator, perform the operations described
below. Document results of all intermediate modular multiplications. Determine a
number of modular multiplications per each major transformation (such as encryp-
tion, decryption, primality testing, etc.).
a. Test all odd numbers in the range from 215 to 223 for primality using the Miller–

Rabin test with base 2.
b. Encrypt the message block M = 2 using RSA with the following parameters:

e = 23 and n = 233 * 241.
c. Compute a private key (d, p, q) corresponding to the public key (e, n) given above.
d. Perform the decryption of the obtained ciphertext

1. without using the Chinese Remainder Theorem, and
2. using the Chinese Remainder Theorem.

 9.10 The security of the RSA algorithm has been impacted due to advances in technology
and the available choices of values. This can make it vulnerable to brute force attacks
and timing attacks. In asymmetric algorithms, public keys are made public and private
keys should be kept private. Suppose a very small public parameter, like e = 3, is gener-
ated to encrypt a secret message, would it affect the security of the algorithm at all?

 9.11 “I want to tell you, Holmes,” Dr. Watson’s voice was enthusiastic, “that your recent
activities in network security have increased my interest in cryptography. And just
yesterday I found a way to make one-time pad encryption practical.”

“Oh, really?” Holmes’ face lost its sleepy look.
“Yes, Holmes. The idea is quite simple. For a given one-way function F, I generate

a long pseudorandom sequence of elements by applying F to some standard sequence
of arguments. The cryptanalyst is assumed to know F and the general nature of the
sequence, which may be as simple as S, S + 1, S + 2, c , but not secret S. And due
to the one-way nature of F, no one is able to extract S given F(S + i) for some i, thus
even if he somehow obtains a certain segment of the sequence, he will not be able to
determine the rest.”

M09_STAL7484_08_GE_C09.indd 311 23/04/22 1:32 PM

312 CHAPTER 9 / PubliC-KEy CRyPTogRAPHy And RSA

“I am afraid, Watson, that your proposal isn’t without flaws and at least it needs
some additional conditions to be satisfied by F. Let’s consider, for instance, the RSA
encryption function, that is F(M) = MK mod N, K is secret. This function is believed
to be one-way, but I wouldn’t recommend its use, for example, on the sequence
M = 2, 3, 4, 5, 6, . . . ”

“But why, Holmes?” Dr. Watson apparently didn’t understand. “Why do you think
that the resulting sequence 2K mod N, 3K mod N, 4K mod N, . . . is not appropriate for
one-time pad encryption if K is kept secret?”

“Because it is—at least partially—predictable, dear Watson, even if K is kept se-
cret. You have said that the cryptanalyst is assumed to know F and the general nature
of the sequence. Now let’s assume that he will obtain somehow a short segment of the
output sequence. In crypto circles, this assumption is generally considered to be a vi-
able one. And for this output sequence, knowledge of just the first two elements will
allow him to predict quite a lot of the next elements of the sequence, even if not all of
them, thus this sequence can’t be considered to be cryptographically strong. And with
the knowledge of a longer segment he could predict even more of the next elements
of the sequence. Look, knowing the general nature of the sequence and its first two
elements 2K mod N and 3K mod N, you can easily compute its following elements.”

Show how this can be done.
 9.12 Show how RSA can be represented by matrices M1, M2, and M3 of Problem 9.1.
 9.13 To understand the initial steps of RSA calculations for generating the public key,

 consider the following scheme to determine PU = {e,n}. Suppose you have two prime
numbers p and q, where p = 20 and q = 14.
a. Calculate n = pq
b. Calculate f(n) = (p - 1) (q - 1)
c. Select a value of e such that it is relatively prime to f(n).
What needs to be determined to complete the key generation process? Show your
calculations based on your answers to parts a to c.

 9.14 Consider the following scheme by which B encrypts a message for A.

1. A chooses two large primes P and Q that are also relatively prime to (P - 1)
and (Q - 1).

2. A publishes N = PQ as its public key.
3. A calculates P= and Q= such that PP= K 1 (mod Q - 1) and QQ= K 1 (mod P - 1).
4. B encrypts message M as C = MN mod N.
5. A finds M by solving M K CP=

 (mod Q) and M K CQ=
 (mod P).

a. Explain how this scheme works.
b. How does it differ from RSA?
c. Is there any particular advantage to RSA compared to this scheme?
d. Show how this scheme can be represented by matrices M1, M2, and M3 of

Problem 9.1.

 9.15 “This is a very interesting case, Watson,” Holmes said. “The young man loves a girl,
and she loves him too. However, her father is a strange fellow who insists that his
would-be son-in-law must design a simple and secure protocol for an appropriate
public-key cryptosystem he could use in his company’s computer network. The young
man came up with the following protocol for communication between two parties.
For example, user A wishing to send message M to user B: (messages exchanged are
in the format sender’s name, text, receiver’s name)”
1. A sends B the following block: (A, E(PUb, [M, A]), B).
2. B acknowledges receipt by sending to A the following block: (B, E(PUa, [M, B]), A).
“You can see that the protocol is really simple. But the girl’s father claims that the
young man has not satisfied his call for a simple protocol, because the proposal con-
tains a certain redundancy and can be further simplified to the following:”

M09_STAL7484_08_GE_C09.indd 312 23/04/22 1:33 PM

9.3 / KEy TERmS, REviEw QuESTionS, And PRoblEmS 313

1. A sends B the block: (A, E(PUb, M), B).
2. B acknowledges receipt by sending to A the block: (B, E(PUa, M), A).
“On the basis of that, the girl’s father refuses to allow his daughter to marry the young
man, thus making them both unhappy. The young man was just here to ask me for help.”

“Hmm, I don’t see how you can help him.” Watson was visibly unhappy with the
idea that the sympathetic young man has to lose his love.

“Well, I think I could help. You know, Watson, redundancy is sometimes good to en-
sure the security of protocol. Thus, the simplification the girl’s father has proposed could
make the new protocol vulnerable to an attack the original protocol was able to resist,”
mused Holmes. “Yes, it is so, Watson. Look, all an adversary needs is to be one of the users
of the network and to be able to intercept messages exchanged between A and B. Being a
user of the network, he has his own public encryption key and is able to send his own mes-
sages to A or to B and to receive theirs. With the help of the simplified protocol, he could
then obtain message M user A has previously sent to B using the following procedure:”

Complete the description.
 9.16 Use the fast exponentiation algorithm of Figure 9.8 to determine 6472 mod 3415. Show

the steps involved in the computation.
 9.17 Here is another realization of the fast exponentiation algorithm. Demonstrate that it

is equivalent to the one in Figure 9.8.
1. f d 1; T d a; E d b
2. if odd(E) then f d f : T
3. E d : E/2 ;
4. T d T : T
5. if E + 0 then goto 2
6. output f

 9.18 This problem illustrates a simple application of the chosen ciphertext attack. Bob
intercepts a ciphertext C intended for Alice and encrypted with Alice’s public key e.
Bob wants to obtain the original message M = Cd mod n. Bob chooses a random
value r less than n and computes

 Z = re mod n

 X = ZC mod n

 t = r-1 mod n
Next, Bob gets Alice to authenticate (sign) X with her private key (as in Figure 9.3),
thereby decrypting X. Alice returns Y = Xd mod n. Show how Bob can use the infor-
mation now available to him to determine M.

 9.19 Show the OAEP decoding operation used for decryption that corresponds to the en-
coding operation of Figure 9.9.

M09_STAL7484_08_GE_C09.indd 313 20/04/22 12:18

314

Other Public-Key
Cryptosystems

10.1 Diffie–Hellman Key Exchange

The Algorithm
Key Exchange Protocols
Man-in-the-Middle Attack

10.2 ElGamal Cryptographic System

10.3 Elliptic Curve Arithmetic

Abelian Groups
Elliptic Curves over Real Numbers
Elliptic Curves over Zp
Elliptic Curves over GF(2m)

10.4 Elliptic Curve Cryptography

Analog of Diffie–Hellman Key Exchange
Elliptic Curve Encryption/Decryption
Security of Elliptic Curve Cryptography

10.5 Key Terms, Review Questions, and Problems

10CHAPTER

M10_STAL7484_08_GE_C10.indd 314 20/04/22 12:50

10.1 / Diffie–Hellman Key exCHange 315

This chapter begins with a description of one of the earliest and simplest PKCS:
Diffie–Hellman key exchange. The chapter then looks at another important scheme,
the ElGamal PKCS. Next, we look at the increasingly important PKCS known as
 elliptic curve cryptography.

 10.1 DIFFIE–HELLMAN KEY EXCHANGE

The first published public-key algorithm appeared in the seminal paper by Diffie
and Hellman that defined public-key cryptography [DIFF76b] and is generally re-
ferred to as Diffie–Hellman key exchange. A number of commercial products em-
ploy this key exchange technique.

The purpose of the algorithm is to enable two users to securely exchange a key
that can then be used for subsequent symmetric encryption of messages. The algo-
rithm itself is limited to the exchange of secret values.

The Diffie–Hellman algorithm depends for its effectiveness on the difficulty of
computing discrete logarithms. Briefly, we can define the discrete logarithm in the
following way. Recall from Chapter 2 that a primitive root of a prime number p is
one whose powers modulo p generate all the integers from 1 to p - 1. That is, if a is
a primitive root of the prime number p, then the numbers

 a mod p, a2 mod p, c , ap - 1 mod p

are distinct and consist of the integers from 1 through p - 1 in some permutation.
For any integer b and a primitive root a of prime number p, we can find a

unique exponent i such that

 b K ai (mod p) where 0 … i … (p - 1)

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

◆◆ Define Diffie–Hellman key exchange.

◆◆ Understand the man-in-the-middle attack.

◆◆ Present an overview of the ElGamal cryptographic system.

◆◆ Understand elliptic curve arithmetic.

◆◆ Present an overview of elliptic curve cryptography.

◆◆ Present two techniques for generating pseudorandom numbers using an
asymmetric cipher.

M10_STAL7484_08_GE_C10.indd 315 20/04/22 12:50

316 CHaPTeR 10 / OTHeR PubliC-Key CRyPTOsysTems

The exponent i is referred to as the discrete logarithm of b for the base a, mod p. We
express this value as dloga,p(b). See Chapter 2 for an extended discussion of discrete
logarithms.

The Algorithm

Figure 10.1 summarizes the Diffie–Hellman key exchange algorithm. For this
scheme, there are two publicly known numbers: a prime number q and an integer
a that is a primitive root of q. Suppose the users Alice and Bob wish to create a
shared key.

Alice selects a random integer XA 6 q and computes YA = aXA mod q.
Similarly, Bob independently selects a random integer XB 6 q and computes
YB = aXB mod q. Each side keeps the X value private and makes the Y value avail-
able publicly to the other side. Thus, XA is Alice’s private key and YA is Alice’s cor-
responding public key, and similarly for Bob. Alice computes the key as K = (YB)XA
mod q and Bob computes the key as K = (YA)XB mod q. These two calculations
produce identical results:

Figure 10.1 The Diffie–Hellman Key Exchange

Alice Bob

Alice and Bob share a
prime number q and an
integer A, such that A * q and
A is a primitive root of q

Alice generates a private
key XA such that XA * q

Alice calculates a public
key YA 5 AXA mod q

Alice receives Bob’s
public key YB in plaintext

Alice calculates shared
secret key K 5 (YB)XA mod q

Bob calculates shared
secret key K 5 (YA)XB mod q

Bob receives Alice’s
public key YA in plaintext

Bob calculates a public
key YB 5 AXB mod q

Bob generates a private
key XB such that XB * q

Alice and Bob share a
prime number q and an
integer A, such that A * q and
A is a primitive root of q

YA YB

M10_STAL7484_08_GE_C10.indd 316 20/04/22 12:50

10.1 / Diffie–Hellman Key exCHange 317

 K = (YB)XA mod q

 = (aXB mod q)XA mod q

 = (aXB)XA mod q by the rules of modular arithmetic

 = aXBXA mod q

 = (aXA)XB mod q

 = (aXA mod q)XB mod q

 = (YA)XB mod q

The result is that the two sides have exchanged a secret value. Typically, this
secret value is used as shared symmetric secret key. Now consider an adversary who
can observe the key exchange and wishes to determine the secret key K. Because XA
and XB are private, an adversary only has the following ingredients to work with: q,
a, YA, and YB. Thus, the adversary is forced to take a discrete logarithm to determine
the key. For example, to determine Bob’s private key, an adversary must compute

 XB = dloga,q(YB)

The adversary can then calculate the key K in the same manner as Bob calculates it.
That is, the adversary can calculate K as

 K = (YA)XB mod q

The security of the Diffie–Hellman key exchange lies in the fact that, while
it is relatively easy to calculate exponentials modulo a prime, it is very difficult
to calculate discrete logarithms. For large primes, the latter task is considered
infeasible.

Here is an example. Key exchange is based on the use of the prime number
q = 353 and a primitive root of 353, in this case a = 3. Alice and Bob select private
keys XA = 97 and XB = 233, respectively. Each computes its public key:

Alice computes YA = 397 mod 353 = 40.
Bob computes YB = 3233 mod 353 = 248.

After they exchange public keys, each can compute the common secret key:

Alice computes K = (YB)XA mod 353 = 24897 mod 353 = 160.
Bob computes K = (YA)XB mod 353 = 40233 mod 353 = 160.

We assume an attacker would have available the following information:

 q = 353; a = 3; YA = 40; YB = 248

In this simple example, it would be possible by brute force to determine the secret
key 160. In particular, an attacker E can determine the common key by discovering
a solution to the equation 3a mod 353 = 40 or the equation 3b mod 353 = 248. The
brute-force approach is to calculate powers of 3 modulo 353, stopping when the re-
sult equals either 40 or 248. The desired answer is reached with the exponent value
of 97, which provides 397 mod 353 = 40.

With larger numbers, the problem becomes impractical.

M10_STAL7484_08_GE_C10.indd 317 20/04/22 12:50

318 CHaPTeR 10 / OTHeR PubliC-Key CRyPTOsysTems

Key Exchange Protocols

Figure 10.1 shows a simple protocol that makes use of the Diffie–Hellman calculation.
Suppose that user A wishes to set up a connection with user B and use a secret key to
encrypt messages on that connection. User A can generate a one-time private key XA,
calculate YA, and send that to user B. User B responds by generating a private value
XB, calculating YB, and sending YB to user A. Both users can now calculate the key. The
necessary public values q and a would need to be known ahead of time. Alternatively,
user A could pick values for q and a and include those in the first message.

As an example of another use of the Diffie–Hellman algorithm, suppose that a
group of users (e.g., all users on a LAN) each generate a long-lasting private value Xi
(for user i) and calculate a public value Yi. These public values, together with global
public values for q and a, are stored in some central directory. At any time, user j can
access user i’s public value, calculate a secret key, and use that to send an encrypted
message to user A. If the central directory is trusted, then this form of communi-
cation provides both confidentiality and a degree of authentication. Because only
i and j can determine the key, no other user can read the message (confidential-
ity). Recipient i knows that only user j could have created a message using this key
(authentication). However, the technique does not protect against replay attacks.

Man-in-the-Middle Attack

The protocol depicted in Figure 10.1 is insecure against a man-in-the-middle attack.
Suppose Alice and Bob wish to exchange keys, and Darth is the adversary. The at-
tack proceeds as follows (Figure 10.2).

1. Darth prepares for the attack by generating two random private keys XD1 and
XD2 and then computing the corresponding public keys YD1 and YD2.

2. Alice transmits YA to Bob.

3. Darth intercepts YA and transmits YD1 to Bob. Darth also calculates
K2 = (YA)XD2 mod q.

4. Bob receives YD1 and calculates K1 = (YD1)
XB mod q.

5. Bob transmits YB to Alice.

6. Darth intercepts YB and transmits YD2 to Alice. Darth calculates
K1 = (YB)XD1 mod q.

7. Alice receives YD2 and calculates K2 = (YD2)
XA mod q.

At this point, Bob and Alice think that they share a secret key, but instead Bob
and Darth share secret key K1 and Alice and Darth share secret key K2. All future
communication between Bob and Alice is compromised in the following way.

1. Alice sends an encrypted message M: E(K2, M).

2. Darth intercepts the encrypted message and decrypts it to recover M.

3. Darth sends Bob E(K1, M) or E(K1, M=), where M= is any message. In the first
case, Darth simply wants to eavesdrop on the communication without altering
it. In the second case, Darth wants to modify the message going to Bob.

M10_STAL7484_08_GE_C10.indd 318 20/04/22 12:50

10.2 / elgamal CRyPTOgRaPHiC sysTem 319

The key exchange protocol is vulnerable to such an attack because it does
not authenticate the participants. This vulnerability can be overcome with the
use of digital signatures and public-key certificates; these topics are explored in
Chapters 13 and 14.

 10.2 ELGAMAL CRYPTOGRAPHIC SYSTEM

In 1984, T. ElGamal announced a public-key scheme based on discrete logarithms,
closely related to the Diffie–Hellman technique [ELGA84, ELGA85]. The ElGamal
cryptosystem is used in some form in a number of standards including the digital
signature standard (DSS), which is covered in Chapter 13, and the S/MIME email
standard (Chapter 21).

Figure 10.2 Man-in-the-Middle Attack

Alice Darth Bob
Private key XA
Public key
YA 5 AXA mod q

Private key XB
Public key
YB 5 AXB mod q

Private keys XD1, XD2
Public keys
YD1 5 AXD1 mod q
YD2 5 AXD2 mod q

YA

Secret key
K2 5 (YA)XD2 mod q

Secret key
K1 5 (YB)XD1 mod q

Secret key
K1 5 (YD1)XB mod q

Secret key
K2 5 (YD2)XA mod q

Alice and Darth
share K2

Bob and Darth
share K1

YB

YD2 YD1

M10_STAL7484_08_GE_C10.indd 319 20/04/22 12:50

320 CHaPTeR 10 / OTHeR PubliC-Key CRyPTOsysTems

As with Diffie–Hellman, the global elements of ElGamal are a prime number q
and a, which is a primitive root of q. User A generates a private/public key pair as follows:

1. Generate a random integer XA, such that 1 6 XA 6 q - 1.

2. Compute YA = aXA mod q.

3. A’s private key is XA and A’s public key is {q, a, YA}.

Any user B that has access to A’s public key can encrypt a message as follows:

1. Represent the message as an integer M in the range 0 … M … q - 1. Longer
messages are sent as a sequence of blocks, with each block being an integer
less than q.

2. Choose a random integer k such that 1 … k … q - 1.

3. Compute a one-time key K = (YA)k mod q.

4. Encrypt M as the pair of integers (C1, C2) where

C1 = ak mod q; C2 = KM mod q

User A recovers the plaintext as follows:

1. Recover the key by computing K = (C1)
XA mod q.

2. Compute M = (C2K
-1) mod q.

These steps are summarized in Figure 10.3. It corresponds to Figure 9.1a: Alice
generates a public/private key pair; Bob encrypts using Alice’s public key; and Alice
decrypts using her private key.

Let us demonstrate why the ElGamal scheme works. First, we show how K is
recovered by the decryption process:

K = (YA)k mod q K is defined during the encryption process
K = (aXA mod q)k mod q substitute using YA = aXA mod q
K = akXA mod q by the rules of modular arithmetic
K = (C1)

XA mod q substitute using C1 = ak mod q

Next, using K, we recover the plaintext as

C2 = KM mod q

(C2K
-1) mod q = KMK-1 mod q = M mod q = M

We can restate the ElGamal process as follows, using Figure 10.3.

1. Bob generates a random integer k.

2. Bob generates a one-time key K using Alice’s public-key components YA, q,
and k.

3. Bob encrypts k using the public-key component a, yielding C1. C1 provides
sufficient information for Alice to recover K.

4. Bob encrypts the plaintext message M using K.

5. Alice recovers K from C1 using her private key.

6. Alice uses K-1 to recover the plaintext message from C2.

M10_STAL7484_08_GE_C10.indd 320 20/04/22 12:50

10.2 / elgamal CRyPTOgRaPHiC sysTem 321

Thus, K functions as a one-time key, used to encrypt and decrypt the message.
For example, let us start with the prime field GF(19); that is, q = 19. It has

primitive roots {2, 3, 10, 13, 14, 15}, as shown in Table 2.7. We choose a = 10.
Alice generates a key pair as follows:

1. Alice chooses XA = 5.

2. Then YA = aXA mod q = a5 mod 19 = 3 (see Table 2.7).

3. Alice’s private key is 5 and Alice’s public key is {q, a, YA} = {19, 10, 3}.

Suppose Bob wants to send the message with the value M = 17. Then:

Figure 10.3 The ElGamal Cryptosystem

Global Public Elements

q prime number

a a 6 q and a a primitive root of q

Key Generation by Alice

Select private XA XA 6 q - 1

Calculate YA YA = aXA mod q

Public key {q, a, YA}

Private key XA

Encryption by Bob with Alice’s Public Key

Plaintext: M 6 q

Select random integer k k 6 q

Calculate K K = (YA)k mod q

Calculate C1 C1 = ak mod q

Calculate C2 C2 = KM mod q

Ciphertext: (C1, C2)

Decryption by Alice with Alice’s Private Key

Ciphertext: (C1, C2)

Calculate K K = (C1)
XA mod q

Plaintext: M = (C2K
-1) mod q

M10_STAL7484_08_GE_C10.indd 321 20/04/22 12:50

322 CHaPTeR 10 / OTHeR PubliC-Key CRyPTOsysTems

1. Bob chooses k = 6.

2. Then K = (YA)k mod q = 36 mod 19 = 729 mod 19 = 7.

3. So

C1 = ak mod q = a6 mod 19 = 11

C2 = KM mod q = 7 * 17 mod 19 = 119 mod 19 = 5

4. Bob sends the ciphertext (11, 5).

For decryption:

1. Alice calculates K = (C1)
XA mod q = 115 mod 19 = 161051 mod 19 = 7.

2. Then K-1 in GF(19) is 7-1 mod 19 = 11.

3. Finally, M = (C2K
-1) mod q = 5 * 11 mod 19 = 55 mod 19 = 17.

If a message must be broken up into blocks and sent as a sequence of encrypted
blocks, a unique value of k should be used for each block. If k is used for more than
one block, knowledge of one block M1 of the message enables the user to compute
other blocks as follows. Let

 C1,1 = ak mod q; C2,1 = KM1 mod q

 C1,2 = ak mod q; C2,2 = KM2 mod q

Then,

C2,1

C2,2
=

KM1 mod q
KM2 mod q

=
M1 mod q
M2 mod q

If M1 is known, then M2 is easily computed as

 M2 = (C2,1)
-1 C2,2 M1 mod q

The security of ElGamal is based on the difficulty of computing discrete
logarithms. To recover A’s private key, an adversary would have to compute
XA = dloga,q(YA). Alternatively, to recover the one-time key K, an adversary would
have to determine the random number k, and this would require computing the
discrete logarithm k = dloga,q(C1). [STIN06] points out that these calculations are
regarded as infeasible if p is at least 300 decimal digits and q - 1 has at least one
“large” prime factor.

 10.3 ELLIPTIC CURVE ARITHMETIC

Most of the products and standards that use public-key cryptography for encryption
and digital signatures use RSA. As we have seen, the key length for secure RSA use
has increased over recent years, and this has put a heavier processing load on ap-
plications using RSA. This burden has ramifications, especially for electronic com-
merce sites that conduct large numbers of secure transactions. A competing system
challenges RSA: elliptic curve cryptography (ECC). ECC is showing up in standard-
ization efforts, including the IEEE P1363 Standard for Public-Key Cryptography.

M10_STAL7484_08_GE_C10.indd 322 20/04/22 12:50

10.3 / elliPTiC CuRve aRiTHmeTiC 323

The principal attraction of ECC, compared to RSA, is that it appears to offer
equal security for a far smaller key size, thereby reducing processing overhead.

ECC is fundamentally more difficult to explain than either RSA or Diffie–
Hellman, and a full mathematical description is beyond the scope of this book. This
section and the next give some background on elliptic curves and ECC. We begin
with a brief review of the concept of abelian group. Next, we examine the concept
of elliptic curves defined over the real numbers. This is followed by a look at ellip-
tic curves defined over finite fields. Finally, we are able to examine elliptic curve
ciphers.

The reader may wish to review the material on finite fields in Chapter 5 before
proceeding.

Abelian Groups

Recall from Chapter 5 that an abelian group G, sometimes denoted by {G, # }, is a
set of elements with a binary operation, denoted by # , that associates to each or-
dered pair (a, b) of elements in G an element (a # b) in G, such that the following axi-
oms are obeyed:1

(A1) Closure: If a and b belong to G, then a # b is also in G.

(A2) Associative: a # (b # c) = (a # b) # c for all a, b, c in G.

(A3) Identity element: There is an element e in G such that a # e = e # a = a
for all a in G.

(A4) Inverse element: For each a in G there is an element a′ in G such that
a # a′ = a′ # a = e.

(A5) Commutative: a # b = b # a for all a, b in G.

A number of public-key ciphers are based on the use of an abelian group.
For example, Diffie–Hellman key exchange involves multiplying pairs of nonzero
integers modulo a prime number q. Keys are generated by exponentiation over
the group, with exponentiation defined as repeated multiplication. For example,
ak mod q = (a * a * c * a) mod q. To attack Diffie–Hellman, the attacker must

k times
determine k given a and ak; this is the discrete logarithm problem.

For elliptic curve cryptography, an operation over elliptic curves, called addi-
tion, is used. Multiplication is defined by repeated addition. For example,

a * k = (a + a + c + a)

k times
where the addition is performed over an elliptic curve. Cryptanalysis involves deter-
mining k given a and (a * k).

1The operator # is generic and can refer to addition, multiplication, or some other mathematical
operation.

v
v

M10_STAL7484_08_GE_C10.indd 323 20/04/22 12:50

324 CHaPTeR 10 / OTHeR PubliC-Key CRyPTOsysTems

An elliptic curve is defined by an equation in two variables with coefficients.
For cryptography, the variables and coefficients are restricted to elements in a finite
field, which results in the definition of a finite abelian group. Before looking at this,
we first look at elliptic curves in which the variables and coefficients are real num-
bers. This case is perhaps easier to visualize.

Elliptic Curves over Real Numbers

Elliptic curves are not ellipses. They are so named because they are described by
cubic equations, similar to those used for calculating the circumference of an ellipse.
In general, cubic equations for elliptic curves take the following form, known as a
Weierstrass equation:

 y2 + axy + by = x3 + cx2 + dx + e

where a, b, c, d, e are real numbers and x and y take on values in the real numbers.2
For our purpose, it is sufficient to limit ourselves to equations of the form

 y2 = x3 + ax + b (10.1)

Such equations are said to be cubic, or of degree 3, because the highest expo-
nent they contain is a 3. Also included in the definition of an elliptic curve is a single
element denoted O and called the point at infinity or the zero point, which we dis-
cuss subsequently. To plot such a curve, we need to compute

 y = 2x3 + ax + b

For given values of a and b, the plot consists of positive and negative values of y for
each value of x. Thus, each curve is symmetric about y = 0. Figure 10.4 shows two
examples of elliptic curves. As you can see, the formula sometimes produces weird-
looking curves.

Now, consider the set of points E(a, b) consisting of all of the points (x, y) that
satisfy Equation (10.1) together with the element O. Using a different value of the
pair (a, b) results in a different set E(a, b). Using this terminology, the two curves in
Figure 10.4 depict the sets E(-1, 0) and E(1, 1), respectively.

Geometric Description of ADDition It can be shown that a group can be defined
based on the set E(a, b) for specific values of a and b in Equation (10.1), provided
the following condition is met:

 4a3 + 27b2 ≠ 0 (10.2)

To define the group, we must define an operation, called addition and denoted by
+ , for the set E(a, b), where a and b satisfy Equation (10.2). In geometric terms, the
rules for addition can be stated as follows: If three points on an elliptic curve lie on a
straight line, their sum is O. From this definition, we can define the rules of addition
over an elliptic curve.

2Note that x and y are true variables, which take on values. This is in contrast to our discussion of polyno-
mial rings and fields in Chapter 5, where was treated as an indeterminate.

M10_STAL7484_08_GE_C10.indd 324 20/04/22 12:50

10.3 / elliPTiC CuRve aRiTHmeTiC 325

1. O serves as the additive identity. Thus O = -O; for any point P on the elliptic
curve, P + O = P. In what follows, we assume P ≠ O and Q ≠ O.

2. The negative of a point P is the point with the same x coordinate but the nega-
tive of the y coordinate; that is, if P = (x, y), then -P = (x, -y). Note that these
two points can be joined by a vertical line. Note that P + (-P) = P - P = O.

3. To add two points P and Q with different x coordinates, draw a straight line
between them and find the third point of intersection R. It is easily seen that
there is a unique point R that is the point of intersection (unless the line is
tangent to the curve at either P or Q, in which case we take R = P or R = Q,
respectively). To form a group structure, we need to define addition on these
three points: P + Q = -R. That is, we define P + Q to be the mirror image

Figure 10.4 Example of Elliptic Curves

24

22

0

2

4

24

22

0

2

4

5432102122

5432102122

(a) y2 5 x3 2x

(b) y2 5 x3 1 x 1 1

P

P

Q

Q

- (P 1Q)

2 (P 1 Q)

(P 1 Q)

(P 1 Q)

M10_STAL7484_08_GE_C10.indd 325 20/04/22 12:50

326 CHaPTeR 10 / OTHeR PubliC-Key CRyPTOsysTems

(with respect to the x axis) of the third point of intersection. Figure 10.4 illus-
trates this construction.

4. The geometric interpretation of the preceding item also applies to two points,
P and -P, with the same x coordinate. The points are joined by a vertical line,
which can be viewed as also intersecting the curve at the infinity point. We
therefore have P + (-P) = O, which is consistent with item (2).

5. To double a point Q, draw the tangent line and find the other point of intersec-
tion S. Then Q + Q = 2Q = -S.

With the preceding list of rules, it can be shown that the set E(a, b) is an abe-
lian group.

AlGebrAic Description of ADDition In this subsection, we present some results
that enable calculation of additions over elliptic curves.3 For two distinct points,
P = (xP, yP) and Q = (xQ, yQ), that are not negatives of each other, the slope of the
line l that joins them is ∆ = (yQ - yP)/(xQ - xP). There is exactly one other point
where l intersects the elliptic curve, and that is the negative of the sum of P and Q.
After some algebraic manipulation, we can express the sum R = P + Q as

 xR = ∆2 - xP - xQ

 yR = -yP + ∆(xP - xR)
(10.3)

We also need to be able to add a point to itself: P + P = 2P = R. When
yP ≠ 0, the expressions are

 xR = ¢ 3xP
2 + a

2yP
≤2

- 2xP

 yR = ¢ 3xP
2 + a

2yP
≤(xP - xR) - yP

(10.4)

Elliptic Curves over Zp

Elliptic curve cryptography makes use of elliptic curves in which the variables and
coefficients are all restricted to elements of a finite field. Two families of elliptic
curves are used in cryptographic applications: prime curves over Zp and binary
curves over GF(2m). For a prime curve over Zp, we use a cubic equation in which
the variables and coefficients all take on values in the set of integers from 0 through
p - 1 and in which calculations are performed modulo p. For a binary curve defined
over GF(2m), the variables and coefficients all take on values in GF(2m) and in cal-
culations are performed over GF(2m). [FERN99] points out that prime curves are
best for software applications, because the extended bit-fiddling operations needed
by binary curves are not required; and that binary curves are best for hardware ap-
plications, where it takes remarkably few logic gates to create a powerful, fast cryp-
tosystem. We examine these two families in this section and the next.

3For derivations of these results, see [KOBL94] or other mathematical treatments of elliptic curves.

M10_STAL7484_08_GE_C10.indd 326 20/04/22 12:50

10.3 / elliPTiC CuRve aRiTHmeTiC 327

There is no obvious geometric interpretation of elliptic curve arithmetic over
finite fields. The algebraic interpretation used for elliptic curve arithmetic over real
numbers does readily carry over, and this is the approach we take.

For elliptic curves over Zp, as with real numbers, we limit ourselves to equa-
tions of the form of Equation (10.1), but in this case with coefficients and variables
limited to Zp:

 y2 mod p = (x3 + ax + b) mod p (10.5)

For example, Equation (10.5) is satisfied for a = 1, b = 1, x = 9, y = 7, p = 23:

 72 mod 23 = (93 + 9 + 1) mod 23

 49 mod 23 = 739 mod 23

 3 = 3

Now consider the set Ep(a, b) consisting of all pairs of integers (x, y) that sat-
isfy Equation (10.5), together with a point at infinity O. The coefficients a and b and
the variables x and y are all elements of Zp.

For example, let p = 23 and consider the elliptic curve y2 = x3 + x + 1. In
this case, a = b = 1. Note that this equation is the same as that of Figure 10.4b. The
figure shows a continuous curve with all of the real points that satisfy the equation.
For the set E23(1, 1), we are only interested in the nonnegative integers in the quad-
rant from (0, 0) through (p - 1, p - 1) that satisfy the equation mod p. Table 10.1
lists the points (other than O) that are part of E23(1, 1). Figure 10.5 plots the points
of E23(1, 1); note that the points, with one exception, are symmetric about y = 11.5.

It can be shown that a finite abelian group can be defined based on the set
Ep(a, b) provided that (x3 + ax + b) mod p has no repeated factors. This is equiva-
lent to the condition

 (4a3 + 27b2) mod p ≠ 0 mod p (10.6)

Note that Equation (10.6) has the same form as Equation (10.2).
The rules for addition over Ep(a, b), correspond to the algebraic technique

described for elliptic curves defined over real numbers. For all points P, Q ∈ Ep(a, b):

(0, 1) (6, 4) (12, 19)

(0, 22) (6, 19) (13, 7)

(1, 7) (7, 11) (13, 16)

(1, 16) (7, 12) (17, 3)

(3, 10) (9, 7) (17, 20)

(3, 13) (9, 16) (18, 3)

(4, 0) (11, 3) (18, 20)

(5, 4) (11, 20) (19, 5)

(5, 19) (12, 4) (19, 18)

Table 10.1 Points (other than O) on the
Elliptic Curve E23(1, 1)

M10_STAL7484_08_GE_C10.indd 327 20/04/22 12:50

328 CHaPTeR 10 / OTHeR PubliC-Key CRyPTOsysTems

1. P + O = P.

2. If P = (xP, yP), then P + (xP, -yP) = O. The point (xP, -yP) is the nega-
tive of P, denoted as -P. For example, in E23(1, 1), for P = (13, 7), we have
-P = (13, -7). But -7 mod 23 = 16. Therefore, -P = (13, 16), which is also
in E23(1, 1).

3. If P = (xp, yp) and Q = (xQ, yQ) with P ≠ -Q, then R = P + Q = (xR, yR)
is determined by the following rules:

 xR = (l2 - xP - xQ) mod p

 yR = (l(xP - xR) - yP) mod p

where

l = e a
yQ - yP

xQ - xP
b mod p if P ≠ Q

a
3xP

2 + a

2yP

b mod p if P = Q

Figure 10.5 The Elliptic Curve E23(1, 1)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

x

y

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

M10_STAL7484_08_GE_C10.indd 328 20/04/22 12:50

10.3 / elliPTiC CuRve aRiTHmeTiC 329

4. Multiplication is defined as repeated addition; for example, 4P =
P + P + P + P.

For example, let P = (3, 10) and Q = (9, 7) in E23(1, 1). Then

 l = a7 - 10
9 - 3

b mod 23 = a -3
6

b mod 23 = a -1
2

b mod 23 = 11

 xR = (112 - 3 - 9) mod 23 = 109 mod 23 = 17

 yR = (11(3 - 17) - 10) mod 23 = -164 mod 23 = 20

So P + Q = (17, 20). To find 2P,

 l = ¢ 3(32) + 1

2 * 10
≤ mod 23 = a 5

20
b mod 23 = a1

4
b mod 23 = 6

The last step in the preceding equation involves taking the multiplicative
inverse of 4 in Z23. This can be done using the extended Euclidean algorithm defined
in Section 2.2. To confirm, note that (6 * 4) mod 23 = 24 mod 23 = 1.

 xR = (62 - 3 - 3) mod 23 = 30 mod 23 = 7

 yR = (6(3 - 7) - 10) mod 23 = (-34) mod 23 = 12

and 2P = (7, 12).
For determining the security of various elliptic curve ciphers, it is of some inter-

est to know the number of points in a finite abelian group defined over an elliptic
curve. In the case of the finite group EP(a, b), the number of points N is bounded by

 p + 1 - 22p … N … p + 1 + 22p

Note that the number of points in Ep(a, b) is approximately equal to the number of
elements in Zp, namely p elements.

Elliptic Curves over GF(2m)

Recall from Chapter 5 that a finite field GF(2m) consists of 2m elements, together
with addition and multiplication operations that can be defined over polynomials.
For elliptic curves over GF(2m), we use a cubic equation in which the variables and
coefficients all take on values in GF(2m) for some number m and in which calcula-
tions are performed using the rules of arithmetic in GF(2m).

(0, 1) (g5, g3) (g9, g13)

(1, g6) (g5, g11) (g10, g)

(1, g13) (g6, g8) (g10, g8)

(g3, g8) (g6, g14) (g12, 0)

(g3, g13) (g9, g10) (g12, g12)

Table 10.2 Points (other than O) on the
Elliptic Curve E24(g4, 1)

M10_STAL7484_08_GE_C10.indd 329 20/04/22 12:50

330 CHaPTeR 10 / OTHeR PubliC-Key CRyPTOsysTems

It turns out that the form of cubic equation appropriate for cryptographic
 applications for elliptic curves is somewhat different for GF(2m) than for Zp. The
form is

 y2 + xy = x3 + ax2 + b (10.7)

where it is understood that the variables x and y and the coefficients a and b are ele-
ments of GF(2m) and that calculations are performed in GF(2m).

Now consider the set E2m(a, b) consisting of all pairs of integers (x, y) that sat-
isfy Equation (10.7), together with a point at infinity O.

For example, let us use the finite field GF(24) with the irreducible polynomial
f(x) = x4 + x + 1. This yields a generator g that satisfies f(g) = 0 with a value of
g4 = g + 1, or in binary, g = 0010. We can develop the powers of g as follows.

g0 = 0001 g4 = 0011 g8 = 0101 g12 = 1111

g1 = 0010 g5 = 0110 g9 = 1010 g13 = 1101

g2 = 0100 g6 = 1100 g10 = 0111 g14 = 1001

g3 = 1000 g7 = 1011 g11 = 1110 g15 = 0001

For example, g5 = (g4)(g) = (g + 1)(g) = g2 + g = 0110.
Now consider the elliptic curve y2 + xy = x3 + g4x2 + 1. In this case, a = g4

and b = g0 = 1. One point that satisfies this equation is (g5, g3):

(g3)2 + (g5)(g3) = (g5)3 + (g4)(g5)2 + 1

g6 + g8 = g15 + g14 + 1

1100 + 0101 = 0001 + 1001 + 0001

1001 = 1001

Table 10.2 lists the points (other than O) that are part of E24(g4, 1). Figure 10.6 plots
the points of E24(g4, 1).

It can be shown that a finite abelian group can be defined based on the set
E2m(a, b), provided that b ≠ 0. The rules for addition can be stated as follows. For
all points P, Q ∈ E2m(a, b):

1. P + O = P.

2. If P = (xP, yP), then P + (xP, xP + yP) = O. The point (xP, xP + yP) is the
negative of P, which is denoted as -P.

3. If P = (xP, yP) and Q = (xQ, yQ) with P ≠ -Q and P ≠ Q, then
R = P + Q = (xR, yR) is determined by the following rules:

 xR = l2 + l + xP + xQ + a

 yR = l(xP + xR) + xR + yP

where

l =
yQ + yP

xQ + xP

M10_STAL7484_08_GE_C10.indd 330 20/04/22 12:50

10.4 / elliPTiC CuRve CRyPTOgRaPHy 331

4. If P = (xP, yP) then R = 2P = (xR, yR) is determined by the following rules:

 xR = l2 + l + a

 yR = xP
2 + (l + 1)xR

where

l = xP +
yP

xP

 10.4 ELLIPTIC CURVE CRYPTOGRAPHY

The addition operation in ECC is the counterpart of modular multiplication in RSA,
and multiple addition is the counterpart of modular exponentiation. To form a cryp-
tographic system using elliptic curves, we need to find a “hard problem” correspond-
ing to factoring the product of two primes or taking the discrete logarithm.

Consider the equation Q = kP where Q, P ∈ EP(a, b) and k 6 p. It is rela-
tively easy to calculate Q given k and P, but it is hard to determine k given Q and P.
This is called the discrete logarithm problem for elliptic curves.

We give an example taken from the Certicom Web site (www.certicom.
com). Consider the group E23(9,17). This is the group defined by the equation
y2 mod 23 = (x3 + 9x + 17) mod 23. What is the discrete logarithm k of Q = (4, 5)
to the base P = (16, 5)? The brute-force method is to compute multiples of P until
Q is found. Thus,

 P = (16,5); 2P = (20, 20); 3P = (14, 14); 4P = (19, 20); 5P = (13, 10);

 6P = (7, 3); 7P = (8, 7); 8P = (12, 17); 9P = (4, 5)

Figure 10.6 The Elliptic Curve E24(g4, 1)

1
1
g

g2
g3
g4
g5
g6
g7
g8
g9

g10
g11
g12
g13
g14

0

g g2 g3 g4 g5 g6 g7 g8 g9 g10 g11

x

y

g12 g13 g14 0

M10_STAL7484_08_GE_C10.indd 331 20/04/22 12:50

http://www.certicom.com
http://www.certicom.com

332 CHaPTeR 10 / OTHeR PubliC-Key CRyPTOsysTems

Because 9P = (4, 5) = Q, the discrete logarithm Q = (4, 5) to the base
P = (16, 5) is k = 9. In a real application, k would be so large as to make the brute-
force approach infeasible.

In the remainder of this section, we show two approaches to ECC that give the
flavor of this technique.

Analog of Diffie–Hellman Key Exchange

Key exchange using elliptic curves can be done in the following manner. First pick
a large integer q, which is either a prime number p or an integer of the form 2m,
and elliptic curve parameters a and b for Equation (10.5) or Equation (10.7). This
defines the elliptic group of points Eq(a, b). Next, pick a base point G = (x1, y1) in
Ep(a, b) whose order is a very large value n. The order n of a point G on an elliptic
curve is the smallest positive integer n such that nG = 0 and G are parameters of
the cryptosystem known to all participants.

A key exchange between users A and B can be accomplished as follows
(Figure 10.7).

1. A selects an integer nA less than n. This is A’s private key. A then generates a
public key PA = nA * G; the public key is a point in Eq(a, b).

2. B similarly selects a private key nB and computes a public key PB.

3. A generates the secret key k = nA * PB. B generates the secret key
k = nB * PA.

The two calculations in step 3 produce the same result because

 nA * PB = nA * (nB * G) = nB * (nA * G) = nB * PA

To break this scheme, an attacker would need to be able to compute k given G
and kG, which is assumed to be hard.

As an example,4 take p = 211; Ep(0, -4), which is equivalent to the curve
y2 = x3 - 4; and G = (2, 2). One can calculate that 240G = O. A’s private
key is nA = 121, so A’s public key is PA = 121(2, 2) = (115, 48). B’s private key
is nB = 203, so B’s public key is 203(2, 3) = (130, 203). The shared secret key is
121(130, 203) = 203(115, 48) = (161, 69).

Note that the secret key is a pair of numbers. If this key is to be used as a ses-
sion key for conventional encryption, then a single number must be generated. We
could simply use the x coordinates or some simple function of the x coordinate.

Elliptic Curve Encryption/Decryption

Several approaches to encryption/decryption using elliptic curves have been ana-
lyzed in the literature. In this subsection, we look at perhaps the simplest. The
first task in this system is to encode the plaintext message m to be sent as an (x, y)
point Pm. It is the point Pm that will be encrypted as a ciphertext and subsequently
decrypted. Note that we cannot simply encode the message as the x or y coordi-
nate of a point, because not all such coordinates are in Eq(a, b); for example, see

4Provided by Ed Schaefer of Santa Clara University.

M10_STAL7484_08_GE_C10.indd 332 20/04/22 12:50

10.4 / elliPTiC CuRve CRyPTOgRaPHy 333

Table 10.1. Again, there are several approaches to this encoding, which we will not
address here, but suffice it to say that there are relatively straightforward tech-
niques that can be used.

As with the key exchange system, an encryption/decryption system requires a
point G and an elliptic group Eq(a, b) as parameters. Each user A selects a private
key nA and generates a public key PA = nA * G.

To encrypt and send a message Pm to B, A chooses a random positive integer k
and produces the ciphertext Cm consisting of the pair of points:

 Cm = {kG, Pm + kPB}

Note that A has used B’s public key PB. To decrypt the ciphertext, B multiplies the
first point in the pair by B’s private key and subtracts the result from the second
point:

 Pm + kPB - nB(kG) = Pm + k(nBG) - nB(kG) = Pm

A has masked the message Pm by adding kPB to it. Nobody but A knows the
value of k, so even though Pb is a public key, nobody can remove the mask kPB.

Figure 10.7 ECC Diffie–Hellman Key Exchange

 Global Public Elements

Eq(a, b) elliptic curve with parameters a, b, and q, where q is a
 prime or an integer of the form 2m

G point on elliptic curve whose order is large value n

User A Key Generation

Select private nA nA 6 n

Calculate public PA PA = nA * G

User B Key Generation

Select private nB nB 6 n

Calculate public PB PB = nB * G

Calculation of Secret Key by User A

K = nA * PB

Calculation of Secret Key by User B

K = nB * PA

M10_STAL7484_08_GE_C10.indd 333 20/04/22 12:50

334 CHaPTeR 10 / OTHeR PubliC-Key CRyPTOsysTems

However, A also includes a “clue,” which is enough to remove the mask if one knows
the private key nB. For an attacker to recover the message, the attacker would have
to compute k given G and kG, which is assumed to be hard.

Let us consider a simple example. The global public elements are
q = 257; Eq(a, b) = E257(0, -4), which is equivalent to the curve y2 = x3 - 4;
and G = (2, 2). Bob’s private key is nB = 101, and his public key is PB = nBG =
101(2, 2) = (197, 167). Alice wishes to send a message to Bob that is encoded in
the elliptic point Pm = (112, 26). Alice chooses random integer k = 41 and com-
putes kG = 41(2, 2) = (136, 128), kPB = 41(197, 167) = (68, 84) and Pm + kPB =
(112, 26) + (68, 84) = (246, 174). Alice sends the ciphertext Cm = (C1, C2) =
{(136, 128), (246, 174)} to Bob. Bob receives the ciphertext and computes
C2 - nBC1 = (246, 174) - 101(136, 128) = (246, 174) - (68, 84) = (112, 26).

Security of Elliptic Curve Cryptography

The security of ECC depends on how difficult it is to determine k given kP and P.
This is referred to as the elliptic curve logarithm problem. The fastest known tech-
nique for taking the elliptic curve logarithm is known as the Pollard rho method.
Table 10.3, from NIST SP 800-57 (Recommendation for Key Management—Part 1:
General, September 2015), compares various algorithms by showing comparable
key sizes in terms of computational effort for cryptanalysis. As can be seen, a consid-
erably smaller key size can be used for ECC compared to RSA.

Based on this analysis, SP 800-57 recommends that at least through 2030,
acceptable key lengths are from 3072 to 14,360 bits for RSA and 256 to 512 bits for
ECC. Similarly, the European Union Agency for Network and Information Security
(ENISA) recommends in their 2014 report (Algorithms, Key Size and Parameters
report—2014, November 2014) minimum key lengths for future system of 3072 bits
and 256 bits for RSA and ECC, respectively.

Analysis indicates that for equal key lengths, the computational effort required
for ECC and RSA is comparable [JURI97]. Thus, there is a computational advan-
tage to using ECC with a shorter key length than a comparably secure RSA.

Symmetric Key
Algorithms

Diffie–Hellman, Digital
Signature Algorithm

RSA
(size of n in bits)

ECC
(modulus size in bits)

80
L = 1024
N = 160

1024 160–223

112
L = 2048
N = 224

2048 224–255

128
L = 3072
N = 256

3072 256–383

192
L = 7680
N = 384

7680 384–511

256
L = 15,360
N = 512

15,360 512+

Table 10.3 Comparable Key Sizes in Terms of Computational
Effort for Cryptanalysis (NIST SP-800-57)

Note: L = size of public key, N = size of private key.

M10_STAL7484_08_GE_C10.indd 334 20/04/22 12:50

10.5 / Key TeRms, Review QuesTiOns, anD PROblems 335

 10.5 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

discrete logarithm
elliptic curve

elliptic curve cryptography
finite field

man-in-the-middle attack
primitive root

Review Questions

 10.1 What is the relation between the security of the Diffie–Hellman key exchange and
the difficulty of computing discrete logarithms?

 10.2 Explain the security of the elliptic curve cryptography (ECC) and how it compares to
the security of RSA.

 10.3 What is the zero point of an elliptic curve?
 10.4 What is the sum of three points on an elliptic curve that lie on a straight line?

Problems

 10.1 Alice and Bob use the Diffie–Hellman key exchange technique with a common prime
q = 157 and a primitive root a = 5.
a. If Alice has a private key XA = 15, find her public key YA.
b. If Bob has a private key XB = 27, find his public key YB.
c. What is the shared secret key between Alice and Bob?

 10.2 Alice and Bob use the Diffie–Hellman key exchange technique with a common prime
q = 23 and a primitive root a = 5.
a. If Bob has a public key YB = 10, what is Bob’s private key XB?
b. If Alice has a public key YA = 8, what is the shared key K with Bob?
c. Show that 5 is a primitive root of 23.

 10.3 In the Diffie–Hellman protocol, each participant selects a secret number x and sends
the other participant ax mod q for some public number a. What would happen if the
participants sent each other xa for some public number a instead? Give at least one
method Alice and Bob could use to agree on a key. Can Darth break your system
without finding the secret numbers? Can Darth find the secret numbers?

 10.4 This problem illustrates the point that the Diffie–Hellman protocol is not secure with-
out the step where you take the modulus; i.e. the “Indiscrete Log Problem” is not a
hard problem! You are Darth and have captured Alice and Bob and imprisoned them.
You overhear the following dialog.

Bob: Oh, let’s not bother with the prime in the Diffie–Hellman protocol, it will
make things easier.

Alice: Okay, but we still need a base a to raise things to. How about a = 3?

Bob: All right, then my result is 27.

Alice: And mine is 243.

What is Bob’s private key XB and Alice’s private key XA? What is their secret com-
bined key? (Don’t forget to show your work.)

 10.5 Section 10.1 describes a man-in-the-middle attack on the Diffie–Hellman key
 exchange protocol in which the adversary generates two public–private key pairs for
the attack. Could the same attack be accomplished with one pair? Explain.

M10_STAL7484_08_GE_C10.indd 335 20/04/22 12:50

336 CHaPTeR 10 / OTHeR PubliC-Key CRyPTOsysTems

 10.6 Suppose Alice and Bob use an Elgamal scheme with a common prime q = 157 and a
primitive root a = 5.
a. If Bob has public key YB = 10 and Alice chose the random integer k = 3, what is

the ciphertext of M = 9?
b. If Alice now chooses a different value of k so that the encoding of M = 9 is

C = (25, C2), what is the integer C2?
 10.7 Rule (5) for doing arithmetic in elliptic curves over real numbers states that to double

a point Q2, draw the tangent line and find the other point of intersection S. Then
Q + Q = 2Q = -S. If the tangent line is not vertical, there will be exactly one point
of intersection. However, suppose the tangent line is vertical? In that case, what is the
value 2Q? What is the value 3Q?

 10.8 Demonstrate that the two elliptic curves of Figure 10.4 each satisfy the conditions for
a group over the real numbers.

 10.9 Is (5, 12) a point on the elliptic curve y2 = x3 + 4x - 1 over real numbers?

 10.10 On the elliptic curve over the real numbers y2 = x3 -
17
12

x + 1, let P = (0, 1) and
Q = (1.5, 1.5). Find P + Q and 2P.

 10.11 Does the elliptic curve equation y2 = x3 + x + 2 define a group over Z7?
 10.12 Consider the elliptic curve E7(2, 1); that is, the curve is defined by y2 = x3 + 2x + 1

with a modulus of p = 7. Determine all of the points in E7(2, 1). Hint: Start by calcu-
lating the right-hand side of the equation for all values of x.

 10.13 What are the negatives of the following elliptic curve points over Z7? P = (3, 5);
Q = (2, 5); and R = (5, 0).

 10.14 For E11(1, 7), consider the point G = (3, 2). Compute the multiple of G from 2G
through 13G.

 10.15 This problem performs elliptic curve encryption/decryption using the scheme out-
lined in Section 10.4. The cryptosystem parameters are E11(1, 7) and G = (3, 2). B’s
private key is nB = 7.
a. Find B’s public key PB.
b. A wishes to encrypt the message Pm = (10, 7) and chooses the random value

k = 5. Determine the ciphertext Cm.
c. Show the calculation by which B recovers Pm from Cm.

 10.16 The following is a first attempt at an elliptic curve signature scheme. We have a global
elliptic curve, prime p, and “generator” G. Alice picks a private signing key XA and
forms the public verifying key YA = XAG. To sign a message M:

◆■ Alice picks a value k.
◆■ Alice sends Bob M, k, and the signature S = M - kXAG.
◆■ Bob verifies that M = S + kYA.

a. Show that this scheme works. That is, show that the verification process produces
an equality if the signature is valid.

b. Show that the scheme is unacceptable by describing a simple technique for forging
a user’s signature on an arbitrary message.

 10.17 Here is an improved version of the scheme given in the previous problem. As before,
we have a global elliptic curve, prime p, and “generator” G. Alice picks a private sign-
ing key XA and forms the public verifying key YA = XAG. To sign a message M:

◆■ Bob picks a value k.
◆■ Bob sends Alice C1 = kG.
◆■ Alice sends Bob M and the signature S = M - XAC1.
◆■ Bob verifies that M = S + kYA.

a. Show that this scheme works. That is, show that the verification process produces
an equality if the signature is valid.

b. Show that forging a message in this scheme is as hard as breaking (ElGamal)
 elliptic curve cryptography. (Or find an easier way to forge a message?)

c. This scheme has an extra “pass” compared to other cryptosystems and signature
schemes we have looked at. What are some drawbacks to this?

M10_STAL7484_08_GE_C10.indd 336 20/04/22 12:50

Part Four: CryPtograPhiC Data
integrity algorithms

CHAPTER

Cryptographic Hash Functions
11.1 Applications of Cryptographic Hash Functions

Message Authentication
Digital Signatures
Other Applications

11.2 Two Simple Hash Functions

11.3 Requirements and Security

Security Requirements for Cryptographic Hash Functions
Brute-Force Attacks
Cryptanalysis

11.4 Secure Hash Algorithm (SHA)

SHA-512 Logic
SHA-512 Round Function
Example

11.5 SHA-3

The Sponge Construction
The SHA-3 Iteration Function f

11.6 Key Terms, Review Questions, and Problems

11

337

M11_STAL7484_08_GE_C11.indd 337 20/04/22 13:46

338 CHAPTER 11 / CRyPTogRAPHiC HAsH FunCTions

A hash function H accepts a variable-length block of data M as input and produces
a fixed-size result h = H(M), referred to as a hash value or a hash code. A “good”
hash function has the property that the results of applying the function to a large set
of inputs will produce outputs that are evenly distributed and apparently random. In
general terms, the principal object of a hash function is data integrity. A change to any
bit or bits in M results, with high probability, in a change to the hash value.

The kind of hash function needed for security applications is referred to
as a cryptographic hash function. A cryptographic hash function is an algo-
rithm for which it is computationally infeasible (because no attack is signifi-
cantly more efficient than brute force) to find either (a) a data object that maps
to a pre-specified hash result (the one-way property) or (b) two data objects
that map to the same hash result (the collision-free property). Because of these
characteristics, hash functions are often used to determine whether or not data
has changed.

Figure 11.1 depicts the general operation of a cryptographic hash func-
tion. Typically, the input is padded out to an integer multiple of some fixed length
(e.g., 1024 bits), and the padding includes the value of the length of the original
message in bits. The length field is a security measure to increase the difficulty for an
 attacker to produce an alternative message with the same hash value, as explained
subsequently.

This chapter begins with a discussion of the wide variety of applications for
cryptographic hash functions. Next, we look at the security requirements for such
functions. Then we look at the use of cipher block chaining to implement a crypto-
graphic hash function. The remainder of the chapter is devoted to the most important
and widely used family of cryptographic hash functions, the Secure Hash Algorithm
(SHA) family.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

◆◆ Summarize the applications of cryptographic hash functions.

◆◆ Explain why a hash function used for message authentication needs to be
secured.

◆◆ Understand the differences among preimage resistant, second preimage
resistant, and collision resistant properties.

◆◆ Present an overview of the basic structure of cryptographic hash functions.

◆◆ Describe how cipher block chaining can be used to construct a hash function.

◆◆ Understand the operation of SHA-512.

M11_STAL7484_08_GE_C11.indd 338 20/04/22 13:46

11.1 / APPliCATions oF CRyPTogRAPHiC HAsH FunCTions 339

 11.1 APPLICATIONS OF CRYPTOGRAPHIC HASH FUNCTIONS

Perhaps the most versatile cryptographic algorithm is the cryptographic hash func-
tion. It is used in a wide variety of security applications and Internet protocols.
To better understand some of the requirements and security implications for cryp-
tographic hash functions, it is useful to look at the range of applications in which it
is employed.

Message Authentication

Message authentication is a mechanism or service used to verify the integrity of
a message. Message authentication assures that data received are exactly as sent
(i.e., there is no modification, insertion, deletion, or replay). In many cases, there is a
requirement that the authentication mechanism assures that the purported identity
of the sender is valid. When a hash function is used to provide message authentica-
tion, the hash function value is often referred to as a message digest.1

The essence of the use of a hash function for message integrity is as follows.
The sender computes a hash value as a function of the bits in the message and trans-
mits both the hash value and the message. The receiver performs the same hash cal-
culation on the message bits and compares this value with the incoming hash value.

Figure 11.1 Cryptographic Hash Function; h = H(M)

Message or data block M (variable length) P, L

P, L 5 padding plus length field

L bits

Hash value h
(fixed length)

H

1The topic of this section is invariably referred to as message authentication. However, the concepts and
techniques apply equally to data at rest. For example, authentication techniques can be applied to a file
in storage to assure that the file is not tampered with.

M11_STAL7484_08_GE_C11.indd 339 20/04/22 13:46

340 CHAPTER 11 / CRyPTogRAPHiC HAsH FunCTions

If there is a mismatch, the receiver knows that the message (or possibly the hash
value) has been altered (Figure 11.2a).

The hash value must be transmitted in a secure fashion. That is, the hash value
must be protected so that if an adversary alters or replaces the message, it is not
feasible for adversary to also alter the hash value to fool the receiver. This type
of attack is shown in Figure 11.2b. In this example, Alice transmits a data block
and attaches a hash value. Darth intercepts the message, alters or replaces the data
block, and calculates and attaches a new hash value. Bob receives the altered data
with the new hash value and does not detect the change. To prevent this attack, the
hash value generated by Alice must be protected.

Figure 11.2 Attack Against Hash Function

(b) Man-in-the-middle attack

Alice

Darth

Bob

BobAlice

COMPARE

data

data

data

H

data

data

data

H

H

(a) Use of hash function to check data integrity

COMPARE

data

data

data

H
H

M11_STAL7484_08_GE_C11.indd 340 20/04/22 13:46

11.1 / APPliCATions oF CRyPTogRAPHiC HAsH FunCTions 341

Figure 11.3 illustrates a variety of ways in which a hash code can be used to
provide message authentication, as follows.

a. The message plus concatenated hash code is encrypted using symmetric
encryption. Because only A and B share the secret key, the message must have
come from A and has not been altered. The hash code provides the structure or
redundancy required to achieve authentication. Because encryption is applied
to the entire message plus hash code, confidentiality is also provided.

b. Only the hash code is encrypted, using symmetric encryption. This reduces the
processing burden for those applications that do not require confidentiality.

Figure 11.3 Simplified Examples of the Use of a Hash Function for Message Authentication

E

K

M

H

| | D

K

M
H

Compare

(a)

M

H

| |

K

(b)

M

D

H

CompareK

E

Destination BSource A

| |SM

H

| |

S
(c)

| |

M H

Compare

M

H

| |

S
(d)

| |

E

K

| |S H

Compare

MD

K

H(M)

E(K, [M || H(M)])

E(K, H(M))

H(M || S)

H(M || S)

E(K, [M || H(M || S)])

M11_STAL7484_08_GE_C11.indd 341 20/04/22 13:46

342 CHAPTER 11 / CRyPTogRAPHiC HAsH FunCTions

c. It is possible to use a hash function but no encryption for message authentica-
tion. The technique assumes that the two communicating parties share a common
secret value S. A computes the hash value over the concatenation of M and S and
appends the resulting hash value to M. Because B possesses S, it can recompute
the hash value to verify. Because the secret value itself is not sent, an opponent
cannot modify an intercepted message and cannot generate a false message.

d. Confidentiality can be added to the approach of method (c) by encrypting the
entire message plus the hash code.

When confidentiality is not required, method (b) has an advantage over meth-
ods (a) and (d), which encrypts the entire message, in that less computation is required.
Nevertheless, there has been growing interest in techniques that avoid encryption
(Figure 11.3c). Several reasons for this interest are pointed out in [TSUD92].

◆■ Encryption software is relatively slow. Even though the amount of data to be
encrypted per message is small, there may be a steady stream of messages into
and out of a system.

◆■ Encryption hardware costs are not negligible. Low-cost chip implementations
of DES are available, but the cost adds up if all nodes in a network must have
this capability.

◆■ Encryption hardware is optimized toward large data sizes. For small blocks of
data, a high proportion of the time is spent in initialization/invocation overhead.

◆■ Encryption algorithms may be covered by patents, and there is a cost associ-
ated with licensing their use.

More commonly, message authentication is achieved using a message
 authentication code (MAC), also known as a keyed hash function. Typically, MACs
are used between two parties that share a secret key to authenticate information
 exchanged between those parties. A MAC function takes as input a secret key and a
data block and produces a hash value, referred to as the MAC, which is associated with
the protected message. If the integrity of the message needs to be checked, the MAC
function can be applied to the message and the result compared with the associated
MAC value. An attacker who alters the message will be unable to alter the associated
MAC value without knowledge of the secret key. Note that the verifying party also
knows who the sending party is because no one else knows the secret key.

Note that the combination of hashing and encryption results in an overall
function that is, in fact, a MAC (Figure 11.3b). That is, E(K, H(M)) is a function of
a variable-length message M and a secret key K, and it produces a fixed-size out-
put that is secure against an opponent who does not know the secret key. In prac-
tice, specific MAC algorithms are designed that are generally more efficient than an
 encryption algorithm.

We discuss MACs in Chapter 12.

Digital Signatures

Another important application, which is similar to the message authentication
 application, is the digital signature. The operation of the digital signature is similar
to that of the MAC. In the case of the digital signature, the hash value of a message

M11_STAL7484_08_GE_C11.indd 342 20/04/22 13:46

11.1 / APPliCATions oF CRyPTogRAPHiC HAsH FunCTions 343

is encrypted with a user’s private key. Anyone who knows the user’s public key can
verify the integrity of the message that is associated with the digital signature. In
this case, an attacker who wishes to alter the message would need to know the user’s
private key. As we shall see in Chapter 14, the implications of digital signatures go
beyond just message authentication.

Figure 11.4 illustrates, in a simplified fashion, how a hash code is used to
 provide a digital signature.

a. The hash code is encrypted, using public-key encryption with the sender’s
 private key. As with Figure 11.3b, this provides authentication. It also provides
a digital signature, because only the sender could have produced the encrypted
hash code. In fact, this is the essence of the digital signature technique.

b. If confidentiality as well as a digital signature is desired, then the message
plus the private-key-encrypted hash code can be encrypted using a symmetric
 secret key. This is a common technique.

Other Applications

Hash functions are commonly used to create a one-way password file. Chapter 24
explains a scheme in which a hash of a password is stored by an operating system
rather than the password itself. Thus, the actual password is not retrievable by a
hacker who gains access to the password file. In simple terms, when a user enters a
password, the hash of that password is compared to the stored hash value for veri-
fication. This approach to password protection is used by most operating systems.

Figure 11.4 Simplified Examples of Digital Signatures

M | | E

E

K

D

K

M

D

H

Compare

(b) E(PRa, H(M))

E(K, [M || E(PRa, H(M))])

Destination BSource A

PRa

PRa

PUa

PUa

M

H

| |

(a)

M

E D

H

Compare

E(PRa, H(M))

H

M11_STAL7484_08_GE_C11.indd 343 20/04/22 13:46

344 CHAPTER 11 / CRyPTogRAPHiC HAsH FunCTions

Hash functions can be used for intrusion detection and virus detection. Store
H(F) for each file on a system and secure the hash values (e.g., on a CD-R that is
kept secure). One can later determine if a file has been modified by recomputing
H(F). An intruder would need to change F without changing H(F).

A cryptographic hash function can be used to construct a pseudorandom
 function (PRF) or a pseudorandom number generator (PRNG). A common
 application for a hash-based PRF is for the generation of symmetric keys. We discuss
this application in Chapter 12.

 11.2 TWO SIMPLE HASH FUNCTIONS

To get some feel for the security considerations involved in cryptographic hash func-
tions, we present two simple, insecure hash functions in this section. All hash func-
tions operate using the following general principles. The input (message, file, etc.) is
viewed as a sequence of n -bit blocks. The input is processed one block at a time in
an iterative fashion to produce an n-bit hash function.

One of the simplest hash functions is the bit-by-bit exclusive-OR (XOR) of
every block. This can be expressed as

 Ci = bi1 ⊕ bi2 ⊕ g ⊕ bim

where

Ci = ith bit of the hash code, 1 … i … n

m = number of n@bit blocks in the input

bij = ith bit in jth block
⊕ = XOR operation

This operation produces a simple parity bit for each bit position and is known
as a longitudinal redundancy check. It is reasonably effective for random data as a
data integrity check. Each n-bit hash value is equally likely. Thus, the probability
that a data error will result in an unchanged hash value is 2-n. With more predict-
ably formatted data, the function is less effective. For example, in most normal text
files, the high-order bit of each octet is always zero. So if a 128-bit hash value is used,
instead of an effectiveness of 2-128, the hash function on this type of data has an
effectiveness of 2-112.

A simple way to improve matters is to perform a one-bit circular shift, or
 rotation, on the hash value after each block is processed. The procedure can be sum-
marized as follows.

1. Initially set the n-bit hash value to zero.

2. Process each successive n-bit block of data as follows:

a. Rotate the current hash value to the left by one bit.
b. XOR the block into the hash value.

This has the effect of “randomizing” the input more completely and overcoming any
regularities that appear in the input. Figure 11.5 illustrates these two types of hash
functions for 16-bit hash values.

M11_STAL7484_08_GE_C11.indd 344 20/04/22 13:46

11.2 / Two simPlE HAsH FunCTions 345

Although the second procedure provides a good measure of data integrity, it
is virtually useless for data security when an encrypted hash code is used with a
plaintext message, as in Figures 11.3b and 11.4a. Given a message, it is an easy matter
to produce a new message that yields that hash code: Simply prepare the desired
alternate message and then append an n-bit block that forces the new message plus
block to yield the desired hash code.

Although a simple XOR or rotated XOR (RXOR) is insufficient if only the
hash code is encrypted, you may still feel that such a simple function could be
 useful when the message together with the hash code is encrypted (Figure 11.3a).
But you must be careful. A technique originally proposed by the National Bureau
of Standards used the simple XOR applied to 64-bit blocks of the message and
then an encryption of the entire message that used the cipher block chaining
(CBC) mode. We can define the scheme as follows: Given a message M consisting
of a sequence of 64-bit blocks X1, X2, c , XN, define the hash code h = H(M)

Figure 11.5 Two Simple Hash Functions

XOR of every 16-bit blockXOR with 1-bit rotation to the right

16 bits

M11_STAL7484_08_GE_C11.indd 345 20/04/22 13:46

346 CHAPTER 11 / CRyPTogRAPHiC HAsH FunCTions

as the block-by-block XOR of all blocks and append the hash code as the final
block:

 h = XN + 1 = X1 ⊕ X2 ⊕ c ⊕ XN

Next, encrypt the entire message plus hash code using CBC mode to produce the
encrypted message Y1, Y2, c , YN + 1. [JUEN85] points out several ways in which
the ciphertext of this message can be manipulated in such a way that it is not detect-
able by the hash code. For example, by the definition of CBC (Figure 6.4), we have

 X1 = IV ⊕ D(K,Y1)

 Xi = Yi- 1 ⊕ D(K, Yi)

 XN + 1 = YN ⊕ D(K, YN + 1)

But XN + 1 is the hash code:

 XN + 1 = X1 ⊕ X2 ⊕ c ⊕ XN

 = [IV ⊕ D(K, Y1)] ⊕ [Y1 ⊕ D(K, Y2)] ⊕ c ⊕ [YN - 1 ⊕ D(K, YN)]

Because the terms in the preceding equation can be XORed in any order, it follows
that the hash code would not change if the ciphertext blocks were permuted.

 11.3 REQUIREMENTS AND SECURITY

Before proceeding, we need to define two terms. For a hash value h = H(x), we
say that x is the preimage of h. That is, x is a data block whose hash value, using the
function H, is h. Because H is a many-to-one mapping, for any given hash value h,
there will in general be multiple preimages. A collision occurs if we have x ≠ y and
H(x) = H(y). Because we are using hash functions for data integrity, collisions are
clearly undesirable.

Let us consider how many preimages are there for a given hash value, which is
a measure of the number of potential collisions for a given hash value. Suppose the
length of the hash code is n bits, and the function H takes as input messages or data
blocks of length b bits with b 7 n. Then, the total number of possible messages is
2b and the total number of possible hash values is 2n. On average, each hash value
corresponds to 2b - n preimages. If H tends to uniformly distribute hash values then,
in fact, each hash value will have close to 2b - n preimages. If we now allow inputs of
arbitrary length, not just a fixed length of some number of bits, then the number
of preimages per hash value is arbitrarily large. However, the security risks in the
use of a hash function are not as severe as they might appear from this analysis.
To understand better the security implications of cryptographic hash functions, we
need to precisely define their security requirements.

Security Requirements for Cryptographic Hash Functions

Table 11.1 lists the generally accepted requirements for a cryptographic hash func-
tion. The first three properties are requirements for the practical application of a
hash function.

M11_STAL7484_08_GE_C11.indd 346 20/04/22 13:46

11.3 / REquiREmEnTs And sECuRiTy 347

The fourth property, preimage resistant, is the one-way property: it is easy to
generate a code given a message, but virtually impossible to generate a message
given a code. This property is important if the authentication technique involves
the use of a secret value (Figure 11.3c). The secret value itself is not sent. However,
if the hash function is not one way, an attacker can easily discover the secret value:
If the attacker can observe or intercept a transmission, the attacker obtains the
 message M, and the hash code h = H(S }M). The attacker then inverts the hash
function to obtain S }M = H-1(MDM). Because the attacker now has both M and
S }M, it is a trivial matter to recover S.

The fifth property, second preimage resistant, guarantees that it is infeasible to
find an alternative message with the same hash value as a given message. This pre-
vents forgery when an encrypted hash code is used (Figures 11.3b and 11.4a). If this
property were not true, an attacker would be capable of the following sequence:
First, observe or intercept a message plus its encrypted hash code; second, generate
an unencrypted hash code from the message; third, generate an alternate message
with the same hash code.

A hash function that satisfies the first five properties in Table 11.1 is referred
to as a weak hash function. If the sixth property, collision resistant, is also satis-
fied, then it is referred to as a strong hash function. A strong hash function protects
against an attack in which one party generates a message for another party to sign.
For example, suppose Bob writes an IOU message, sends it to Alice, and she signs
it. Bob finds two messages with the same hash, one of which requires Alice to pay a
small amount and one that requires a large payment. Alice signs the first message,
and Bob is then able to claim that the second message is authentic.

Figure 11.6 shows the relationships among the three resistant properties.
A function that is collision resistant is also second preimage resistant, but the reverse
is not necessarily true. A function can be collision resistant but not preimage resis-
tant and vice versa. A function can be preimage resistant but not second preimage
resistant and vice versa. See [MENE97] for a discussion.

Requirement Description

Variable input size H can be applied to a block of data of any size.

Fixed output size H produces a fixed-length output.

Efficiency H(x) is relatively easy to compute for any
given x, making both hardware and software
implementations practical.

Preimage resistant (one-way property) For any given hash value h, it is computationally
infeasible to find y such that H(y) = h.

Second preimage resistant (weak collision
 resistant)

For any given block x, it is computationally
 infeasible to find y ≠ x with H(y) = H(x).

Collision resistant (strong collision resistant) It is computationally infeasible to find any pair
(x, y) with x ≠ y, such that H(x) = H(y).

Pseudorandomness Output of H meets standard tests for
 pseudorandomness.

Table 11.1 Requirements for a Cryptographic Hash Function H

M11_STAL7484_08_GE_C11.indd 347 20/04/22 13:46

348 CHAPTER 11 / CRyPTogRAPHiC HAsH FunCTions

Table 11.2 shows the resistant properties required for various hash function
applications.

The final requirement in Table 11.1, pseudorandomness, has not tradition-
ally been listed as a requirement of cryptographic hash functions but is more or
less implied. [JOHN05] points out that cryptographic hash functions are commonly
used for key derivation and pseudorandom number generation, and that in message
 integrity applications, the three resistant properties depend on the output of the
hash function appearing to be random. Thus, it makes sense to verify that in fact a
given hash function produces pseudorandom output.

Brute-Force Attacks

As with encryption algorithms, there are two categories of attacks on hash functions:
brute-force attacks and cryptanalysis. A brute-force attack does not depend on the
specific algorithm but depends only on bit length. In the case of a hash function, a
brute-force attack depends only on the bit length of the hash value. A cryptanalysis,
in contrast, is an attack based on weaknesses in a particular cryptographic algo-
rithm. We look first at brute-force attacks.

Figure 11.6 Relationship Among Hash Function Properties

Second
preimage resistant

Preimage
resistant

Collision
resistant

Preimage Resistant
Second Preimage

Resistant Collision Resistant

Hash + digital signature yes yes yes*

Intrusion detection and virus
 detection

yes

Hash + symmetric encryption

One-way password file yes

MAC yes yes yes*

Table 11.2 Hash Function Resistance Properties Required for Various Data Integrity Applications

*Resistance required if attacker is able to mount a chosen message attack

M11_STAL7484_08_GE_C11.indd 348 20/04/22 13:46

11.3 / REquiREmEnTs And sECuRiTy 349

Preimage and Second Preimage attackS For a preimage or second preimage
 attack, an adversary wishes to find a value y such that H(y) is equal to a given hash
value h. The brute-force method is to pick values of y at random and try each value
until a collision occurs. For an m-bit hash value, the level of effort is proportional
to 2m. Specifically, the adversary would have to try, on average, 2m - 1 values of y to
find one that generates a given hash value h. This result is derived in Appendix E
[Equation (E.1)].

colliSion reSiStant attackS For a collision resistant attack, an adversary wishes
to find two messages or data blocks, x and y, that yield the same hash function:
H(x) = H(y). This turns out to require considerably less effort than a preimage or
second preimage attack. The effort required is explained by a mathematical result
referred to as the birthday paradox. In essence, if we choose random variables from
a uniform distribution in the range 0 through N - 1, then the probability that a re-
peated element is encountered exceeds 0.5 after 2N choices have been made. Thus,
for an m-bit hash value, if we pick data blocks at random, we can expect to find two
data blocks with the same hash value within 22m = 2m/2 attempts. The mathemati-
cal derivation of this result is found in Appendix E.

Yuval proposed the following strategy to exploit the birthday paradox in a
 collision resistant attack [YUVA79].

1. The source, A, is prepared to sign a legitimate message x by appending the
 appropriate m-bit hash code and encrypting that hash code with A’s private
key (Figure 11.4a).

2. The opponent generates 2m/2 variations x′ of x, all of which convey essentially
the same meaning, and stores the messages and their hash values.

3. The opponent prepares a fraudulent message y for which A’s signature is
desired.

4. The opponent generates minor variations y′ of y, all of which convey essen-
tially the same meaning. For each y′, the opponent computes H(y′), checks
for matches with any of the H(x′) values, and continues until a match is found.
That is, the process continues until a y′ is generated with a hash value equal to
the hash value of one of the x′ values.

5. The opponent offers the valid variation to A for signature. This signature can
then be attached to the fraudulent variation for transmission to the intended
recipient. Because the two variations have the same hash code, they will pro-
duce the same signature; the opponent is assured of success even though the
encryption key is not known.

Thus, if a 64-bit hash code is used, the level of effort required is only on the
order of 232 [see Appendix E, Equation (E.7)].

The generation of many variations that convey the same meaning is not difficult.
For example, the opponent could insert a number of “space-space- backspace” char-
acter pairs between words throughout the document. Variations could then be gen-
erated by substituting “space-backspace-space” in selected instances. Alternatively,

M11_STAL7484_08_GE_C11.indd 349 20/04/22 13:46

350 CHAPTER 11 / CRyPTogRAPHiC HAsH FunCTions

the opponent could simply reword the message but retain the meaning. Figure 11.7
provides an example.

To summarize, for a hash code of length m, the level of effort required, as we
have seen, is proportional to the following.

Preimage resistant 2m

Second preimage resistant 2m

Collision resistant 2m/2

Figure 11.7 A Letter in 238 Variations

As the
—

 Dean of Blakewell College, I have had the pleasure of knowing
known

Cherise

Rosetti for the last
past

four years. She has been
was

a tremendous
an outstanding

asset to
role model in

our
the

 school. I
would like to take this opportunity to

wholeheartedly
 recommend Cherise for your

school’s
—

graduate program. I

succeed in her studies. is a dedicated student and

. In class,

am
feel

confident
certain

that
—

she
Cherise

will

continue to
—

She
Cherise

thus far her grades
her grades thus far

have been
are

exemplary
excellent

she
Cherise

has proven to be
has been

a take-charge person
individual

who is
—

 able to

successfully develop plans and implement them.

She
Cherise

has also assisted

demonstrated leadership ability by counseling new and prospective students.

in our admissions office. hasus
—

She
Cherise

successfully
—

Her
Cherise’s

have their comments with me regarding her pleasant and

a great
of considerable

taken time to share

advice has been help to these students, many of whom

shared

attitude.

Cherise

 I encouraging
reassuring

For these reasons
It is for these reasons that

highly recommend
offer high recommendations for

without reservation
unreservedly

. Her andambition
drive

abilities will be an your .
potential

truly
surely

asset to
plus for

establishment
school

M11_STAL7484_08_GE_C11.indd 350 20/04/22 13:46

11.3 / REquiREmEnTs And sECuRiTy 351

If collision resistance is required (and this is desirable for a general-purpose
 secure hash code), then the value 2m/2 determines the strength of the hash code
against brute-force attacks. Van Oorschot and Wiener [VANO94] presented a design
for a $10 million collision search machine for MD5, which has a 128-bit hash length,
that could find a collision in 24 days. Thus, a 128-bit code may be viewed as inad-
equate. The next step up, if a hash code is treated as a sequence of 32 bits, is a 160-bit
hash length. With a hash length of 160 bits, the same search machine would require
over four thousand years to find a collision. With today’s technology, the time would
be much shorter, so that 160 bits now appears suspect.

Cryptanalysis

As with encryption algorithms, cryptanalytic attacks on hash functions seek to
 exploit some property of the algorithm to perform some attack other than an
 exhaustive search. The way to measure the resistance of a hash algorithm to crypt-
analysis is to compare its strength to the effort required for a brute-force attack.
That is, an ideal hash algorithm will require a cryptanalytic effort greater than or
equal to the brute-force effort.

In recent years, there has been considerable effort, and some successes, in
developing cryptanalytic attacks on hash functions. To understand these, we need
to look at the overall structure of a typical secure hash function, indicated in
Figure 11.8. This structure, referred to as an iterated hash function, was proposed
by Merkle [MERK79, MERK89] and is the structure of most hash functions in
use today, including SHA, which is discussed later in this chapter. The hash func-
tion takes an input message and partitions it into L fixed-sized blocks of b bits
each. If necessary, the final block is padded to b bits. The final block also includes
the value of the total length of the input to the hash function. The inclusion of the
length makes the job of the opponent more difficult. Either the opponent must
find two messages of equal length that hash to the same value or two messages of
differing lengths that, together with their length values, hash to the same value.

The hash algorithm involves repeated use of a compression function, f, that
takes two inputs (an n-bit input from the previous step, called the chaining variable,

Figure 11.8 General Structure of Secure Hash Code

f fn n
n

IV 5
CV0 CV1

b

n

CVL-1

CVLn

b

Y0 Y1 YL-1

IV 5 Initial value
CVi 5 Chaining variable
Yi 5 ith input block
f 5 Compression algorithm

L 5 Number of input blocks
n 5 Length of hash code
b 5 Length of input block

b

f

M11_STAL7484_08_GE_C11.indd 351 20/04/22 13:46

352 CHAPTER 11 / CRyPTogRAPHiC HAsH FunCTions

and a b-bit block) and produces an n-bit output. At the start of hashing, the chaining
variable has an initial value that is specified as part of the algorithm. The final value
of the chaining variable is the hash value. Often, b 7 n; hence the term compression.
The hash function can be summarized as

 CV0 = IV = initial n@bit value

 CVi = f(CVi- 1, Yi- 1) 1 … i … L

 H(M) = CVL

where the input to the hash function is a message M consisting of the blocks
Y0, Y1, c , YL - 1.

The motivation for this iterative structure stems from the observation by Merkle
[MERK89] and Damgard [DAMG89] that if the length field is included in the input,
and if the compression function is collision resistant, then so is the resul tant iterated
hash function.2 Therefore, the structure can be used to produce a secure hash func-
tion to operate on a message of any length. The problem of designing a secure hash
function reduces to that of designing a collision-resistant compression function that
operates on inputs of some fixed size.

Cryptanalysis of hash functions focuses on the internal structure of f and is
based on attempts to find efficient techniques for producing collisions for a single
execution of f. Once that is done, the attack must take into account the fixed value
of IV. The attack on f depends on exploiting its internal structure. Typically, as with
symmetric block ciphers, f consists of a series of rounds of processing, so that the
attack involves analysis of the pattern of bit changes from round to round.

Keep in mind that for any hash function there must exist collisions, because
we are mapping a message of length at least equal to twice the block size b (because
we must append a length field) into a hash code of length n, where b Ú n. What is
required is that it is computationally infeasible to find collisions.

The attacks that have been mounted on hash functions are rather complex and
beyond our scope here. For the interested reader, useful surveys of cryptanalysis of
hash functions include [PREN10], [ROGA04b], and [LUCK04].

 11.4 SECURE HASH ALGORITHM (SHA)

In recent years, the most widely used hash function has been the Secure Hash
Algorithm (SHA). Indeed, because virtually every other widely used hash function
had been found to have substantial cryptanalytic weaknesses, SHA was more or
less the last remaining standardized hash algorithm by 2005. SHA was developed
by the National Institute of Standards and Technology (NIST) and published as a
federal information processing standard (FIPS 180) in 1993. When weaknesses were
discovered in SHA, now known as SHA-0, a revised version was issued as FIPS
180-1 in 1995 and is referred to as SHA-1. The actual standards document is entitled
“Secure Hash Standard.” SHA is based on the hash function MD4, and its design
closely models MD4.

2The converse is not necessarily true.

M11_STAL7484_08_GE_C11.indd 352 20/04/22 13:46

11.4 / sECuRE HAsH AlgoRiTHm (sHA) 353

SHA-1 produces a hash value of 160 bits. A simple brute-force technique for
“breaking” SHA-1, that is, on being able to produce two different messages that pro-
duce the same hash function, would require on average 280 SHA-1 compressions. This
appears prohibitive with current and foreseeable computational capacity. However,
due to concern that cryptanalytic techniques might soon make SHA-1 vulnerable,
NIST published a revised version of the standard in 2002, FIPS 180-2, that defined
three new versions of SHA, with hash value lengths of 256, 384, and 512 bits, known
as SHA-256, SHA-384, and SHA-512, respectively. Collectively, these hash algorithms
are known as SHA-2. These new versions have the same underlying structure and
use the same types of modular arithmetic and logical binary operations as SHA-1. A
revised document was issued as FIP PUB 180-3 in 2008, which added a 224-bit ver-
sion (Table 11.3). SHA-1 and SHA-2 are also specified in RFC 6234, which essentially
duplicates the material in FIPS 180-3 but adds a C code implementation.

In 2005, NIST announced the intention to phase out approval of SHA-1 and move
to a reliance on SHA-2 by 2010. Despite this, SHA-1 continued to be used for digital
signature and other applications by numerous applications, such as web browsers. The
reluctance to go through the expense and effort of transitioning to SHA-2 has been over-
come by a breakthrough announced by a research team in 2017 [STEV17, CONS17]. The
team demonstrated that SHA-1 collision attacks have finally become practical by pro-
viding the first known instance of a collision. In total, the computational effort spent is
equivalent to 263.1 SHA-1 compressions and took approximately 6500 CPU years and
100 GPU years. As a result, Microsoft, Google, Apple, and Mozilla have all announced
that their respective browsers have stopped accepting SHA-1 SSL certificates in 2017.

In this section, we provide a description of SHA-512. The other versions are
quite similar. [SMIT15] provides a good description of SHA-256.

SHA-512 Logic

The algorithm takes as input a message with a maximum length of less than 2128 bits
and produces as output a 512-bit message digest. The input is processed in 1024-bit
blocks. Figure 11.9 depicts the overall processing of a message to produce a digest.
This follows the general structure depicted in Figure 11.8. The processing consists of
the following steps.

Algorithm Message Size Block Size Word Size
Message

Digest Size

SHA-1 6 264 512 32 160

SHA-224 6 264 512 32 224

SHA-256 6 264 512 32 256

SHA-384 6 2128 1024 64 384

SHA-512 6 2128 1024 64 512

SHA-512/224 6 2128 1024 64 224

SHA-512/256 6 2128 1024 64 256

Table 11.3 Comparison of SHA Parameters

Note: All sizes are measured in bits.

M11_STAL7484_08_GE_C11.indd 353 20/04/22 13:46

354 CHAPTER 11 / CRyPTogRAPHiC HAsH FunCTions

Step 1 Append padding bits. The message is padded so that its length is congruent
to 896 modulo 1024 [length K 896(mod 1024)]. Padding is always added,
even if the message is already of the desired length. Thus, the number of
padding bits is in the range of 1 to 1024. The padding consists of a single 1 bit
followed by the necessary number of 0 bits.

Step 2 Append length. A block of 128 bits is appended to the message. This block
is treated as an unsigned 128-bit integer (most significant byte first) and
contains the length of the original message in bits (before the padding).

The outcome of the first two steps yields a message that is an integer
multiple of 1024 bits in length. In Figure 11.9, the expanded message is rep-
resented as the sequence of 1024-bit blocks M1, M2, c , MN, so that the
total length of the expanded message is N * 1024 bits.

Step 3 Initialize hash buffer. A 512-bit buffer is used to hold intermediate and final
results of the hash function. The buffer can be represented as eight 64-bit
registers (a, b, c, d, e, f, g, h). These registers are initialized to the following
64-bit integers (hexadecimal values):

a = 6A09E667F3BCC908 e = 510E527FADE682D1

b = BB67AE8584CAA73B f = 9B05688C2B3E6C1F

c = 3C6EF372FE94F82B g = 1F83D9ABFB41BD6B

d = A54FF53A5F1D36F1 h = 5BE0CD19137E2179

Figure 11.9 Message Digest Generation Using SHA-512

N31024 bits

M1

H1

M2 MN

F

IV 5 H0

Message

hash code

1024 bits

512 bits 512 bits 512 bits

1024 bits 1024 bits

L bits

L

128 bits

1000000, . . . ,0

H2

F

HN

F

5 word-by-word addition mod 21

1 1 1

M11_STAL7484_08_GE_C11.indd 354 20/04/22 13:46

11.4 / sECuRE HAsH AlgoRiTHm (sHA) 355

These words were obtained by taking the first sixty-four bits of the frac-
tional parts of the square roots of the first eight prime numbers. The val-
ues are stored in big-endian format, which is the most significant byte of a
word in the low-address (leftmost) byte position. In contrast, in little-endian
format, the least significant byte is stored in the lowest address.

Step 4 Process message in 1024-bit (128-byte) blocks. The heart of the algorithm is
a module that consists of 80 rounds; this module is labeled F in Figure 11.9.
The logic is illustrated in Figure 11.10.

Each round takes as input the 512-bit buffer value, abcdefgh, and
updates the contents of the buffer. At input to the first round, the buffer
has the value of the intermediate hash value, Hi- 1. Each round t makes
use of a 64-bit value Wt, derived from the current 1024-bit block being pro-
cessed (Mi). These values are derived using a message schedule described
subsequently. Each round also makes use of an additive constant Kt, where
0 … t … 79 indicates one of the 80 rounds. These words represent the first
64 bits of the fractional parts of the cube roots of the first 80 prime numbers.
The constants provide a “randomized” set of 64-bit patterns, which should
eliminate any regularities in the input data. Table 11.4 shows these constants
in hexadecimal format (from left to right).

Figure 11.10 SHA-512 Processing of a Single 1024-Bit Block

64

Mi

Wt

Hi

Hi–1

W0

W79

Kt

K0

K79

a b c

Round 0

d e f g h

a b c

Round t

d e f g h

Message
schedule

a b c

Round 79

d e f g h

1 1 1 1 1 1 1 1

M11_STAL7484_08_GE_C11.indd 355 20/04/22 13:46

356 CHAPTER 11 / CRyPTogRAPHiC HAsH FunCTions

The output of the eightieth round is added to the input to the first
round (Hi- 1) to produce Hi. The addition is done independently for each of
the eight words in the buffer with each of the corresponding words in Hi- 1,
using addition modulo 264.

Step 5 Output. After all N 1024-bit blocks have been processed, the output from
the Nth stage is the 512-bit message digest.

We can summarize the behavior of SHA-512 as follows:

 H0 = IV

 Hi = SUM64(Hi- 1, abcdefghi)

 MD = HN

where

IV = initial value of the abcdefgh buffer, defined in step 3

abcdefghi = the output of the last round of processing of the ith message block

N = the number of blocks in the message (including padding and
length fields)

SUM64 = addition modulo 264 performed separately on each word of the
pair of inputs

MD = final message digest value

428a2f98d728ae22 7137449123ef65cd b5c0fbcfec4d3b2f e9b5dba58189dbbc

3956c25bf348b538 59f111f1b605d019 923f82a4af194f9b ab1c5ed5da6d8118

d807aa98a3030242 12835b0145706fbe 243185be4ee4b28c 550c7dc3d5ffb4e2

72be5d74f27b896f 80deb1fe3b1696b1 9bdc06a725c71235 c19bf174cf692694

e49b69c19ef14ad2 efbe4786384f25e3 0fc19dc68b8cd5b5 240ca1cc77ac9c65

2de92c6f592b0275 4a7484aa6ea6e483 5cb0a9dcbd41fbd4 76f988da831153b5

983e5152ee66dfab a831c66d2db43210 b00327c898fb213f bf597fc7beef0ee4

c6e00bf33da88fc2 d5a79147930aa725 06ca6351e003826f 142929670a0e6e70

27b70a8546d22ffc 2e1b21385c26c926 4d2c6dfc5ac42aed 53380d139d95b3df

650a73548baf63de 766a0abb3c77b2a8 81c2c92e47edaee6 92722c851482353b

a2bfe8a14cf10364 a81a664bbc423001 c24b8b70d0f89791 c76c51a30654be30

d192e819d6ef5218 d69906245565a910 f40e35855771202a 106aa07032bbd1b8

19a4c116b8d2d0c8 1e376c085141ab53 2748774cdf8eeb99 34b0bcb5e19b48a8

391c0cb3c5c95a63 4ed8aa4ae3418acb 5b9cca4f7763e373 682e6ff3d6b2b8a3

748f82ee5defb2fc 78a5636f43172f60 84c87814a1f0ab72 8cc702081a6439ec

90befffa23631e28 a4506cebde82bde9 bef9a3f7b2c67915 c67178f2e372532b

ca273eceea26619c d186b8c721c0c207 eada7dd6cde0eb1e f57d4f7fee6ed178

06f067aa72176fba 0a637dc5a2c898a6 113f9804bef90dae 1b710b35131c471b

28db77f523047d84 32caab7b40c72493 3c9ebe0a15c9bebc 431d67c49c100d4c

4cc5d4becb3e42b6 597f299cfc657e2a 5fcb6fab3ad6faec 6c44198c4a475817

Table 11.4 SHA-512 Constants

M11_STAL7484_08_GE_C11.indd 356 20/04/22 13:46

11.4 / sECuRE HAsH AlgoRiTHm (sHA) 357

SHA-512 Round Function

Let us look in more detail at the logic in each of the 80 steps of the processing of one
512-bit block (Figure 11.11). Each round is defined by the following set of equations:

 T1 = h + Ch(e, f, g) + (a 512
1 e) + Wt + Kt

 T2 = (a 512
0 a) + Maj(a, b, c)

 h = g

 g = f

 f = e

 e = d + T1

 d = c

 c = b

 b = a

 a = T1 + T2

where

t = step number; 0 … t … 79

Ch(e, f, g) = (e AND f) ⊕ (NOT e AND g)
 the conditional function: If e then f else g

Maj(a, b, c) = (a AND b) ⊕ (a AND c) ⊕ (b AND c)
 the function is true only of the majority (two or three) of the

 arguments are true

(Σ512
0 a) = ROTR28(a) ⊕ ROTR34(a) ⊕ ROTR39(a)

(Σ512
1 e) = ROTR14(e) ⊕ ROTR18(e) ⊕ ROTR41(e)

ROTRn(x) = circular right shift (rotation) of the 64-bit argument x by n bits

Figure 11.11 Elementary SHA-512 Operation (single round)

a b c d e f g h

a b c d
512 bits

e f g h

Ch

Kt

Wt

Maj

1

1

1

1

1

1

1

M11_STAL7484_08_GE_C11.indd 357 20/04/22 13:46

358 CHAPTER 11 / CRyPTogRAPHiC HAsH FunCTions

Wt = a 64-bit word derived from the current 1024-bit input block

Kt = a 64-bit additive constant
+ = addition modulo 264

Two observations can be made about the round function.

1. Six of the eight words of the output of the round function involve simply per-
mutation (b, c, d, f, g, h) by means of rotation. This is indicated by shading in
Figure 11.11.

2. Only two of the output words (a, e) are generated by substitution. Word e is a
function of input variables (d, e, f, g, h), as well as the round word Wt and the
constant Kt. Word a is a function of all of the input variables except d, as well
as the round word Wt and the constant Kt.

It remains to indicate how the 64-bit word values Wt are derived from the
1024-bit message. Figure 11.12 illustrates the mapping. The first 16 values of Wt are
taken directly from the 16 words of the current block. The remaining values are
defined as

 Wt = s1
512(Wt- 2) + Wt- 7 + s0

512(Wt- 15) + Wt- 16

where

 s0
512(x) = ROTR1(x) ⊕ ROTR8(x) ⊕ SHR7(x)

 s1
512(x) = ROTR19(x) ⊕ ROTR61(x) ⊕ SHR6(x)

ROTRn(x) = circular right shift (rotation) of the 64-bit argument x by n bits

SHRn(x) = right shift of the 64-bit argument x by n bits with padding by zeros on
the left

+ = addition modulo 264

Thus, in the first 16 steps of processing, the value of Wt is equal to the cor-
responding word in the message block. For the remaining 64 steps, the value of
Wt consists of the circular left shift by one bit of the XOR of four of the preced-
ing values of Wt, with two of those values subjected to shift and rotate operations.

Figure 11.12 Creation of 80-word Input Sequence for SHA-512 Processing of Single Block

1024 bits

64 bits

Wt-16W0 W1 W9 W14 W63 W64 W72 W77Wt-15 Wt-7 Wt-2

W0 W1 W15 W16 Wt

Mi

W79

1

s0 s1 s0 s1 s0 s1

1 1

M11_STAL7484_08_GE_C11.indd 358 20/04/22 13:46

11.4 / sECuRE HAsH AlgoRiTHm (sHA) 359

This introduces a great deal of redundancy and interdependence into the message
blocks that are compressed, which complicates the task of finding a different message
block that maps to the same compression function output. Figure 11.13 summarizes
the SHA-512 logic.

The SHA-512 algorithm has the property that every bit of the hash code is a
function of every bit of the input. The complex repetition of the basic function F
produces results that are well mixed; that is, it is unlikely that two messages chosen
at random, even if they exhibit similar regularities, will have the same hash code.
Unless there is some undisclosed weakness in SHA-512 the difficulty of coming up
with two messages having the same message digest is on the order of 2256 operations,
while the difficulty of finding a message with a given digest is on the order of 2512
operations.

Example

We include here an example based on one in FIPS 180. We wish to hash a one-block
message consisting of three ASCII characters: “abc,” which is equivalent to the
 following 24-bit binary string:

01100001 01100010 01100011

Recall from step 1 of the SHA algorithm, that the message is padded to a
length congruent to 896 modulo 1024. In this case of a single block, the padding
consists of 896 - 24 = 872 bits, consisting of a “1” bit followed by 871 “0” bits. Then
a 128-bit length value is appended to the message, which contains the length of the
original message in bits (before the padding). The original length is 24 bits, or a
hexadecimal value of 18. Putting this all together, the 1024-bit message block, in
hexadecimal, is

6162638000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000018

This block is assigned to the words W0, . . . , W15 of the message schedule,
which appears as follows.

W0 = 6162638000000000 W8 = 0000000000000000
W1 = 0000000000000000 W9 = 0000000000000000
W2 = 0000000000000000 W10 = 0000000000000000
W3 = 0000000000000000 W11 = 0000000000000000
W4 = 0000000000000000 W12 = 0000000000000000
W5 = 0000000000000000 W13 = 0000000000000000
W6 = 0000000000000000 W14 = 0000000000000000
W7 = 0000000000000000 W15 = 0000000000000018

M11_STAL7484_08_GE_C11.indd 359 20/04/22 13:46

360 CHAPTER 11 / CRyPTogRAPHiC HAsH FunCTions

The padded message consists blocks M1, M2, c , MN. Each message
block Mi consists of 16 64-bit words Mi,0, Mi,1, c , Mi,15. All addition
is performed modulo 264.

H0,0 = 6A09E667F3BCC908 H0,4 = 510E527FADE682D1
H0,1 = BB67AE8584CAA73B H0,5 = 9B05688C2B3E6C1F
H0,2 = 3C6EF372FE94F82B H0,6 = 1F83D9ABFB41BD6B
H0,3 = A54FF53A5F1D36F1 H0,7 = 5BE0CD19137E2179

for i = 1 to N

1. Prepare the message schedule W
 for t = 0 to 15

 Wt = Mi,t

 for t = 16 to 79
 Wt = s1

512(Wt- 2) + Wt- 7 + s0
512(Wt- 15) + Wt- 16

2. Initialize the working variables

a = Hi- 1, 0 e = Hi- 1, 4

b = Hi- 1, 1 f = Hi- 1, 5

c = Hi- 1, 2 g = Hi- 1, 6

d = Hi- 1, 3 h = Hi- 1, 7

3. Perform the main hash computation
 for t = 0 to 79

 T1 = h + Ch(e, f, g) + ¢Σ512
1 e≤ + Wt + Kt

 T2 = ¢Σ512
0 a≤ + Maj(a, b, c)

 h = g
 g = f
 f = e
 e = d + T1

 d = c
 c = b
 b = a
 a = T1 + T2

4. Compute the intermediate hash value

Hi, 0 = a + Hi- 1, 0 Hi, 4 = e + Hi- 1,4

Hi, 1 = b + Hi- 1, 1 Hi, 5 = f + Hi- 1, 5

Hi, 2 = c + Hi- 1, 2 Hi, 6 = g + Hi- 1, 6

Hi, 3 = d + Hi- 1, 3 Hi, 7 = h + Hi- 1, 7

return {HN, 0 }HN, 1 }HN, 2 }HN, 3 }HN, 4 }HN, 5 }HN, 6 }HN, 7}

Figure 11.13 SHA-512 Logic

M11_STAL7484_08_GE_C11.indd 360 20/04/22 13:46

11.4 / sECuRE HAsH AlgoRiTHm (sHA) 361

As indicated in Figure 11.13, the eight 64-bit variables, a through h, are
 initialized to values H0,0 through H0,7. The following table shows the initial values of
these variables and their values after each of the first two rounds.

a 6a09e667f3bcc908 f6afceb8bcfcddf5 1320f8c9fb872cc0

b bb67ae8584caa73b 6a09e667f3bcc908 f6afceb8bcfcddf5

c 3c6ef372fe94f82b bb67ae8584caa73b 6a09e667f3bcc908

d a54ff53a5f1d36f1 3c6ef372fe94f82b bb67ae8584caa73b

e 510e527fade682d1 58cb02347ab51f91 c3d4ebfd48650ffa

f 9b05688c2b3e6c1f 510e527fade682d1 58cb02347ab51f91

g 1f83d9abfb41bd6b 9b05688c2b3e6c1f 510e527fade682d1

h 5be0cd19137e2179 1f83d9abfb41bd6b 9b05688c2b3e6c1f

Note that in each of the rounds, six of the variables are copied directly from
variables from the preceding round.

The process continues through 80 rounds. The output of the final round is

73a54f399fa4b1b2 10d9c4c4295599f6 d67806db8b148677 654ef9abec389ca9
d08446aa79693ed7 9bb4d39778c07f9e 25c96a7768fb2aa3 ceb9fc3691ce8326

The hash value is then calculated as

 H1,0 = 6a09e667f3bcc908 + 73a54f399fa4b1b2 = ddaf35a193617aba
 H1,1 = bb67ae8584caa73b + 10d9c4c4295599f6 = cc417349ae204131
 H1,2 = 3c6ef372fe94f82b + d67806db8b148677 = 12e6fa4e89a97ea2
 H1,3 = a54ff53a5f1d36f1 + 654ef9abec389ca9 = 0a9eeee64b55d39a
 H1,4 = 510e527fade682d1 + d08446aa79693ed7 = 2192992a274fc1a8
 H1,5 = 9b05688c2b3e6c1f + 9bb4d39778c07f9e = 36ba3c23a3feebbd
 H1,6 = 1f83d9abfb41bd6b + 25c96a7768fb2aa3 = 454d4423643ce80e
 H1,7 = 5be0cd19137e2179 + ceb9fc3691ce8326 = 2a9ac94fa54ca49f

The resulting 512-bit message digest is

ddaf35a193617aba cc417349ae204131 12e6fa4e89a97ea2 0a9eeee64b55d39a
2192992a274fc1a8 36ba3c23a3feebbd 454d4423643ce80e 2a9ac94fa54ca49f

Suppose now that we change the input message by one bit, from “abc” to “cbc.”
Then, the 1024-bit message block is

6362638000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000018

And the resulting 512-bit message digest is

531668966ee79b70 0b8e593261101354 4273f7ef7b31f279 2a7ef68d53f93264
319c165ad96d9187 55e6a204c2607e27 6e05cdf993a64c85 ef9e1e125c0f925f

The number of bit positions that differ between the two hash values is 253, almost
exactly half the bit positions, indicating that SHA-512 has a good avalanche effect.

M11_STAL7484_08_GE_C11.indd 361 20/04/22 13:46

362 CHAPTER 11 / CRyPTogRAPHiC HAsH FunCTions

 11.5 SHA-3

As of this writing, the Secure Hash Algorithm (SHA-1) has not yet been “broken.”
That is, no one has demonstrated a technique for producing collisions in a practical
amount of time. However, because SHA-1 is very similar, in structure and in the
basic mathematical operations used, to MD5 and SHA-0, both of which have been
broken, SHA-1 is considered insecure and has been phased out for SHA-2.

SHA-2, particularly the 512-bit version, would appear to provide unassailable
security. However, SHA-2 shares the same structure and mathematical operations
as its predecessors, and this is a cause for concern. Because it will take years to find
a suitable replacement for SHA-2, should it become vulnerable, NIST decided to
begin the process of developing a new hash standard.

Accordingly, NIST announced in 2007 a competition to produce the next gen-
eration NIST hash function, to be called SHA-3. The winning design for SHA-3
was announced by NIST in October 2012 and published as FIP 102 in August 2015.
SHA-3 is a cryptographic hash function that is intended to complement SHA-2 as
the approved standard for a wide range of applications.

NISTIR 7896 (Third-Round Report of the SHA-3 Cryptographic Hash
Algorithm Competition) summarizes the evaluation criteria used by NIST to select
from among the candidates for SHA-3, plus the rationale for picking Keccak, which
was the winning candidate. This material is useful in understanding not just the SHA-3
design but also the criteria by which to judge any cryptographic hash algorithm.

The Sponge Construction

The underlying structure of SHA-3 is a scheme referred to by its designers as a
sponge construction [BERT07, BERT11]. The sponge construction has the same
general structure as other iterated hash functions (Figure 11.8). The sponge func-
tion takes an input message and partitions it into fixed-size blocks. Each block is
processed in turn with the output of each iteration fed into the next iteration, finally
producing an output block.

The sponge function is defined by three parameters:

f = the internal function used to process each input block3

r = the size in bits of the input blocks, called the bitrate
pad = the padding algorithm

A sponge function allows both variable length input and output, making it a
flexible structure that can be used for a hash function (fixed-length output), a pseu-
dorandom number generator (fixed-length input), and other cryptographic func-
tions. Figure 11.14 illustrates this point. An input message of n bits is partitioned
into k fixed-size blocks of r bits each. The message is padded to achieve a length
that is an integer multiple of r bits. The resulting partition is the sequence of blocks
P0, P1, c , Pk - 1, with length k * r. For uniformity, padding is always added, so

3The Keccak documentation refers to f as a permutation. As we shall see, it involves both permutations
and substitutions. We refer to f as the iteration function, because it is the function that is executed once
for each iteration, that is, once for each block of the message that is processed.

M11_STAL7484_08_GE_C11.indd 362 20/04/22 13:46

11.5 / sHA-3 363

that if n mod r = 0, a padding block of r bits is added. The actual padding algo-
rithm is a parameter of the function. The sponge specification proposes two padding
schemes, The following definitions are based on [BERT11]

◆■ Simple padding (pad10*): The minimum padding is added so that the block
length divides the padded message length. The padding is all zeros except the
first padding bit is a binary one.

◆■ Multirate padding (pad10*1): The minimum padding is added so that the block
length divides the padded message length. The padding is all zeros except the
first and last padding bit are binary ones. Unlike simple padding, multirate
padding is secure even if the rate r is changed for a given f. FIPS 202 uses mul-
tirate padding.

After processing all of the blocks, the sponge function generates a sequence
of output blocks Z0, Z1, c , Zj- 1. The number of output blocks generated is
 determined by the number of output bits desired. If the desired output is / bits, then
j blocks are produced, such that (j - 1) * r 6 / … j * r.

Figure 11.15 shows the iterated structure of the sponge function. The sponge
construction operates on a state variable s of b = r + c bits, which is initialized to
all zeros and modified at each iteration. The value r is called the bitrate. This value
is the block size used to partition the input message. The term bitrate reflects the
fact that r is the number of bits processed at each iteration: the larger the value of r,
the greater the rate at which message bits are processed by the sponge construction.

Figure 11.14 Sponge Function Input and Output

k 3 r bits

(a) Input

(b) Output

P0 P1

Z0 Z1

Zj-1

Pk-1

message pad

r bits r bits r bits

r bits r bits r bits

l bits

n bits

M11_STAL7484_08_GE_C11.indd 363 20/04/22 13:46

364 CHAPTER 11 / CRyPTogRAPHiC HAsH FunCTions

The value c is referred to as the capacity. A discussion of the security implications
of the capacity is beyond our scope. In essence, the capacity is a measure of the
achievable complexity of the sponge construction and therefore the achievable
level of security. A given implementation can increase claimed security and reduce
speed by increasing the capacity c and decreasing the bitrate r accordingly, or vice
versa. The default values for Keccak are c = 1024 bits, r = 576 bits, and therefore
b = 1600 bits.

The sponge construction consists of two phases. The absorbing phase proceeds
as follows: For each iteration, the input block to be processed is padded with zeroes
to extend its length from r bits to b bits. Then, the bitwise XOR of the extended

Figure 11.15 Sponge Construction

(a) Absorbing phase

(b) Squeezing phase

f

r c

0c

0c

0r 0c

P0

P1

P2

f

s

f

s

f

s

0cPk-1

b
r c

b

r c

Z0

r

Z10c

M11_STAL7484_08_GE_C11.indd 364 20/04/22 13:46

11.5 / sHA-3 365

message block and s is formed to create a b-bit input to the iteration function f. The
output of f is the value of s for the next iteration.

If the desired output length / satisfies / … b, then at the completion of the
absorbing phase, the first r bits of s are returned and the sponge construction termi-
nates. Otherwise, the sponge construction enters the squeezing phase. To begin, the
first r bits of s are retained as block Z0. Then, the value of s is updated with repeated
executions of f, and at each iteration, the first r bits of s are retained as block Zi
and concatenated with previously generated blocks. The process continues through
(j - 1) iterations until we have (j - 1) * r 6 / … j * r. At this point the first /
bits of the concatenated block Z are returned.

Note that the absorbing phase has the structure of a typical hash function.
A common case will be one in which the desired hash length is less than or equal
to the input block length; that is, / … r. In that case, the sponge construction ter-
minates after the absorbing phase. If a longer output than b bits is required, then
the squeezing phase is employed. Thus the sponge construction is quite flexible. For
example, a short message with a length r could be used as a seed and the sponge
construction would function as a pseudorandom number generator.

To summarize, the sponge construction is a simple iterated construction for
building a function F with variable-length input and arbitrary output length based
on a fixed-length transformation or permutation f operating on a fixed number b of
bits. The sponge construction is defined formally in [BERT11] as follows:

Algorithm The sponge construction SPONGE[f, pad, r]
Require: r < b

 Interface: Z = sponge(M,/) with M ∈ Z2*, integer / > 0 and Z ∈ Z2
/

 P = M }pad[r](|M|)
 s = 0b

 for i = 0 to |P|r − 1 do
 s = s ⊕ (Pi }0b − r)

 s = f(s)
 end for
 Z =:s;r
 while |Z|r r < / do
 s = f (s)
 Z = Z } :s;r
 end while
 return :Z; ℓ

In the algorithm definition, the following notation is used: � M � is the length
in bits of a bit string M. A bit string M can be considered as a sequence of blocks
of some fixed length x, where the last block may be shorter. The number of blocks
of M is denoted by � M � x. The blocks of M are denoted by Mi and the index ranges
from 0 to � M � x - 1. The expression :M; / denotes the truncation of M to its first
/ bits.

M11_STAL7484_08_GE_C11.indd 365 20/04/22 13:46

366 CHAPTER 11 / CRyPTogRAPHiC HAsH FunCTions

SHA-3 makes use of the iteration function f, labeled Keccak-f, which is
 described in the next section. The overall SHA-3 function is a sponge function
 expressed as Keccak[r, c] to reflect that SHA-3 has two operational parameters, r,
the message block size, and c, the capacity, with the default of r + c = 1600 bits.
Table 11.5 shows the supported values of r and c. As Table 11.5 shows, the hash
function security associated with the sponge construction is a function of the
 capacity c.

In terms of the sponge algorithm defined above, Keccak[r, c] is defined as

 Keccak [r, c]∆ SPONGE [Keccak@f [r + c], pad 10*1, r]

We now turn to a discussion of the iteration function Keccak-f.

The SHA-3 Iteration Function f

We now examine the iteration function Keccak-f used to process each successive
block of the input message. Recall that f takes as input a 1600-bit variable s consist-
ing of r bits, corresponding to the message block size followed by c bits, referred to
as the capacity. For internal processing within f, the input state variable s is orga-
nized as a 5 * 5 * 64 array a. The 64-bit units are referred to as lanes. For our
 purposes, we generally use the notation a[x, y, z] to refer to an individual bit with
in the state array. When we are more concerned with operations that affect entire
lanes, we designate the 5 * 5 matrix as L[x, y], where each entry in L is a 64-bit lane.
The use of indices within this matrix is shown in Figure 11.16.4 Thus, the columns
are labeled x = 0 through x = 4, the rows are labeled y = 0 through y = 4, and
the individual bits within a lane are labeled z = 0 through z = 63. The mapping
between the bits of s and those of a is

 s[64(5y + x) + z] = a[x, y, z]

4Note that the first index (x) designates a column and the second index (y) designates a row. This is
in conflict with the convention used in most mathematics sources, where the first index designates a
row and the second index designates a column (e.g., Knuth, D. The Art of Computing Programming,
Volume 1, Fundamental Algorithms; and Korn, G., and Korn, T. Mathematical Handbook for Scientists
and Engineers).

Message Digest Size 224 256 384 512

Message Size no maximum no maximum no maximum no maximum

Block Size (bitrate r) 1152 1088 832 576

Word Size 64 64 64 64

Number of Rounds 24 24 24 24

Capacity c 448 512 768 1024

Collision Resistance 2112 2128 2192 2256

Second Preimage Resistance 2224 2256 2384 2512

Table 11.5 SHA-3 Parameters

Note: All sizes and security levels—are measured in bits.

M11_STAL7484_08_GE_C11.indd 366 20/04/22 13:46

11.5 / sHA-3 367

We can visualize this with respect to the matrix in Figure 11.16. When treat-
ing the state as a matrix of lanes, the first lane in the lower left corner, L[0, 0], cor-
responds to the first 64 bits of s. The lane in the second column, lowest row, L[1,
0], corresponds to the next 64 bits of s. Thus, the array a is filled with the bits of s
 starting with row y = 0 and proceeding row by row.

Structure of f The function f is executed once for each input block of the message
to be hashed. The function takes as input the 1600-bit state variable and converts
it into a 5 * 5 matrix of 64-bit lanes. This matrix then passes through 24 rounds of
processing. Each round consists of five steps, and each step updates the state matrix
by permutation or substitution operations. As shown in Figure 11.17, the rounds are
identical with the exception of the final step in each round, which is modified by a
round constant that differs for each round.

The application of the five steps can be expressed as the composition5 of
functions:

 R = i o x o p o r o u

Table 11.6 summarizes the operation of the five steps. The steps have a sim-
ple description leading to a specification that is compact and in which no trapdoor
can be hidden. The operations on lanes in the specification are limited to bitwise
Boolean operations (XOR, AND, NOT) and rotations. There is no need for table
lookups, arithmetic operations, or data-dependent rotations. Thus, SHA-3 is easily
and efficiently implemented in either hardware or software.

We examine each of the step functions in turn.

Figure 11.16 SHA-3 State Matrix

L[0, 4]

x 5 0 x 5 1 x 5 2 x 5 3 x 5 4

L[0, 3]

L[0, 2]

L[0, 1]

L[0, 0]

a[x, y, 0] a[x, y, 1] a[x, y, 2]

y 5 1

y 5 0

y 5 2

y 5 3

y 5 4 L[1, 4]

L[1, 3]

L[1, 2]

L[1, 1]

L[1, 0]

L[2, 4]

L[2, 3]

L[2, 2]

L[2, 1]

L[2, 0]

(a) State variable as 5 5 matrix A of 64-bit words

(b) Bit labeling of 64-bit words

L[3, 4]

L[3, 3]

L[3, 2]

L[4, 1]

L[3, 0]

L[4, 4]

L[4, 3]

L[4, 2]

L[4, 1]

L[4, 0]

a[x, y, 63]a[x, y, 62]a[x, y, z]

3

 5If f and g are two functions, then the function F with the equation y = F(x) = g[f(x)] is called the
 composition of f and g and is denoted as F = g o f.

M11_STAL7484_08_GE_C11.indd 367 20/04/22 13:46

368 CHAPTER 11 / CRyPTogRAPHiC HAsH FunCTions

Figure 11.17 SHA-3 Iteration Function f

theta (u) step

s

s

rho (r) step

pi (p) step

chi (x) step

R
ou

nd
 0

iota (i) step RC[0]

rot(x, y)

theta (u) step

rho (r) step

pi (p) step

chi (x) step

R
ou

nd
 2

3

iota (i) step RC[23]

rot(x, y)

Function Type Description

u Substitution New value of each bit in each word depends on its current
value and on one bit in each word of preceding column
and one bit of each word in succeeding column.

r Permutation The bits of each word are permuted using a circular bit
shift. W[0, 0] is not affected.

p Permutation Words are permuted in the 5 * 5 matrix. W[0, 0] is not
affected.

x Substitution New value of each bit in each word depends on its current
value and on one bit in next word in the same row and one
bit in the second next word in the same row.

i Substitution W[0, 0] is updated by XOR with a round constant.

Table 11.6 Step Functions in SHA-3

theta SteP function The Keccak reference defines the u function as follows. For
bit z in column x, row y,

 u: a[x, y, z] d a[x, y, z] ⊕ a
4

y== 0
a[(x - 1), y=, z] ⊕ a

4

y== 0
a[(x + 1), y=, (z - 1)] (11.1)

M11_STAL7484_08_GE_C11.indd 368 20/04/22 13:46

11.5 / sHA-3 369

where the summations are XOR operations. We can see more clearly what this
 operation accomplishes with reference to Figure 11.18a. First, define the bitwise
XOR of the lanes in column x as

 C[x] = L[x, 0] ⊕ L[x, 1] ⊕ L[x, 2] ⊕ L[x, 3] ⊕ L[x, 4]

Consider lane L[x, y] in column x, row y. The first summation in Equation 11.1
performs a bitwise XOR of the lanes in column (x - 1) mod 4 to form the 64-bit
lane C[x - 1]. The second summation performs a bitwise XOR of the lanes in
 column (x + 1) mod 4, and then rotates the bits within the 64-bit lane so that the
bit in position z is mapped into position z + 1 mod 64. This forms the lane ROT
(C[x + 1], 1). These two lanes and L[x, y] are combined by bitwise XOR to form the
updated value of L[x, y]. This can be expressed as

 L[x, y] d L[x, y] ⊕ C[x - 1] ⊕ ROT(C[x + 1], 1)

Figure 11.18.a illustrates the operation on L[3, 2]. The same operation is
 performed on all of the other lanes in the matrix.

Figure 11.18 Theta and Chi Step Functions

(a) u step function

L[2, 3]L[2, 3] ROT(C[3], 1)C[1]

L[0, 4]

x 5 0 x 5 1 x 5 2 x 5 3 x 5 4

L[0, 3]

L[0, 2]

L[0, 1]

L[0, 0]

y 5 1

y 5 0

y 5 2

y 5 3

y 5 4 L[1, 4]

L[1, 3]

L[1, 2]

L[1, 1]

L[1, 0]

L[2, 4]

L[2, 3]

L[2, 2]

L[2, 1]

L[2, 0]

L[3, 4]

L[3, 3]

L[3, 2]

L[4, 1]

L[3, 0]

L[4, 4]

L[4, 3]

L[4, 2]

L[4, 1]

L[4, 0]

(b) x step function

L[2, 3]L[2, 3] L[3, 3] AND L[4, 3]

L[0, 4]

x 5 0 x 5 1 x 5 2 x 5 3 x 5 4

L[0, 3]

L[0, 2]

L[0, 1]

L[0, 0]

y 5 1

y 5 0

y 5 2

y 5 3

y 5 4 L[1, 4]

L[1, 3]

L[1, 2]

L[1, 1]

L[1, 0]

L[2, 4]

L[2, 3]

L[2, 2]

L[2, 1]

L[2, 0]

L[3, 4]

L[3, 3]

L[3, 2]

L[4, 1]

L[3, 0]

L[4, 4]

L[4, 3]

L[4, 2]

L[4, 1]

L[4, 0]

1 1

1

M11_STAL7484_08_GE_C11.indd 369 20/04/22 13:46

370 CHAPTER 11 / CRyPTogRAPHiC HAsH FunCTions

Several observations are in order. Each bit in a lane is updated using the bit
itself and one bit in the same bit position from each lane in the preceding column and
one bit in the adjacent bit position from each lane in the succeeding column. Thus the
updated value of each bit depends on 11 bits. This provides good mixing. Also, the
theta step provides good diffusion, as that term was defined in Chapter 4. The design-
ers of Keccak state that the theta step provides a high level of diffusion on average and
that without theta, the round function would not provide diffusion of any significance.

rho SteP function The r function is defined as follows:

 r: a[x, y, z] d a[x, y, z] if x = y = 0

otherwise,

 r: a[x, y, z] d aJx, y, az -
(t + 1)(t + 2)

2
b R (11.2)

with t satisfying 0 … t 6 24 and ¢0 1
2 3

≤t¢1
0
≤ = ¢x

y
≤ in GF(5)2 * 2

It is not immediately obvious what this step performs, so let us look at the
process in detail.

1. The lane in position (x, y) = (0, 0), that is L[0, 0], is unaffected. For all other
words, a circular bit shift within the lane is performed.

2. The variable t, with 0 … t 6 24, is used to determine both the amount of the
circular bit shift and which lane is assigned which shift value.

3. The 24 individual bit shifts that are performed have the respective values

(t + 1)(t + 2)

2
 mod 64.

4. The shift determined by the value of t is performed on the lane in position
(x, y) in the 5 * 5 matrix of lanes. Specifically, for each value of t, the corre-

sponding matrix position is defined by ¢x
y
≤ = ¢0 1

2 3
≤t¢1

0
≤. For example, for

t = 3, we have

 ¢x
y
≤ = ¢0 1

2 3
≤3¢1

0
≤ mod 5

 = ¢0 1
2 3

≤ ¢0 1
2 3

≤ ¢0 1
2 3

≤ ¢1
0
≤ mod 5

 = ¢0 1
2 3

≤ ¢0 1
2 3

≤ ¢0
2
≤ mod 5

 = ¢0 1
2 3

≤ ¢2
6
≤ mod 5 = ¢0 1

2 3
≤ ¢2

1
≤ mod 5

 = ¢1
7
≤ mod 5 = ¢1

2
≤

M11_STAL7484_08_GE_C11.indd 370 20/04/22 13:46

11.5 / sHA-3 371

Table 11.7 shows the calculations that are performed to determine the amount
of the bit shift and the location of each bit shift value. Note that all of the rotation
amounts are different.

The r function thus consists of a simple permutation (circular shift) within
each lane. The intent is to provide diffusion within each lane. Without this function,
diffusion between lanes would be very slow.

Pi SteP function The p function is defined as follows:

 p: a[x, y] d a[x=, y=], with¢x
y
≤ = ¢0 1

2 3
≤ ¢x=

y=≤ (11.3)

This can be rewritten as (x, y) * (y, (2x + 3y)). Thus, the lanes within the
5 * 5 matrix are moved so that the new x position equals the old y position and

Table 11.7 Rotation Values Used in SHA-3

t g(t) g (t) mod 64 x, y

0 1 1 1, 0

1 3 3 0, 2

2 6 6 2, 1

3 10 10 1, 2

4 15 15 2, 3

5 21 21 3, 3

6 28 28 3, 0

7 36 36 0, 1

8 45 45 1, 3

9 55 55 3, 1

10 66 2 1, 4

11 78 14 4, 4

(b) Rotation values by word position in matrix

x = 0 x = 1 x = 2 x = 3 x = 4

y = 4 18 2 61 56 14

y = 3 41 45 15 21 8

y = 2 3 10 43 25 39

y = 1 36 44 6 55 20

y = 0 0 1 62 28 27

t g(t) g (t) mod 64 x, y

12 91 27 4, 0

13 105 41 0, 3

14 120 56 3, 4

15 136 8 4, 3

16 153 25 3, 2

17 171 43 2, 2

18 190 62 2, 0

19 210 18 0, 4

20 231 39 4, 2

21 253 61 2, 4

22 276 20 4, 1

23 300 44 1, 1

(a) Calculation of values and positions

Note: g(t) = (t + 1)(t + 2)/2

 ¢x
y
≤ = ¢0 1

2 3
≤t¢1

0
≤ mod 5

M11_STAL7484_08_GE_C11.indd 371 20/04/22 13:46

372 CHAPTER 11 / CRyPTogRAPHiC HAsH FunCTions

Figure 11.19 Pi Step Function

Z[0, 4]

x 5 0 x 5 1 x 5 2

(a) Lane position at start of step

(b) Lane position after permutation

x 5 3 x 5 4

Z[0, 3]

Z[0, 2]

Z[0, 1]

Z[0, 0]

y 5 1

y 5 0

y 5 2

y 5 3

y 5 4 Z[1, 4]

Z[1, 3]

Z[1, 2]

Z[1, 1]

Z[1, 0]

Z[2, 4]

Z[2, 3]

Z[2, 2]

Z[2, 1]

Z[2, 0]

Z[3, 4]

Z[3, 3]

Z[3, 2]

Z[3, 1]

Z[3, 0]

Z[4, 4]

row 0row 3
row 1

row 4
row 2

row 2

row 4

row 1

row 3

Z[4, 3]

Z[4, 2]

Z[4, 1]

Z[4, 0]

Z[2, 0]

x 5 0 x 5 1 x 5 2 x 5 3 x 5 4

Z[4, 0]

Z[1, 0]

Z[3, 0]

Z[0, 0]

y 5 1

y 5 0

y 5 2

y 5 3

y 5 4 Z[3, 1]

Z[0, 1]

Z[2, 1]

Z[4, 1]

Z[1, 1]

Z[4, 2]

Z[1, 2]

Z[3, 2]

Z[0, 2]

Z[2, 2]

Z[0, 3]

Z[2, 3]

Z[4, 3]

Z[1, 3]

Z[3, 3]

Z[1, 4]

Z[3, 4]

Z[0, 4]

Z[2, 4]

Z[4, 4]

the new y position is determined by (2x + 3y) mod 5. Figure 11.19 helps in visual-
izing this permutation. Lanes that are along the same diagonal (increasing in y value,
going from left to right) prior to p are arranged on the same row in the matrix after
p is executed. Note that the position of L[0, 0] is unchanged.

Thus the p step is a permutation of lanes: The lanes move position within the
5 * 5 matrix. The r step is a permutation of bits: Bits within a lane are rotated. Note
that the p step matrix positions are calculated in the same way that, for the r step,
the one-dimensional sequence of rotation constants is mapped to the lanes of the
matrix.

chi SteP function The x function is defined as follows:

 x: a[x] d a[x] ⊕ ((a[x + 1] ⊕ 1) AND a[x + 2]) (11.4)

This function operates to update each bit based on its current value and the
value of the corresponding bit position in the next two lanes in the same row. The

M11_STAL7484_08_GE_C11.indd 372 20/04/22 13:46

11.5 / sHA-3 373

Round
Constant

 (hexadecimal)
Number
of 1 bits

0 0000000000000001 1

1 0000000000008082 3

2 800000000000808A 5

3 8000000080008000 3

4 000000000000808B 5

5 0000000080000001 2

6 8000000080008081 5

7 8000000000008009 4

8 000000000000008A 3

9 0000000000000088 2

10 0000000080008009 4

11 000000008000000A 3

Table 11.8 Round Constants in SHA-3

Round
Constant

 (hexadecimal)
Number
of 1 bits

12 000000008000808B 6

13 800000000000008B 5

14 8000000000008089 5

15 8000000000008003 4

16 8000000000008002 3

17 8000000000000080 2

18 000000000000800A 3

19 800000008000000A 4

20 8000000080008081 5

21 8000000000008080 3

22 0000000080000001 2

23 8000000080008008 4

operation is more clearly seen if we consider a single bit a[x, y, z] and write out the
Boolean expression:

 a[x, y, z] d a[x, y, z] ⊕ (NOT(a[x + 1, y, z])) AND (a[x + 2, y, z])

Figure 11.18b illustrates the operation of the x function on the bits of the lane
L[3, 2]. This is the only one of the step functions that is a nonlinear mapping. Without
it, the SHA-3 round function would be linear.

iota SteP function The i function is defined as follows:

 i: a d a ⊕ RC[ir] (11.5)

This function combines an array element with a round constant that differs for
each round. It breaks up any symmetry induced by the other four step functions. In
fact, Equation 11.5 is somewhat misleading. The round constant is applied only to
the first lane of the internal state array. We express this is as follows:

 L[0, 0] d L[0, 0] ⊕ RC[ir] 0 … ir … 23

Table 11.8 lists the 24 64-bit round constants. Note that the Hamming weight,
or number of 1 bits, in the round constants ranges from 1 to 6. Most of the bit posi-
tions are zero and thus do not change the corresponding bits in L[0, 0]. If we take
the cumulative OR of all 24 round constants, we get

 RC[0] OR RC[1] OR c OR RC[23] = 800000008000808B

Thus, only 7 bit positions are active and can affect the value of L[0, 0].
Of course, from round to round, the permutations and substitutions propagate the
effects of the i function to all of the lanes and all of the bit positions in the matrix.
It is easily seen that the disruption diffuses through u and x to all lanes of the state
after a single round.

M11_STAL7484_08_GE_C11.indd 373 20/04/22 13:46

374 CHAPTER 11 / CRyPTogRAPHiC HAsH FunCTions

 11.6 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

big endian
compression function
cryptographic hash

function

hash code
hash function
hash value
little endian

message authentication code
(MAC)

message digest

Key Terms

Review Questions
 11.1 What characteristics are needed in a secure hash function?
 11.2 Alice sends Bob a message with an attached hash value. If the message digest is sent

in a secure fashion, then how would Bob know if there was a possible man-in-the-
middle attack?

 11.3 What is the role of a compression function in a hash function?
 11.4 How safe is it to use a hash function without encryption in terms of integrity?
 11.5 What basic arithmetical and logical functions are used in SHA?
 11.6 Define a collision and explain how to deal with collision attacks.
 11.7 Define the term sponge construction.
 11.8 Summarise the five main steps of SHA-512 and its main functions.
 11.9 List and briefly describe the step functions that comprise the iteration function f.

Problems
 11.1 The high-speed transport protocol XTP (Xpress Transfer Protocol) uses a 32-bit checksum

function defined as the concatenation of two 16-bit functions: XOR and RXOR, defined
in Section 11.4 as “two simple hash functions” and illustrated in Figure 11.5.
a. Will this checksum detect all errors caused by an odd number of error bits? Explain.
b. Will this checksum detect all errors caused by an even number of error bits? If not,

characterize the error patterns that will cause the checksum to fail.
c. Comment on the effectiveness of this function for use as a hash function for

 authentication.
 11.2 a. A number of proposals have been made for hash functions based on using a cipher

block chaining technique but without using the secret key. One example, proposed
in [DAVI89], is as follows. Divide a message M into fixed-size blocks M1, M2, . . ., MN
and use a symmetric encryption system such as DES to compute the hash code H as

 H0 = initial value

 Hi = Hi- 1 ⊕ E(Mi, Hi- 1)

 H = HN

Assume that DES is used as the encryption algorithm. Recall the complementarity
property of DES (Problem 4.14): If Y = E(K, X), then Y′ = E(K′, X′). Use this
property to show how a message consisting of blocks M1, M2, c , MN can be
altered without altering its hash code.

M11_STAL7484_08_GE_C11.indd 374 20/04/22 13:46

11.6 / KEy TERms, REviEw quEsTions, And PRoblEms 375

b. A variation of the scheme above is proposed in [MEYE88], with the following
formula:

 Hi = Mi ⊕ E(Hi- 1, Mi)

Show that a similar attack that of Problem 11.2a will succeed against this scheme.

 11.3 a. Consider the following hash function. Messages are in the form of a sequence of

numbers in Zn, M = (a1, a2, c at). The hash value h is calculated as ¢at

i = 1
ai≤ for

some predefined value n. Does this hash function satisfy any of the requirements
for a hash function listed in Table 11.1? Explain your answer.

b. Repeat part (a) for the hash function h = ¢at

i = 1
(ai)

2≤ mod n.

c. Calculate the hash function of part (b) for M = (189, 632, 900, 722, 349) and
n = 989.

 11.4 For a message digest where hash functions are used to provide message authentica-
tion and integrity, what is the most appropriate way to protect the hash values?

 11.5 Encryption assists in providing confidentiality to the data being sent from party A to
party B. However, in recent years, there is an interest in avoiding encryption depend-
ing on the application. Why?

 11.6 Suppose H(m) is a collision-resistant hash function that maps a message of arbitrary
bit length into an n-bit hash value. Is it true that, for all messages x, x′ with x ≠ x′,
we have H(x) ≠ H(x′) Explain your answer.

 11.7 Given the rotation values used in SHA-3 in Table 11.7, if x = 3 and y = 2, how many
bit shifts are necessary for a rotation and how random can this operation be?

 11.8 For SHA-512, show the equations for the values of W16, W18, W23, and W31.
 11.9 State the value of the padding field in SHA-512 if the length of the message is

a. 2942 bits.
b. 2943 bits.
c. 2944 bits.

 11.10 State the value of the length field in SHA-512 if the length of the message is
a. 2942 bits.
b. 2943 bits.
c. 2944 bits.

 11.11 Suppose a1a2a3a4 are the 4 bytes in a 32-bit word. Each ai can be viewed as an integer
in the range 0 to 255, represented in binary. In a big-endian architecture, this word rep-
resents the integer

 a12
24 + a22

16 + a32
8 + a4

In a little-endian architecture, this word represents the integer

 a42
24 + a32

16 + a22
8 + a1

a. Some hash functions, such as MD5, assume a little-endian architecture. It is impor-
tant that the message digest be independent of the underlying architecture. There-
fore, to perform the modulo 2 addition operation of MD5 or RIPEMD-160 on
a big-endian architecture, an adjustment must be made. Suppose X = x1 x2 x3 x4
and Y = y1 y2 y3 y4. Show how the MD5 addition operation (X + Y) would be
carried out on a big-endian machine.

b. SHA assumes a big-endian architecture. Show how the operation (X + Y) for
SHA would be carried out on a little-endian machine.

M11_STAL7484_08_GE_C11.indd 375 20/04/22 13:46

376 CHAPTER 11 / CRyPTogRAPHiC HAsH FunCTions

 11.12 This problem introduces a hash function similar in spirit to SHA that operates on let-
ters instead of binary data. It is called the toy tetragraph hash (tth).6 Given a message
consisting of a sequence of letters, tth produces a hash value consisting of four letters.
First, tth divides the message into blocks of 16 letters, ignoring spaces, punctuation,
and capitalization. If the message length is not divisible by 16, it is padded out with
nulls. A four-number running total is maintained that starts out with the value (0,
0, 0, 0); this is input to the compression function for processing the first block. The
compression function consists of two rounds.

Round 1 Get the next block of text and arrange it as a row-wise 4 * 4 block of text,
and convert it to numbers (A = 0, B = 1, etc.). For example, for the block
ABCDEFGHIJKLMNOP, we have

A B C D

E F G H

I J K L

M N O P

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Then, add each column mod 26 and add the result to the running total, mod 26. In this
example, the running total is (24, 2, 6, 10).

Round 2 Using the matrix from round 1, rotate the first row left by 1, second row left by 2,
third row left by 3, and reverse the order of the fourth row. In our example:

B C D A

G H E F

L I J K

P O N M

1 2 3 0

6 7 4 5

11 8 9 10

15 14 13 12

Now, add each column mod 26 and add the result to the running total. The new
running total is (5, 7, 9, 11). This running total is now the input into the first round
of the compression function for the next block of text. After the final block is pro-
cessed, convert the final running total to letters. For example, if the message is
 ABCDEFGHIJKLMNOP, then the hash is FHJL.
a. Draw figures comparable to Figures 11.9 and 11.10 to depict the overall tth logic

and the compression function logic.
b. Calculate the hash function for the 22-letter message “Practice makes us perfect.”
c. To demonstrate the weakness of tth, find a message of length 32-letter that produces

the same hash.
 11.13 For each of the possible capacity values of SHA-3 (Table 11.5), which lanes in the

internal 55 state matrix start out as lanes of all zeros?
 11.14 During the permutation phase in SHA-3, if a new position is determined by 12x + 3y2

mod 5, how big is the matrix in the permutation of lanes? Illustrate your answer with
the aid of a diagram.

6I thank William K. Mason, of the magazine staff of The Cryptogram, for providing this example.

M11_STAL7484_08_GE_C11.indd 376 20/04/22 13:46

11.6 / KEy TERms, REviEw quEsTions, And PRoblEms 377

 11.15 Consider the state matrix as illustrated in Figure 11.16a. Now rearrange the rows and
columns of the matrix so that L[0, 0] is in the center. Specifically, arrange the columns
in the left-to-right order (x = 3, x = 4, x = 0, x = 1, x = 2) and arrange the rows in
the top-to-bottom order (y = 2, y = 1, y = 0, y = 4, y = 6). This should give you
some insight into the permutation algorithm used for the function and for permuting
the rotation constants in the function. Using this rearranged matrix, describe the per-
mutation algorithm.

 11.16 The function only affects L[0, 0]. Section 11.6 states that the changes to L[0, 0] diffuse
through u and to all lanes of the state after a single round.
a. Show that this is so.
b. How long before all of the bit positions in the matrix are affected by the changes

to L[0, 0]?

M11_STAL7484_08_GE_C11.indd 377 20/04/22 13:46

378

Message Authentication
Codes

12.1 Message Authentication Requirements

12.2 Message Authentication Functions

Message Encryption
Message Authentication Code

12.3 Requirements for Message Authentication Codes

12.4 Security of MACs

Brute-Force Attacks
Cryptanalysis

12.5 MACs Based on Hash Functions: HMAC

HMAC Design Objectives
HMAC Algorithm
Security of HMAC

12.6 MACs Based on Block Ciphers: DAA and CMAC

Data Authentication Algorithm
Cipher-Based Message Authentication Code (CMAC)

12.7 Authenticated Encryption: CCM and GCM

Counter with Cipher Block Chaining-Message Authentication Code
Galois/Counter Mode

12.8 Key Wrapping

Background
The Key Wrapping Algorithm
Key Unwrapping

12.9 Pseudorandom Number Generation Using Hash Functions and MACs

PRNG Based on Hash Function
PRNG Based on MAC Function

12.10 Key Terms, Review Questions, and Problems

CHAPTER12

M12_STAL7484_08_GE_C12.indd 378 20/04/22 13:55

12.1 / MessAge AuthentiCAtion RequiReMents 379

One of the most fascinating and complex areas of cryptography is that of message
authentication and the related area of digital signatures. It would be impossible, in
anything less than book length, to exhaust all the cryptographic functions and proto-
cols that have been proposed or implemented for message authentication and digital
signatures. Instead, the purpose of this chapter and the next is to provide a broad
overview of the subject and to develop a systematic means of describing the various
approaches.

This chapter begins with an introduction to the requirements for authentica-
tion and digital signature and the types of attacks to be countered. Then the basic
approaches are surveyed. The remainder of the chapter deals with the fundamen-
tal approach to message authentication known as the message authentication
code (MAC). Following an overview of this topic, the chapter looks at security
 considerations for MACs. This is followed by a discussion of specific MACs in two
categories: those built from cryptographic hash functions and those built using
a block cipher mode of operation. Next, we look at a relatively recent approach
known as authenticated encryption. Finally, we look at the use of cryptographic hash
functions and MACs for pseudorandom number generation.

 12.1 MESSAGE AUTHENTICATION REQUIREMENTS

In the context of communications across a network, the following attacks can be
identified.

1. Disclosure: Release of message contents to any person or process not possess-
ing the appropriate cryptographic key.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

◆◆ List and explain the possible attacks that are relevant to message
 authentication.

◆◆ Define the term message authentication code.

◆◆ List and explain the requirements for a message authentication code.

◆◆ Present an overview of HMAC.

◆◆ Present an overview of CMAC.

◆◆ Explain the concept of authenticated encryption.

◆◆ Present an overview of CCM.

◆◆ Present an overview of GCM.

◆◆ Discuss the concept of key wrapping and explain its use.

◆◆ Understand how a hash function or a message authentication code can be
used for pseudorandom number generation.

M12_STAL7484_08_GE_C12.indd 379 20/04/22 13:55

380 ChAPteR 12 / MessAge AuthentiCAtion Codes

2. Traffic analysis: Discovery of the pattern of traffic between parties. In a
connection-oriented application, the frequency and duration of connec-
tions could be determined. In either a connection-oriented or connectionless
 environment, the number and length of messages between parties could be
determined.

3. Masquerade: Insertion of messages into the network from a fraudulent source.
This includes the creation of messages by an opponent that are purported to
come from an authorized entity. Also included are fraudulent acknowledg-
ments of message receipt or nonreceipt by someone other than the message
recipient.

4. Content modification: Changes to the contents of a message, including inser-
tion, deletion, transposition, and modification.

5. Sequence modification: Any modification to a sequence of messages between
parties, including insertion, deletion, and reordering.

6. Timing modification: Delay or replay of messages. In a connection-oriented
application, an entire session or sequence of messages could be a replay of
some previous valid session, or individual messages in the sequence could be
delayed or replayed. In a connectionless application, an individual message
(e.g., datagram) could be delayed or replayed.

7. Source repudiation: Denial of transmission of message by source.

8. Destination repudiation: Denial of receipt of message by destination.

Measures to deal with the first two attacks are in the realm of message
confidentiality and are dealt with in Part One. Measures to deal with items
(3) through (6) in the foregoing list are generally regarded as message authentica-
tion. Mechanisms for dealing specifically with item (7) come under the heading of
digital signatures. Generally, a digital signature technique will also counter some
or all of the attacks listed under items (3) through (6). Dealing with item (8) may
require a combination of the use of digital signatures and a protocol designed to
counter this attack.

In summary, message authentication is a procedure to verify that received
messages come from the alleged source and have not been altered. Message
authentication may also verify sequencing and timeliness. A digital signature is an
authentication technique that also includes measures to counter repudiation by the
source.

 12.2 MESSAGE AUTHENTICATION FUNCTIONS

Any message authentication or digital signature mechanism has two levels of func-
tionality. At the lower level, there must be some sort of function that produces an
authenticator: a value to be used to authenticate a message. This lower-level func-
tion is then used as a primitive in a higher-level authentication protocol that enables
a receiver to verify the authenticity of a message.

This section is concerned with the types of functions that may be used to pro-
duce an authenticator. These may be grouped into three classes.

M12_STAL7484_08_GE_C12.indd 380 20/04/22 13:55

12.2 / MessAge AuthentiCAtion FunCtions 381

◆■ Hash function: A function that maps a message of any length into a fixed-length
hash value, which serves as the authenticator

◆■ Message encryption: The ciphertext of the entire message serves as its
authenticator

◆■ Message authentication code (MAC): A function of the message and a secret
key that produces a fixed-length value that serves as the authenticator

Hash functions, and how they may serve for message authentication, are dis-
cussed in Chapter 11. The remainder of this section briefly examines the remaining
two topics. The remainder of the chapter elaborates on the topic of MACs.

Message Encryption

Message encryption by itself can provide a measure of authentication. The analysis
differs for symmetric and public-key encryption schemes.

Symmetric encryption Consider the straightforward use of symmetric encryption
(Figure 12.1a). A message M transmitted from source A to destination B is encrypted
using a secret key K shared by A and B. If no other party knows the key, then confi-
dentiality is provided: No other party can recover the plaintext of the message.

Figure 12.1 Basic Uses of Message Encryption

Destination BSource A

M

K K

E

(a) Symmetric encryption: confidentiality and authentication

D M

PUb

(b) Public-key encryption: confidentiality

E(K, M)

M E D M

E(PUb, M)

E(PRa, M) E(PRa, M)E(PUb, E(PRa, M))

M E D M

(c) Public-key encryption: authentication and signature

(d) Public-key encryption: confidentiality, authentication, and signature

E D

PRb

PRa

M E D M

E(PRa, M)

PRa

PUa

PUaPUb PRb

M12_STAL7484_08_GE_C12.indd 381 20/04/22 13:55

382 ChAPteR 12 / MessAge AuthentiCAtion Codes

In addition, B is assured that the message was generated by A. Why? The mes-
sage must have come from A, because A is the only other party that possesses K and
therefore the only other party with the information necessary to construct cipher-
text that can be decrypted with K. Furthermore, if M is recovered, B knows that
none of the bits of M have been altered, because an opponent that does not know K
would not know how to alter bits in the ciphertext to produce the desired changes
in the plaintext.

So we may say that symmetric encryption provides authentication as well as
confidentiality. However, this flat statement needs to be qualified. Consider exactly
what is happening at B. Given a decryption function D and a secret key K, the
destination will accept any input X and produce output Y = D(K, X). If X is the
 ciphertext of a legitimate message M produced by the corresponding encryption
function, then Y is some plaintext message M. Otherwise, Y will likely be a meaning-
less sequence of bits. There may need to be some automated means of determining
at B whether Y is legitimate plaintext and therefore must have come from A.

The implications of the line of reasoning in the preceding paragraph are pro-
found from the point of view of authentication. Suppose the message M can be any
arbitrary bit pattern. In that case, there is no way to determine automatically, at the
destination, whether an incoming message is the ciphertext of a legitimate message.
This conclusion is incontrovertible: If M can be any bit pattern, then regardless of
the value of X, the value Y = D(K, X) is some bit pattern and therefore must be
accepted as authentic plaintext.

Thus, in general, we require that only a small subset of all possible bit patterns
be considered legitimate plaintext. In that case, any spurious ciphertext is unlikely to
produce legitimate plaintext. For example, suppose that only one bit pattern in 106
is legitimate plaintext. Then the probability that any randomly chosen bit pattern,
treated as ciphertext, will produce a legitimate plaintext message is only 10-6.

For a number of applications and encryption schemes, the desired conditions
prevail as a matter of course. For example, suppose that we are transmitting English-
language messages using a Caesar cipher with a shift of one (K = 1). A sends the
following legitimate ciphertext:

nbsftfbupbutboeepftfbupbutboemjuumfmbnctfbujwz

B decrypts to produce the following plaintext:

mareseatoatsanddoeseatoatsandlittlelambseativy

A simple frequency analysis confirms that this message has the profile of ordinary
English. On the other hand, if an opponent generates the following random se-
quence of letters:

zuvrsoevgqxlzwigamdvnmhpmccxiuureosfbcebtqxsxq

this decrypts to

ytuqrndufpwkyvhfzlcumlgolbbwhttqdnreabdaspwrwp

which does not fit the profile of ordinary English.

M12_STAL7484_08_GE_C12.indd 382 20/04/22 13:55

12.2 / MessAge AuthentiCAtion FunCtions 383

It may be difficult to determine automatically if incoming ciphertext decrypts
to intelligible plaintext. If the plaintext is, say, a binary object file or digitized
X-rays, determination of properly formed and therefore authentic plaintext may
be difficult. Thus, an opponent could achieve a certain level of disruption simply by
issuing messages with random content purporting to come from a legitimate user.

One solution to this problem is to force the plaintext to have some struc-
ture that is easily recognized but that cannot be replicated without recourse to the
encryption function. We could, for example, append an error-detecting code, also
known as a frame check sequence (FCS) or checksum, to each message before
encryption, as illustrated in Figure 12.2a. A prepares a plaintext message M and then
provides this as input to a function F that produces an FCS. The FCS is appended to
M and the entire block is then encrypted. At the destination, B decrypts the incom-
ing block and treats the results as a message with an appended FCS. B applies the
same function F to attempt to reproduce the FCS. If the calculated FCS is equal to
the incoming FCS, then the message is considered authentic. It is unlikely that any
random sequence of bits would exhibit the desired relationship.

Note that the order in which the FCS and encryption functions are per-
formed is critical. The sequence illustrated in Figure 12.2a is referred to in [DIFF79]
as internal error control, which the authors contrast with external error control
(Figure 12.2b). With internal error control, authentication is provided because an
opponent would have difficulty generating ciphertext that, when decrypted, would
have valid error control bits. If instead the FCS is the outer code, an opponent can
construct messages with valid error-control codes. Although the opponent cannot
know what the decrypted plaintext will be, he or she can still hope to create confu-
sion and disrupt operations.

Figure 12.2 Internal and External Error Control

(b) External error control

Destination BSource A

K K

M | |

F

(a) Internal error control

MD
F

Compare

EM

F(M) F(M)
E(K, [M || F(M)])

M | |E
D

K

F

Compare

K

F

E(K, M)

F(E(K, M))

E(K, M)

M

M12_STAL7484_08_GE_C12.indd 383 20/04/22 13:55

384 ChAPteR 12 / MessAge AuthentiCAtion Codes

An error-control code is just one example; in fact, any sort of structuring
added to the transmitted message serves to strengthen the authentication capability.
Such structure is provided by the use of a communications architecture consisting
of layered protocols. As an example, consider the structure of messages transmit-
ted using the TCP/IP protocol architecture. Figure 12.3 shows the format of a TCP
segment, illustrating the TCP header. Now suppose that each pair of hosts shared a
unique secret key, so that all exchanges between a pair of hosts used the same key,
regardless of application. Then we could simply encrypt all of the datagram except
the IP header. Again, if an opponent substituted some arbitrary bit pattern for the
encrypted TCP segment, the resulting plaintext would not include a meaningful
header. In this case, the header includes not only a checksum (which covers the
header) but also other useful information, such as the sequence number. Because
successive TCP segments on a given connection are numbered sequentially, encryp-
tion assures that an opponent does not delay, misorder, or delete any segments.

public-Key encryption The straightforward use of public-key encryption
(Figure 12.1b) provides confidentiality but not authentication. The source (A) uses
the public key PUb of the destination (B) to encrypt M. Because only B has the cor-
responding private key PRb, only B can decrypt the message. This scheme provides
no authentication, because any opponent could also use B’s public key to encrypt a
message and claim to be A.

To provide authentication, A uses its private key to encrypt the message, and B
uses A’s public key to decrypt (Figure 12.1c). This provides authentication using the
same type of reasoning as in the symmetric encryption case: The message must have
come from A because A is the only party that possesses PRa and therefore the only
party with the information necessary to construct ciphertext that can be decrypted
with PUa. Again, the same reasoning as before applies: There must be some internal
structure to the plaintext so that the receiver can distinguish between well-formed
plaintext and random bits.

Figure 12.3 TCP Segment

Source port Destination port

Checksum Urgent pointer

Sequence number

Acknowledgment number

Options 1 padding

Application data

Reserved Flags WindowData
offset

0Bit: 4 10 16 31

20
 o

ct
et

s

M12_STAL7484_08_GE_C12.indd 384 20/04/22 13:55

12.2 / MessAge AuthentiCAtion FunCtions 385

Assuming there is such structure, then the scheme of Figure 12.1c does pro-
vide authentication. It also provides what is known as digital signature.1 Only A
could have constructed the ciphertext because only A possesses PRa. Not even B,
the recipient, could have constructed the ciphertext. Therefore, if B is in possession
of the ciphertext, B has the means to prove that the message must have come from
A. In effect, A has “signed” the message by using its private key to encrypt. Note
that this scheme does not provide confidentiality. Anyone in possession of A’s public
key can decrypt the ciphertext.

To provide both confidentiality and authentication, A can encrypt M first using
its private key, which provides the digital signature, and then using B’s public key,
which provides confidentiality (Figure 12.1d). The disadvantage of this approach is
that the public-key algorithm, which is complex, must be exercised four times rather
than two in each communication.

Message Authentication Code

An alternative authentication technique involves the use of a secret key to generate
a small fixed-size block of data, known as a cryptographic checksum or MAC, that is
appended to the message. This technique assumes that two communicating parties,
say A and B, share a common secret key K. When A has a message to send to B, it
calculates the MAC as a function of the message and the key:

MAC = C(K, M)

where

 M = input message
 C = MAC function
 K = shared secret key
 MAC = message authentication code

The message plus MAC are transmitted to the intended recipient. The recipient
performs the same calculation on the received message, using the same secret key,
to generate a new MAC. The received MAC is compared to the calculated MAC
(Figure 12.4a). If we assume that only the receiver and the sender know the identity
of the secret key, and if the received MAC matches the calculated MAC, then

1. The receiver is assured that the message has not been altered. If an attacker al-
ters the message but does not alter the MAC, then the receiver’s calculation of
the MAC will differ from the received MAC. Because the attacker is assumed
not to know the secret key, the attacker cannot alter the MAC to correspond
to the alterations in the message.

2. The receiver is assured that the message is from the alleged sender. Because
no one else knows the secret key, no one else could prepare a message with a
proper MAC.

1This is not the way in which digital signatures are constructed, as we shall see, but the principle is the
same.

M12_STAL7484_08_GE_C12.indd 385 20/04/22 13:55

386 ChAPteR 12 / MessAge AuthentiCAtion Codes

3. If the message includes a sequence number (such as is used with HDLC, X.25,
and TCP), then the receiver can be assured of the proper sequence because an
attacker cannot successfully alter the sequence number.

A MAC function is similar to encryption. One difference is that the MAC
algorithm need not be reversible, as it must be for decryption. In general, the MAC
function is a many-to-one function. The domain of the function consists of messages
of some arbitrary length, whereas the range consists of all possible MACs and all
possible keys. If an n-bit MAC is used, then there are 2n possible MACs, whereas
there are N possible messages with N W 2n. Furthermore, with a k-bit key, there are
2k possible keys.

For example, suppose that we are using 100-bit messages and a 10-bit MAC.
Then, there are a total of 2100 different messages but only 210 different MACs. So, on
average, each MAC value is generated by a total of 2100/210 = 290 different messages.
If a 5-bit key is used, then there are 25 = 32 different mappings from the set of mes-
sages to the set of MAC values.

It turns out that, because of the mathematical properties of the authentication
function, it is less vulnerable to being broken than encryption.

The process depicted in Figure 12.4a provides authentication but not confiden-
tiality, because the message as a whole is transmitted in the clear. Confidentiality can
be provided by performing message encryption either after (Figure 12.4b) or before
(Figure 12.4c) the MAC algorithm. In both these cases, two separate keys are needed,

Figure 12.4 Basic Uses of Message Authentication code (MAC)

Destination BSource A

M | |

K

C

(a) Message authentication

M
E

| |

(c) Message authentication and confidentiality; authentication tied to ciphertext

M

C(K, M)

E(K2, [M || C(K1, M)])

C(K1, E(K2, M))

E(K2, M)

C

CompareK

EM | |

K1

K1

K2

K2

K2
K1

K1

K2

C

(b) Message authentication and confidentiality; authentication tied to plaintext

MD
C

Compare

C

C

Compare

D
M

C(K1, M)

M12_STAL7484_08_GE_C12.indd 386 20/04/22 13:55

12.2 / MessAge AuthentiCAtion FunCtions 387

each of which is shared by the sender and the receiver. In the first case, the MAC is
calculated with the message as input and is then concatenated to the message. The
entire block is then encrypted. In the second case, the message is encrypted first.
Then the MAC is calculated using the resulting ciphertext and is concatenated to the
ciphertext to form the transmitted block. Typically, it is preferable to tie the authenti-
cation directly to the plaintext, so the method of Figure 12.4b is used.

Because symmetric encryption will provide authentication and because it is
widely used with readily available products, why not simply use this instead of a
separate message authentication code? [DAVI89] suggests three situations in which
a message authentication code is used.

1. There are a number of applications in which the same message is broadcast to
a number of destinations. Examples are notification to users that the network
is now unavailable or an alarm signal in a military control center. It is cheaper
and more reliable to have only one destination responsible for monitoring au-
thenticity. Thus, the message must be broadcast in plaintext with an associated
message authentication code. The responsible system has the secret key and
performs authentication. If a violation occurs, the other destination systems
are alerted by a general alarm.

2. Another possible scenario is an exchange in which one side has a heavy load
and cannot afford the time to decrypt all incoming messages. Authentication is
carried out on a selective basis, messages being chosen at random for checking.

3. Authentication of a computer program in plaintext is an attractive service.
The computer program can be executed without having to decrypt it every
time, which would be wasteful of processor resources. However, if a message
authentication code were attached to the program, it could be checked when-
ever assurance was required of the integrity of the program.

Three other rationales may be added.

4. For some applications, it may not be of concern to keep messages secret, but
it is important to authenticate messages. An example is the Simple Network
Management Protocol Version 3 (SNMPv3), which separates the functions of
confidentiality and authentication. For this application, it is usually important
for a managed system to authenticate incoming SNMP messages, particularly
if the message contains a command to change parameters at the managed sys-
tem. On the other hand, it may not be necessary to conceal the SNMP traffic.

5. Separation of authentication and confidentiality functions affords architec-
tural flexibility. For example, it may be desired to perform authentication at
the application level but to provide confidentiality at a lower level, such as the
transport layer.

6. A user may wish to prolong the period of protection beyond the time of recep-
tion and yet allow processing of message contents. With message encryption, the
protection is lost when the message is decrypted, so the message is protected
against fraudulent modifications only in transit but not within the target system.

Finally, note that the MAC does not provide a digital signature, because both
sender and receiver share the same key.

M12_STAL7484_08_GE_C12.indd 387 20/04/22 13:55

388 ChAPteR 12 / MessAge AuthentiCAtion Codes

 12.3 REQUIREMENTS FOR MESSAGE AUTHENTICATION CODES

A MAC, also known as a cryptographic checksum, is generated by a function MAC
of the form

T = MAC(K, M)

where M is a variable-length message, K is a secret key shared only by sender and re-
ceiver, and MAC(K, M) is the fixed-length authenticator, sometimes called a tag. The
tag is appended to the message at the source at a time when the message is assumed or
known to be correct. The receiver authenticates that message by recomputing the tag.

When an entire message is encrypted for confidentiality, using either symmet-
ric or asymmetric encryption, the security of the scheme generally depends on the
bit length of the key. Barring some weakness in the algorithm, the opponent must
resort to a brute-force attack using all possible keys. On average, such an attack will
require 2(k - 1) attempts for a k-bit key. In particular, for a ciphertext-only attack, the
opponent, given ciphertext C, performs Pi = D(Ki, C) for all possible key values Ki
until a Pi is produced that matches the form of acceptable plaintext.

In the case of a MAC, the considerations are entirely different. In general,
the MAC function is a many-to-one function, due to the many-to-one nature of the
function. Using brute-force methods, how would an opponent attempt to discover
a key? If confidentiality is not employed, the opponent has access to plaintext mes-
sages and their associated MACs. Suppose k 7 n; that is, suppose that the key size is
greater than the MAC size. Then, given a known M1 and T1, with T1 = MAC(K, M1),
the cryptanalyst can perform Ti = MAC(Ki, M1) for all possible key values ki. At
least one key is guaranteed to produce a match of Ti = T1. Note that a total of 2k
tags will be produced, but there are only 2n 6 2k different tag values. Thus, a number
of keys will produce the correct tag and the opponent has no way of knowing which
is the correct key. On average, a total of 2k/2n = 2(k - n) keys will produce a match.
Thus, the opponent must iterate the attack.

◆■ Round 1

Given: M1, T1 = MAC(K, M1)

Compute Ti = MAC(Ki, M1) for all 2k keys

Number of matches L 2(k - n)

◆■ Round 2

Given: M2, T2 = MAC(K, M2)

Compute Ti = MAC(Ki, M2) for the 2(k - n) keys resulting from Round 1

Number of matches L 2(k - 2 * n)

And so on. On average, a rounds will be needed k = a * n. For example, if an 80-
bit key is used and the tag is 32 bits, then the first round will produce about 248 pos-
sible keys. The second round will narrow the possible keys to about 216 possibilities.
The third round should produce only a single key, which must be the one used by
the sender.

M12_STAL7484_08_GE_C12.indd 388 20/04/22 13:55

12.3 / RequiReMents FoR MessAge AuthentiCAtion Codes 389

If the key length is less than or equal to the tag length, then it is likely that a
first round will produce a single match. It is possible that more than one key will
produce such a match, in which case the opponent would need to perform the same
test on a new (message, tag) pair.

Thus, a brute-force attempt to discover the authentication key is no less effort
and may be more effort than that required to discover a decryption key of the same
length. However, other attacks that do not require the discovery of the key are
possible.

Consider the following MAC algorithm. Let M = (X1 }X2 } c }Xm) be a
message that is treated as a concatenation of 64-bit blocks Xi. Then define

∆(M) = X1 ⊕ X2 ⊕ c ⊕ Xm

MAC(K, M) = E(K, ∆(M))

where ⊕ is the exclusive-OR (XOR) operation and the encryption algorithm is
DES in electronic codebook mode. Thus, the key length is 56 bits, and the tag length
is 64 bits. If an opponent observes {M }MAC(K, M)}, a brute-force attempt to de-
termine K will require at least 256 encryptions. But the opponent can attack the sys-
tem by replacing X1 through Xm - 1 with any desired values Y1 through Ym - 1 and
replacing Xm with Ym, where Ym is calculated as

Ym = Y1 ⊕ Y2 ⊕ g ⊕ Ym - 1 ⊕ ∆(M)

The opponent can now concatenate the new message, which consists of Y1
through Ym, using the original tag to form a message that will be accepted as authen-
tic by the receiver. With this tactic, any message of length 64 * (m - 1) bits can be
fraudulently inserted.

Thus, in assessing the security of a MAC function, we need to consider the
types of attacks that may be mounted against it. With that in mind, let us state
the requirements for the function. Assume that an opponent knows the MAC
 function but does not know K. Then the MAC function should satisfy the following
requirements.

1. If an opponent observes M and MAC(K, M), it should be computationally
infeasible for the opponent to construct a message M′ such that

MAC(K, M′) = MAC(K, M)

2. MAC(K, M) should be uniformly distributed in the sense that for randomly
chosen messages, M and M′, the probability that MAC(K, M) = MAC(K, M′)
is 2-n, where n is the number of bits in the tag.

3. Let M′ be equal to some known transformation on M. That is, M′ = f(M). For
example, f may involve inverting one or more specific bits. In that case,

Pr [MAC(K, M) = MAC(K, M′)] = 2-n

The first requirement speaks to the earlier example, in which an opponent is
able to construct a new message to match a given tag, even though the opponent
does not know and does not learn the key. The second requirement deals with the
need to thwart a brute-force attack based on chosen plaintext. That is, if we assume

M12_STAL7484_08_GE_C12.indd 389 20/04/22 13:55

390 ChAPteR 12 / MessAge AuthentiCAtion Codes

that the opponent does not know K but does have access to the MAC function and
can present messages for MAC generation, then the opponent could try various
messages until finding one that matches a given tag. If the MAC function exhibits
uniform distribution, then a brute-force method would require, on average, 2(n - 1)
attempts before finding a message that fits a given tag.

The final requirement dictates that the authentication algorithm should not be
weaker with respect to certain parts or bits of the message than others. If this were
not the case, then an opponent who had M and MAC(K, M) could attempt varia-
tions on M at the known “weak spots” with a likelihood of early success at produc-
ing a new message that matched the old tags.

 12.4 SECURITY OF MACs

Just as with encryption algorithms and hash functions, we can group attacks on
MACs into two categories: brute-force attacks and cryptanalysis.

Brute-Force Attacks

A brute-force attack on a MAC is a more difficult undertaking than a brute-force at-
tack on a hash function because it requires known message-tag pairs. Let us see why
this is so. To attack a hash code, we can proceed in the following way. Given a fixed
message x with n-bit hash code h = H(x), a brute-force method of finding a colli-
sion is to pick a random bit string y and check if H(y) = H(x). The attacker can do
this repeatedly off line. Whether an off-line attack can be used on a MAC algorithm
depends on the relative size of the key and the tag.

To proceed, we need to state the desired security property of a MAC algo-
rithm, which can be expressed as follows.

◆■ Computation resistance: Given one or more text-MAC pairs [xi, MAC(K, xi)],
it is computationally infeasible to compute any text-MAC pair [x, MAC(K, x)]
for any new input x ≠ xi.

In other words, the attacker would like to come up with the valid MAC code for a
given message x. There are two lines of attack possible: attack the key space and at-
tack the MAC value. We examine each of these in turn.

If an attacker can determine the MAC key, then it is possible to generate a
valid MAC value for any input x. Suppose the key size is k bits and that the attacker
has one known text-tag pair. Then the attacker can compute the n-bit tag on the
known text for all possible keys. At least one key is guaranteed to produce the cor-
rect tag, namely, the valid key that was initially used to produce the known text-tag
pair. This phase of the attack takes a level of effort proportional to 2k (that is, one
operation for each of the 2k possible key values). However, as was described earlier,
because the MAC is a many-to-one mapping, there may be other keys that produce
the correct value. Thus, if more than one key is found to produce the correct value,
additional text-tag pairs must be tested. It can be shown that the level of effort drops
off rapidly with each additional text-MAC pair and that the overall level of effort is
roughly 2k [MENE97].

M12_STAL7484_08_GE_C12.indd 390 20/04/22 13:55

12.5 / MACs BAsed on hAsh FunCtions: hMAC 391

An attacker can also work on the tag without attempting to recover the
key. Here, the objective is to generate a valid tag for a given message or to find
a message that matches a given tag. In either case, the level of effort is compa-
rable to that for attacking the one-way or weak collision-resistant property of a
hash code, or 2n. In the case of the MAC, the attack cannot be conducted off line
 without further input; the attacker will require chosen text-tag pairs or knowledge
of the key.

To summarize, the level of effort for brute-force attack on a MAC algorithm
can be expressed as min(2k, 2n). The assessment of strength is similar to that for
symmetric encryption algorithms. It would appear reasonable to require that the
key length and tag length satisfy a relationship such as min(k, n) Ú N, where N is
perhaps in the range of 128 bits.

Cryptanalysis

There is much more variety in the structure of MACs than in hash functions, so it
is difficult to generalize about the cryptanalysis of MACs. As with encryption algo-
rithms and hash functions, cryptanalytic attacks on MAC algorithms seek to exploit
some property of the algorithm to perform some attack other than an exhaustive
search. The way to measure the resistance of a MAC algorithm to cryptanalysis is to
compare its strength to the effort required for a brute-force attack. That is, an ideal
MAC algorithm will require a cryptanalytic effort greater than or equal to the brute-
force effort.

 12.5 MACs BASED ON HASH FUNCTIONS: HMAC

Later in this chapter, we look at examples of a MAC based on the use of a
 symmetric block cipher. This has traditionally been the most common approach to
constructing a MAC. In recent years, there has been increased interest in develop-
ing a MAC derived from a cryptographic hash function. The motivations for this
interest are

1. Cryptographic hash functions such as MD5 and SHA generally execute faster
in software than symmetric block ciphers such as DES.

2. Library code for cryptographic hash functions is widely available.

With the development of AES and the more widespread availability of code
for encryption algorithms, these considerations are less significant, but hash-based
MACs continue to be widely used.

A hash function such as SHA was not designed for use as a MAC and can-
not be used directly for that purpose, because it does not rely on a secret key.
There have been a number of proposals for the incorporation of a secret key into
an existing hash algorithm. The approach that has received the most support is
HMAC [BELL96a, BELL96b]. HMAC has been issued as RFC 2104, has been
chosen as the mandatory-to-implement MAC for IP security, and is used in other
Internet protocols, such as SSL. HMAC has also been issued as a NIST standard
(FIPS 198).

M12_STAL7484_08_GE_C12.indd 391 20/04/22 13:55

392 ChAPteR 12 / MessAge AuthentiCAtion Codes

HMAC Design Objectives

RFC 2104 lists the following design objectives for HMAC.

◆■ To use, without modifications, available hash functions. In particular, to use
hash functions that perform well in software and for which code is freely and
widely available.

◆■ To allow for easy replaceability of the embedded hash function in case faster
or more secure hash functions are found or required.

◆■ To preserve the original performance of the hash function without incurring a
significant degradation.

◆■ To use and handle keys in a simple way.

◆■ To have a well understood cryptographic analysis of the strength of the authen-
tication mechanism based on reasonable assumptions about the embedded
hash function.

The first two objectives are important to the acceptability of HMAC. HMAC
treats the hash function as a “black box.” This has two benefits. First, an existing imple-
mentation of a hash function can be used as a module in implementing HMAC. In
this way, the bulk of the HMAC code is prepackaged and ready to use without modi-
fication. Second, if it is ever desired to replace a given hash function in an HMAC
implementation, all that is required is to remove the existing hash function module
and drop in the new module. This could be done if a faster hash function were desired.
More important, if the security of the embedded hash function were compromised, the
security of HMAC could be retained simply by replacing the embedded hash function
with a more secure one (e.g., replacing SHA-2 with SHA-3).

The last design objective in the preceding list is, in fact, the main advantage
of HMAC over other proposed hash-based schemes. HMAC can be proven secure
provided that the embedded hash function has some reasonable cryptographic
strengths. We return to this point later in this section, but first we examine the struc-
ture of HMAC.

HMAC Algorithm

Figure 12.5 illustrates the overall operation of HMAC. Define the following terms.

H = embedded hash function (e.g., MD5, SHA-1, RIPEMD-160)
IV = initial value input to hash function
M = message input to HMAC (including the padding specified in the embedded

hash function)
Yi = i th block of M, 0 … i … (L - 1)
L = number of blocks in M
b = number of bits in a block
n = length of hash code produced by embedded hash function
K = secret key; recommended length is Ú n; if key length is greater than b, the

key is input to the hash function to produce an n-bit key
K+ = K padded with zeros on the right so that the result is b bits in length

M12_STAL7484_08_GE_C12.indd 392 20/04/22 13:55

12.5 / MACs BAsed on hAsh FunCtions: hMAC 393

ipad = 00110110 (36 in hexadecimal) repeated b/8 times
opad = 01011100 (5C in hexadecimal) repeated b/8 times

Then HMAC can be expressed as

 HMAC(K, M) = H[(K+ ⊕ opad) }H[(K+ ⊕ ipad) }M]]

We can describe the algorithm as follows.

1. Append zeros to the left end of K to create a b-bit string K+ (e.g., if K is of
length 160 bits and b = 512, then K will be appended with 44 zeroes).

2. XOR (bitwise exclusive-OR) K+ with ipad to produce the b-bit block Si.

3. Append M to Si.

4. Apply H to the stream generated in step 3.

5. XOR K+ with opad to produce the b-bit block So.

6. Append the hash result from step 4 to So.

7. Apply H to the stream generated in step 6 and output the result.

Note that the XOR with ipad results in flipping one-half of the bits of K.
Similarly, the XOR with opad results in flipping one-half of the bits of K, using a

Figure 12.5 HMAC Structure

K1

Si

So

Y0 Y1 YL21

b bits

b bits

b bits b bits

ipad

K1 opad

HashIV n bits

n bits

Pad to b bits

HashIV n bits

n bits

HMAC(K, M)

H(Si || M)

M12_STAL7484_08_GE_C12.indd 393 20/04/22 13:55

394 ChAPteR 12 / MessAge AuthentiCAtion Codes

different set of bits. In effect, by passing Si and So through the compression function
of the hash algorithm, we have pseudorandomly generated two keys from K.

HMAC should execute in approximately the same time as the embedded hash
function for long messages. HMAC adds three executions of the hash compression
function (for Si, So, and the block produced from the inner hash).

A more efficient implementation is possible, as shown in Figure 12.6. Two
quantities are precomputed:

f(IV, (K+ ⊕ ipad))

f(IV, (K+ ⊕ opad))

where f(cv, block) is the compression function for the hash function, which takes as
arguments a chaining variable of n bits and a block of b bits and produces a chaining
variable of n bits. These quantities only need to be computed initially and every time
the key changes. In effect, the precomputed quantities substitute for the initial value
(IV) in the hash function. With this implementation, only one additional instance of
the compression function is added to the processing normally produced by the hash

Figure 12.6 Efficient Implementation of HMAC

b bits b bits b bits

Precomputed Computed per message

HashIV n bits

b bits

n bits

Pad to b bits

n bits

n bits

HMAC(K, M)

f

IV

b bits

f f

Si

So

Y0 Y1

ipad

K1 opad H(Si || M)

K1

YL-1

M12_STAL7484_08_GE_C12.indd 394 20/04/22 13:55

12.5 / MACs BAsed on hAsh FunCtions: hMAC 395

function. This more efficient implementation is especially worthwhile if most of the
messages for which a MAC is computed are short.

Security of HMAC

The security of any MAC function based on an embedded hash function depends
in some way on the cryptographic strength of the underlying hash function. The
appeal of HMAC is that its designers have been able to prove an exact relation-
ship between the strength of the embedded hash function and the strength of
HMAC.

The security of a MAC function is generally expressed in terms of the prob-
ability of successful forgery with a given amount of time spent by the forger and
a given number of message-tag pairs created with the same key. In essence, it is
proved in [BELL96a] that for a given level of effort (time, message–tag pairs) on
messages generated by a legitimate user and seen by the attacker, the probability
of successful attack on HMAC is equivalent to one of the following attacks on the
embedded hash function.

1. The attacker is able to compute an output of the compression function even
with an IV that is random, secret, and unknown to the attacker.

2. The attacker finds collisions in the hash function even when the IV is random
and secret.

In the first attack, we can view the compression function as equivalent to the
hash function applied to a message consisting of a single b-bit block. For this attack,
the IV of the hash function is replaced by a secret, random value of n bits. An attack
on this hash function requires either a brute-force attack on the key, which is a level
of effort on the order of 2n, or a birthday attack, which is a special case of the second
attack, discussed next.

In the second attack, the attacker is looking for two messages M and M′ that
produce the same hash: H(M) = H(M′). This is the birthday attack discussed in
Chapter 11. We have shown that this requires a level of effort of 2n/2 for a hash
length of n. On this basis, the security of MD5 is called into question, because a
level of effort of 264 looks feasible with today’s technology. Does this mean that
a 128-bit hash function such as MD5 is unsuitable for HMAC? The answer is no,
because of the following argument. To attack MD5, the attacker can choose any set
of messages and work on these off line on a dedicated computing facility to find
a collision. Because the attacker knows the hash algorithm and the default IV, the
attacker can generate the hash code for each of the messages that the attacker gen-
erates. However, when attacking HMAC, the attacker cannot generate message/
code pairs off line because the attacker does not know K. Therefore, the attacker
must observe a sequence of messages generated by HMAC under the same key and
perform the attack on these known messages. For a hash code length of 128 bits, this
requires 264 observed blocks (272 bits) generated using the same key. On a 1-Gbps
link, one would need to observe a continuous stream of messages with no change
in key for about 250,000 years in order to succeed. Thus, if speed is a concern, it is
fully acceptable to use MD5 rather than SHA-1 as the embedded hash function for
HMAC.

M12_STAL7484_08_GE_C12.indd 395 20/04/22 13:55

396 ChAPteR 12 / MessAge AuthentiCAtion Codes

 12.6 MACs BASED ON BLOCK CIPHERS: DAA AND CMAC

In this section, we look at two MACs that are based on the use of a block cipher
mode of operation. We begin with an older algorithm, the Data Authentication
Algorithm (DAA), which is now obsolete. Then we examine CMAC, which is de-
signed to overcome the deficiencies of DAA.

Data Authentication Algorithm

The Data Authentication Algorithm (DAA), based on DES, has been one of the
most widely used MACs for a number of years. The algorithm is both a FIPS pub-
lication (FIPS PUB 113) and an ANSI standard (X9.17). However, as we discuss
subsequently, security weaknesses in this algorithm have been discovered, and it is
being replaced by newer and stronger algorithms.

The algorithm can be defined as using the cipher block chaining (CBC) mode
of operation of DES (Figure 6.4) with an initialization vector of zero. The data (e.g.,
message, record, file, or program) to be authenticated are grouped into contiguous
64-bit blocks: D1, D2, c , DN. If necessary, the final block is padded on the right with
zeroes to form a full 64-bit block. Using the DES encryption algorithm E and a secret
key K, a data authentication code (DAC) is calculated as follows (Figure 12.7).

O1

= E(K, D)
O2

= E(K, [D2 ⊕ O1])
O3 = E(K, [D3 ⊕ O2])#
#
#
ON = E(K, [DN ⊕ ON - 1])

Figure 12.7 Data Authentication Algorithm (FIPS PUB 113)

Time 5 1

DES
encrypt

K
(56 bits)

Time 5 2

K

+ + +

K K

Time 5 NTime 5 N 2 1

O1
(64 bits)

O2

D1
(64 bits) D2 DN-1

ON

DN

ON-1

DAC
(16 to 64 bits)

DES
encrypt

DES
encrypt

DES
encrypt

M12_STAL7484_08_GE_C12.indd 396 20/04/22 13:55

12.6 / MACs BAsed on BloCk CiPheRs: dAA And CMAC 397

The DAC consists of either the entire block ON or the leftmost M bits of the
block, with 16 … M … 64.

Cipher-Based Message Authentication Code (CMAC)

As was mentioned, DAA has been widely adopted in government and industry.
[BELL00] demonstrated that this MAC is secure under a reasonable set of security
criteria, with the following restriction. Only messages of one fixed length of mn bits
are processed, where n is the cipher block size and m is a fixed positive integer. As
a simple example, notice that given the CBC MAC of a one-block message X, say
T = MAC(K, X), the adversary immediately knows the CBC MAC for the two-
block message X } (X ⊕ T) since this is once again T.

Black and Rogaway [BLAC00] demonstrated that this limitation could
be overcome using three keys: one key K of length k to be used at each step of
the cipher block chaining and two keys of length b, where b is the cipher block
length. This proposed construction was refined by Iwata and Kurosawa so that the
two n-bit keys could be derived from the encryption key, rather than being pro-
vided separately [IWAT03]. This refinement, adopted by NIST, is the Cipher-based
Message Authentication Code (CMAC) mode of operation for use with AES and
triple DES. It is specified in NIST Special Publication 800-38B.

First, let us define the operation of CMAC when the message is an integer mul-
tiple n of the cipher block length b. For AES, b = 128, and for triple DES, b = 64.
The message is divided into n blocks (M1, M2, c , Mn). The algorithm makes use
of a k-bit encryption key K and a b-bit constant, K1. For AES, the key size k is 128,
192, or 256 bits; for triple DES, the key size is 112 or 168 bits. CMAC is calculated as
follows (Figure 12.8).

 C1

= E(K, M1)

 C2

= E(K, [M2 ⊕ C1])

 C3

= E(K, [M3 ⊕ C2])#
#
#

 Cn = E(K, [Mn ⊕ Cn - 1 ⊕ K1])

 T = MSBTlen(Cn)

where

 T = message authentication code, also referred to as the tag

 Tlen = bit length of T

 MSBs(X) = the s leftmost bits of the bit string X

If the message is not an integer multiple of the cipher block length, then the
final block is padded to the right (least significant bits) with a 1 and as many 0s as
necessary so that the final block is also of length b. The CMAC operation then pro-
ceeds as before, except that a different b-bit key K2 is used instead of K1.

M12_STAL7484_08_GE_C12.indd 397 20/04/22 13:55

398 ChAPteR 12 / MessAge AuthentiCAtion Codes

The two b-bit keys are derived from the k-bit encryption key as follows.

 L = E(K, 0b)

 K1 = L # x

 K2 = L # x2 = (L # x) # x

where multiplication (#) is done in the finite field GF(2b) and x and x2 are first- and
second-order polynomials that are elements of GF(2b). Thus, the binary represen-
tation of x consists of b - 2 zeros followed by 10; the binary representation of x2
consists of b - 3 zeros followed by 100. The finite field is defined with respect to
an irreducible polynomial that is lexicographically first among all such polynomials
with the minimum possible number of nonzero terms. For the two approved block
sizes, the polynomials are x64 + x4 + x3 + x + 1 and x128 + x7 + x2 + x + 1.

To generate K1 and K2, the block cipher is applied to the block that consists
entirely of 0 bits. The first subkey is derived from the resulting ciphertext by a
left shift of one bit and, conditionally, by XORing a constant that depends on the
block size. The second subkey is derived in the same manner from the first subkey.
This property of finite fields of the form GF(2b) was explained in the discussion of
MixColumns in Chapter 6.

Figure 12.8 Cipher-based Message Authentication Code (CMAC)

EncryptK K K

T

Encrypt Encrypt

MSB(Tlen)

M1

K1

K2

M2 Mn

(a) Message length is integer multiple of block size

EncryptK K K

T

Encrypt Encrypt

MSB(Tlen)

10...0

(b) Message length is not integer multiple of block size

b

k

MnM1 M2

M12_STAL7484_08_GE_C12.indd 398 20/04/22 13:55

12.7 / AuthentiCAted enCRyPtion: CCM And gCM 399

 12.7 AUTHENTICATED ENCRYPTION: CCM AND GCM

Authenticated encryption (AE) is a term used to describe encryption systems that
simultaneously protect confidentiality and authenticity (integrity) of communica-
tions. Many applications and protocols require both forms of security, but until re-
cently the two services have been designed separately.

There are four common approaches to providing both confidentiality and
encryption for a message M.

◆■ Hashing followed by encryption (H S E): First compute the cryptographic
hash function over M as h = H(M). Then encrypt the message plus hash func-
tion: E(K, (M }h)).

◆■ Authentication followed by encryption (A S E): Use two keys. First authen-
ticate the plaintext by computing the MAC value as T = MAC(K1, M). Then
encrypt the message plus tag: E(K2, [M }T]). This approach is taken by the
SSL/TLS protocols (Chapter 19).

◆■ Encryption followed by authentication (E S A): Use two keys. First encrypt
the message to yield the ciphertext C = E(K2, M). Then authenticate the
 ciphertext with T = MAC(K1, C) to yield the pair (C, T). This approach is
used in the IPSec protocol (Chapter 22).

◆■ Independently encrypt and authenticate (E + A). Use two keys. Encrypt
the message to yield the ciphertext C = E(K2, M). Authenticate the plain-
text with T = MAC(K1, M) to yield the pair (C, T). These operations can
be performed in either order. This approach is used by the SSH protocol
(Chapter 19).

Both decryption and verification are straightforward for each approach. For
H S E, A S E, and E + A, decrypt first, then verify. For E S A, verify first, then
decrypt. There are security vulnerabilities with all of these approaches. The H S E
approach is used in the Wired Equivalent Privacy (WEP) protocol to protect WiFi
networks. This approach had fundamental weaknesses and led to the replacement of
the WEP protocol. [BLAC05] and [BELL00] point out that there are security con-
cerns in each of the three encryption/MAC approaches listed above. Nevertheless,
with proper design, any of these approaches can provide a high level of security. This
is the goal of the two approaches discussed in this section, both of which have been
standardized by NIST.

Counter with Cipher Block Chaining-Message
Authentication Code

The CCM mode of operation was standardized by NIST specifically to sup-
port the security requirements of IEEE 802.11 WiFi wireless local area networks
(Chapter 20), but can be used in any networking application requiring authenticated
encryption. CCM is a variation of the encrypt-and-MAC approach to authenticated
encryption. It is defined in NIST SP 800-38C.

The key algorithmic ingredients of CCM are the AES encryption algorithm
(Chapter 6), the CTR mode of operation (Chapter 7), and the CMAC authentication

M12_STAL7484_08_GE_C12.indd 399 20/04/22 13:55

400 ChAPteR 12 / MessAge AuthentiCAtion Codes

algorithm (Section 12.6). A single key K is used for both encryption and MAC algo-
rithms. The input to the CCM encryption process consists of three elements.

1. Data that will be both authenticated and encrypted. This is the plaintext mes-
sage P of data block.

2. Associated data A that will be authenticated but not encrypted. An example
is a protocol header that must be transmitted in the clear for proper protocol
operation but which needs to be authenticated.

3. A nonce N that is assigned to the payload and the associated data. This is a
unique value that is different for every instance during the lifetime of a pro-
tocol association and is intended to prevent replay attacks and certain other
types of attacks.

Figure 12.9 illustrates the operation of CCM. For authentication, the input
includes the nonce, the associated data, and the plaintext. This input is formatted
as a sequence of blocks B0 through Br. The first block contains the nonce plus some
formatting bits that indicate the lengths of the N, A, and P elements. This is followed
by zero or more blocks that contain A, followed by zero of more blocks that contain
P. The resulting sequence of blocks serves as input to the CMAC algorithm, which
produces a MAC value with length Tlen, which is less than or equal to the block
length (Figure 12.9a).

For encryption, a sequence of counters is generated that must be independent
of the nonce. The authentication tag is encrypted in CTR mode using the single
counter Ctr0. The Tlen most significant bits of the output are XORed with the tag
to produce an encrypted tag. The remaining counters are used for the CTR mode
encryption of the plaintext (Figure 7.7). The encrypted plaintext is concatenated
with the encrypted tag to form the ciphertext output (Figure 12.9b).

SP 800-38C defines the authentication/encryption process as follows.

1. Apply the formatting function to (N, A, P) to produce the blocks B0, B1, c , Br.

2. Set Y0 = E(K, B0).
3. For i = 1 to r, do Yi = E(K, (Bi ⊕ Yi- 1)).
4. Set T = MSBTlen(Yr).
5. Apply the counter generation function to generate the counter blocks

Ctr0, Ctr1, c , Ctrm, where m = <Plen/128= .
6. For j = 0 to m, do Sj = E(K, Ctrj).
7. Set S = S1 }S2 } g }Sm.
8. Return C = (P ⊕ MSBPlen(S)) } (T ⊕ MSBTlen(S0)).

For decryption and verification, the recipient requires the following input: the
ciphertext C, the nonce N, the associated data A, the key K, and the initial counter
Ctr0. The steps are as follows.

1. If Clen … Tlen, then return INVALID.

2. Apply the counter generation function to generate the counter blocks
Ctr0, Ctr1, c , Ctrm, where m = <Clen/128= .

3. For j = 0 to m, do Sj = E(K, Ctrj).

M12_STAL7484_08_GE_C12.indd 400 20/04/22 13:55

12.7 / AuthentiCAted enCRyPtion: CCM And gCM 401

4. Set S = S1 }S2 } g }Sm.

5. Set P = MSBClen - Tlen(C) ⊕ MSBClen - Tlen(S).

6. Set T = LSBTlen(C) ⊕ MSBTlen(S0).

7. Apply the formatting function to N, A, P) to produce the blocks B0, B1, c , Br.

8. Set Y0 = E(K, B0).

9. For i = 1 to r do Yi = E(K, (Bi ⊕ Yi- 1)).

10. If T ≠ MSBTlen(Yr), then return INVALID, else return P.

Figure 12.9 Counter with Cipher Block Chaining-Message Authentication Code (CCM)

(a) Authentication

(b) Encryption

B0

Ctr0

B1 B2 Br

Tag

Tag

Nonce Plaintext

Plaintext

Ciphertext

Ass. Data

K CMAC

MSB(Tlen)K
CTRCtr1, Ctr2, ..., Ctrm

EncryptK

M12_STAL7484_08_GE_C12.indd 401 20/04/22 13:55

402 ChAPteR 12 / MessAge AuthentiCAtion Codes

CCM is a relatively complex algorithm. Note that it requires two complete
passes through the plaintext, once to generate the MAC value, and once for encryp-
tion. Further, the details of the specification require a tradeoff between the length
of the nonce and the length of the tag, which is an unnecessary restriction. Also note
that the encryption key is used twice with the CTR encryption mode: once to gener-
ate the tag and once to encrypt the plaintext plus tag. Whether these complexities
add to the security of the algorithm is not clear. In any case, two analyses of the
algorithm ([JONS02] and [ROGA03]) conclude that CCM provides a high level of
security.

Galois/Counter Mode

The GCM mode of operation, standardized by NIST in NIST SP 800-38D, is de-
signed to be parallelizable so that it can provide high throughput with low cost and
low latency. In essence, the message is encrypted in variant of CTR mode. The re-
sulting ciphertext is multiplied with key material and message length information
over GF(2128) to generate the authenticator tag. The standard also specifies a mode
of operation that supplies the MAC only, known as GMAC.

The GCM mode makes use of two functions: GHASH, which is a keyed hash
function, and GCTR, which is essentially the CTR mode with the counters deter-
mined by a simple increment by one operation.

GHASHH(X) takes a input the hash key H and a bit string X such that
len(X) = 128m bits for some positive integer m and produces a 128-bit MAC value.
The function may be specified as follows (Figure 12.10a).

1. Let X1, X2, c , Xm - 1, Xm denote the unique sequence of blocks such that
X = X1 }X2 } g }Xm - 1 }Xm.

2. Let Y0 be a block of 128 zeros, designated as 0128.

3. For i = 1, c , m, let Yi = (Yi- 1 ⊕ Xi) # H, where # designates multiplication
in GF(2128).

4. Return Ym.

The GHASHH(X) function can be expressed as

 (X1
Hm) ⊕ (X2

Hm - 1) ⊕ g ⊕ (Xm - 1
H2) ⊕ (Xm

H)

This formulation has desirable performance implications. If the same hash key
is to be used to authenticate multiple messages, then the values H2, H3, c can
be precalculated one time for use with each message to be authenticated. Then, the
blocks of the data to be authenticated (X1, X2, c , Xm) can be processed in paral-
lel, because the computations are independent of one another.

GCTRK(ICB, X) takes a input a secret key K and a bit string X arbitrary
length and returns a ciphertext Y of bit length (X). The function may be specified as
follows (Figure 12.10b).

1. If X is the empty string, then return the empty string as Y.

2. Let n = <(len(X)/128)= . That is, n is the smallest integer greater than or equal
to (X)/128.

M12_STAL7484_08_GE_C12.indd 402 20/04/22 13:55

12.7 / AuthentiCAted enCRyPtion: CCM And gCM 403

3. Let X1, X2, c , Xn - 1, Xn
* denote the unique sequence of bit strings such that

X = X1 }X2 } g }Xn - 1 }Xn
*;

X1, X2, c , Xn - 1 are complete 128@bit blocks.

4. Let CB1 = ICB.

5. For, i = 2 to n let CBi = inc32(CBi- 1), where the inc32(S) function increments
the rightmost 32 bits of S by 1 mod 232, and the remaining bits are unchanged.

6. For i = 1 to n - 1, do Yi = Xi ⊕ E(K, CBi).

7. Let Y n
* = Xn

* ⊕ MSBlen(Xn
*)(E(K, CBn)).

8. Let Y = Y1 }Y2 } c }Yn - 1 }Y n
*

9. Return Y.

Note that the counter values can be quickly generated and that the encryption
operations can be performed in parallel.

Figure 12.10 GCM Authentication and Encryption Functions

(a) GHASHH(X1 || X2 || . . . || Xm) 5 Ym

X1

X1

X2

ICB

Xm

Y1

Y1

Y2 Ym

H

E

inc

H H

K

X2

CB2

Y2

EK

Xn–1

CBn-1

Yn-1

E

inc

K

Xn

CBn

Yn

E

MSB

K

*

(b) GCTRK(ICB, X1 || X2 || . . . || Xn) 5 Y1 || Y2 || . . . ||Yn
**

*

M12_STAL7484_08_GE_C12.indd 403 20/04/22 13:55

404 ChAPteR 12 / MessAge AuthentiCAtion Codes

We can now define the overall authenticated encryption function (Figure 12.11).
The input consists of a secret key K, an initialization vector IV, a plaintext P, and
additional authenticated data A. The notation [x]s means the s-bit binary represen-
tation of the nonnegative integer x. The steps are as follows.

1. Let H = E(K, 0128).

2. Define a block, J0, as

If len(IV) = 96, then let J0 = IV }031 }1.

If len (IV) ≠ 96, then let s = 128<len(IV)/128= - len(IV), and let

J0 = GHASHH(IV }0s + 64 } [len(IV)]64).

3. Let C = GCTRK(inc32(J0), P).

4. Let u = 128<len(C)/128= - len(C) and let v = 128<len(A)/128= - len(A).

5. Define a block, S, as

S = GHASHH(A }0v }C }0u } [len(A)]64 } [len(C)]64)

6. Let T = MSBt(GCTRK(J0, S)), where t is the supported tag length.

7. Return (C, T).

Figure 12.11 Galois Counter—Message Authentication Code (GCM)

IV

J0

J0

Plaintext

K

K

GCTR

encode

incr

GCTR

Tag

GHASH

A 5 Ass. Data C 5 Ciphertext [len(A)]64 [len(C)]640v 0u

MSBt

EK

H

0

M12_STAL7484_08_GE_C12.indd 404 20/04/22 13:55

12.8 / key WRAPPing 405

In step 1, the hash key is generated by encrypting a block of all zeros with
the secret key K. In step 2, the pre-counter block (J0) is generated from the IV.
In particular, when the length of the IV is 96 bits, then the padding string 031 }1 is
appended to the IV to form the pre-counter block. Otherwise, the IV is padded
with the minimum number of 0 bits, possibly none, so that the length of the result-
ing string is a multiple of 128 bits (the block size); this string in turn is appended
with 64 additional 0 bits, followed by the 64-bit representation of the length of
the IV, and the GHASH function is applied to the resulting string to form the
pre-counter block.

Thus, GCM is based on the CTR mode of operation and adds a MAC that
authenticates both the message and additional data that requires only authen-
tication. The function that computes the hash uses only multiplication in a
Galois field. This choice was made because the operation of multiplication is
easy to perform within a Galois field and is easily implemented in hardware
[MCGR03].

[MCGR04] examines the available block cipher modes of operation and shows
that a CTR-based authenticated encryption approach is the most efficient mode
of operation for high-speed packet networks. The paper further demonstrates that
GCM meets a high level of security requirements.

 12.8 KEY WRAPPING

Background

The most recent block cipher mode of operation defined by NIST is the Key Wrap
(KW) mode of operation (SP 800-38F), which uses AES or triple DEA as the un-
derlying encryption algorithm. The AES version is also documented in RFC 3394.

The purpose of key wrapping is to securely exchange a symmetric key to be
shared by two parties, using a symmetric key already shared by those parties. The
latter key is called a key encryption key (KEK).

Two questions need to be addressed at this point. First, why do we need to use
a symmetric key already known to two parties to encrypt a new symmetric key?
Such a requirement is found in a number of protocols described in this book, such
as the key management portion of IEEE 802.11 and IPsec. This question is explored
in Chapter 14.

The second question is, why do we need a new mode? The intent of the new
mode is to operate on keys whose length is greater than the block size of the encryp-
tion algorithm. For example, AES uses a block size of 128 bits but can use a key size
of 128, 192, or 256 bits. In the latter two cases, encryption of the key involves mul-
tiple blocks. We consider the value of key data to be greater than the value of other
data, because the key will be used multiple times, and compromise of the key com-
promises all of the data encrypted with the key. Therefore, NIST desired a robust
encryption mode. KW is robust in the sense that each bit of output can be expected

M12_STAL7484_08_GE_C12.indd 405 20/04/22 13:55

406 ChAPteR 12 / MessAge AuthentiCAtion Codes

to depend in a nontrivial fashion on each bit of input. This is not the case for any
of the other modes of operation that we have described. For example, in all of the
modes so far described, the last block of plaintext only influences the last block of
ciphertext. Similarly, the first block of ciphertext is derived only from the first block
of plaintext.

To achieve this robust operation, KW achieves a considerably lower through-
put than the other modes, but the tradeoff may be appropriate for some key
 management applications. Also, KW is only used for small amounts of plaintext
compared to, say, the encryption of a message or a file.

The Key Wrapping Algorithm

The key wrapping algorithm operates on blocks of 64 bits. The input to the algo-
rithm consists of a 64-bit constant, discussed subsequently, and a plaintext key that is
divided into blocks of 64 bits. We use the following notation:

MSB64(W) most significant 64 bits of W

LSB64(W) least significant 64 bits of W

W temporary value; output of encryption function

bitwise exclusive-OR

} concatenation

K key encryption key

n number of 64-bit key data blocks

s number of stages in the wrapping process; s = 6n

Pi ith plaintext key data block; 1 … i … n

Ci ith ciphertext data block; 0 … i … n

A(t) 64-bit integrity check register after encryption stage t; 1 … t … s

A(0) initial integrity check value (ICV); in hexadecimal:
A6A6A6A6A6A6A6A6

R(t, i) 64-bit register i after encryption stage t; 1 … t … s; 1 … i … n

We now describe the key wrapping algorithm:

Inputs: Plaintext, n 64-bit values (P1, P2, c , Pn)

Key encryption key, K

Outputs: Ciphertext, (n + 1) 64-bit values (C0, C1, c , Cn)

1. Initialize variables.

A(0) = A6A6A6A6A6A6A6A6

 for i = 1 to n

 R(0, i) = Pi

⊕

M12_STAL7484_08_GE_C12.indd 406 20/04/22 13:55

12.8 / key WRAPPing 407

2. Calculate intermediate values.

for t = 1 to s

W = E(K, [A(t−1) } R(t−1, 1)])
A(t) = t ⊕ MSB64(W)

R(t, n) = LSB64(W)

for i = 1 to n−1

 R(t, i) = R(t−1, i+1)

3. Output results.

C0 = A(s)

for i = 1 to n

Ci = R(s, i)

Note that the ciphertext is one block longer than the plaintext key, to accom-
modate the ICV. Upon unwrapping (decryption), both the 64-bit ICV and the
 plaintext key are recovered. If the recovered ICV differs from the input value of
hexadecimal A6A6A6A6A6A6A6A6, then an error or alteration has been detected
and the plaintext key is rejected. Thus, the key wrap algorithm provides not only
confidentiality but also data integrity.

Figure 12.12 illustrated the key wrapping algorithm for encrypting a 256-bit
key. Each box represents one encryption stage (one value of t). Note that the A
output is fed as input to the next stage (t + 1), whereas the R output skips forward
n stages (t + n), which in this example is n = 4. This arrangement further increases
the avalanche effect and the mixing of bits. To achieve this skipping of stages, a slid-
ing buffer is used, so that the R output from stage t is shifted in the buffer one posi-
tion for each stage, until it becomes the input for stage t + n. This might be clearer
if we expand the inner for loop for a 256-bit key (n = 4). Then the assignments are
as follows:

 R(t, 1) = R(t - 1, 2)

 R(t, 2) = R(t - 1, 3)

 R(t, 3) = R(t - 1, 4)

For example, consider that at stage 5, the R output has a value of R(5, 4) = x.
At stage 6, we execute R(6, 3) = R(5, 4) = x. At stage 7, we execute R(7, 2) = R
(6, 3) = x. At stage 8, we execute R(8, 1) = R(7, 2) = x. So, at stage 9, the input
value of R(t - 1, 1) is R(8, 1) = x.

Figure 12.13 depicts the operation of stage t for a 256-bit key. The dashed feed-
back lines indicate the assignment of new values to the stage variables.

Key Unwrapping

The key unwrapping algorithm can be defined as follows:

Inputs: Ciphertext, (n + 1) 64-bit values (C0, C1, c , Cn)
Key encryption key, K

Outputs: Plaintext, n 64-bit values (P1, P2, c , Pn), ICV

M12_STAL7484_08_GE_C12.indd 407 20/04/22 13:55

408 ChAPteR 12 / MessAge AuthentiCAtion Codes

1. Initialize variables.

A(s) = C0

for i = 1 to n

R(s, i) = Ci

2. Calculate intermediate values.

for t = s to 1

W = D(K, [(A(t) ⊕ t) } R(t, n)])

Figure 12.12 Key Wrapping Operation for 256-Bit Key

t 5 1 t 5 2 t 5 3 t 5 4

t 5 5 t 5 6 t 5 7 t 5 8

t 5 9 t 5 10 t 5 11 t 5 12

t 5 13 t 5 14 t 5 15 t 5 16

t 5 17 t 5 18 t 5 19 t 5 20

t 5 21

C0 5 A(24)

A(0) A(1)

C1 5 R(24, 1)
5 R(21, 4)

P1 5
R(0, 1)

P2 5
R(0, 2)

P3 5
R(0, 3)

P4 5
R(0, 4) A(2) A(3)

C2 5 R(24, 2)
5 R(22, 4)

C3 5 R(24, 3)
5 R(23, 4)

C4 5 R(24, 4)

t 522 t 5 23 t 5 24

M12_STAL7484_08_GE_C12.indd 408 20/04/22 13:55

12.8 / key WRAPPing 409

A(t–1) = MSB64(W)

R(t–1, 1) = LSB64(W)

for i = 2 to n

 R(t–1, i) = R(t, i–1)

3. Output results.

if A(0) = A6A6A6A6A6A6A6A6

then

 for i = 1 to n

 P(i) = R(0, i)

else

 return error

Note that the decryption function is used in the unwrapping algorithm.
We now demonstrate that the unwrap function is the inverse of the wrap func-

tion, that is, that the unwrap function recovers the plaintext key and the ICV. First,
note that because the index variable t is counted down from s to 1 for unwrapping,
stage t of the unwrap algorithm corresponds to stage t of the wrap algorithm. The
input variables to stage t of the wrap algorithm are indexed at t - 1 and the output
variables of stage t of the unwrap algorithm are indexed at t - 1. Thus, to demon-
strate that the two algorithms are inverses of each other, we need only demonstrate
that the output variables of stage t of the unwrap algorithm are equal to the input
variables to stage t of the wrap algorithm.

This demonstration is in two parts. First we demonstrate that the calculation
of A and R variables prior to the for loop are inverses. To do this, let us simplify the
notation a bit. Define the 128-bit value T to be the 64-bit value t followed by 64
zeros. Then, the first three lines of step 2 of the wrap algorithm can be written as the
following single line:

 A(t) }R(t, n) = T ⊕ E(K, [A(t - 1) }R(t - 1, 1)]) (12.1)

The first three lines of step 2 of the unwrap algorithm can be written as:

 A(t - 1) }R(t - 1, 1) = D(K, ([A(t) }R(t, n)] ⊕ T)) (12.2)

Figure 12.13 Key Wrapping Operation for 256-Bit Key: Stage t

A(t 2 1)

Encrypt

MSB

K

t LSB

R(t 2 1, 1) R(t 2 1, 2)

R(t 2 1, 3)

R(t 2 1, 4)

M12_STAL7484_08_GE_C12.indd 409 20/04/22 13:55

410 ChAPteR 12 / MessAge AuthentiCAtion Codes

Expanding the right-hand side by substituting from Equation 12.1,

 D(K, ([A(t) }R(t, n)] ⊕ T)) = D(K, ([T ⊕ E(K, [A(t - 1) }R(t - 1, 1)])] ⊕ T))

Now we recognize that T ⊕ T = 0 and that for any x, x ⊕ 0 = x. So,

 D(K, ([A(t) }R(t, n)] ⊕ T)) = D(K, ([E(K, [A(t - 1) }R(t - 1, 1)]))

 = A(t - 1) }R(t - 1, 1)

The second part of the demonstration is to show that the for loops in step 2
of the wrap and unwrap algorithms are inverses. For stage k of the wrap algorithm,
the variables R(t - 1, 1) through R(t - 1, n) are input. R(t - 1, 1) is used in the
encryption calculation. R(t - 1, 2) through R(t - 1, n) are mapped, respectively
into R(t, 1) through R(t, n - 1), and R(t, n) is output from the encryption function.
For stage k of the unwrap algorithm, the variables R(t, 1) through R(t, n) are input.
R(t, n) is input to the decryption function to produce R(t - 1, 1). The remaining
variables R(t - 1, 2) through R(t - 1, n) are generated by the for loop, such that
they are mapped, respectively, from R(t, 1) through R(t, n - 1).

Thus, we have shown that the output variables of stage k of the unwrap algo-
rithm equal the input variables of stage k of the wrap algorithm.

 12.9 PSEUDORANDOM NUMBER GENERATION USING HASH
FUNCTIONS AND MACs

The essential elements of any pseudorandom number generator (PRNG) are a seed
value and a deterministic algorithm for generating a stream of pseudorandom bits.
If the algorithm is used as a pseudorandom function (PRF) to produce a required
value, such as a session key, then the seed should only be known to the user of the
PRF. If the algorithm is used to produce a stream encryption function, then the seed
has the role of a secret key that must be known to the sender and the receiver.

We noted in Chapters 8 and 10 that, because an encryption algorithm produces
an apparently random output, it can serve as the basis of a (PRNG). Similarly, a hash
function or MAC produces apparently random output and can be used to build a
PRNG. Both ISO standard 18031 (Random Bit Generation) and NIST SP 800-90
(Recommendation for Random Number Generation Using Deterministic Random
Bit Generators) define an approach for random number generation using a crypto-
graphic hash function. SP 800-90 also defines a random number generator based on
HMAC. We look at these two approaches in turn.

PRNG Based on Hash Function

Figure 12.14a shows the basic strategy for a hash-based PRNG specified in SP 800-
90 and ISO 18031. The algorithm takes as input:

 V = seed

seedlen = bit length of V Ú K + 64, where k is a desired security level
 expressed in bits

 n = desired number of output bits

M12_STAL7484_08_GE_C12.indd 410 20/04/22 13:55

12.9 / PseudoRAndoM nuMBeR geneRAtion using hAsh FunCtions And MACs 411

The algorithm uses the cryptographic hash function H with an hash value out-
put of outlen bits. The basic operation of the algorithm is

m = <n/outlen=
data = V

W = the null string

For i = 1 to m

wi = H (data)

W = } wi
data = (data + 1) mod 2seedlen

Return leftmost n bits of W

Thus, the pseudorandom bit stream is w1 }w2 } c }wm with the final block
truncated if required.

The SP 800-90 specification also provides for periodically updating V to
enhance security. The specification also indicates that there are no known or sus-
pected weaknesses in the hash-based approach for a strong cryptographic hash algo-
rithm, such as SHA-2.

Figure 12.14 Basic Structure of Hash-Based PRNGs (SP 800-90)

(a) PRNG using cryptographic hash function

(b) PRNG using HMAC

V

K

Cryptographic
 hash function

Pseudorandom
output

11

V

HMAC

Pseudorandom
output

M12_STAL7484_08_GE_C12.indd 411 20/04/22 13:55

412 ChAPteR 12 / MessAge AuthentiCAtion Codes

PRNG Based on MAC Function

Although there are no known or suspected weaknesses in the use of a cryptographic
hash function for a PRNG in the manner of Figure 12.14a, a higher degree of confi-
dence can be achieved by using a MAC. Almost invariably, HMAC is used for con-
structing a MAC-based PRNG. This is because HMAC is a widely used standard-
ized MAC function and is implemented in many protocols and applications. As SP
800-90 points out, the disadvantage of this approach compared to the hash-based
approach is that the execution time is twice as long, because HMAC involves two
executions of the underlying hash function for each output block. The advantage of
the HMAC approach is that it provides a greater degree of confidence in its security,
compared to a pure hash-based approach.

For the MAC-based approach, there are two inputs: a key K and a seed V. In
effect, the combination of K and V form the overall seed for the PRNG specified
in SP 800-90. Figure 12.14b shows the basic structure of the PRNG mechanism, and
the leftmost column of Figure 12.15 shows the logic. Note that the key remains the
same for each block of output, and the data input for each block is equal to the tag
output of the previous block. The SP 800-90 specification also provides for periodi-
cally updating K and V to enhance security.

It is instructive to compare the SP 800-90 recommendation with the use of
HMAC for a PRNG in some applications, and this is shown in Figure 12.15. For the
IEEE 802.11i wireless LAN security standard (Chapter 20), the data input consists
of the seed concatenated with a counter. The counter is incremented for each block
wi of output. This approach would seem to offer enhanced security compared to the
SP 800-90 approach. Consider that for SP 800-90, the data input for output block wi
is just the output wi- 1 of the previous execution of HMAC. Thus, an opponent who
is able to observe the pseudorandom output knows both the input and output of
HMAC. Even so, with the assumption that HMAC is secure, knowledge of the input
and output should not be sufficient to recover K and hence not sufficient to predict
future pseudorandom bits.

The approach taken by the Transport Layer Security protocol (Chapter 19)
and the Wireless Transport Layer Security Protocol (Chapter 20) involves invoking
HMAC twice for each block of output wi. As with IEEE 802.11, this is done in such
a way that the output does not yield direct information about the input. The double
use of HMAC doubles the execution burden and would seem to be security overkill.

Figure 12.15 Three PRNGs Based on HMAC

m = <n/outlen=
w0 = V
W = the null string
For i = 1 to m

wi = MAC(K, wi- 1)
W = W }wi

Return leftmost n bits of W

m = <n/outlen=
W = the null string
For i = 1 to m

wi = MAC(K, (V } i))
W = W }wi

Return leftmost n bits of W

m = <n/outlen=
A(0) = V
W = the null string
For i = 1 to m
A(i) = MAC(K, A(i - 1))
wi = MAC(K, (A(i) }V)
W = W }wi

Return leftmost n bits of W

NIST SP 800-90 IEEE 802.11i TLS/WTLS

M12_STAL7484_08_GE_C12.indd 412 20/04/22 13:55

12.10 / key teRMs, RevieW questions, And PRoBleMs 413

 12.10 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

authenticator
cryptographic checksum

cryptographic hash
function

key wrapping

message authentication
message authentication code

(MAC)

Review Questions

 12.1 What types of attacks are addressed by message authentication?
 12.2 In general, a MAC function is a many-to-one function. Justify this statement. State

one point of difference between a MAC function and encryption.
 12.3 What are some approaches to producing message authentication?
 12.4 When sending a message to B, A can use A’s private key and B’s public key to achieve

both secrecy and authentication. Which key is used to achieve which goal?
 12.5 What is a message authentication code?
 12.6 What is the difference between a message authentication code and a one-way hash

function?
 12.7 In what ways can a hash value be secured so as to provide message authentication?
 12.8 Is it necessary to recover the secret key in order to attack a MAC algorithm?
 12.9 What is the advantage and disadvantage of the HMAC approach used for PRNG,

compared to a pure hash-based approach?

Problems

 12.1 An error-detection function can be used to compute a frame check sequence (FCS)
or checksum (Figure 12.2). The FCS can provide error-detection capability to detect
whether any bit of the transmitted message is altered. We could append the FCS to
each message before encryption (Figure 12.2a), which is referred to as internal error
control. Alternatively, we could append the FCS to each message after encryption
(Figure 12.2b), which is referred to as external error control. With internal error con-
trol, authentication is provided because an opponent would have difficulty gener-
ating ciphertext that would have valid error control bits when it is decrypted. Will the
FCS still provide authentication to the message if external error control is used?

 12.2 The data authentication algorithm (DAA) based on DES with an initialization
 vector IV of zero (Figure 12.7) has been discovered to have security weaknesses. It is
being replaced by newer and stronger algorithms. Show that the DAA cannot be
trusted.

 12.3 Section 12.6 mentions that a refined CMAC using two additional b-bit keys, K1 and K2,
is derived from the k-bit encryption key. Describe how you would generate K1 and K2.

M12_STAL7484_08_GE_C12.indd 413 20/04/22 13:55

414 ChAPteR 12 / MessAge AuthentiCAtion Codes

 12.4 In this problem, we demonstrate that for CMAC, a variant that XORs the second
key after applying the final encryption doesn’t work. Let us consider this for the
case of the message being an integer multiple of the block size. Then, the variant
can be expressed as VMAC(K, M) = CBC(K, M) ⊕ K1. Now suppose an adver-
sary is able to ask for the MACs of three messages: the message 0 = 0n, where n is
the cipher block size; the message 1 = 1n; and the message 1 } 0. As a result of these
three queries, the adversary gets T0 = CBC(K, 0) ⊕ K1; T1 = CBC(K, 1) ⊕ K1 and
T2 = CBC(K, [CBC(K, 1)]) ⊕ K1. Show that the adversary can compute the correct
MAC for the (unqueried) message 0 } (T0 ⊕ T1).

 12.5 In the discussion of subkey generation in CMAC, it states that the block cipher is ap-
plied to the block that consists entirely of 0 bits. The first subkey is derived from the
resulting string by a left shift of one bit and, conditionally, by XORing a constant that
depends on the block size. The second subkey is derived in the same manner from the
first subkey.
a. What constants are needed for block sizes of 192 bits and 256 bits?
b. Explain how the left shift and XOR accomplishes the desired result.

 12.6 Section 12.7 listed four general approaches to provide confidentiality and message
encryption: H S E, A S E, E S A, and E + A.
a. Which of the above performs decryption before verification?
b. Which of the above performs verification before decryption?

 12.7 Show that the GHASH function calculates

 (X1
Hm) ⊕ (X2

Hm - 1) ⊕ g ⊕ (Xm - 1
H2) ⊕ (Xm

H)

 12.8 Draw a figure similar to Figure 12.11 that shows authenticated decryption.
 12.9 Alice wants to send a single bit of information (a yes or a no) to Bob by means of a

word of length 2. Alice and Bob have four possible keys available to perform mes-
sage authentication. The following matrix shows the 2-bit word sent for each message
under each key:

Message

Key 0 1

1 00 11

2 01 10

3 10 01

4 11 00

a. The preceding matrix is in a useful form for Alice. Construct a matrix with the
same information that would be more useful for Bob.

b. What is the probability that someone else can successfully impersonate Alice?
c. What is the probability that someone can replace an intercepted message with

another message successfully?
 12.10 Draw figures similar to Figures 12.12 and 12.13 for the unwrap algorithm.

M12_STAL7484_08_GE_C12.indd 414 20/04/22 13:55

12.10 / key teRMs, RevieW questions, And PRoBleMs 415

 12.11 Consider the following key wrapping algorithm:

 1. Initialize variables.
A = A6A6A6A6A6A6A6A6
for i = 1 to n
 R(i) = Pi

 2. Calculate intermediate values.
for j = 0 to 5
 for i = 1 to n
 B = E(K, [A } R(i)])
 t = (n × j) + i
 A = t ⊕ MSB64(B)
 R(i) = LSB64(B)

 3. Output results.
C0 = A
for i = 1 to n
 Ci = R(i)

 a. Compare this algorithm, functionally, with the algorithm specified in SP 800-38F
and described in Section 12.8.

 b. Write the corresponding unwrap algorithm.

M12_STAL7484_08_GE_C12.indd 415 20/04/22 13:55

416

13.1 Digital Signatures

Properties
Attacks and Forgeries
Digital Signature Requirements
Direct Digital Signature

13.2 ElGamal Digital Signature Scheme

13.3 Schnorr Digital Signature Scheme

13.4 NIST Digital Signature Algorithm

The DSA Approach
The Digital Signature Algorithm

13.5 Elliptic Curve Digital Signature Algorithm

Global Domain Parameters
Key Generation
Digital Signature Generation and Authentication

13.6 RSA-PSS Digital Signature Algorithm

Mask Generation Function
The Signing Operation
Signature Verification

13.7 Key Terms, Review Questions, and Problems

CHAPTER

Digital Signatures
13

M13_STAL7484_08_GE_C13.indd 416 20/04/22 14:03

 Digital SignatureS 417

The most important development from the work on public-key cryptography is the
digital signature. The digital signature provides a set of security capabilities that would
be difficult to implement in any other way.

Figure 13.1 is a generic model of the process of constructing and using digital
signatures. All of the digital signature schemes discussed in this chapter have this
 structure. Suppose that Bob wants to send a message to Alice. Although it is not
important that the message be kept secret, he wants Alice to be certain that the mes-
sage is indeed from him. For this purpose, Bob uses a secure hash function, such as
SHA-512, to generate a hash value for the message. That hash value, together with
Bob’s private key serves as input to a digital signature generation algorithm, which
produces a short block that functions as a digital signature. Bob sends the message
with the signature attached. When Alice receives the message plus signature, she (1)
calculates a hash value for the message; (2) provides the hash value and Bob’s public
key as inputs to a digital signature verification algorithm. If the algorithm returns
the result that the signature is valid, Alice is assured that the message must have
been signed by Bob. No one else has Bob’s private key and therefore no one else
could have created a signature that could be verified for this message with Bob’s
public key. In addition, it is impossible to alter the message without access to Bob’s
private key, so the message is authenticated both in terms of source and in terms of
data integrity.

We begin this chapter with an overview of digital signatures. We then present the
ElGamal and Schnorr digital signature schemes, understanding of which makes it eas-
ier to understand the NIST Digital Signature Algorithm (DSA). The chapter then cov-
ers the two other important standardized digital signature schemes: the Elliptic Curve
Digital Signature Algorithm (ECDSA) and the RSA Probabilistic Signature Scheme
(RSA-PSS).

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

◆◆ Present an overview of the digital signature process.

◆◆ Understand the ElGamal digital signature scheme.

◆◆ Understand the Schnorr digital signature scheme.

◆◆ Understand the NIST digital signature scheme.

◆◆ Compare and contrast the NIST digital signature scheme with the
ElGamal and Schnorr digital signature schemes.

◆◆ Understand the elliptic curve digital signature scheme.

◆◆ Understand the RSA-PSS digital signature scheme.

M13_STAL7484_08_GE_C13.indd 417 20/04/22 14:03

418 CHaPter 13 / Digital SignatureS

 13.1 DIGITAL SIGNATURES

Properties

Message authentication protects two parties who exchange messages from any third
party. However, it does not protect the two parties against each other. Several forms
of dispute between the two parties are possible.

Figure 13.1 Simplified Depiction of Essential Elements of Digital Signature Process

Bob Alice

Bob’s
signature

for M

Message M

Cryptographic
hash

function

Digital
signature

generation
algorithm

Digital
signature

verification
algorithm

h

Message M

Cryptographic
hash

function

h

S

Message M S Return
signature

valid or not valid

Bob’s
private

key

(a) Bob signs a message (b) Alice verifies the signature

Bob’s
public
key

M13_STAL7484_08_GE_C13.indd 418 20/04/22 14:03

13.1 / Digital SignatureS 419

For example, suppose that John sends an authenticated message to Mary,
using one of the schemes of Figure 12.1. Consider the following disputes that
could arise.

1. Mary may forge a different message and claim that it came from John. Mary
would simply have to create a message and append an authentication code
using the key that John and Mary share.

2. John can deny sending the message. Because it is possible for Mary to forge
a message, there is no way to prove that John did in fact send the message.

Both scenarios are of legitimate concern. Here is an example of the first
scenario: An electronic funds transfer takes place, and the receiver increases the
amount of funds transferred and claims that the larger amount had arrived from
the sender. An example of the second scenario is that an electronic mail message
contains instructions to a stockbroker for a transaction that subsequently turns out
badly. The sender pretends that the message was never sent.

In situations where there is not complete trust between sender and receiver,
something more than authentication is needed. The most attractive solution to
this problem is the digital signature. The digital signature must have the following
properties:

◆■ It must verify the author and the date and time of the signature.

◆■ It must authenticate the contents at the time of the signature.

◆■ It must be verifiable by third parties, to resolve disputes.

Thus, the digital signature function includes the authentication function.

Attacks and Forgeries

[GOLD88] lists the following types of attacks, in order of increasing severity. Here
A denotes the user whose signature method is being attacked, and C denotes the
attacker.

◆■ Key-only attack: C only knows A’s public key.

◆■ Known message attack: C is given access to a set of messages and their
signatures.

◆■ Generic chosen message attack: C chooses a list of messages before attempt-
ing to breaks A’s signature scheme, independent of A’s public key. C then
 obtains from A valid signatures for the chosen messages. The attack is generic,
because it does not depend on A’s public key; the same attack is used against
everyone.

◆■ Directed chosen message attack: Similar to the generic attack, except that the
list of messages to be signed is chosen after C knows A’s public key but before
any signatures are seen.

◆■ Adaptive chosen message attack: C is allowed to use A as an “oracle.” This
means that C may request from A signatures of messages that depend on
 previously obtained message-signature pairs.

M13_STAL7484_08_GE_C13.indd 419 20/04/22 14:03

420 CHaPter 13 / Digital SignatureS

[GOLD88] then defines success at breaking a signature scheme as an outcome
in which C can do any of the following with a non-negligible probability:

◆■ Total break: C determines A’s private key.

◆■ Universal forgery: C finds an efficient signing algorithm that provides an
equivalent way of constructing signatures on arbitrary messages.

◆■ Selective forgery: C forges a signature for a particular message chosen by C.

◆■ Existential forgery: C forges a signature for at least one message. C has
no control over the message. Consequently, this forgery may only be a minor
nuisance to A.

Digital Signature Requirements

On the basis of the properties and attacks just discussed, we can formulate the
 following requirements for a digital signature.

◆■ The signature must be a bit pattern that depends on the message being signed.

◆■ The signature must use some information only known to the sender to prevent
both forgery and denial.

◆■ It must be relatively easy to produce the digital signature.

◆■ It must be relatively easy to recognize and verify the digital signature.

◆■ It must be computationally infeasible to forge a digital signature, either by
constructing a new message for an existing digital signature or by constructing
a fraudulent digital signature for a given message.

◆■ It must be practical to retain a copy of the digital signature in storage.

A secure hash function, embedded in a scheme such as that of Figure 13.1, provides
a basis for satisfying these requirements. However, care must be taken in the design
of the details of the scheme.

Direct Digital Signature

The term direct digital signature refers to a digital signature scheme that involves
only the communicating parties (source, destination). It is assumed that the destina-
tion knows the public key of the source.

Confidentiality can be provided by encrypting the entire message plus
 signature with a shared secret key (symmetric encryption). Note that it is important
to perform the signature function first and then an outer confidentiality function.
In case of dispute, some third party must view the message and its signature. If the
signature is calculated on an encrypted message, then the third party also needs
a ccess to the decryption key to read the original message. However, if the signature
is the inner operation, then the recipient can store the plaintext message and its
 signature for later use in dispute resolution.

The validity of the scheme just described depends on the security of the send-
er’s private key. If a sender later wishes to deny sending a particular message, the
sender can claim that the private key was lost or stolen and that someone else forged
his or her signature. Administrative controls relating to the security of private keys

M13_STAL7484_08_GE_C13.indd 420 20/04/22 14:03

13.2 / elgamal Digital Signature SCHeme 421

can be employed to thwart or at least weaken this ploy, but the threat is still there,
at least to some degree. One example is to require every signed message to include
a timestamp (date and time) and to require prompt reporting of compromised keys
to a central authority.

Another threat is that a private key might actually be stolen from X at time T.
The opponent can then send a message signed with X’s signature and stamped with
a time before or equal to T.

The universally accepted technique for dealing with these threats is the use
of a digital certificate and certificate authorities. We defer a discussion of this topic
until Chapter 14, and focus in this chapter on digital signature algorithms.

 13.2 ELGAMAL DIGITAL SIGNATURE SCHEME

Before examining the NIST Digital Signature Algorithm, it will be helpful to under-
stand the ElGamal and Schnorr signature schemes. Recall from Chapter 10, that the
ElGamal encryption scheme is designed to enable encryption by a user’s public key
with decryption by the user’s private key. The ElGamal signature scheme involves
the use of the private key for digital signature generation and the public key for
digital signature verification [ELGA84, ELGA85].

Before proceeding, we need a result from number theory. Recall from Chapter 2
that for a prime number q, if a is a primitive root of q, then

 a, a2, c , aq - 1

are distinct (mod q). It can be shown that, if a is a primitive root of q, then

1. For any integer m, am K 1 (mod q) if and only if m K 0 (mod q - 1).

2. For any integers, i, j, ai K aj (mod q) if and only if i K j (mod q - 1).

As with ElGamal encryption, the global elements of ElGamal digital signature
are a prime number q and a, which is a primitive root of q. User A generates
a private/public key pair as follows.

1. Generate a random integer XA, such that 1 6 XA 6 q - 1.

2. Compute YA = aXA mod q.

3. A’s private key is XA; A’s pubic key is {q, a, YA}.

To sign a message M, user A first computes the hash m = H(M), such that m is
an integer in the range 0 … m … q - 1. A then forms a digital signature as follows.

1. Choose a random integer K such that 1 … K … q - 1 and gcd(K, q - 1) = 1.
That is, K is relatively prime to q - 1.

2. Compute S1 = aK mod q. Note that this is the same as the computation of C1
for ElGamal encryption.

3. Compute K-1 mod (q - 1). That is, compute the inverse of K modulo q - 1.

4. Compute S2 = K-1(m - XAS1) mod (q - 1).

5. The signature consists of the pair (S1, S2).

M13_STAL7484_08_GE_C13.indd 421 20/04/22 14:04

422 CHaPter 13 / Digital SignatureS

Any user B can verify the signature as follows.

1. Compute V1 = am mod q.

2. Compute V2 = (YA)S1(S1)
S2 mod q.

The signature is valid if V1 = V2. Let us demonstrate that this is so. Assume
that the equality is true. Then we have

am mod q = (YA)S1(S1)
S2 mod q assume V1 = V2

am mod q = aXAS1aKS2 mod q substituting for YA and S1

am - XAS1 mod q = aKS2 mod q rearranging terms
m - XAS1 K KS2 mod (q - 1) property of primitive roots
m - XAS1 K KK-1 (m - XAS1) mod (q - 1) substituting for S2

For example, let us start with the prime field GF(19); that is, q = 19. It has
primitive roots {2, 3, 10, 13, 14, 15}, as shown in Table 2.7. We choose a = 10.

Alice generates a key pair as follows:

1. Alice chooses XA = 16.

2. Then YA = aXA mod q = a16 mod 19 = 4.

3. Alice’s private key is 16; Alice’s pubic key is {q, a, YA} = {19, 10, 4}.

Suppose Alice wants to sign a message with hash value m = 14.

1. Alice chooses K = 5, which is relatively prime to q - 1 = 18.

2. S1 = aK mod q = 105 mod 19 = 3 (see Table 2.7).

3. K-1 mod (q - 1) = 5-1 mod 18 = 11.

4. S2 = K-1 (m - XAS1) mod (q - 1) = 11 (14 - (16)(3)) mod 18 = -374
mod 18 = 4.

Bob can verify the signature as follows.

1. V1 = am mod q = 1014 mod 19 = 16.

2. V2 = (YA)S1(S1)
S2 mod q = (43)(34) mod 19 = 5184 mod 19 = 16.

Thus, the signature is valid because V1 = V2.

 13.3 SCHNORR DIGITAL SIGNATURE SCHEME

As with the ElGamal digital signature scheme, the Schnorr signature scheme is
based on discrete logarithms [SCHN89, SCHN91]. The Schnorr scheme minimizes
the message-dependent amount of computation required to generate a signature.
The main work for signature generation does not depend on the message and can
be done during the idle time of the processor. The message-dependent part of the
signature generation requires multiplying a 2n-bit integer with an n-bit integer.

The scheme is based on using a prime modulus p, with p - 1 having a prime
factor q of appropriate size; that is, p - 1 K 0 (mod q). Typically, we use p ≈ 21024
and q ≈ 2160. Thus, p is a 1024-bit number, and q is a 160-bit number, which is also
the length of the SHA-1 hash value.

M13_STAL7484_08_GE_C13.indd 422 20/04/22 14:04

13.4 / niSt Digital Signature algoritHm 423

The first part of this scheme is the generation of a private/public key pair,
which consists of the following steps.

1. Choose primes p and q, such that q is a prime factor of p - 1.

2. Choose an integer a, such that aq K 1 mod p. The values a, p, and q comprise a
global public key that can be common to a group of users.

3. Choose a random integer s with 0 6 s 6 q. This is the user’s private key.

4. Calculate v = a-s mod p. This is the user’s public key.

A user with private key s and public key v generates a signature as follows.

1. Choose a random integer r with 0 6 r 6 q and compute x = ar mod p. This
computation is a preprocessing stage independent of the message M to be
signed.

2. Concatenate the message with x and hash the result to compute the value e:

e = H(M }x)

3. Compute y = (r + se) mod q. The signature consists of the pair (e, y).

Any other user can verify the signature as follows.

1. Compute x′ = ayve mod p.

2. Verify that e = H (M }x′).

To see that the verification works, observe that

 x′ K ayve K aya-se K ay - se K ar K x (mod p)

Hence, H (M }x′) = H (M }x).

 13.4 NIST DIGITAL SIGNATURE ALGORITHM

The National Institute of Standards and Technology (NIST) has published Federal
Information Processing Standard FIPS 186, known as the Digital Signature
Algorithm (DSA). The DSA makes use of the Secure Hash Algorithm (SHA)
 described in Chapter 12. The DSA was originally proposed in 1991 and revised
in 1993 in response to public feedback concerning the security of the scheme.
There was a further minor revision in 1996. In 2000, an expanded version of the
standard was issued as FIPS 186-2, subsequently updated to FIPS 186-3 in 2009,
and FIPS 186-4 in 2013. This latest version also incorporates digital signature al-
gorithms based on RSA and on elliptic curve cryptography. In this section, we
discuss DSA.

The DSA Approach

The DSA uses an algorithm that is designed to provide only the digital signature func-
tion. Unlike RSA, it cannot be used for encryption or key exchange. Nevertheless, it
is a public-key technique.

M13_STAL7484_08_GE_C13.indd 423 20/04/22 14:04

424 CHaPter 13 / Digital SignatureS

Figure 13.2 contrasts the DSA approach for generating digital signatures to
that used with RSA. In the RSA approach, the message to be signed is input to a
hash function that produces a secure hash code of fixed length. This hash code is
then encrypted using the sender’s private key to form the signature. Both the mes-
sage and the signature are then transmitted. The recipient takes the message and
produces a hash code. The recipient also decrypts the signature using the sender’s
public key. If the calculated hash code matches the decrypted signature, the signa-
ture is accepted as valid. Because only the sender knows the private key, only the
sender could have produced a valid signature.

The DSA approach also makes use of a hash function. The hash code is pro-
vided as input to a signature function along with a random number k generated for
this particular signature. The signature function also depends on the sender’s private
key (PRa) and a set of parameters known to a group of communicating principals.
We can consider this set to constitute a global public key (PUG).1 The result is a
signature consisting of two components, labeled s and r.

At the receiving end, the hash code of the incoming message is generated. The
hash code and the signature are inputs to a verification function. The verification
function also depends on the global public key as well as the sender’s public key
(PUa), which is paired with the sender’s private key. The output of the verification
function is a value that is equal to the signature component r if the signature is valid.
The signature function is such that only the sender, with knowledge of the private
key, could have produced the valid signature.

We turn now to the details of the algorithm.

1It is also possible to allow these additional parameters to vary with each user so that they are a part of
a user’s public key. In practice, it is more likely that a global public key will be used that is separate from
each user’s public key.

Figure 13.2 Two Approaches to Digital Signatures

(a) RSA approach

M

H

| | M

Sig Ver

H

Compare

k

s
r

(b) DSA approach

M

H

| | M

E D

H

ComparePRa

PRaPUG PUaPUG

PUa

E(PRa, H(M)]

M13_STAL7484_08_GE_C13.indd 424 20/04/22 14:04

13.4 / niSt Digital Signature algoritHm 425

The Digital Signature Algorithm

DSA is based on the difficulty of computing discrete logarithms (see Chapter 2)
and is based on schemes originally presented by ElGamal [ELGA85] and Schnorr
[SCHN91].

Figure 13.3 summarizes the algorithm. There are three parameters that are
public and can be common to a group of users. An N-bit prime number q is chosen.
Next, a prime number p is selected with a length between 512 and 1024 bits such that
q divides (p - 1). Finally, g is chosen to be of the form h(p - 1)/q mod p, where h is an
integer between 1 and (p - 1) with the restriction that g must be greater than 1.2
Thus, the global public-key components of DSA are the same as in the Schnorr sig-
nature scheme.

With these parameters in hand, each user selects a private key and generates
a public key. The private key x must be a number from 1 to (q - 1) and should
be chosen randomly or pseudorandomly. The public key is calculated from the
 private key as y = gx mod p. The calculation of y given x is relatively straight-
forward. However, given the public key y, it is believed to be computationally
 infeasible to determine x, which is the discrete logarithm of y to the base g, mod p
(see Chapter 2).

2In number-theoretic terms, g is of order q mod p; see Chapter 2.

Global Public-Key Components

p prime number where 2L - 1 6 p 6 2L
for 512 … L … 1024 and L a multiple of 64;
i.e., bit length L between 512 and 1024 bits
in increments of 64 bits

q prime divisor of (p - 1), where 2N - 1 6 q 6 2N
i.e., bit length of N bits

g = h(p - 1)/q is an exponent mod p,
where h is any integer with 1 6 h 6 (p - 1)
such that h(p - 1)/q mod p 7 1

User’s Private Key

x random or pseudorandom integer with 0 6 x 6 q

User’s Public Key

y = g x mod p

User’s Per-Message Secret Number

k random or pseudorandom integer with 0 6 k 6 q

Signing

r = (gk mod p) mod q

s = [k-1 (H(M) + xr)] mod q

Signature = (r, s)

Verifying

w = (s′)-1 mod q

u1 = [H(M′)w] mod q

u2 = (r′)w mod q

v = [(gu1yu2) mod p] mod q

TEST: v = r′

M = message to be signed

H(M) = hash of M using SHA-1

M′, r′, s′ = received versions of M, r, s

Figure 13.3 The Digital Signature Algorithm (DSA)

M13_STAL7484_08_GE_C13.indd 425 20/04/22 14:04

426 CHaPter 13 / Digital SignatureS

The signature of a message M consists of the pair of numbers r and s, which are
functions of the public key components (p, q, g), the user’s private key (x), the hash
code of the message H(M), and an additional integer k that should be generated
randomly or pseudorandomly and be unique for each signing.

Let M, r′, and s′ be the received versions of M, r, and s, respectively. Verification
is performed using the formulas shown in Figure 13.3. The receiver generates a
quantity v that is a function of the public key components, the sender’s public key,
the hash code of the incoming message, and the received versions of r and s. If this
quantity matches the r component of the signature, then the signature is validated.

Figure 13.4 depicts the functions of signing and verifying.

Figure 13.4 DSA Signing and Verifying

(a) Signing

(b) Verifying

M

s
r

Mœ

rœ

H

r 5 (gk mod p) mod q

s 5 [k 1 (H(M) 1 xr)] mod q

w 5 (sœ) 1 mod q

k

k

q

x

k

x

M

H(M)

H
H(Mœ)

q p g

q

v

q y g

u1 5 [H(Mœ)w)] mod q
u2 5 (rœ)w mod q
v 5 [(gu1yu2) mod p] mod q

signature
verification

rœ 5 v?

rœ

rœ

w

sœ

2

2

M13_STAL7484_08_GE_C13.indd 426 20/04/22 14:04

13.5 / elliPtiC Curve Digital Signature algoritHm 427

The structure of the algorithm, as revealed in Figure 13.4, is quite interesting.
Note that the test at the end is on the value r, which does not depend on the message
at all. Instead, r is a function of k and the three global public-key components. The
multiplicative inverse of k (mod q) is passed to a function that also has as inputs the
message hash code and the user’s private key. The structure of this function is such
that the receiver can recover r using the incoming message and signature, the public
key of the user, and the global public key. It is certainly not obvious from Figure 13.3
or Figure 13.4 that such a scheme would work. A proof is provided in FIPS 186-4.

Given the difficulty of taking discrete logarithms, it is infeasible for an
 opponent to recover k from r or to recover x from s.

Another point worth noting is that the only computationally demanding task
in signature generation is the exponential calculation gk mod p. Because this value
does not depend on the message to be signed, it can be computed ahead of time.
Indeed, a user could precalculate a number of values of r to be used to sign docu-
ments as needed. The only other somewhat demanding task is the determination of
a multiplicative inverse, k-1. Again, a number of these values can be precalculated.

 13.5 ELLIPTIC CURVE DIGITAL SIGNATURE ALGORITHM

As was mentioned, the 2009 version of FIPS 186 includes a new digital signature
technique based on elliptic curve cryptography, known as the Elliptic Curve Digital
Signature Algorithm (ECDSA). ECDSA is enjoying increasing acceptance due
to the efficiency advantage of elliptic curve cryptography, which yields security com-
parable to that of other schemes with a smaller key bit length.

First we give a brief overview of the process involved in ECDSA. In essence,
four elements are involved.

1. All those participating in the digital signature scheme use the same global domain
parameters, which define an elliptic curve and a point of origin on the curve.

2. A signer must first generate a public, private key pair. For the private key, the
signer selects a random or pseudorandom number. Using that random number
and the point of origin, the signer computes another point on the elliptic curve.
This is the signer’s public key.

3. A hash value is generated for the message to be signed. Using the private
key, the domain parameters, and the hash value, a signature is generated. The
signature consists of two integers, r and s.

4. To verify the signature, the verifier uses as input the signer’s public key, the
domain parameters, and the integer s. The output is a value v that is compared
to r. The signature is verified if v = r.

Let us examine each of these four elements in turn.

M13_STAL7484_08_GE_C13.indd 427 20/04/22 14:04

428 CHaPter 13 / Digital SignatureS

Global Domain Parameters

Recall from Chapter 10 that two families of elliptic curves are used in cryptographic
applications: prime curves over Zp and binary curves over GF(2m). For ECDSA,
prime curves are used. The global domain parameters for ECDSA are the following:

q a prime number

a, b integers that specify the elliptic curve equation defined over Zq with the
 equation y2 = x3 + ax + b

G a base point represented by G = (xg, yg) on the elliptic curve equation

n order of point G; that is, n is the smallest positive integer such that
nG = O. This is also the number of points on the curve.

Key Generation

Each signer must generate a pair of keys, one private and one public. The signer,
let us call him Bob, generates the two keys using the following steps:

1. Select a random integer d, d ∈ [1, n - 1]

2. Compute Q = dG. This is a point in Eq(a, b)

3. Bob’s public key is Q and private key is d.

Digital Signature Generation and Authentication

With the public domain parameters and a private key in hand, Bob generates
a digital signature of 320 bits for message m using the following steps:

1. Select a random or pseudorandom integer k, k ∈ [1, n - 1]

2. Compute point P = (x, y) = kG and r = x mod n. If r = 0 then go to step 1

3. Compute t = k-1 mod n

4. Compute e = H(m), where H is one of the SHA-2 or SHA-3 hash functions

5. Compute s = k-1(e + dr) mod n. If s = O then go to step 1

6. The signature of message m is the pair (r, s).

Alice knows the public domain parameters and Bob’s public key. Alice is
 presented with Bob’s message and digital signature and verifies the signature using
the following steps:

1. Verify that r and s are integers in the range 1 through n - 1

2. Using SHA, compute the 160-bit hash value e = H(m)

3. Compute w = s-1 mod n

4. Compute u1 = ew and u2 = rw

5. Compute the point X = (x1, y1) = u1G + u2Q

6. If X = O, reject the signature else compute v = x1 mod n

7. Accept Bob’s signature if and only if v = r

M13_STAL7484_08_GE_C13.indd 428 20/04/22 14:04

13.5 / elliPtiC Curve Digital Signature algoritHm 429

Figure 13.5 illustrates the signature authentication process. We can verify that
this process is valid as follows. If the message received by Alice is in fact signed by
Bob, then

 s = k-1(e + dr) mod n

Then

 k = s-1(e + dr) mod n

 k = (s-1e + s-1dr) mod n

 k = (we + wdr) mod n

 k = (u1 + u2d) mod n

Now consider that

 u1G + u2Q = u1G + u2dG = (u1 + u2d)G = kG

Figure 13.5 ECDSA Signing and Verifying

Q

Yes

No

No

No

No

No

Yes

Yes

Yes

Yes

r, s

Accept
signature

Reject
signature

Bob Alice

Generate k
(x, y) 5 kG
r 5 x mod n

Generate private
key d. Public
key Q 5 dG

q, a, b, G, n
are shared
global variables

Signature of m
is r, s

v 5 x1 mod n

e 5 H(m)
s 5 k 1 (e 1 dr) mod n

e 5 H(m)
w 5 s 1 mod n
u1 5 ew, u2 5 rw
X 5 (x1, x2) 5 u1G 1 u2Q

r 5 0?

s 5 0?

X 5 O?

v 5 r?

r, s integers
in range
 [1, n21]?

2

2

M13_STAL7484_08_GE_C13.indd 429 20/04/22 14:04

430 CHaPter 13 / Digital SignatureS

In step 6 of the verification process, we have v = x1 mod n, where point
X = (x1, y1) = u1G + u2Q. Thus we see that v = r since r = x mod n and x is the x
coordinate of the point kG and we have already seen that u1G + u2Q = kG.

 13.6 RSA-PSS DIGITAL SIGNATURE ALGORITHM

In addition to the NIST Digital Signature Algorithm and ECDSA, the 2009 version
of FIPS 186 also includes several techniques based on RSA, all of which were devel-
oped by RSA Laboratories and are in wide use. A worked-out example, using RSA,
is available at this book’s Web site.

In this section, we discuss the RSA Probabilistic Signature Scheme (RSA-PSS),
which is the latest of the RSA schemes and the one that RSA Laboratories recom-
mends as the most secure of the RSA schemes.

Because the RSA-based schemes are widely deployed in many applications,
including financial applications, there has been great interest in demonstrating that
such schemes are secure. The three main RSA signature schemes differ mainly in
the padding format the signature generation operation employs to embed the hash
value into a message representative, and in how the signature verification opera-
tion determines that the hash value and the message representative are consistent.
For all of the schemes developed prior to PSS, it has not been possible to develop
a mathematical proof that the signature scheme is as secure as the underlying RSA
encryption/decryption primitive [KALI01]. The PSS approach was first proposed by
Bellare and Rogaway [BELL96c, BELL98]. This approach, unlike the other RSA-
based schemes, introduces a randomization process that enables the security of the
method to be shown to be closely related to the security of the RSA algorithm itself.
This makes RSA-PSS more desirable as the choice for RSA-based digital signature
applications.

Mask Generation Function

Before explaining the RSA-PSS operation, we need to describe the mask generation
function (MGF) used as a building block. MGF(X, maskLen) is a pseudorandom
function that has as input parameters a bit string X of any length and the desired
length L in octets of the output. MGFs are typically based on a secure crypto-
graphic hash function such as SHA-1. An MGF based on a hash function is intended
to be a cryptographically secure way of generating a message digest, or hash, of
variable length based on an underlying cryptographic hash function that produces
a fixed-length output.

The MGF function used in the current specification for RSA-PSS is MGF1,
with the following parameters:

Options Hash hash function with output hLen octets

Input X octet string to be masked

maskLen length in octets of the mask

Output mask an octet string of length maskLen

M13_STAL7484_08_GE_C13.indd 430 20/04/22 14:04

13.6 / rSa-PSS Digital Signature algoritHm 431

MGF1 is defined as follows:

1. Initialize variables.

T = empty string

k = <maskLen/hLen= - 1
2. Calculate intermediate values.

for counter = 0 to k

Represent counter as a 32-bit string C

T = T } Hash(X } C)
3. Output results.

mask = the leading maskLen octets of T

In essence, MGF1 does the following. If the length of the desired output is
equal to the length of the hash value (maskLen = hLen), then the output is the
hash of the input value X concatenated with a 32-bit counter value of 0. If maskLen
is greater than hLen, the MGF1 keeps iterating by hashing X concatenated with the
counter and appending that to the current string T. So that the output is

 Hash (X }0) }Hash(X }1) } c }Hash(X }k)

This is repeated until the length of T is greater than or equal to maskLen, at which
point the output is the first maskLen octets of T.

The Signing Operation

Message encoding The first stage in generating an RSA-PSS signature of a message
M is to generate from M a fixed-length message digest, called an encoded message
(EM). Figure 13.6 illustrates this process. We define the following parameters and
functions:

Options Hash hash function with output hLen octets. The current
preferred alternative is SHA-1, which produces a 20-octet
hash value.

MGF mask generation function. The current specification calls
for MGF1.

sLen length in octets of a pseudorandom number referred to
as the salt. Typically sLen = hLen, which for the current
version is 20 octets.

Input M message to be encoded for signing.

emBits This value is one less than the length in bits of the RSA
modulus n.

Output EM encoded message. This is the message digest that will be
encrypted to form the digital signature.

Parameters emLen length of EM in octets = <emBits/8= .

padding1 hexadecimal string 00 00 00 00 00 00 00 00; that is, a string
of 64 zero bits.

M13_STAL7484_08_GE_C13.indd 431 20/04/22 14:04

432 CHaPter 13 / Digital SignatureS

padding2 hexadecimal string of 00 octets with a length
(emLen - sLen - hLen - 2) octets, followed by the
hexadecimal octet with value 01.

salt a pseudorandom number.

bc the hexadecimal value BC.

The encoding process consists of the following steps.

1. Generate the hash value of M: mHash = Hash(M)

2. Generate a pseudorandom octet string salt and form block M′ = padding1 }
mHash } salt

3. Generate the hash value of M′: H = Hash(M′)
4. Form data block DB = padding2 } salt

5. Calculate the MGF value of H: dbMask = MGF(H, emLen - hLen - 1)

6. Calculate maskedDB = DB ⊕ dbMsk

7. Set the leftmost 8emLen - emBits bits of the leftmost octet in maskedDB to 0

8. EM = maskedDB }H }0xbc

We make several comments about the complex nature of this message
 digest algorithm. All of the RSA-based standardized digital signature schemes
 involve appending one or more constants (e.g., padding1 and padding2) in the
process of forming the message digest. The objective is to make it more difficult
for an adversary to find another message that maps to the same message digest

Figure 13.6 RSA-PSS Encoding

Hash

Hash

MGF

M

mHash saltpadding1

bcmaskedDB

saltpadding2

Mœ 5

DB 5

EM 5 H

M13_STAL7484_08_GE_C13.indd 432 20/04/22 14:04

13.6 / rSa-PSS Digital Signature algoritHm 433

as a given message or to find two messages that map to the same message digest.
RSA-PSS also incorporates a pseudorandom number, namely the salt. Because the
salt changes with every use, signing the same message twice using the same private
key will yield two different signatures. This is an added measure of security.

ForMing the signature We now show how the signature is formed by a signer with
private key {d, n} and public key {e, n} (see Figure 9.5). Treat the octet string EM as
an unsigned, nonnegative binary integer m. The signature s is formed by encrypting
m as follows:

 s = md mod n

Let k be the length in octets of the RSA modulus n. For example if the key size
for RSA is 2048 bits, then k = 2048/8 = 256. Then convert the signature value s into
the octet string S of length k octets.

Signature Verification

decryption For signature verification, treat the signature S as an unsigned,
 nonnegative binary integer s. The message digest m is recovered by decrypting s as
follows:

 m = se mod n

Then, convert the message representative m to an encoded message EM of
length emLen = <(modBits - 1)/8= octets, where modBits is the length in bits of
the RSA modulus n.

eM VeriFication EM verification can be described as follows:

Options Hash hash function with output hLen octets.

MGF mask generation function.

sLen length in octets of the salt.

Input M message to be verified.

EM the octet string representing the decrypted signature,
with length emLen = <emBits/8= .

emBits This value is one less than the length in bits of the RSA
modulus n.

Parameters padding1 hexadecimal string 00 00 00 00 00 00 00 00; that is,
a string of 64 zero bits.

padding2 hexadecimal string of 00 octets with a length
(emLen - sLen - hLen - 2) octets, followed by the
 hexadecimal octet with value 01.

1. Generate the hash value of M: mHash = Hash(M)

2. If emLen 6 hLen + sLen + 2, output “inconsistent” and stop

3. If the rightmost octet of EM does not have hexadecimal value BC, output
“ inconsistent” and stop

M13_STAL7484_08_GE_C13.indd 433 20/04/22 14:04

434 CHaPter 13 / Digital SignatureS

4. Let maskedDB be the leftmost emLen - hLen - 1 octets of EM, and let H be
the next hLen octets

5. If the leftmost 8emLen - emBits bits of the leftmost octet in maskedDB are
not all equal to zero, output “inconsistent” and stop

6. Calculate dbMask = MGF (H, emLen - hLen - 1)

7. Calculate DB = maskedDB ⊕ dbMsk

8. Set the leftmost 8emLen - emBits bits of the leftmost octet in DB to zero

9. If the leftmost (emLen - hLen - sLen - 1) octets of DB are not equal to
padding2, output “inconsistent” and stop

10. Let salt be the last sLen octets of DB

11. Form block M′ = padding1 }mHash } salt

12. Generate the hash value of M′: H′ = Hash(M′)
13. If H = H′, output “consistent.” Otherwise, output “inconsistent”

Figure 13.7 illustrates the process. The shaded boxes labeled H and H′ corre-
spond, respectively, to the value contained in the decrypted signature and the value
generated from the message M associated with the signature. The remaining three
shaded areas contain values generated from the decrypted signature and compared
to known constants. We can now see more clearly the different roles played by
the constants and the pseudorandom value salt, all of which are embedded in the

Figure 13.7 RSA-PSS EM Verification

Hash

Hash

MGF

M

mHash saltpadding1

maskedDB

dbMask

salt

 5 Mœ

DB 5

EM 5 H

Hœ

M13_STAL7484_08_GE_C13.indd 434 20/04/22 14:04

13.7 / Key termS, review QueStionS, anD ProblemS 435

EM generated by the signer. The constants are known to the verifier, so that the
 computed constants can be compared to the known constants as an additional check
that the signature is valid (in addition to comparing H and H′). The salt results in a
different signature every time a given message is signed with the same private key.
The verifier does not know the value of the salt and does not attempt a comparison.
Thus, the salt plays a similar role to the pseudorandom variable k in the NIST DSA
and in ECDSA. In both of those schemes, k is a pseudorandom number generated by
the signer, resulting in different signatures from multiple signings of the same mes-
sage with the same private key. A verifier does not and need not know the value of k.

 13.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

digital signature
Digital Signature Algorithm

(DSA)
direct digital signature

ElGamal digital signature
Elliptic Curve Digital

Signature Algorithm
(ECDSA)

timestamp

Review Questions
 13.1 List two disputes that can arise in the context of message authentication.
 13.2 What are the properties a digital signature should have?
 13.3 What requirements should a digital signature scheme satisfy?
 13.4 What is the difference between direct and arbitrated digital signature?
 13.5 In what order should the signature function and the confidentiality function be

 applied to a message, and why?
 13.6 What are some threats associated with a direct digital signature scheme?

Problems
 13.1 Dr. Watson patiently waited until Sherlock Holmes finished. “Some interesting prob-

lem to solve, Holmes?” he asked when Holmes finally logged out.
“Oh, not exactly. I merely checked my email and then made a couple of network

experiments instead of my usual chemical ones. I have only one client now and I have
already solved his problem. If I remember correctly, you once mentioned cryptology
among your other hobbies, so it may interest you.”

“Well, I am only an amateur cryptologist, Holmes. But of course I am interested
in the problem. What is it about?”

“My client is Mr. Hosgrave, director of a small but progressive bank. The bank
is fully computerized and of course uses network communications extensively. The
bank already uses RSA to protect its data and to digitally sign documents that are
communicated. Now the bank wants to introduce some changes in its procedures; in
particular, it needs to digitally sign some documents by two signatories.

1. The first signatory prepares the document, forms its signature, and passes the
 document to the second signatory.

M13_STAL7484_08_GE_C13.indd 435 20/04/22 14:04

436 CHaPter 13 / Digital SignatureS

2. The second signatory as a first step must verify that the document was really signed
by the first signatory. She then incorporates her signature into the document’s sig-
nature so that the recipient, as well as any member of the public, may verify that the
document was indeed signed by both signatories. In addition, only the second signa-
tory has to be able to verify the document’s signature after the first step; that is, the
recipient (or any member of the public) should be able to verify only the complete
document with signatures of both signatories, but not the document in its intermedi-
ate form where only one signatory has signed it. Moreover, the bank would like to
make use of its existing modules that support RSA-style digital signatures.”

“Hm, I understand how RSA can be used to digitally sign documents by one signatory,
Holmes. I guess you have solved the problem of Mr. Hosgrave by appropriate gener-
alization of RSA digital signatures.”

“Exactly, Watson,” nodded Sherlock Holmes. “Originally, the RSA digital sig-
nature was formed by encrypting the document by the signatory’s private decryption
key ‘d’, and the signature could be verified by anyone through its decryption using
publicly known encryption key ‘e’. One can verify that the signature S was formed by
the person who knows d, which is supposed to be the only signatory. Now the problem
of Mr. Hosgrave can be solved in the same way by slight generalization of the process,
that is …”

Finish the explanation.
 13.2 DSA specifies that if the signature generation process results in a value of s = 0,

a new value of k should be generated and the signature should be recalculated. Why?
 13.3 What happens if a k value used in creating a DSA signature is compromised?
 13.4 The DSA document includes a recommended algorithm for testing a number for

primality.
1. [Choose w] Let w be a random odd integer. Then (w - 1) is even and can be

expressed in the form 2am with m odd. That is, 2a is the largest power of 2 that
divides (w - 1).

2. [Generate b] Let b be a random integer in the range 1 6 b 6 w.
3. [Exponentiate] Set j = 0 and z = bm mod w.
4. [Done?] If j = 0 and z = 1, or if z = w - 1, then w passes the test and may be

prime; go to step 8.
5. [Terminate?] If j 7 0 and z = 1, then w is not prime; terminate algorithm for this w.
6. [Increase j] Set j = j + 1. If j 6 a, set z = z2 mod w and go to step 4.
7. [Terminate] w is not prime; terminate algorithm for this w.
8. [Test again?] If enough random values of b have been tested, then accept w as

prime and terminate algorithm; otherwise, go to step 2.
a. Explain how the algorithm works.
b. Show that it is equivalent to the Miller–Rabin test described in Chapter 2.

 13.5 With DSA, because the value of k is generated for each signature, even if the same
message is signed twice on different occasions, the signatures will differ. This is not
true of RSA signatures. What is the practical implication of this difference?

 13.6 Consider the problem of creating domain parameters for DSA. Suppose we have al-
ready found primes p and q such that q � (p - 1). Now we need to find g ∈ Zp with g
of order q mod p. Consider the following two algorithms:

Algorithm 1 Algorithm 2

repeat repeat
 select g ∈ Zp select h ∈ Zp

 h d gq mod p g d h(p - 1)/q mod p
until (h = 1 and g ≠ 1) until (g ≠ 1)
return g return g

M13_STAL7484_08_GE_C13.indd 436 20/04/22 14:04

13.7 / Key termS, review QueStionS, anD ProblemS 437

a. What happens in Algorithm 1 if ord(g) = q is chosen?
b. What happens in Algorithm 2 if ord(g) = q is chosen?
c. Suppose p = 64891 and q = 421. How many loop iterations do you expect

 Algorithm 1 to make before it finds a generator?
d. If p is 512 bits and q is 128 bits, would you recommend using Algorithm 1 to find g?

Explain.
e. Suppose p = 64891 and q = 421. What is the probability that Algorithm 2 com-

putes a generator in its very first loop iteration? (If it is helpful, you may use the

fact that a
(d�n)

 c(d) = n when answering this question.)

 13.7 It is tempting to try to develop a variation on Diffie–Hellman that could be used as
a digital signature. Here is one that is simpler than DSA and that does not require a
secret random number in addition to the private key.

Public elements: q prime number

a a 6 q and a is primitive root of q

Private key: X X 6 q

Public key: Y = aX mod q mod q

To sign a message M, compute h = H(M), which is the hash code of the message. We
require that gcd(h, q - 1) = 1. If not, append the hash to the message and calcu-
late a new hash. Continue this process until a hash code is produced that is relatively
prime to (q - 1). Then, calculate Z to satisfy Z K X * h mod (q - 1). The signa-
ture of the message is s = aZ. To verify the signature, a user computes t such that
t * h = 1 mod (q - 1) and verifies Y = s t mod q.
a. Show that this scheme works. That is, show that the verification process produces

an equality if the signature is valid.
b. Show that the scheme is unacceptable by describing a simple technique for forging

a user’s signature on an arbitrary message.
 13.8 Assume a technique for a digital signature scheme using a cryptographic one-way

hash function (H) as follows. To sign an n-bit message, the sender randomly generates
in advance 2n 64-bit cryptographic keys: k1, k2, c , kn k′1, k′2, c , k′n which are kept
private. The sender generates the following two sets of validation parameters, which
are made public.

 v1, v2, c , vn and v′1, v′2, c , v′n

where

 vi = H(ki } 0), v′i = H(k′i } 1)

The user sends the appropriate ki or k′i according to whether Mi is 0 or 1, respectively.
For example, if the first 3 bits of the message are 011, then the first three keys of the
signature are k1, k′2, and k′3.
a. How does the receiver validate the message?
b. Is the technique secure?
c. How many times can the same set of secret keys be safely used for different messages?
d. What, if any, practical problems does this scheme present?

M13_STAL7484_08_GE_C13.indd 437 20/04/22 14:04

14CHAPTER

Lightweight Cryptography and
Post-Quantum Cryptography

14.1 Lightweight Cryptography Concepts

Embedded Systems
Constrained Devices
Categories of Constraints for Lightweight Cryptography
Security Considerations for Various Applications
Design Trade-Offs
Security Requirements

14.2 Lightweight Cryptographic Algorithms

Authenticated Encryption with Additional Data
Hash Functions
Message Authentication Codes
Asymmetric Cryptographic Algorithms

14.3 Post-Quantum Cryptography Concepts

Quantum Computing
Shor’s Factoring Algorithm
Grover’s Algorithm
Cryptoperiods
Quantum Safety

14.4 Post-Quantum Cryptographic Algorithms

Lattice-Based Cryptographic Algorithms
Code-Based Cryptographic Algorithms
Multivariate-Based Cryptographic Algorithms
Hash-Based Digital Signature Algorithms

14.5 Key Terms and Review Questions

438

M14_STAL7484_08_GE_C14.indd 438 30/04/22 1:38 PM

14.1 / Lightweight CryPtograPhy ConCePts 439

LEARNING OBJECTIVES

After studying this chapter, you should be able to

◆◆ Explain the concept of embedded system.

◆◆ Explain the concept of constrained device.

◆◆ Give a presentation on the concept of lightweight cryptography and the types
of cryptographic algorithms for which lightweight cryptography is of interest.

◆◆ Discuss the constraints that affect the design of lightweight cryptographic
algorithms.

◆◆ Discuss the security requirements for lightweight cryptographic algorithms.

◆◆ Present an overview of approaches to lightweight cryptography for au-
thenticated encryption, hash functions, and message authentication codes.

◆◆ Explain the need for post-quantum cryptographic algorithms and which
types of algorithms are affected.

◆◆ Present an overview of mathematical approaches to developing post-quantum
cryptographic algorithms.

Two recent areas of strong interest in the field of cryptography are lightweight
cryptography and post-quantum cryptography. It is likely in the coming years that
a number of new algorithms in both areas will be widely deployed. In essence, light-
weight cryptography is focused on developing algorithms that, while secure, mini-
mize execution time, memory usage, and power consumption. Such algorithms are
suitable for small embedded systems such as those in wide use in the Internet of
Things (IoT). Work on lightweight cryptography is almost exclusively devoted to
symmetric (secret key) algorithms and cryptographic hash functions.

Post-quantum cryptography is an area of study that arises from the con-
cern that quantum computers would be able to break currently used asymmetric
cryptographic algorithms. Shor’s algorithm demonstrated a feasible way to break
 asymmetric algorithms that rely on either integer factorization or discrete loga-
rithms. Thus, work on post-quantum cryptography is devoted to developing new
asymmetric cryptographic algorithms.

14.1 LIGHTWEIGHT CRYPTOGRAPHY CONCEPTS

Lightweight cryptography is a subfield of cryptography concerned with the devel-
opment of cryptographic algorithms for resource-constrained devices. The term
lightweight refers to the characteristic that a cryptographic algorithm makes minimal re-
source demands on the host system. For many existing cryptographic standards, the algo-
rithms incorporate trade-offs between security, performance, and cost requirements that
make them unsuitable for implementation in resource-constrained devices. Lightweight
cryptography includes attempts to develop efficient implementations of conventional
cryptographic algorithms as well as the design of new lightweight algorithms.

M14_STAL7484_08_GE_C14.indd 439 30/04/22 1:38 PM

440 ChaPter 14 / Lightweight CryPtograPhy

Embedded Systems

The term embedded system refers to the use of electronics and software
within a product that has a specific function or set of functions, as opposed to a
general-purpose computer, such as a laptop or desktop system. We can also define
an embedded system as any device that includes a computer chip, but that is not a
general-purpose workstation, desktop, or laptop computer. Hundreds of millions of
computers are sold every year, including laptops, personal computers, workstations,
servers, mainframes, and supercomputers. In contrast, tens of billions of microcon-
trollers are produced each year that are embedded within larger devices. Today,
many, perhaps most, devices that use electric power have an embedded computing
system. It is likely that in the near future, virtually all such devices will have embed-
ded computing systems.

Types of devices with embedded systems are almost too numerous to list.
Examples include cell phones, digital cameras, video cameras, calculators, micro-
wave ovens, home security systems, washing machines, lighting systems, thermostats,
printers, various automotive systems (e.g., transmission control, cruise control, fuel
injection, anti-lock brakes, and suspension systems), tennis rackets, toothbrushes,
and numerous types of sensors and actuators in automated systems.

Microcontrollers A microcontroller is a single chip that contains the processor,
nonvolatile memory for the program (ROM or flash), volatile memory for input and
output (RAM), a clock, and an I/O control unit. It is also called a “computer on a
chip.” A microcontroller chip makes a substantially different use of the logic space
available. The processor portion of the microcontroller has a much lower silicon
area than other microprocessors and much higher energy efficiency.

Billions of microcontroller units are embedded each year in myriad products
from toys to appliances to automobiles. For example, a single vehicle can use 70 or
more microcontrollers. Typically, especially for the smaller, less expensive micro-
controllers, they are used as dedicated processors for specific tasks. For example,
microcontrollers are heavily utilized in automation processes. By providing simple
reactions to input, they can control machinery, turn fans on and off, open and close
valves, and so forth. They are integral parts of modern industrial technology and are
among the most inexpensive ways to produce machinery that can handle extremely
complex functionalities.

Microcontrollers come in a range of physical sizes and processing power.
Processors range from 4-bit to 32-bit architectures. Microcontrollers tend to be
much slower than microprocessors, typically operating in the MHz range rather than
the GHz speeds of microprocessors. Another typical feature of a microcontroller is
that it does not provide for human interaction. The microcontroller is programmed
for a specific task, embedded in its device, and executes as and when required.

Deeply eMbeDDeD systeMs A subset of embedded systems, and a quite numer-
ous subset, is referred to as deeply embedded systems. In general terms, a deeply
embedded system has a processor whose behavior is difficult to observe both by the
programmer and the user. A deeply embedded system uses a microcontroller, is not
programmable once the program logic for the device has been burned into ROM
(read-only memory), and has no interaction with a user.

M14_STAL7484_08_GE_C14.indd 440 30/04/22 1:38 PM

14.1 / Lightweight CryPtograPhy ConCePts 441

Deeply embedded systems are dedicated, single-purpose devices that detect
something in the environment, perform a basic level of processing, and then do
something with the results. Deeply embedded systems often have wireless capabil-
ity and appear in networked configurations, such as networks of sensors deployed
over a large area (e.g., factory, agricultural field). The IoT depends heavily on deeply
embedded systems. Typically, deeply embedded systems have extreme resource con-
straints in terms of memory, processor size, time, and power consumption.

Constrained Devices

A constrained device is a device with limited volatile and nonvolatile memory, limited
processing power, and a low data rate transceiver. Many devices in the IoT, particularly the
smaller, more numerous devices, are resource constrained. As pointed out in [SEGH12],
technology improvements following Moore’s law continue to make embedded devices
cheaper, smaller, and more energy-efficient but not necessarily more powerful. Typical
constrained devices are equipped with 8- or 16-bit microcontrollers that possess very little
RAM and storage capacities. Resource-constrained devices are often equipped with an
IEEE 802.15.4 radio, which enables low-power low-data-rate wireless personal area net-
works (WPANs) with data rates of 20–250 kbps and frame sizes of up to 127 octets.

RFC 7228 (Terminology for Constrained-Node Networks) defines three
classes of constrained devices (Table 14.1):

◆■ Class 0: These are very constrained devices, typically sensors, called motes, or
smart dust. Motes can be implanted or scattered over a region to collect data
and pass it on from one to another to some central collection point. For exam-
ple, a farmer, vineyard owner, or ecologist could equip motes with sensors that
detect temperature, humidity, etc., making each mote a mini weather station.
Scattered throughout a field, vineyard or forest, these motes would allow the
tracking of microclimates. Class 0 devices generally cannot be secured or man-
aged comprehensively in the traditional sense. They will most likely be pre-
configured (and will be reconfigured rarely, if at all) with a very small data set.

◆■ Class 1: These are quite constrained in code space and processing capabili-
ties, such that they cannot easily talk to other Internet nodes employing a
full protocol stack. However, they are capable enough to use a protocol stack
 specifically designed for constrained nodes and participate in meaningful con-
versations without the help of a gateway node.

◆■ Class 2: These are less constrained and fundamentally capable of supporting
most of the same protocol stacks as used on notebooks or servers. However,
they are still very constrained compared to high-end IoT devices. Thus, they
require lightweight and energy-efficient protocols and low transmission traffic.

Table 14.1 Classes of Constrained Devices

Class Data Size (RAM) Code Size (flash, ROM)

Class 0 7 10 kB 7 100 kB

Class 1 & 10 kB & 100 kB

Class 2 & 50 kB & 250 kB

M14_STAL7484_08_GE_C14.indd 441 30/04/22 1:38 PM

442 ChaPter 14 / Lightweight CryPtograPhy

Categories of Constraints for Lightweight Cryptography

It is useful to define the specific constraints that relate to the design of lightweight
cryptographic algorithms. ISO 29192-1 (Lightweight Cryptography—Part 1: General,
June 2012) lists the following as the key constraints:

◆■ Chip area: Chip area is of concern when a cryptographic algorithm is imple-
mented in hardware. Very small devices, such as small sensors, have limited avail-
able chip area to provide for security. Typically, chip area is expressed in gate
equivalents (GEs). The GE value is derived by dividing the area of the integrated
circuit by the area of a two-input NAND gate in the appropriate technology.

◆■ Energy consumption: Many constrained devices operate from a very small
battery or energy derived from an incoming signal. Accordingly, algorithms
may need to be designed to minimize energy consumption. Energy consump-
tion is a function of several factors including the processing time, the chip area
(when implemented in hardware), the operating frequency, and the number of
bits transmitted between entities (in wireless transmissions in particular).

◆■ Program code size and RAM size: Constrained devices typically have very
limited space for program code (e.g., in ROM) and RAM needed for execu-
tion. Thus, cryptographic algorithms need to be compact in terms of code and
make use of minimal RAM during execution.

◆■ Communications transmission rate: Very constrained devices, such as sensors
and RFID tags, may be capable of very limited data rates. Thus, the amount of
security-related data that needs to be transmitted, such as message authentica-
tion codes and key exchange material, needs to be extremely small.

◆■ Execution time: For some devices, such as contactless cards and RFID tags,
execution time is constrained by the amount of time the device is present in
the communication zone.

Security Considerations for Various Applications

Security requirements vary for different types of constrained devices. A useful list of appli-
cation areas is defined by the CRYPTREC1 Lightweight Cryptography Working Group
in [CRYP17]. The following section summarizes key considerations for these devices.

raDio-Frequency iDentiFication (rFiD) RFID is a data collection technology that
uses electronic tags attached to items to allow the items to be identified and tracked by
a remote system. RFID technology is increasingly becoming an enabling technology for
IoT. The main elements of an RFID system are tags and readers. RFID tags are small
programmable devices, with an attached antenna, used for object, animal, and human
tracking. They come in a variety of shapes, sizes, functionalities, and costs. RFID read-
ers acquire and sometimes rewrite information stored on RFID tags that come within
operating range (a few inches up to several feet). Readers are usually connected to a
computer system that records and formats the acquired information for further uses.

1CRYPTREC is the Cryptography Research and Evaluation Committee created by the Japanese
Government to evaluate and recommend cryptographic techniques for government and industrial use.

M14_STAL7484_08_GE_C14.indd 442 30/04/22 1:38 PM

14.1 / Lightweight CryPtograPhy ConCePts 443

RFID devices require cryptographic algorithms that use a very small amount
of logic and memory. Despite this, depending on the use of the RFID tag, a number
of security mechanisms may be required. [SAAR12] lists the following as example
uses and the corresponding security requirements:

◆■ Counterfeit goods: RFID tags can be cloned or modified in order for counter-
feit products or parts to pass as genuine. Authentication can counter this threat.

◆■ Environmental logging: Tampering with information such as temperature logs
can pose a threat to the supply chain management of products such as fresh goods
and medical supplies. Data and device authentication can counter this threat.

◆■ Privacy of Electronic Product Code (EPC): The EPC is designed to be stored
on an RFID tag and it provides a universal identifier for every physical object
anywhere in the world. This raises serious privacy issues if such tags are at-
tached to personal items. Therefore, the tag must also identify the reader as
trusted before divulging traceable information.

◆■ Antitheft: Data may be written to the tag to indicate to an exit portal whether
or not that item has been sold. Persistent memory write and lock operations
must be protected to prevent theft.

◆■ Returns: When a tag is returned to a store or manufacturer, an authenti-
cated reset/write mechanism allows it to be reused. The tags maintain some
amount of persistent memory; read, write, and lock operations to this mem-
ory must be authenticated to prevent tamper and unauthorized modification.
Authenticated reads allow data to be visible only for the tag’s owner.

electronic HoMe appliances anD sMart tV A number of home appliances, in-
cluding air conditioners, ovens, and televisions, are now equipped with embedded
processors that provide a range of services and may be connected to the Internet. To
lower cost, these embedded systems are generally very constrained and are almost
constantly under full load, leaving limited resources for security features. These de-
vices are vulnerable to unauthorized access that may tamper with the control signals
or issue illegal commands that would lead to abnormal operations. These devices will
also usually have updateable software. Thus, authentication methods are important.

sMart agricultural sensors Environmental sensors in agricultural settings can
improve productivity and yield. For example, the sensors can operate with actua-
tors to control the timing and amount of watering and to automatically open and
close greenhouse windows and to schedule pest control. Requirements for sensor
networks include autonomously driven, small size, low power consumption, and low
cost so that large numbers of sensors can be employed. These devices need to be
tamper resistant to prevent sabotage.

MeDical sensors Wireless medical sensors permit health monitoring of patients
outside of a hospital setting, capturing and transmitting a number of medical and
health-related measures. These devices, particularly if that are implanted, are gener-
ally extremely small and use very little power.

inDustrial systeMs In factories, the transportation, processing, and assembly op-
erations have been automated to improve operational efficiency. Several machine

M14_STAL7484_08_GE_C14.indd 443 30/04/22 1:38 PM

444 ChaPter 14 / Lightweight CryPtograPhy

tools and robots can be connected by a network to share manufacturing informa-
tion and to manage the processes based on the data collected by sensors. Through a
network, it is also possible to store information at a single place and to manage the
equipment from a central location.

When connected to the Internet, these systems can be vulnerable both to the
exposure of data and to sabotage. The risk is especially high in the case of critical
public infrastructure, such as power distribution systems, nuclear power plants, water
treatment, and air traffic control. The execution of unauthorized commands or the
failure to execute authorized commands can lead to significant and even catastrophic
damage. Thus, authentication, authorization, and availability mechanism are essential.

autoMobiles Modern automobiles provide both in-vehicle communication as well
as wireless communication with external entities via small embedded systems. These
onboard embedded devices are part of what are termed vehicle communications sys-
tems, which are networks in which vehicles and roadside units are the communicat-
ing nodes, providing each other with information, such as safety warnings and traffic
information. They can be effective in avoiding accidents and traffic congestion.

Among security concerns are authentication to ensure that all the communica-
tions are accurate and can’t be spoofed, and privacy to ensure that the communications
can’t be used to track cars [NHTS14].

RFC 7744 provides additional examples of uses of constrained devices and
their security requirements.

Design Trade-Offs

Figure 14.1 illustrates the trade-offs between security, cost, and performance in
designing lightweight cryptographic algorithms. In general terms, for any given
algorithm, the longer the key and the more rounds, the greater the security.

PerformanceLow Cost

Security

• Longer keys
• More rounds
• Increased silicon area
• Increased power consumption
• Reduced throughput

• Shorter keys
• Fewer rounds
• Reduced silicon area
• Serial architecture
• Reduced power consumption
• Reduced throughput

• Shorter keys
• Fewer rounds
• Increased silicon area
• Parallel architecture
• Increased power consumption
• Increased throughput

Figure 14.1 Lightweight Cryptography Trade-Offs

M14_STAL7484_08_GE_C14.indd 444 30/04/22 1:38 PM

14.1 / Lightweight CryPtograPhy ConCePts 445

This implies a reduced throughput, in terms of the amount of plaintext processed per
time unit, as well as increased power consumption. Similarly, the more complex an algo-
rithm or its implementation, the more security it can provide, but this generally requires
increased silicon area, either for hardware implementation or software implementation.

Thus, achieving greater security can degrade either cost or performance objec-
tives, or both. As between performance and cost, there is also a trade-off in terms
of the architecture, with a serial architecture generally providing lower cost, but a
parallel architecture providing greater performance.

Security Requirements

ISO 29192 defines a minimum security strength for lightweight cryptography of
80 bits. The standard defines the security strength to be the number associated with
the amount of work (i.e., the number of operations) that is required to break a crypto-
graphic algorithm or system. A security strength of n implies that the required work-
load of breaking the cryptosystem is equivalent to 2n executions of the cryptosystem.
Most standards documents recommend a security strength of at least 128 bits.
ISO 29192 indicates that there are some lightweight cryptographic applications that
may allow lower security requirements, that is, they do not have to assume power-
ful adversaries. In cases where 80-bit keys are used, this implies that less data can be
 encrypted safely with a single key before rekeying is required. It is therefore important
that designers of cryptographic security systems make sure that the safe operation
limitations of lightweight cryptographic mechanisms are not exceeded for a single key.

In 2018, NIST announced a project to solicit designs for lightweight crypto-
graphic algorithms [NIST18]. NIST is planning to develop and maintain a portfolio
of lightweight algorithms and modes that are approved for limited use. Each al-
gorithm in the portfolio will be tied to one or more profiles, which consist of algo-
rithm goals and acceptable ranges for metrics. NISTIR 8114 (Report on Lightweight
Cryptography, March 2017) indicates that the initial focus is the development of
authenticated encryption with additional data (AEAD) and secure hash functions.
NIST has issued a preliminary set of two profiles for these algorithms [NIST17],
one for implementations in both hardware and software and one for hardware-only
implementations (Figure 14.2). The details of these profiles are shown in Tables 14.2
and 14.3. Note that the minimum security requirement is 112 bits.

Profile IProfile II

AEAD

AEAD 5 Authenticated Encryption with Associated Data

Hashing HashingAEAD

Lightweight cryptographic
algorithms

Hardware-oriented
designs

Software-oriented
designs

Figure 14.2 Profiles for Lightweight Cryptography

M14_STAL7484_08_GE_C14.indd 445 30/04/22 1:38 PM

446 ChaPter 14 / Lightweight CryPtograPhy

Table 14.2 Profile 1: AEAD and Hashing for Constrained Environments

Functionality Authenticated Encryption with Associated Data
and Hashing

Design goals — Performs significantly better in constrained environments
 (hardware and embedded software platforms) compared to
 current NIST standards.

— Both algorithms should be optimized to be efficient for short
messages (e.g., as short as 8 bytes).

—Message length shall be an integer number of bytes.

Physical characteristics — Compact hardware implementations and embedded software
implementations with low RAM and ROM usage should be
 possible.

Performance characteristics — Performance on ASIC and FPGA should consider various
standard cell libraries, the flexibility to support various
 implementation strategies (low energy, low power, low latency),
with significant improvements over current NIST standards.

— Performance on microcontrollers should consider a wide range
of 8-bit, 16-bit, and 32-bit microcontroller architectures.

— Preprocessing of a key (in terms of computation time and
memory footprint) should be efficient.

Security characteristics AEAD
— A key length of 128 bits shall be supported. A longer key length

may be supported, for example to provide security in the multi-
key setting, or security against quantum computers.

—Nonce lengths of up to 128 bits shall be supported.
—Tag lengths of up to 128 bits shall be supported.
—Plaintext lengths of up to 250-1 bytes shall be supported.
—Associated data of up to 250-1 bytes shall be supported.
—At least 250-1 bytes can be processed securely under a single key.
— Cryptanalytic attacks should require at least 2112 computations

on a classical computer in a single-key setting.
— Lends itself to countermeasures against various side-channel

attacks, including timing attacks, simple and differential power
analysis (SPA/DPA), and simple and differential electromagnetic
analysis (SEMA/DEMA).

Hashing
— Cryptanalytic attacks should require at least 2112 computations

on a classical computer.
— Hash outputs of 256 bits must be supported, and longer hash

values may be supported as well.
—A maximum message length of 250-1 bytes shall be supported.
— Lends itself to countermeasures against various side-channel

attacks, including timing attacks, simple and differential power
analysis (SPA/DPA), and simple and differential electromagnetic
analysis (SEMA/DEMA).

siDe-cHannel attack Both ISO 29192 and NIST highlight the need for
 resistance to side-channel attacks. A side-channel attack is an attack enabled
by leakage of information from a physical cryptosystem [TIRI07]. An attacker
exploits the physical environment to recover some leakage that can be used to
break the cryptographic algorithm. Characteristics that could be exploited in a

M14_STAL7484_08_GE_C14.indd 446 30/04/22 1:38 PM

14.1 / Lightweight CryPtograPhy ConCePts 447

Table 14.3 Profile 2: AEAD for Constrained Hardware Environments

Functionality Authenticated Encryption with Associated Data

Design goals —Performs significantly better compared to current NIST standards.
— Performance for short messages (e.g., as short as 8 bytes) is

important.
—Message length shall be an integer number of bytes.

Physical characteristics —Targeted toward constrained hardware platforms.
—Compact hardware implementations should be possible.

Performance characteristics — Performance on ASIC and FPGA should consider a wide range
of standard cell libraries and vendors.

— Flexibility to support various implementation strategies (low
energy, low power, low latency).

— Preprocessing of a key (in terms of computation time and
memory footprint) should be efficient.

Security characteristics — A key length of 128 bits shall be supported. A longer key length
may be supported, for example, to provide security in the
 multi-key setting, or security against quantum computers.

—Nonce lengths of up to 128 bits shall be supported.
—Tag lengths of up to 128 bits shall be supported.
—Plaintext lengths of up to 250 - 1 bytes shall be supported.
—Associated data of up to 250 - 1 bytes shall be supported.
—At least 250 - 1 bytes can be processed securely under a single key.
— Cryptanalytic attacks should require at least 2112 computations

on a classical computer in a single-key setting.
— Lends itself to countermeasures against various side-channel

attacks, including timing attacks, simple and differential
power analysis (SPA/DPA), and simple and differential
 electromagnetic analysis (SEMA/DEMA).

side-channel attack include running time, power consumption, and electromag-
netic and acoustic emissions.

Figure 14.3 illustrates the basic operation of a side-channel attack. The at-
tacker has access to the side-channel information emanating from the device, and
may have either plaintext or ciphertext or both available. If operation is observable
over an extended period of time, quite effective attacks are possible. The analysis
consists in guessing key bits based on differences in the side-channel information.
For example, the processing required for a 1 bit may be more than required for a
0 bit, and this affects processing time and power consumption. An attack on AES
 typically estimated the leakage caused by a single key byte. The result is that the
entire 128-bit key can be found with 16 * 28 tests [TIRI07].

Constrained devices are often particularly vulnerable to side-channel attacks
because they are located in environments that are not physically secure.

Countermeasures to side-channel attacks seek to eliminate, or at least dimin-
ish, the correlation between bits of the key and side-channel information. Examples
of countermeasures include adding random delay to computations, inserting instruc-
tion cycles that have no effect in such a way that every cryptographic computation
takes the same amount of time, and adding hardware logic that results in random
amounts of power consumption.

M14_STAL7484_08_GE_C14.indd 447 30/04/22 1:38 PM

448 ChaPter 14 / Lightweight CryPtograPhy

14.2 LIGHTWEIGHT CRYPTOGRAPHIC ALGORITHMS

To meet the requirements of lightweight cryptography, a number of new algorithms
have been proposed [BIRY17, CRYP17]. Typical characteristics include:

◆■ Many iterations of simple rounds

◆■ Simple operations like XORs, rotation, 4 * 4 S-boxes, and bit permutations

◆■ Smaller block sizes (e.g., 64 or 80 bits)

◆■ Smaller key sizes (e.g., 96 or 112 bits)

◆■ Simpler key schedules

◆■ Small security margins by design

◆■ Many iterations of simple rounds

◆■ Simplified key schedules that can generate sub-keys on the fly

These design choices yield smaller security margins compared to established
algorithms such as AES and SHA-2.

Authenticated Encryption with Additional Data

arcHitecture strategies For both block and stream ciphers, the implementation
to meet design goals makes use of one of three major hardware architecture options:
parallel (loop unrolled), round-wise (rolled), and serial. Figure 14.4, based on one in
[CRYP17], illustrates these options in general terms. A parallel implementation uses ad-
ditional logic so that several round operations are performed in parallel. Typically, some
form of pipelining is used so that during a given clock cycle, multiple rounds are being
executed. In a round-wise, or rolled implementation, each round is executed separately,
with execution of one round completed before the next round is begun. In both rolled
and unrolled implementations, the architecture stores the full internal state, plus the key
state if any, and then performs one round using a circuit operating on the full state at
once. To achieve minimum chip area, a serial implementation can be used. With serial

Analyzer

Plaintext

Key

Side-channel
information

Ciphertext

Key estimate

Device

Figure 14.3 Side-Channel Attack

M14_STAL7484_08_GE_C14.indd 448 30/04/22 1:38 PM

14.2 / Lightweight CryPtograPhiC aLgorithms 449

implementation, a block is processed in fractions, so that multiple operations are needed
to complete a single round. With serial implementation, only a fraction of the state is
updated at a time. As Figure 14.4 illustrates, moving from unrolled to rolled to serial
implementation reduces the chip area required at the cost of increased execution time.

block cipHers Block ciphers are employed as the basic functional unit in a mode
of operation to achieve encryption and in some authentication modes. Thus, they
are intended for use processing multiple blocks of data. ISO 29192-1 indicates that
the security of most modes of operation for block ciphers (including MAC and hash
constructions) degrades at q2>2n, where n is the block size in bits and q is the num-
ber of blocks encrypted. For example, when n = 64, encryption of 232 blocks is suf-
ficient to expose the block cipher to attack. Therefore, care has to be taken since a
shorter block size implies that less data can be encrypted using a single key.

An example of a lightweight cryptographic block cipher is the Scalable
Encryption Algorithm (SEA) [STAN06]. SEA uses the Feistel cipher structure
(Figure 4.3). SEA can have an arbitrary block size n (as long as n = 6b for some b),
word size, and number of rounds. It is based on the following operations:

◆■ Bitwise exclusive-OR: ⊕
◆■ Application of an S-box: S

◆■ Rotation of the words in a vector of words: R = rotate left: R-1 = rotate right

◆■ Bit rotation inside a word: r

◆■ Addition modulo 2b: Ä

(a) Unrolled implementation

Round Function

Round Function

State

Round Function

Round Function

State

(c) Serial implementation

P

S

(b) Rolled implementation

Round Function

Logic

Registers

Increasing latency

Increasing chip area

Figure 14.4 Basic Implementation Methods for Symmetric Ciphers

M14_STAL7484_08_GE_C14.indd 449 30/04/22 1:38 PM

450 ChaPter 14 / Lightweight CryPtograPhy

The basic parameters are:

n: block size and key size

b: word size

nb =
n
2b

: number of words per Feistel branch

nr: number of rounds

The only constraint is that the block size must be a multiple of six times the
word size (n is a multiple of 6b). Thus, for an 8-bit processor, the block size can be
48, 96, 144, and so on.

Figure 14.5 illustrates the functionality of a single round. For each round, a
block is divided into left and right halves and the round operations are:

Encryption Li + 1 = Ri

Ri + 1 = R1Li2 ⊕ r(S(Ri Ä Ki))

Decryption Li + 1 = Ri

Ri + 1 = R-1(Li ⊕ r(S(Ri Ä Ki)))

Subkey generation KLi + 1 = KRi

KRi + 1 = KLi ⊕ R(r(S(KRi Ä Ci)))

R 5 word rotation to the left R21 5 word rotation to the right
 r 5 bit rotation S 5 S-box substitution

5 bitwise XOR 5 addition mod 2b

(a) Encrypt/decrypt

used only on
encryption

used only on
decryption

(b) Subkey generation

R

Li Ri

KLi KRi

KLi11 KRi11Li11 Ri11

Ki

Ci
Sr

SR r

R–1

Figure 14.5 One Round of Scalable Encryption Algorithm

M14_STAL7484_08_GE_C14.indd 450 30/04/22 1:38 PM

14.2 / Lightweight CryPtograPhiC aLgorithms 451

The substitution box is defined by a 3-bit substitution table. For a 3-bit chunk x:

x 000 001 010 011 100 101 110 111

S1x2 000 101 110 111 100 011 001 010

Data can be processed in blocks of 3 words (24 bits) at a time, providing oppor-
tunity for parallel implementation of the S-box substitution to the eight 3-bit chunks.

The constant Ci is a nb@word vector in which all of the words have the value 0
except the least significant word, which has the value i.

SEA has a number of strengths for use in a constrained device. Only a few oper-
ations need to be implemented. It is easily scalable in terms of both block and key size.
SEA is designed to provide good nonlinearity and diffusion. The authors look at vari-
ous types of attacks to justify the design decisions in the creation of SEA [STAN06].
A number of studies have shown that SEA provides a good balance of compact im-
plementation and performance [KUMA11a, KUMA10 CAKI10, MACE08].

streaM cipHers Stream ciphers are also a promising approach to symmetric en-
cryption for constrained environments. Chapter 8 presents one example of a stream
cipher that is suitable for constrained devices: Grain-128.

Hash Functions

Traditional hash functions may not meet the requirements for implementation on
constrained devices. NISTIR 8114 points out two ways in which lightweight hash
functions differ from more traditional ones:

◆■ Smaller internal state and output sizes: Large output sizes are important for
applications that require collision resistance of hash functions. For applications
that do not require collision resistance, smaller internal states and output sizes
might be used. When a collision-resistant hash function is required, it may be ac-
ceptable that this hash function has the same security against preimage, second-
preimage, and collision attacks. This may reduce the size of the internal state.

◆■ Smaller message size: Conventional hash functions are expected to support
inputs with very large sizes (around 264 bits). In most of the target protocols for
lightweight hash functions, typical input sizes are much smaller (e.g., at most
256 bits). Hash functions that are optimized for short messages may therefore
be more suitable for lightweight applications.

An example of a lightweight cryptographic hash functions is PHOTON
[GUO11]. PHOTON is one of the hash functions specified in ISO 29192. It is also
listed in [CRYP17].

PHOTON uses a sponge structure, similar to that used by SHA-3, as shown in
Figure 14.6. Sponge functions have been well studied in terms of security and can be
designed for compact implementation. The sponge function has three main elements:

◆■ An internal state of t bits consisting of a c-bit capacity and an r-bit rate
1t = c + r2. The rate r is the number of bits processed at each iteration, and
the capacity c is a measure of the complexity of the construction and therefore
its security. The hash size n is equal to c.

M14_STAL7484_08_GE_C14.indd 451 30/04/22 1:38 PM

452 ChaPter 14 / Lightweight CryPtograPhy

r bits

c bits

absorbing

m0 m1 mi21

P P PP
c9 bits

r9 bits

squeezing

r9 bits

c9 bits

z0 z1 zj21

P P

Figure 14.6 Photon Sponge Structure

◆■ A permutation function P that operates on the internal state at each iteration.

◆■ A padding function that appends sufficient bits to the data input.

The sponge structure consists of an absorbing phase that absorbs the message
blocks into an internal state, followed by a squeezing phase that generates the hash
blocks. For the absorbing phase, the data input, or message, is padded by appending
a 1 bit and as many zeros as needed so that the input length is an integral multiple
of r. The input is divided into i r-bit message blocks m0, c, mi-1. The internal
state is initialized to the value S0 = IV = 506t-24 � � n>4 � �r � � r′, where the three
values are each coded in 8 bits and n is the hash size. For each of the i iterations, mi
is XORed with the rate portion of the internal state and then the permutation P is
applied to the t-bit state.

For the squeezing phase, the internal state is divided into r′ and c′ sections,
which may differ in lengths from r and c. Increasing r′ reduces the time spent in
the squeezing phase but might reduce preimage security. This phase produces a se-
quence of i r′-bit hash blocks z0, c, zj-1, with j = <n>r′= - 1. The hash output is
z0 � � c � �zj-1. If the hash output is not a multiple of r′, it is truncated to n bits.

Using the structure of Figure 14.6, five variants of PHOTON are defined, as
shown in Table 14.4. The five versions provide increasing levels of security at the
cost of increasing size and processing time. Note the small size of the internal state,
of between 100 and 288 bits. By contrast, SHA-3 has an internal state of 1600 bits,
and SHA-512 has an internal state of 512 bits.

The internal structure of the permutation function consists of unkeyed AES-
like primitives especially derived for hardware optimization. The advantage of
AES-like primitives is that PHOTON takes advantage of the previous cryptanalysis

M14_STAL7484_08_GE_C14.indd 452 30/04/22 1:38 PM

14.2 / Lightweight CryPtograPhiC aLgorithms 453

performed on AES and on AES-based hash functions. Figure 14.7 illustrates the per-
mutation P structure. The t-bit internal state is organized of a matrix of (d * d) s-bit
cells. Thus, i = (d * d) + s. The permutation consists of 12 rounds of four stages:

◆■ AddConstants: Round constants are XORed to the first column of the matrix.

◆■ SubCells: An S-box is used to map each matrix entry to a new value.

◆■ ShiftRows: The position of the cells in each row is rotated, as illustrated.

◆■ MixColumnsSerial: This function linearly mixes all the columns independently.

Table 14.4 PHOTON Versions

PHOTON-n>r>r′ n (Hash Size) r (Message
Block Size)

r′ (Hash Block Size) t (Internal
State)

PHOTON-80/20/16 80 20 16 100

PHOTON-128/16/16 128 16 16 144

PHOTON-160/36/36 160 36 36 196

PHOTON-224/32/32 224 32 32 256

PHOTON-256/32/32 256 32 32 288

Note: All values are expressed in bits.

d cells

s bits

AddConstants

d
ce

lls

ShiftRows

SubCells
S S S S S S S S
S S S S S S S S
S S S S S S S S
S S S S S S S S
S S S S S S S S
S S S S S S S S
S S S S S S S S
S S S S S S S S

MixColumnsSerial

Figure 14.7 One Round of a PHOTON Permutation

M14_STAL7484_08_GE_C14.indd 453 30/04/22 1:38 PM

454 ChaPter 14 / Lightweight CryPtograPhy

The authors claim that PHOTON is extremely lightweight, very close to the
theoretical optimum and achieves excellent area/throughput trade-offs.

Message Authentication Codes

[CRYP17] points out that there are two approaches to developing a lightweight mes-
sage authentication code (MAC). The first approach is to use an existing MAC with
an underlying lightweight cryptographic algorithm. The most prominent examples
are CMAC and HMAC, both discussed in Chapter 12. Because the overheads of
CMAC and HMAC are not high, a lightweight MAC can be implemented by con-
figuring these algorithms with an underlying lightweight cryptographic algorithm. In
the case of CMAC, this means using a lightweight symmetric encryption algorithm.
In the case of HMAC, this means using a lightweight hash algorithm.

The second approach is to specifically design a new lightweight MAC algo-
rithm. There has been much more work done on lightweight encryption algorithms
and cryptographic hash codes than on lightweight MAC algorithms.

One example of a newly designed MAC is SipHash [AUMA12]. It is the only
MAC listed in [CRYP17] and it has been widely implemented. The principal objec-
tives for the design of SipHash were:

◆■ Optimize the MAC algorithm for short messages. This is in keeping with the
typical exchanges be constrained devices.

◆■ Build a MAC that is secure, efficient, and simple.

Two important characteristics of SipHash are that it does not require key ex-
pansion and that minimal internal state is required. SipHash has a sponge type of
structure consisting of a compression phase, during which the message is absorbed
and compressed, followed by a finalization phase, which provide further mixing of
the bits. SipHash is a family of functions denoted SipHash-c-d, where c is the num-
ber of compression rounds between message blocks and d is the number of finaliza-
tion rounds. The rounds, denoted SipRound, are identical for the two phases. The
variables used in all of the SipHash variants are as follows:

◆■ A 128-bit key k, divided into two 64-bit blocks k0 and k1.

◆■ A b-byte message m, that is divided into w = <1b + 12 >8= 64-bit blocks
m0, c, mw - 1, where mw - 1 includes the last (b mod 8) bytes of m followed by
null bytes ending with a byte encoding the positive integer b mod 256.

◆■ An internal state consisting of four 64-bit words, labeled v0, v1, v1, v2.

◆■ A 64-bit tag. This is the output of the SipHash function, used for message
authentication.

Figure 14.8a illustrates the compression state. To begin, the internal state is
initialized as:

v0 = k0 ⊕ C0 = k0 ⊕ 736f6d6570736575

v1 = k1 ⊕ C1 = k1 ⊕ 646f72616e646f6d

v2 = k0 ⊕ C2 = k0 ⊕ 6c7967656e657261
v3 = k1 ⊕ C3 = k1 ⊕ 7465646279746573

M14_STAL7484_08_GE_C14.indd 454 30/04/22 1:38 PM

14.2 / Lightweight CryPtograPhiC aLgorithms 455

Thus, each half of each key is subject to two different bit flipping operations.
Then each message word is processed as follows:

1. The internal state is modified by v3 = v3 ⊕ m0.

2. This is followed by c iterations of SipRound.

3. This is followed by (w - 1) steps consisting of

v0 = v0 ⊕ mi - 1

v3 = v3 ⊕ mi

c iterations of SipRound

(c) SipHash round

v1

v0

v2

v3

v1

v0

v2

v3

13 17

32 32

16 21

(b) Finalization phase

d rounds

tag

v0

v1

v2

v3

Si
pR

ou
nd

Si
pR

ou
nd

Si
pR

ou
nd

v0

v1

v2

v3

(a) Compression phase
compressing w words (c 3 w rounds)

m1

k0

C0

C1

C2

C3

c rounds c rounds c rounds

m0

k1

k0 k1

Si
pR

ou
nd

Si
pR

ou
nd

Si
pR

ou
nd

Si
pR

ou
nd

m1

m2

m0 mw21

ff

Si
pR

ou
nd

Si
pR

ou
nd

mw22

mw21

Figure 14.8 SipHash Message Authentication Code

M14_STAL7484_08_GE_C14.indd 455 30/04/22 1:38 PM

456 ChaPter 14 / Lightweight CryPtograPhy

4. This is followed by

v0 = v0 ⊕ mw - 1

v3 = v3 ⊕ ff

In the finalization phase (Figure 14.8b), there are d more rounds applied to the
internal state. Then, the 64-bit tag is generated as v0 ⊕ v1 ⊕ v2 ⊕ v3.

The function SipRound transforms the internal state using the simple functions
of addition, exclusive-OR, and bitwise left logical rotate, as shown in Figure 14.8c.

The authors believe that SipHash-2-4 provides strong security and is the rec-
ommended “fast” option. SipHash-4-8 is a conservative choice, providing higher se-
curity at about half the speed.

Asymmetric Cryptographic Algorithms

Neither NISTIR 8114 nor [CRYP17] mention developing lightweight asym-
metric cryptographic algorithms. So far, there has been little interest in this area.
Asymmetric algorithms typically operate on only small blocks of data and are rela-
tively infrequently invoked. Thus, there is less motivation for attempting lightweight
versions. Additionally, most asymmetric algorithms are already relatively compact.

One potential application is to use a lightweight hash function in a digital sig-
nature algorithm.

14.3 POST-QUANTUM CRYPTOGRAPHY CONCEPTS

Post-quantum cryptography is concerned with the development of cryptographic algo-
rithms that are secure against the potential development of quantum computers. Whereas
lightweight cryptography is primarily concerned with the efficiency and compactness of
symmetric encryption algorithms and cryptographic hash functions, post-quantum cryp-
tography is concerned with the security of asymmetric cryptographic algorithms.

We begin with a brief introduction to quantum computing and then look at the
implications for asymmetric cryptography.

Quantum Computing

Quantum computing is based on the representation of information in a form analo-
gous to the behavior of elementary particles in quantum physics. A practical appli-
cation of this representation, in terms of performing calculations, requires producing
a physical system that performs computation making use of quantum physical prin-
ciples. As yet, no such general-purpose computing system has been developed but in
principle it is possible to do so.

Information in a quantum computer is represented as quantum bits, or qubits.
A qubit can be viewed as a quantum analog of a classical bit, one that obeys the laws
of quantum physics. In particular, qubits have two properties that are relevant to
quantum computing:

◆■ Superposition: A qubit does not exist in a single state but in a superposition of
different states. It is only when a measurement is taken that the qubit collapses
into a unique state (binary 1 or 0). Prior to that it is only possible to express a

M14_STAL7484_08_GE_C14.indd 456 30/04/22 1:38 PM

14.3 / Post-Quantum CryPtograPhy ConCePts 457

probability that the qubit is a 1 or a 0. The qubit can be thought of a vector of
unit magnitude in a two-dimensional vector space.

◆■ Entanglement: Qubits can be linked to each other over the course of operations re-
flecting the physical phenomenon known as quantum entanglement. The relevant
implication of this is that state of a multiple-qubit system is not represented by a
linear combination of the state vectors of each qubit but rather a tensor product.

It is well beyond the scope of this brief introduction to explain the implications
of these two properties in terms of computation. In essence, because of entangle-
ment, a set of multiple qubits has a state space that grows exponentially with the
number of qubits. Because of the superposition of states, one operator applied to
the set operates on all the states in parallel. This enables allowing quantum comput-
ers to look through millions of potential solutions at once, rather than sequentially.
Thus, computational power scales exponentially.

The challenges of building a practical quantum computer are immense. The vari-
ous physical realizations of qubits that are being investigated are very fragile, with some
requiring extremely cold temperatures. As reported in [GREE18], quantum computing
systems will need new algorithms, software, interconnects, and a number of other yet-
to-be-invented technologies specifically designed to take advantage of system’s tremen-
dous processing power—as well as allow the computer’s results to be shared or stored.

Shor’s Factoring Algorithm

Public-key cryptography supports three critical cryptographic functionalities:
 public-key encryption, or asymmetric encryption, digital signatures, and key exchange.
The underlying algorithms that are primarily implemented for these functions are
Diffie-Hellman key exchange, the RSA cryptosystem, and elliptic curve cryptosys-
tem. In turn, the security of these algorithms depends on the difficulty of solving cer-
tain number theoretic problems, mainly integer factorization or discrete logarithms.

Shor [SHOR97] has described algorithms designed for a quantum computer (op-
erate on qubits) for prime factorization and discrete logarithms that execute in poly-
nomial time. For example, the number of steps in the factorization algorithm grows
polynomial to the number of digits of the integer to be factored. The implication of
Shor’s work is profound for public-key systems. For example, a white paper from the
European Telecommunications Standards Institute [ETSI14] indicates that to attack a
3072-bit RSA key, a quantum computer must have a few thousand logical qubits. If and
when quantum computers that can handle that number of qubits is practical, such a key
is no longer safe. Further, using Shor’s algorithm, the number of qubits needed scales
linearly with the bit length of the RSA or ECC key. Moving to a larger RSA key pro-
vides security only until a larger quantum computer is built. And, as [ETSI14] points
out, doubling the size of an RSA or ECC key doubles the burden on a quantum com-
puter, but increases the running time for using the keys on a conventional computer
by a factor of 8. This type of response to quantum computing is clearly unsustainable.

Figure 14.9 illustrates the impact for RSA. The individual diamonds indicate the
year when a given RSA key length was demonstrated to be broken. The progress is
due to a combination of increased computing power and more sophisticated cryptan-
alytic algorithms. Based on the trend line, a key size of 1024 bits is secure for the near
future and a key size of 2048 bits is secure for a very long time. However, if practical

M14_STAL7484_08_GE_C14.indd 457 30/04/22 1:38 PM

458 ChaPter 14 / Lightweight CryPtograPhy

quantum computers are introduced, and Shor’s algorithm is used, the trend line could
become exponential, the key length of 2018 could be broken relatively soon.

Grover’s Algorithm

Grover’s algorithm [GROV96] searches an unordered list in O12n2 time, while
conventional algorithms require O1n2 . This is not as dramatic as the speedup
achieved by Shor’s algorithms, but it is a significant improvement for the type of
brute-force approach typically used for symmetric encryption and hash algorithms.
Grover’s algorithm can reduce the cost of attacking a symmetric cryptographic algo-
rithm. For a cryptographic algorithm with a key size of n bits, Grover’s algorithm can
theoretically reduce the security of that algorithm to one with a key size of n/2 bits.
This is not nearly as serious as the threat to asymmetric algorithms posed by Shor’s
algorithm. For example, a 128-bit AES key is considered secure for the foreseeable
future. To guard against a quantum attack using Grover’s algorithm, the same level
of security could be maintained by moving to a 256-bit key. Similarly, Grover’s algo-
rithm can theoretically reduce the security of a cryptographic hash algorithm by a
factor of two. This can be countered by doubling the hash length.

Furthermore, it has been shown that an exponential speed up for search algo-
rithms is impossible, suggesting that existing symmetric algorithms and hash func-
tions should be secure in a quantum era [BENN97].

1995
256

512

1024

Risk from
quantum computing

2048

2000 2005
Year broken

Trend line
of successful

attacks

K
ey

 le
ng

th
 (b

its
)

2010 2015 2020

Figure 14.9 RSA Key Lengths Broken by Conventional Computing
Architectures

M14_STAL7484_08_GE_C14.indd 458 30/04/22 1:38 PM

14.3 / Post-Quantum CryPtograPhy ConCePts 459

Cryptoperiods

Although practical large-scale quantum computers are not likely for a number or
years, there has been considerable interest and some urgency in developing cryp-
tographic algorithms that are secure against such computers. The following are
examples:

◆■ In 2015, the U.S. National Security Agency (NSA) released a major policy
statement on the need for post-quantum cryptography. Prior to this, NSA had
defined a suite of algorithms (Suite B) that were approved for protection of
both sensitive but unclassified (SBU) and classified information, including
the approval of ECC. The 2015 NSA statement indicated that partners and
vendors that had not yet implemented Suite B should not expend additional
resources on developing ECC products because NSA planned to transition to
post-quantum algorithms in the foreseeable future.

◆■ In 2016, NIST announced a request for submissions for public-key
 post-quantum cryptographic algorithms. Round 2 submissions have been re-
ceived and, as of this writing, are being evaluated.

◆■ In 2014, the ETSI Quantum Safe Cryptography (QSC) Industry Specification
Group was formed to assess and make recommendations for quantum-safe
cryptographic primitives and protocols.

To understand the motivation for rapid progress in this area, we need to discuss
the concept of cryptoperiod. The cryptoperiod of a cryptographic key is the time span
during which a specific cryptographic key is authorized for use for its defined pur-
pose. This is an important consideration. A number of potential security threats make
it advisable that any key not be used for a prolonged period of time. These threats
include:

◆■ Brute-force attacks: As raw processing power and the ability to use numer-
ous processors in parallel increase, a given key length becomes increasingly
vulnerable and longer key lengths are advised. Any of the shorter keys in
use need to be retired as quickly as possible and longer key lengths em-
ployed. For example, NIST used to recommend the use of 1024-bit keys
for certain asymmetric algorithms but now recommends 2048 bits for these
algorithms.

◆■ Cryptanalysis: Over time, flaws may be discovered in a cryptographic algo-
rithm that make it feasible to “break” the algorithm. An example of this is the
original NIST standard hash algorithm, SHA-1, which was used in their Digital
Signature Algorithm. Once these weaknesses were discovered, NIST migrated
to SHA-2 and SHA-3. Similarly, methods have been found for breaking algo-
rithms such as the RSA asymmetric algorithm at rates faster than brute force,
which can be thwarted by using longer keys.

◆■ Other security threats: Beyond simply attacking an algorithm directly in an
attempt to discover a key that is being used, there are a variety of other meth-
ods of attack. This includes attacks on the mechanisms and protocols associ-
ated with the keys, key modification, and achieving unauthorized disclosure.
The longer a particular key is used for encryption and decryption, the greater
the chance that some means of learning the key will succeed.

M14_STAL7484_08_GE_C14.indd 459 30/04/22 1:38 PM

460 ChaPter 14 / Lightweight CryPtograPhy

Accordingly, an enterprise should have policies for the maximum cryptoperiod
of each key type.

Figure 14.10a illustrates the two aspects of a cryptoperiod. The originator
usage period (OUP) refers to the time during which data may be encrypted, and
the recipient usage period (RUP) is the time during which such data may continue
to be maintained in its encrypted form and subject to decryption. The RUP often
starts at the beginning of the OUP, but there may be some delay before data can be
decrypted. More significantly, the end of the RUP may extend for a considerable
length of time beyond the end of the OUP. That is, the policy may state that a given
key may no longer be used for encrypting new data, but the data that have already
been encrypted may be retained in the encrypted form, available for decryption for
a further period of time. Hence the cryptoperiod extends from the start of the OUP
to the end of the SUP. Table 14.5 shows the cryptoperiods suggested in SP 80-57.

Quantum Safety

Equivalent to the term post-quantum cryptography is the term quantum-safe
 cryptography. The latter term emphasizes the need for creating cryptographic
 algorithms that are safe, or secure, against quantum computing algorithms.
Figure 14.10b illustrates what this means in terms of times. At present, no organization

(a) Cryptoperiod for individual key

Cryptoperiod

Recipient Usage Period (RUP)

Originator Usage Period (OUP)

(b) Quantum safety timeline

Time

IT infrastructure not quantum-safe IT infrastructure quantum-safe

Large-scale quantum computer not available Secrets divulged

Figure 14.10 Lead Time for Quantum Safety

M14_STAL7484_08_GE_C14.indd 460 30/04/22 1:38 PM

14.3 / Post-Quantum CryPtograPhy ConCePts 461

Table 14.5 Suggested Cryptoperiods from SP 800-57

Key Type OUP RUP

1. Private Signature Key 1 to 3 years —

2. Public Signature-Verification Key Several years (depends on key size)

3. Symmetric Authentication Key … 2 years … OUP + 3 years

4. Private Authentication Key 1 to 2 years

5. Public Authentication Key 1 to 2 years

6. Symmetric Data Encryption Keys … 2 years … OUP + 3 years

7. Symmetric Key Wrapping Key … 2 years … OUP + 3 years

8. Symmetric RBG Keys See [SP800-90] —

9. Symmetric Master Key About 1 year —

10. Private Key Transport Key … 2 years

11. Public Key Transport Key 1 to 2 years

12. Symmetric Key Agreement Key 1 to 2 years

13. Private Static Key Agreement Key 1 to 2 years

14. Public Static Key Agreement Key 1 to 2 years

15. Private Ephemeral Key
Agreement Key

One key-agreement transaction

16. Public Ephemeral Key
Agreement Key

One key-agreement transaction

17. Symmetric Authentication Key … 2 years

18. Private Authentication Key … 2 years

19. Public Authentication Key … 2 years

or IT installation is using post-quantum cryptographic algorithms and so cannot be
considered quantum safe. This situation is satisfactory until such time as large scale-
quantum computers are available. If such computers become available prior to the
widespread introduction of post-quantum algorithms, then there will be a period of
time in which all IT installations are vulnerable to attack. Thus, there is some urgency
in developing and deploying post-quantum algorithms.

The issue of timing also relates to the concept of the cryptoperiod. Any IT
installation managing a large number of symmetric and asymmetric keys with dif-
ferent end dates for the respective cryptoperiods. The aggregate of all those keys
and their cryptoperiods indicate how long it is after post-quantum cryptography is
introduced before all pre-quantum keys are phased out.

As pointed out in [ETSI14], and illustrated in Figure 14.11, three levels of
security-related entities are vulnerable to quantum attack:

◆■ Cryptosystems: A cryptosystem consists of a set of cryptographic algorithms
together with the key management processes that support use of the algo-
rithms in some application context. Any cryptosystem that relies on the se-
curity of integer factoring or discrete logarithms is vulnerable. This includes
RSA, DSA, DH, ECDH, ECDSA, and other variants of these ciphers.

M14_STAL7484_08_GE_C14.indd 461 30/04/22 1:38 PM

462 ChaPter 14 / Lightweight CryPtograPhy

Almost all public key cryptography in fielded security products and protocols
today use these types of ciphers.

◆■ Security protocols or security components of network protocols: Any such
protocols that derive security from the public-key algorithms listed in the pre-
ceding bullet are vulnerable.

◆■ Products: Any products or security systems that derive security from the above
protocols are vulnerable.

Cryptosystems or portions of cryptosystems that employ symmetric ciphers
or hash functions can be made quantum safe by increasing the size of the key or
the hash length, respectively. It is public-key systems that are of concern. Table 14.6
summarizes these considerations.

14.4 POST-QUANTUM CRYPTOGRAPHIC ALGORITHMS

The types of asymmetric algorithms that are vulnerable to quantum computing are
in the following categories:

◆■ Digital signatures: Public-key signature algorithms for generating and verify-
ing digital signatures.

Table 14.6 Impact of Quantum Computing on Common Cryptographic Algorithms

Cryptographic Algorithm Type Purpose Impact from Large-
Scale Quantum

Computer

AES Symmetric key Encryption Larger key sizes
needed

SHA-2, SHA-3 Cryptographic hash Hash function Larger output needed

RSA Asymmetric key Signature, key
establishment

No longer secure

ECDSA, ECDH
(elliptic curve cryptography)

Asymmetric key Signature, key
exchange

No longer secure

DSA (finite field cryptography) Asymmetric key Signature, key
exchange

No longer secure

PRODUCTS
that derive their
security from these
protocols and
cryptosystems

CRYPTOSYSTEMS
designed on the
presumed difficulty
of discrete log or
integer factorization

SECURITY
PROTOCOLS
that rely on
any of these
cryptosystems

Figure 14.11 Entities Vulnerable to Quantum Computing

M14_STAL7484_08_GE_C14.indd 462 30/04/22 1:38 PM

14.4 / Post-Quantum CryPtograPhiC aLgorithms 463

◆■ Encryption: Used for encrypting symmetric keys for transport from one party
to another. Also used in various key establishment algorithms. In general
terms, these proceed as follows: Each party has either one or two key pairs, and
the public keys are made known to the other party. The key pairs are used to
compute a shared secret value, which is then used with other information to
derive keying material using a key derivation function.

◆■ Key-Establishment Mechanisms (KEMs): Refers to schemes such as Diffie-
Hellman key exchange.

There is no single widely accepted alternative to the existing algorithms based
on integer factorization or discrete logarithms. Of the approaches reported in the
literature, four general types of algorithms predominate:

◆■ Lattice-based cryptography: These schemes involve the construction of primi-
tives that involve lattices.

◆■ Code-based cryptography: These schemes are based on error-correcting codes.

◆■ Multivariate polynomial cryptography: These schemes are based on the dif-
ficulty of solving systems of multivariate polynomials over finite fields.

◆■ Hash-based signatures: These are digital signatures constructed using hash
functions.

An indication of the interest shown in these approaches is found in the submis-
sions to the NIST effort at post-quantum standardization. As reported in NISTIR
8105 (Report on Post-Quantum Cryptography, April 2016), NIST hopes to stan-
dardize a number of algorithms that can be used to replace or complement existing
asymmetric schemes. For the first round, NIST has received 82 submissions, broken
down as shown in Table 14.7.

There are several reasons why NIST does not intend to settle on a single
standard:

◆■ The requirements for public-key encryption and digital signatures are more com-
plicated than those of symmetric encryption and cryptographic hash functions.

◆■ The current scientific understanding of the power of quantum computers is far
from comprehensive.

Table 14.7 Submissions to NIST Post-Quantum Cryptography Competition

Signatures KEM/Encryption Total

Lattice-based 4 24 28

Code-based 5 19 24

Multivariate 7 6 13

Hash-based 4 — 4

Other 3 10 13

Total 23 59 82

M14_STAL7484_08_GE_C14.indd 463 30/04/22 1:38 PM

464 ChaPter 14 / Lightweight CryPtograPhy

◆■ Some of the candidate post-quantum cryptosystems may have completely dif-
ferent design attributes and mathematical foundations, so that a direct com-
parison of candidates would be difficult or impossible.

◆■ The various approaches exhibit different advantages and disadvantages, be-
yond considerations of security.

Although there will be significant differences within each of the four ap-
proaches listed above, the following general statements can be made:

◆■ Lattice-based cryptography: These schemes are relatively simple, efficient, and
highly parallelizable.

◆■ Code-based cryptography: These schemes are quite fast but require very large
key sizes.

◆■ Multivariate polynomial cryptography: For digital signatures, these schemes
require very large key sizes.

◆■ Hash-based signatures: Many of the more efficient hash-based signature
schemes have the drawback that the signer must keep a record of the exact
number of previously signed messages, and any error in this record will result
in insecurity. Another drawback is that they can produce only a limited num-
ber of signatures. The number of signatures can be increased, even to the point
of being effectively unlimited, but this also increases the signature size.

Because of the complexity of the mathematics and the implementation of
these types of schemes, a full description is beyond our scope. The remainder of this
section provides a brief overview of each of the four approaches.

Lattice-Based Cryptographic Algorithms

An m-dimensional lattice of rank n is the set of vectors that can be expressed as the
sum of integer multiples of a specific set of n vectors, collectively called the basis of
the lattice. More formally, a lattice can be defined as:

L = e a
n

i = 1
xibi � ni ∈ ℤ,bi ∈ ℝm f

where the bis are linearly independent vectors of length m over the real numbers
and the xi are integers. The set of vectors bi is called a lattice basis. The lattice basis
can be represented by a matrix B, where the ith column of the matrix is bi. We refer
to m as the dimension of the lattice, and n the rank of the lattice. A lattice can be de-
picted as n points defined by the basis in m-dimensional space; that is, each point is
the end point of one of the basis vectors. A lattice is said to be full-rank when n = m.
There are infinitely many lattices of the same dimension.

A basis vector bi consists of m real numbers 1bi,1, c, bi,m2. The length of the
vector is the real number:

}bi } = 2b2
i,1 + b2

i,2 + g+ b2
i,m

The basis for a given lattice is not unique. The existence of multiple bases for the
same lattice is important for the development of cryptographic algorithms, because

M14_STAL7484_08_GE_C14.indd 464 30/04/22 1:38 PM

14.4 / Post-Quantum CryPtograPhiC aLgorithms 465

some bases are easier to handle than others. Figure 14.12, which depicts a lattice with
n = m = 2, illustrates the concepts just introduced. The basis b1 = 10.5, 0.52,
b2 = (-1, 0.5), with lengths }b1 } = 0.707 and }b2 } = 1.12 , defines all of
the points shown in the figure. For example, the point P = 11, 12 is equal to
x1b1 + x2b2 = x110.5, 0.52 + x2(-1, 0.5), for x1 = 2, x2 = 0. The same lattice is
also defined by the basis c1 = 13.5, 22, c2 = 13, 1.52, with lengths } c1 } = 4.03
and } c2 } = 3.35. For example, P = 11, 12 is equal to x1c1 + x2c2 for x1 = 2>3,
x2 = -2>3. With either basis, any point in the space can be defined by a linear combina-
tion of its two vectors, but the basis b1, b2 is computationally more convenient.

The essence of a lattice-based cryptographic algorithms is to exploit a hard
problem in lattices. One such problem is the Closest Vector Problem (CVP) which
can be stated as follows: given a basis of a lattice L and a vector v ∈ ℝm, find a lattice
vector that minimizes the distance to v. Note that, in general, v defines a point that is
not part of the lattice. The Shortest Vector Problem (SVP) is to find the shortest non-
zero vector within a lattice. There is no known quantum algorithm for solving CVP
or SVP for lattices of large dimension. In practice, the cryptographic algorithms that
have been proposed assume that a relaxed variant of CVP or SVP is still hard to solve.

The most widely studied lattice-based approach is the NTRU family of crypto-
graphic algorithms. Such algorithms use a specific class of lattices that have an extra
symmetry. In all NTRU-based schemes, the private key represents a lattice basis
consisting of short vectors, while the public key represents a lattice basis consisting
of longer vectors. In general terms, these algorithms work as follow. A message is
encoded as a vector m. A random point in the lattice defined by the private key basis
is added to m to form a vector e. The public key has been defined by multiplying the
private key basis B by a matrix U, yielding another basis B' for the same lattice, with
longer vectors. To decrypt the message, find the lattice point closest to the ciphertext
vector C = eU-1, and subtract it from the ciphertext vector. The result is the origi-
nal plaintext vector. That is, B' is the public key and it is possible to find the lattice
point X closest to C, such that C - X = m. However, given B', it is computationally
infeasible to determine B.

Solid vectors 5 convenient basis
Dashed vectors 5 inconvenient basis

b1

P
c2

c1

b2

Figure 14.12 Two Bases for a Two-Dimensional Lattice

M14_STAL7484_08_GE_C14.indd 465 30/04/22 1:38 PM

466 ChaPter 14 / Lightweight CryPtograPhy

The matrix U in the above scheme must be a unimodular matrix, which means
that the determinant of U is 1 or -1. For example, the matrix

a1 2
0 1

b
is unimodular with a determinant of 1. It can be shown that the inverse U - 1 of
unimodular matrix U is also unimodular, and that two bases B1, B2 define the same
lattice if and only if B2 = B1U.

A number of variations on this basic scheme are currently being pursued
[LAUT17].

Code-Based Cryptographic Algorithms

An error correction code (ECC) allows data that is being read or transmitted to be
checked for errors and, when necessary, corrected. Figure 14.13 illustrates in general
terms how the process is carried out. On the source end, each k-bit block of data is
mapped into an n-bit block (n > k) called a codeword, using an ECC encoder.

The ECC is referred to as an 1n, k2 ECC. Encoding can be described as multi-
plying a k-bit data vector m by a k * n matrix G to yield an n-bit codeword vector c:

c = mG

For each generator matrix, there is an (n - k) * k parity check matrix H whose
rows are orthogonal to those of G; that is, GHT = 0.

The codeword, whether stored or transmitted, is subject to impairments, which
may produce one or more bit errors in the block. At the destination, the received
codeword may contain errors. This block is passed through an ECC decoder, with
one of four possible outcomes:

codeword

k bits

data

ECC
encoder

Source

data

no error or
error

corrected

error
detected

but not
correctable

codeword

ECC
decoder

Destination

n bits

Figure 14.13 1n, k2 Error Correction Code

M14_STAL7484_08_GE_C14.indd 466 30/04/22 1:38 PM

14.4 / Post-Quantum CryPtograPhiC aLgorithms 467

◆■ No errors: If there are no bit errors, the input to the ECC decoder is identical to
the original codeword, and the decoder produces the original data block as output.

◆■ Detectable, correctable errors: For certain error patterns, it is possible for the
decoder to detect and correct those errors. Thus, even though the incoming
data block differs from the transmitted codeword, the decoder is able to map
this block into the original data block.

◆■ Detectable, not correctable errors: For certain error patterns, the decoder can
detect but not correct the errors. In this case, the decoder simply reports an
uncorrectable error.

◆■ Undetectable errors: For certain, typically rare, error patterns, the decoder
does not detect that the error and maps the incoming n-bit data block into a
k-bit block that differs from the original k-bit block.

How is it possible for the decoder to correct bit errors? In essence, error correction
works by adding sufficient redundancy to the data block. The redundancy makes it
possible for the receiver to deduce what the original block was, even in the face of a
certain level of error rate.

Error detection and correction can be expressed as follows. The received code-
word c′ is multiplied by the transpose of H, that is c′HT. If the result is a zero vector,
then no error is detected. If the result is nonzero, then the resulting vector, known
as the syndrome, can be used to correct errors. The exact process for correction de-
pends on the nature of the ECC.

An example of efficient error correcting codes are Goppa codes, which can be
turned into a secure coding scheme by keeping the encoding and decoding functions
a secret, and only publicly revealing a disguised encoding function that allows the
mapping of a plaintext message to a scrambled set of code words. Only someone in
possession of the secret decoding function can recover the plaintext. This technique
is computationally hard to reverse using either a conventional or quantum computer.

An 1n, k2 Goppa code can correct any number of bit errors t = (n - k)>log21n2
bits. The first scheme based on this code is by McEliece [MCEL78]. The private key
consists of three matrices. A specific Goppa code is chosen, and represented by an
k * n matrix G. Also chosen are an n * n permutation matrix P and an arbitrary
k * k invertible binary matrix S. The public key is the matrix G′ = SGP, plus the
value t; the private key consists of the three matrices that are multiplied together.

Suppose G′ is the public key of entity A, and entity B wishes to encrypt a
k-bit message x with G′. B sends x′ = xG′ + e, where e is a random n-bit error vec-
tor with exactly t ones. After the A receives x′, to decrypt the message, A computes
x′P-1 = (xG′ + e)P-1 = xSG + eP-1. By using the decoding algorithm of the code,
A can remove the error term and is left with xS. Because S is invertible, A can recover x.

A number of refinements of this scheme have been developed to reduce key
size [SEND18].

Multivariate-Based Cryptographic Algorithms

Multivariate schemes are based on the difficulty of solving systems of multivariate
quadratic polynomials over finite fields. The term multivariate polynomial refers to
a polynomial in more than one variable, and the term quadratic polynomial refers

M14_STAL7484_08_GE_C14.indd 467 30/04/22 1:38 PM

468 ChaPter 14 / Lightweight CryPtograPhy

to a polynomial of degree 2. In general, these schemes can be described as follows.
The public key consists of a set of m polynomials:

P1x1, c, xn2 = 1p11x1, c, xn2, p21x1, c, xn2, c, pm1x1, c, xn22
which can be expanded to the following:

p11x1, g, xn2 = a
n

i=1
a
n

j=1
p1,ijxixj + a

n

i=1
p1,ixi + p1,0

p21x1, g, xn2 = a
n

i=1
a
n

j=1
p2,ijxixj + a

n

i=1
p2,ixi + p2,0

pm1x1, g, xn2 = a
n

i=1
a
n

j=1
pm,ijxixj + a

n

i=1
pm,ixi + pm,0

with m equal to the number of equations and n equal to the number of
variables.

In general terms, encryption using the public key is performed as follows:
Given a plaintext m = 1y1, c, yn2 , the ciphertext is:

P1m2 = 1p11y1, c, yn2, p21y1, c, yn2, c, pm1y1, c, yn22 = 1c1, c, cm2
The private key is the inverse mapping P - 1 and provides the plaintext:

1y1, c , yn2 = P-11c1, c , cm2
The assumption is that given P it is difficult to find P-1, but not vice versa. More
specifically, the security of the scheme depends of the difficulty of the follow-
ing problem. For a given P1x1, c , xn2 , find a vector 1z1, c , zn2 such that
P1z1, c , zn2 = 0.

The digital signature is formed in a similar way. A hash of message m is
 computed that can be expressed as H1m2 = 1h1, c, hn2. Given a signature
1s1, c, sn2 for m, the signature can be verified by testing if H1m2 is equal to
P1s1, c, sn2.

We give two simple examples for multivariate polynomials over the finite field
GF1222. The only irreducible polynomial of degree 2 for this field is x2 + x + 1.
Table 14.8 shows addition and multiplication mod 1x2 + x + 12. The polynomi-
als in the field are symbolically represented by the integers. Suppose the public key
consists of:

p11x1, x2, x32 = 1 + x3 + 2x1x2 + x2
3

p21x1, x2, x32 = 2 + x1 + 2x2x3 + x2

p31x1, x2, x32 = 1 + x2 + x1x3 + x2
1

Given a 6-bit message 010000001 represented as 1x1,x2, x32 = 12, 0, 12 ,
encryption of the message with the public key is performed as follows:

p112, 0, 12 = 1 + 1 + 12 * 2 * 02 + 11 * 12 = 1

p212, 0, 12 = 2 + 2 + 12 * 0 * 12 + 0 = 0

p312, 0, 12 = 1 + 1 + 12 * 12 + 12 * 22 = 1

The ciphertext is (1, 0, 1).

M14_STAL7484_08_GE_C14.indd 468 30/04/22 1:38 PM

14.4 / Post-Quantum CryPtograPhiC aLgorithms 469

Table 14.8 Arithmetic in GF1222
Polynomial 0 1 X x + 1

Binary representation 00 01 10 11

Integer representation 0 1 2 3

(a) Polynomial Representation

+ 0 1 2 3 × 0 1 2 3

0 0 1 2 3 0 0 0 0 0

1 1 0 3 2 1 0 1 2 3

2 2 3 0 1 2 0 2 3 1

3 3 2 1 0 3 0 3 1 2

 (b) Addition (c) Multiplication

Now consider the public key:

 p11x1, x2, x32 = 1 + x2 + 2x0x2 + 3x2
1 + 3x1x2 + x2

2

 p21x1, x2, x32 = 1 + 3x0 + 2x1 + x2 + x2
0 + x0x1 + 3x0x2 + x2

1

 p31x1, x2, x32 = 3x2 + x2
0 + 3x2

1 + x1x2 + 3x2
2

Suppose a message m with hash value H1m2 = 11, 2, 32. The owner of the private
key matching the above public key generates the signature (0, 0, 1). The signature
can be verified by a recipient by generating H1m2 and encrypting the result with the
public key. In this case, the calculation yields:

 p111, 2, 32 = 1 + 3 + 12 * 1 * 32 + 13 * 2 * 22 + 13 * 2 * 32 + 13 * 32 = 0

 p211, 2, 32 = 1 + 13 * 12 + 12 * 22 + 3 + 11 * 12 + 11 * 22 + 13 * 1 * 32 + 12 * 22 = 0

 p311, 2, 32 = 13 * 32 + 11 * 12 + 13 * 2 * 22 + 12 * 32 + 13 * 3 * 32 = 1

which verifies the public key.
The public-private key construction can be described in a way that is similar

to that of code-based schemes. The process starts with an easily invertible quadratic
map F: Kn S Km. For the public key, the structure of this mapping is hidden by com-
bining F with two invertible maps S: Km S Km and T: Kn S Kn. The public key P is
the composed map S ~ F ~ T:Kn S Km. The private key consists of the three maps.

A number of variations on this basic scheme are currently being pursued
[DING17].

Hash-Based Digital Signature Algorithms

To get an idea of how a hash-based signature algorithm works, we first consider a
scheme proposed by Lamport [LAMP79]. Assume a hash function that produces a
b-bit hash value. Thus, for SHA-256, b = 256. In Lamport’s scheme, a public/private
key pair is used only once for a given message m. The steps involved are as follows:

1. Compute the b-bit hash value H1m2.

2. Generate 2b secrets bit strings, two for each bit location k in H1m2, S0,k and
S1,k. The set of secret values constitutes the private key.

M14_STAL7484_08_GE_C14.indd 469 30/04/22 1:38 PM

470 ChaPter 14 / Lightweight CryPtograPhy

3. The public key consists of the hash values of each secret value: H1S0,k2,
H1S1,k2, k = 1, c, b.

4. The digital signature consists of half of the hash values calculated in step 3. For
the block m, the signature is generated as follows. If the kth bit of H1m2 is 0, then
the kth element of the signature is S0,k; if the kth bit of H1m2 is 1, then the kth
element of the signature is S1,k. Thus, the signature reveals half of the private key.

5. Signature verification involves the following: The verifier calculates H1m2.
Then the bits of H1m2 are used to pick out the corresponding elements of the
public key. So, if the kth bit is 1, select H1S1,k2. Then the b hashes in the signa-
ture are compared to the b hashes selected from the public key. If all match,
the signature is verified.

There are a number of drawbacks to this scheme. The signing of a message
reveals half of the private key. This is not enough to allow an attacker to sign addi-
tional messages with different digests, but it would not be secure to use this key pair
more than once. Further, both the public and private keys are of considerable length.

Merkle [MERK79] proposed a technique that builds on the Lamport scheme,
using the concept of a hash tree. It allows a signer to precompute a number of public-
private key pars that can be used to generate signatures that can all be verified with the
same public key. And the long-term public key need only be the size of a hash value.
For this scheme, a tree of hash values is constructed. The scheme allows the signing of
a number of messages N = 2n, where n is an integer. The signer generates N private
keys Xi with 0 … i … 2n - 1, and computes the corresponding public keys Yi. Each
public key is the concatenation of the 2b hash values described in step 3 of the Lamport
scheme. Then a hash tree is formed. Each node of the tree is labeled hi,j, where i denotes
the level of the node and corresponds to the distance of the node from a leaf. Thus, a
leaf of the tree is level 0 and the root of the tree is level n. Figure 14.14a shows a tree
for n = 3.

The tree is constructed in pairs, starting with the leaves. Each leaf consists of
the hash of one of the public keys. For higher levels, each pair of values at one level
is concatenated to form a double block, and the hash of that block is computed.
This process continues until a single value results, known as the Merkle root. The
Merkle root becomes the single public key, to be used to verify up to N signatures.
This has two advantages: the public key is quite small, and it can be used for multiple
signatures.

The process for signing a message mi is as follows. First the Lamport digital sig-
nature LSi is generated from H1mi2, as before, consisting of the set of b secret strings
Sj,k for j = 0 or 1, k = 1, c, b . The value LSi forms part of overall digital signature
for the message, which is available for verification. However, in this scheme, the veri-
fier does not have possession of the Lamport public key Yi, so this must be supplied
as part of the signature. Further, the verifier must be able to authenticate that this
public key Yi is valid. To do this, the verifier needs to trace a path from the leaf to the
root and confirm the root value. For this calculation, the verifier needs every node on

M14_STAL7484_08_GE_C14.indd 470 30/04/22 1:38 PM

14.4 / Post-Quantum CryPtograPhiC aLgorithms 471

(a) Merkle tree with eight leaves

h00 5
H(Y0)

Y0

h10 5
H(h00 || h01)

h20 5
H(h10 || h11)

h30 5
H(h20 || h21)

h11 5
H(h02 || h03)

h12 5
H(h04 || h05)

h21 5
H(h12 || h13)

h13 5
H(h06 || h07)

h01 5
H(Y1)

h02 5
H(Y2)

h03 5
H(Y4)

h04 5
H(Y4)

h05 5
H(Y5)

h06 5
H(Y6)

h07 5
H(Y7)

Y1 Y2 Y3 Y4 Y5 Y6 Y7

(b) Merkle tree with authentication path

h00

Y0

h10

h20 h21

h30

h11 h12 h13

h01 h02 h03 h04 h05 h06 h07

Y1 Y2 Y3 Y4 Y5 Y6 Y7

Figure 14.14 Example of Merkle Hash Tree

the path, plus the value of the brother node at each level; these are also provided in
the signature. Putting this all together, the signature Si for mi consists of the following:

Si = (LSi, Yi, h0,x, h1,x, c, hn-1,x)

where x equals either l + 1 or l - 1 at each level l of the tree.
An example should make this process clear. Figure 14.14b shows the Merkle

tree with eight leaves and the path to the root from Y4. To authenticate the public
key, the verifier computes

H1H1H1H1Y42 }h052 }h132 }h202

M14_STAL7484_08_GE_C14.indd 471 30/04/22 1:38 PM

472 ChaPter 14 / Lightweight CryPtograPhy

If this value equals the public key h30, then Y4 is authenticated. Once Y4 is authenti-
cated, it can be used to verify the signature Y4.

An important drawback of Merkle-related schemes is that the signer must keep
track of which onetime signature keys have already been used. This can be difficult in
large-scale environments. Stateless variants are a matter of current research [BUTI17].

Review Questions

 14.1 Define embedded system.
 14.2 Define constrained device.
 14.3 List and briefly explain three classes of constrained devices.
 14.4 What are the chief design constraints for lightweight cryptographic algorithms?
 14.5 What are the typical characteristics of lightweight cryptographic algorithms?
 14.6 What are the main types of cryptographic algorithms for which lightweight cryptogra-

phy is relevant?
 14.7 Briefly explain the rationale for post-quantum cryptography.
 14.8 What are the main types of cryptographic algorithms for which post-quantum cryp-

tography is relevant?
 14.9 List the four main mathematical approaches being studied for post-quantum

 cryptography.

Key Terms

constrained device
cryptoperiod
cryptosystem
deeply embedded system
embedded system

lightweight cryptographic
algorithm

lightweight
cryptography

microcontroller

post-quantum cryptographic
algorithm

post-quantum cryptography
quantum computing
quantum safety

14.5 KEY TERMS AND REVIEW QUESTIONS

M14_STAL7484_08_GE_C14.indd 472 30/04/22 1:38 PM

473

15.1 Symmetric Key Distribution Using Symmetric Encryption

Key Distribution Options
Third-Party Key Distribution Options
Key Hierarchy

15.2 Symmetric Key Distribution Using Asymmetric Encryption

Simple Secret Key Distribution
Secret Key Distribution with Confidentiality and Authentication

15.3 Distribution of Public Keys

Public Announcement of Public Keys
Publicly Available Directory
Public-Key Authority
Public-Key Certificates

15.4 X.509 Certificates

Certificates
X.509 Version 3

15.5 Public-Key Infrastructure

15.6 Key Terms, Review Questions, and Problems

Part Five: Mutual trust

CHAPTER

Cryptographic Key Management
and Distribution

15

M15_STAL7484_08_GE_C15.indd 473 20/04/22 07:02

474 CHAPTER 15 / CRyPTogRAPHiC KEy MAnAgEMEnT AnD DisTRibuTion

The secure use of cryptographic key algorithms depends on the protection of the
cryptographic keys. All keys need to be protected against modification, and se-
cret and private keys need to be protected against disclosure. Cryptographic key
management is the process of administering or managing cryptographic keys for a
 cryptographic system. It involves the generation, creation, protection, storage, ex-
change, replacement, and use of keys and enables selective restriction for certain
keys. In addition to access restriction, key management also involves the monitor-
ing and recording of each key’s access, use, and context. A key management system
will also include key servers, user procedures, and protocols, including cryptographic
protocol design. The security of the cryptosystem is dependent upon successful key
management.

The topics of cryptographic key management and cryptographic key distri-
bution are complex, involving cryptographic, protocol, and management consider-
ations. The purpose of this chapter is to give the reader a feel for the issues involved
and a broad survey of the various aspects of key management and distribution. For
more information, the place to start is the three-volume NIST SP 800-57, followed
by the recommended readings listed at the end of this chapter.

 15.1 SYMMETRIC KEY DISTRIBUTION USING
SYMMETRIC ENCRYPTION

This section looks at techniques for distributing secret keys using only symmetric
encryption techniques.

Key Distribution Options

For symmetric encryption to work, the two parties to an exchange must share the
same key, and that key must be protected from access by others. Furthermore, fre-
quent key changes are usually desirable to limit the amount of data compromised if
an attacker learns the key. Therefore, the strength of any cryptographic system rests

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

◆◆ Discuss the concept of a key hierarchy.

◆◆ Understand the issues involved in using asymmetric encryption to distribute
symmetric keys.

◆◆ Present an overview of approaches to public-key distribution and analyze
the risks involved in various approaches.

◆◆ List and explain the elements in an X.509 certificate.

◆◆ Present an overview of public-key infrastructure concepts.

M15_STAL7484_08_GE_C15.indd 474 20/04/22 07:02

15.1 / syMMETRiC KEy DisTRibuTion using syMMETRiC EnCRyPTion 475

with the key distribution technique, a term that refers to the means of delivering a key
to two parties who wish to exchange data, without allowing others to see the key. For
two parties A and B, key distribution can be achieved in a number of ways, as follows:

 1. A can select a key and physically deliver it to B.

 2. A third party can select the key and physically deliver it to A and B.

 3. If A and B have previously and recently used a key, one party can transmit the
new key to the other, encrypted using the old key.

 4. If A and B each has an encrypted connection to a third party C, C can deliver
a key on the encrypted links to A and B.

Options 1 and 2 call for manual delivery of a key. For link encryption, this
is a reasonable requirement, because each link encryption device is going to be
exchanging data only with its partner on the other end of the link. However, for
end-to-end encryption over a network, manual delivery is awkward. In a distributed
system, any given user or server may need to engage in exchanges with many other
users and servers over time. Thus, each endpoint needs a number of keys supplied
dynamically. The problem is especially difficult in a wide area distributed system.

The scale of the problem depends on the number of communicating pairs that
must be supported. If end-to-end encryption is done at a network or IP level, then a
key is needed for each pair of hosts on the network that wish to communicate. Thus,
if there are n hosts, the number of required keys is

n(n - 1)
2

If encryption is done at the application level, then a key is needed for every
pair of users or processes that require communication. Thus, a network may have
hundreds of hosts but thousands of users and processes. A network using node-level
encryption with 1000 nodes would conceivably need to distribute as many as half a
million keys. If that same network supported 10,000 applications, then as many as
50 million keys may be required for application-level encryption.

Returning to our list, option 3 is a possibility for either link encryption or end-
to-end encryption, but if an attacker ever succeeds in gaining access to one key, then
all subsequent keys will be revealed. Furthermore, the initial distribution of poten-
tially millions of keys must still be made.

For end-to-end encryption, some variation on option 4 has been widely ad-
opted. In this scheme, a key distribution center is responsible for distributing keys
to pairs of users (hosts, processes, applications) as needed. Each user must share a
unique key with the key distribution center for purposes of key distribution.

Third-Party Key Distribution Options

Figure 15.1 illustrates two different options, each with two variations, for key distri-
bution. The numbers along the lines represent the steps of the exchange. In these
examples, there exists a connection between entities A and B, who wish to ex-
change information using cryptographic techniques. For this purpose, they require a

M15_STAL7484_08_GE_C15.indd 475 20/04/22 07:02

476 CHAPTER 15 / CRyPTogRAPHiC KEy MAnAgEMEnT AnD DisTRibuTion

temporary session key that will last for the duration of a logical connection, such as
a TCP connection. A and B each share a long-lasting master key with a third party
that is involved in providing the session key. For this discussion, the session key
is labeled Ks and the master key between entities A and B and the third party are
 labeled Kma and Kmb, respectively.

A key translation center (KTC) transfers symmetric keys for future commu-
nication between two entities, at least one of whom has the ability to generate or
acquire symmetric keys by themselves. Entity A generates or acquires a symmetric
key to be used as a session key for communication with B. A encrypts the key using
the master key it shares with the KTC and sends the encrypted key to the KTC. The
KTC decrypts the session key, reencrypts the session key in the master key it shares
with B, and either sends that reencrypted session key to A (Figure 15.1a) for A to
forward to B or sends it directly to B (Figure 15.1b).

A key distribution center (KDC) generates and distributes session keys.
Entity A sends a request to the KDC for a symmetric key to be used as a session key
for communication with B. The KDC generates a symmetric session key, and then
encrypts the session key with the master key it shares with A and sends it to A. The
KDC also encrypts the session key with the master key is shares with B and sends
it to B (Figure 15.1c). Alternatively, it sends both encrypted key values to A, and A
forwards the session key encrypted with the master key shared by the KDC and B
to B (Figure 15.1d).

The foregoing discussion leaves out a number of details. For example,
 parties that exchange keys need to authenticate themselves to each other.

(a) Key Translation

(1) Request,
E(Kma, Ks) (2) E(Kmb, Ks)

(3) Session

(1) Request,
E(Kma, Ks)

(2) E(Kmb, Ks)

(2a) E(Kma, Ks)

(2b) E(Kmb, Ks)

(3) E(Kmb, Ks)

(4) SessionEntity A Entity BEntity A Entity B

(c) Key Distribution

Key
Distribution

Center

(3) Session
Entity A Entity BEntity A Entity B

(b) Key Translation with Key Forwarding

Key
Translation

Center

Entity A Entity BEntity A Entity B

(1) Request (1) Request

(2) E(Kma, Ks), E(Kmb, Ks)

(3) E(Kmb, Ks)

(4) Session

(d) Key Distribution with Key Forwarding

Key
Distribution

Center

Entity A Entity BEntity A Entity B

Key
Translation

Center

Figure 15.1 Key Distribution Between Two Communicating Entities

M15_STAL7484_08_GE_C15.indd 476 20/04/22 07:02

15.1 / syMMETRiC KEy DisTRibuTion using syMMETRiC EnCRyPTion 477

Timestamps are often used to limit the time in which a key exchange can take place
and/or the lifetime of an exchanged key. Chapter 16 examines several detailed ap-
proaches to third-party symmetric key exchange in the context of Kerberos.

Key Hierarchy

A common requirement in a variety of protocols, such as IEEE 802.11i and IPsec,
discussed in Part Six, is for the encryption of a symmetric key so that it can be dis-
tributed to two parties for future communication. Quite often, a protocol calls for
a hierarchy of keys, with keys lower on the hierarchy used more frequently, and
changed more frequently to thwart attacks (Figure 15.2). A higher-level key, which
is used infrequently and therefore more resistant to cryptanalysis, is used to encrypt
a newly created lower-level key so that it can be exchanged between parties that
share the higher-level key. The term ephemeral key in Figure 15.2 refers to a key
that is used only once or at most is very short-lived.

Master keys

Intermediate-level keys

Increasing frequency of use

In
cr

ea
sin

g
lif

et
im

e

Ephemeral keys

Figure 15.2 Symmetric Key Hierarchy

M15_STAL7484_08_GE_C15.indd 477 20/04/22 07:02

478 CHAPTER 15 / CRyPTogRAPHiC KEy MAnAgEMEnT AnD DisTRibuTion

 15.2 SYMMETRIC KEY DISTRIBUTION USING
ASYMMETRIC ENCRYPTION

Because of the inefficiency of public-key cryptosystems, they are almost never used
for the direct encryption of sizable blocks of data, but are limited to relatively small
blocks. One of the most important uses of a public-key cryptosystem is to encrypt
secret keys for distribution. We see many specific examples of this in Part Five.
Here, we discuss general principles and typical approaches.

Simple Secret Key Distribution

An extremely simple scheme was put forward by Merkle [MERK79], as illustrated in
Figure 15.3. If A wishes to communicate with B, the following procedure is employed:

 1. A generates a public/private key pair {PUa, PRa} and transmits a message to B
consisting of PUa and an identifier of A, IDA.

 2. B generates a secret key, Ks, and transmits it to A, which is encrypted with A’s
public key.

 3. A computes D(PRa, E(PUa, Ks)) to recover the secret key. Because only A can
decrypt the message, only A and B will know the identity of Ks.

 4. A discards PUa and PRa and B discards PUa.

A and B can now securely communicate using conventional encryption and
the session key Ks. At the completion of the exchange, both A and B discard Ks.
Despite its simplicity, this is an attractive protocol. No keys exist before the start of
the communication and none exist after the completion of communication. Thus,
the risk of compromise of the keys is minimal. At the same time, the communication
is secure from eavesdropping.

The protocol depicted in Figure 15.3 is insecure against an adversary who can
 intercept messages and then either relay the intercepted message or substitute another
message (see Figure 1.3c). Such an attack is known as a man-in-the-middle attack
[RIVE84]. We saw this type of attack in Chapter 10 (Figure 10.2). In the present
case, if an adversary, D, has control of the intervening communication channel,
then D can compromise the communication in the following fashion without being
 detected (Figure 15.4).

Figure 15.3 Simple Use of Public-Key Encryption to Establish a Session Key

BA

(1) PUa || IDA

(2) E(PUa, Ks)

M15_STAL7484_08_GE_C15.indd 478 20/04/22 07:02

15.2 / syMMETRiC KEy DisTRibuTion using AsyMMETRiC EnCRyPTion 479

 1. A generates a public/private key pair {PUa, PRa} and transmits a message
 intended for B consisting of PUa and an identifier of A, IDA.

 2. D intercepts the message, creates its own public/private key pair {PUd, PRd}
and transmits PUd } IDA to B.

 3. B generates a secret key, Ks, and transmits E(PUd, Ks).

 4. D intercepts the message and learns Ks by computing D(PRd, E(PUd, Ks)).

 5. D transmits E(PUa, Ks) to A.

The result is that both A and B know Ks and are unaware that Ks has also been
revealed to D. A and B can now exchange messages using Ks. D no longer actively

Figure 15.4 Another Man-in-the-Middle Attack

Alice Darth Bob

Private key PRa
Public key PUa

Private key PRb
Public key PUb
Secret key Ks

Ks 5
D(PRd, E(PUd, Ks))

Private key PRd
Public key PUd

PUa, IDA

PUd, IDA

E(PUd, Ks)

Alice, Bob, and
Darth share K1

E(PUa, Ks)

M15_STAL7484_08_GE_C15.indd 479 20/04/22 07:02

480 CHAPTER 15 / CRyPTogRAPHiC KEy MAnAgEMEnT AnD DisTRibuTion

interferes with the communications channel but simply eavesdrops. Knowing
Ks, D can decrypt all messages, and both A and B are unaware of the problem.
Thus, this simple protocol is only useful in an environment where the only threat is
eavesdropping.

Secret Key Distribution with Confidentiality
and Authentication

Figure 15.5, based on an approach suggested in [NEED78], provides protection
against both active and passive attacks. We begin at a point when it is assumed that
A and B have exchanged public keys by one of the schemes described subsequently
in this chapter. Then the following steps occur.

 1. A uses B’s public key to encrypt a message to B containing an identifier of
A(IDA) and a nonce (N1), which is used to identify this transaction uniquely.

 2. B sends a message to A encrypted with PUa and containing A’s nonce (N1)
as well as a new nonce generated by B (N2). Because only B could have
 decrypted message (1), the presence of N1 in message (2) assures A that the
correspondent is B.

 3. A returns N2, encrypted using B’s public key, to assure B that its correspon-
dent is A.

 4. A selects a secret key Ks and sends M = E(PUb, E(PRa, Ks)) to B. Encryption
of this message with B’s public key ensures that only B can read it; encryption
with A’s private key ensures that only A could have sent it.

 5. B computes D(PUa, D(PRb, M)) to recover the secret key.

The result is that this scheme ensures both confidentiality and authentication
in the exchange of a secret key.

Figure 15.5 Public-Key Distribution of Secret Keys

Initiator
A

Responder
B

(1) E(PUb, [N1 || IDA])

(4) E(PUb, E(PRa, Ks))

(3) E(PUb, N2)

(2) E(PUa, [N1 || N2])

M15_STAL7484_08_GE_C15.indd 480 20/04/22 07:02

15.3 / DisTRibuTion of PubliC KEys 481

 15.3 DISTRIBUTION OF PUBLIC KEYS

Several techniques have been proposed for the distribution of public keys. Virtually
all these proposals can be grouped into the following general schemes:

◆■ Public announcement

◆■ Publicly available directory

◆■ Public-key authority

◆■ Public-key certificates

Public Announcement of Public Keys

On the face of it, the point of public-key encryption is that the public key is public.
Thus, if there is some broadly accepted public-key algorithm, such as RSA, any par-
ticipant can send his or her public key to any other participant or broadcast the key
to the community at large (Figure 15.6).

Although this approach is convenient, it has a major weakness. Anyone can
forge such a public announcement. That is, some user could pretend to be user A
and send a public key to another participant or broadcast such a public key. Until
such time as user A discovers the forgery and alerts other participants, the forger is
able to read all encrypted messages intended for A and can use the forged keys for
authentication (see Figure 9.3).

Publicly Available Directory

A greater degree of security can be achieved by maintaining a publicly available
 dynamic directory of public keys. Maintenance and distribution of the public
 directory would have to be the responsibility of some trusted entity or organization
(Figure 15.7). Such a scheme would include the following elements:

 1. The authority maintains a directory with a {name, public key} entry for each
participant.

 2. Each participant registers a public key with the directory authority.
Registration would have to be in person or by some form of secure authenti-
cated communication.

Figure 15.6 Uncontrolled Public-Key Distribution

PUa

PUa

PUa

PUa

PUb

PUb

PUb

PUb

BA

M15_STAL7484_08_GE_C15.indd 481 20/04/22 07:02

482 CHAPTER 15 / CRyPTogRAPHiC KEy MAnAgEMEnT AnD DisTRibuTion

 3. A participant may replace the existing key with a new one at any time, either
because of the desire to replace a public key that has already been used for
a large amount of data, or because the corresponding private key has been
 compromised in some way.

 4. Participants could also access the directory electronically. For this purpose,
secure, authenticated communication from the authority to the participant is
mandatory.

This scheme is clearly more secure than individual public announcements
but still has vulnerabilities. If an adversary succeeds in obtaining or computing the
private key of the directory authority, the adversary could authoritatively pass out
counterfeit public keys and subsequently impersonate any participant and eaves-
drop on messages sent to any participant. Another way to achieve the same end is
for the adversary to tamper with the records kept by the authority.

Public-Key Authority

Stronger security for public-key distribution can be achieved by providing tighter
control over the distribution of public keys from the directory. A typical scenario
is illustrated in Figure 15.8, which is based on a figure in [POPE79]. As before, the
scenario assumes that a central authority maintains a dynamic directory of public
keys of all participants. In addition, each participant reliably knows a public key for
the authority, with only the authority knowing the corresponding private key. The
following steps (matched by number to Figure 15.8) occur.

 1. A sends a timestamped message to the public-key authority containing a
 request for the current public key of B.

 2. The authority responds with a message that is encrypted using the authority’s
private key, PRauth. Thus, A is able to decrypt the message using the author-
ity’s public key. Therefore, A is assured that the message originated with the
authority. The message includes the following:

Figure 15.7 Public-Key Publication

Public-key
directory

PUa PUb

A B

M15_STAL7484_08_GE_C15.indd 482 20/04/22 07:02

15.3 / DisTRibuTion of PubliC KEys 483

■◆ B’s public key, PUb, which A can use to encrypt messages destined for B

■◆ The original request used to enable A to match this response with the cor-
responding earlier request and to verify that the original request was not
altered before reception by the authority

■◆ The original timestamp given so A can determine that this is not an old mes-
sage from the authority containing a key other than B’s current public key

 3. A stores B’s public key and also uses it to encrypt a message to B containing
an identifier of A (IDA) and a nonce (N1), which is used to identify this trans-
action uniquely.

 4, 5. B retrieves A’s public key from the authority in the same manner as A retrieved
B’s public key.

At this point, public keys have been securely delivered to A and B, and they
may begin their protected exchange. However, two additional steps are desirable:

 6. B sends a message to A encrypted with PUa and containing A’s nonce (N1) as well
as a new nonce generated by B (N2). Because only B could have decrypted mes-
sage (3), the presence of N1 in message (6) assures A that the correspondent is B.

 7. A returns N2, which is encrypted using B’s public key, to assure B that its
 correspondent is A.

Thus, a total of seven messages are required. However, the initial five
 messages need be used only infrequently because both A and B can save the other’s
public key for future use—a technique known as caching. Periodically, a user should
 request fresh copies of the public keys of its correspondents to ensure currency.

Figure 15.8 Public-Key Distribution Scenario

Public-key
authorityInitiator A Responder B

(1) Request || T1

(2) E(PRauth, [PUb || Request || T1])

(3) E(PUb, [IDA || N1])

(4) Request || T2

(5) E(PRauth, [PUa || Request || T2])

(6) E(PUa, [N1 || N2])

(7) E(PUb, N2)

M15_STAL7484_08_GE_C15.indd 483 20/04/22 07:02

484 CHAPTER 15 / CRyPTogRAPHiC KEy MAnAgEMEnT AnD DisTRibuTion

Public-Key Certificates

The scenario of Figure 15.8 is attractive, yet it has some drawbacks. The public-key
authority could be somewhat of a bottleneck in the system, for a user must appeal
to the authority for a public key for every other user that it wishes to contact.
As before, the directory of names and public keys maintained by the authority is
vulnerable to tampering.

An alternative approach, first suggested by Kohnfelder [KOHN78], is to use
certificates that can be used by participants to exchange keys without contacting a
public-key authority, in a way that is as reliable as if the keys were obtained directly
from a public-key authority. In essence, a certificate consists of a public key, an
identifier of the key owner, and the whole block signed by a trusted third party.
Typically, the third party is a certificate authority, such as a government agency or
a financial institution, that is trusted by the user community. A user can present
his or her public key to the authority in a secure manner and obtain a certificate.
The user can then publish the certificate. Anyone needing this user’s public key can
obtain the certificate and verify that it is valid by way of the attached trusted signa-
ture. A participant can also convey its key information to another by transmitting
its certificate. Other participants can verify that the certificate was created by the
authority. We can place the following requirements on this scheme:

 1. Any participant can read a certificate to determine the name and public key of
the certificate’s owner.

 2. Any participant can verify that the certificate originated from the certificate
authority and is not counterfeit.

 3. Only the certificate authority can create and update certificates.

These requirements are satisfied by the original proposal in [KOHN78]. Denning
[DENN83] added the following additional requirement:

 4. Any participant can verify the time validity of the certificate.

A certificate scheme is illustrated in Figure 15.9. Each participant applies
to the certificate authority, supplying a public key and requesting a certificate.
Application must be in person or by some form of secure authenticated communi-
cation. For participant A, the authority provides a certificate of the form

 CA = E(PRauth, [T } IDA }PUa])

where PRauth is the private key used by the authority and T is a timestamp. A may
then pass this certificate on to any other participant, who reads and verifies the
 certificate as follows:

 D(PUauth, CA) = D(PUauth, E(PRauth, [T } IDA }PUa])) = (T } IDA }PUa)

The recipient uses the authority’s public key, PUauth, to decrypt the certificate.
Because the certificate is readable only using the authority’s public key, this verifies
that the certificate came from the certificate authority. The elements IDA and PUa
provide the recipient with the name and public key of the certificate’s holder. The
timestamp T validates the currency of the certificate. The timestamp counters the
following scenario. A’s private key is learned by an adversary. A generates a new

M15_STAL7484_08_GE_C15.indd 484 20/04/22 07:02

15.4 / X.509 CERTifiCATEs 485

private/public key pair and applies to the certificate authority for a new certificate.
Meanwhile, the adversary replays the old certificate to B. If B then encrypts messages
using the compromised old public key, the adversary can read those messages.

In this context, the compromise of a private key is comparable to the loss of a
credit card. The owner cancels the credit card number but is at risk until all possible
communicants are aware that the old credit card is obsolete. Thus, the timestamp
serves as something like an expiration date. If a certificate is sufficiently old, it is
assumed to be expired.

One scheme has become universally accepted for formatting public-key
 certificates: the X.509 standard. X.509 certificates are used in most network security
applications, including IP security, transport layer security (TLS), and S/MIME, all
of which are discussed in Part Six. X.509 is examined in detail in the next section.

 15.4 X.509 CERTIFICATES

ITU-T recommendation X.509 is part of the X.500 series of recommendations that
define a directory service. The directory is, in effect, a server or distributed set
of servers that maintains a database of information about users. The information
 includes a mapping from user name to network address, as well as other attributes
and information about the users.

Figure 15.9 Exchange of Public-Key Certificates

(a) Obtaining certificates from CA

(b) Exchanging certificates

PUa PUb

A B

Certificate
Authority

CA 5 E(PRauth, [T1 || IDA || PUa])

CB 5 E(PRauth, [T2 || IDB || PUb])

(1) CA

(2) CB

A B

M15_STAL7484_08_GE_C15.indd 485 20/04/22 07:02

486 CHAPTER 15 / CRyPTogRAPHiC KEy MAnAgEMEnT AnD DisTRibuTion

X.509 defines a framework for the provision of authentication services by the
X.500 directory to its users. The directory may serve as a repository of public-key
certificates of the type discussed in Section 15.3. Each certificate contains the public
key of a user and is signed with the private key of a trusted certification authority.
In addition, X.509 defines alternative authentication protocols based on the use of
public-key certificates.

X.509 is an important standard because the certificate structure and authenti-
cation protocols defined in X.509 are used in a variety of contexts. For example, the
X.509 certificate format is used in S/MIME (Chapter 21), IP Security (Chapter 22),
and SSL/TLS (Chapter 19).

X.509 was initially issued in 1988. The standard was subsequently revised
in 1993 to address some of the security concerns documented in [IANS90] and
[MITC90]. The standard is currently at edition eight, issued in 2016.

X.509 is based on the use of public-key cryptography and digital signatures.
The standard does not dictate the use of a specific digital signature algorithm nor a
specific hash function. Figure 15.10 illustrates the overall X.509 scheme for genera-
tion of a public-key certificate. The certificate for Bob’s public key includes unique
identifying information for Bob, Bob’s public key, and identifying information
about the CA, plus other information as explained subsequently. This information
is then signed by computing a hash value of the information and generating a digital
signature using the hash value and the CA’s private key. Bob can then either broad-
cast this certificate to other users, or attach the certificate to any document or data
block he signs. Anyone who needs to use Bob’s public key can be assured that the
public key contained in Bob’s certificate is valid because the certificate is signed by
the trusted CA.

Figure 15.10 X.509 Public-Key Certificate Use

Unsigned certificate:
contains user ID,
user's public key

Signed certificate

Verify algorithm
indicates whether
the signature is
validGenerate hash

code of unsigned
certificate

Use hash code of
unsigned certificate
with CA's private key
to form signature

H

H

Bob’s ID
information

CA information
Certificate

information

Bob’s public key

S V

Supply CA's public key
to the verify algorithm

Use verified certificate to
obtain Bob's public key

Create signed
digital certificate

M15_STAL7484_08_GE_C15.indd 486 20/04/22 07:02

15.4 / X.509 CERTifiCATEs 487

Certificates

The heart of the X.509 scheme is the public-key certificate associated with each
user. These user certificates are assumed to be created by some trusted certification
authority (CA) and placed in the directory by the CA or by the user. The directory
server itself is not responsible for the creation of public keys or for the certifica-
tion function; it merely provides an easily accessible location for users to obtain
certificates.

Figure 15.11a shows the general format of a certificate, which includes the
 following elements.

◆■ Version: Differentiates among successive versions of the certificate format; the
default is version 1. If the issuer unique identifier or subject unique identifier
are present, the value must be version 2. If one or more extensions are present,
the version must be version 3. Although the X.509 specification is currently at
version 7, no changes have been made to the fields that make up the certificate
since version 3.

◆■ Serial number: An integer value unique within the issuing CA that is unam-
biguously associated with this certificate.

◆■ Signature algorithm identifier: The algorithm used to sign the certificate
 together with any associated parameters. Because this information is repeated
in the signature field at the end of the certificate, this field has little, if any, utility.

◆■ Issuer name: X.500 name of the CA that created and signed this certificate.

Figure 15.11 X.509 Formats

Certificate
serial number

Version

Issuer name

Signature
algorithm
identifier

Subject name

Extensions

Issuer unique
identifier

Subject unique
identifier

Algorithm
Parameters

Not before

Algorithms
Parameters

Key

Algorithms
Parameters

Signature of certificate

(a) X.509 certificate

Not after

Subject's
public key

info

Signature

Period of
validity

Ve
rs

io
n

1

Ve
rs

io
n

2

Ve
rs

io
n

3

A
ll

ve
rs

io
ns

Issuer name

This update date

Next update date

•
•
•

Signature
algorithm
identifier

Algorithm
Parameters

User certificate serial #

(b) Certificate revocation list

Revocation date

Algorithms
Parameters

Signature of certificate
Signature

Revoked
certificate

User certificate serial #
Revocation date

Revoked
certificate

M15_STAL7484_08_GE_C15.indd 487 20/04/22 07:02

488 CHAPTER 15 / CRyPTogRAPHiC KEy MAnAgEMEnT AnD DisTRibuTion

◆■ Period of validity: Consists of two dates: the first and last on which the certifi-
cate is valid.

◆■ Subject name: The name of the user to whom this certificate refers. That is, this
certificate certifies the public key of the subject who holds the corresponding
private key.

◆■ Subject’s public-key information: The public key of the subject, plus an identi-
fier of the algorithm for which this key is to be used, together with any associ-
ated parameters.

◆■ Issuer unique identifier: An optional-bit string field used to identify uniquely
the issuing CA in the event the X.500 name has been reused for different
entities.

◆■ Subject unique identifier: An optional-bit string field used to identify uniquely
the subject in the event the X.500 name has been reused for different entities.

◆■ Extensions: A set of one or more extension fields. Extensions were added in
version 3 and are discussed later in this section.

◆■ Signature: Covers all of the other fields of the certificate. One component of
this field is the digital signature applied to the other fields of the certificate.
This field includes the signature algorithm identifier.

The unique identifier fields were added in version 2 to handle the possible
reuse of subject and/or issuer names over time. These fields are rarely used.

The standard uses the following notation to define a certificate:

 CA VAW = CA {V, SN, AI, CA, UCA, A, UA, Ap, TA}

where

Y V XW = the certificate of user X issued by certification authority Y

Y {I} = the signing of I by Y. It consists of I with an encrypted hash
code appended

V = version of the certificate

SN = serial number of the certificate

AI = identifier of the algorithm used to sign the certificate

CA = name of certificate authority

UCA = optional unique identifier of the CA

A = name of user A

UA = optional unique identifier of the user A

Ap = public key of user A
TA = period of validity of the certificate

The CA signs the certificate with its private key. If the corresponding public
key is known to a user, then that user can verify that a certificate signed by the CA is
valid. This is the typical digital signature approach illustrated in Figure 13.2.

M15_STAL7484_08_GE_C15.indd 488 20/04/22 07:02

15.4 / X.509 CERTifiCATEs 489

Obtaining a User’s CertifiCate User certificates generated by a CA have the
 following characteristics:

◆■ Any user with access to the public key of the CA can verify the user public key
that was certified.

◆■ No party other than the certification authority can modify the certificate
 without this being detected.

Because certificates are unforgeable, they can be placed in a directory without the
need for the directory to make special efforts to protect them.

If all users subscribe to the same CA, then there is a common trust of that CA.
All user certificates can be placed in the directory for access by all users. In addi-
tion, a user can transmit his or her certificate directly to other users. In either case,
once B is in possession of A’s certificate, B has confidence that messages it encrypts
with A’s public key will be secure from eavesdropping and that messages signed
with A’s private key are unforgeable.

If there is a large community of users, it may not be practical for all users to
subscribe to the same CA. Because it is the CA that signs certificates, each partici-
pating user must have a copy of the CA’s own public key to verify signatures. This
public key must be provided to each user in an absolutely secure (with respect
to integrity and authenticity) way so that the user has confidence in the associ-
ated certificates. Thus, with many users, it may be more practical for there to be
a number of CAs, each of which securely provides its public key to some fraction
of the users.

Now suppose that A has obtained a certificate from certification authority
X1 and B has obtained a certificate from CA X2. If A does not securely know the
public key of X2, then B’s certificate, issued by X2, is useless to A. A can read B’s
 certificate, but A cannot verify the signature. However, if the two CAs have securely
exchanged their own public keys, the following procedure will enable A to obtain
B’s public key.

Step 1 A obtains from the directory the certificate of X2 signed by X1. Because
A securely knows X1>s public key, A can obtain X2>s public key from its
 certificate and verify it by means of X1>s signature on the certificate.

Step 2 A then goes back to the directory and obtains the certificate of B signed by
X2. Because A now has a trusted copy of X2>s public key, A can verify the
signature and securely obtain B’s public key.

A has used a chain of certificates to obtain B’s public key. In the notation of
X.509, this chain is expressed as

 X1 V X2 W X2 V B W

In the same fashion, B can obtain A’s public key with the reverse chain:

 X2 V X1 W X1 V A W

M15_STAL7484_08_GE_C15.indd 489 20/04/22 07:02

490 CHAPTER 15 / CRyPTogRAPHiC KEy MAnAgEMEnT AnD DisTRibuTion

This scheme need not be limited to a chain of two certificates. An arbitrarily
long path of CAs can be followed to produce a chain. A chain with N elements
would be expressed as

 X1 V X2 W X2 V X3 W c XN V B W

In this case, each pair of CAs in the chain (Xi, Xi+ 1) must have created certifi-
cates for each other.

All these certificates of CAs by CAs need to appear in the directory, and the
user needs to know how they are linked to follow a path to another user’s public-key
certificate. X.509 suggests that CAs be arranged in a hierarchy so that navigation is
straightforward.

Figure 15.12, taken from X.509, is an example of such a hierarchy. The con-
nected circles indicate the hierarchical relationship among the CAs; the associated
boxes indicate certificates maintained in the directory for each CA entry. The direc-
tory entry for each CA includes two types of certificates:

◆■ Forward certificates: Certificates of X generated by other CAs

◆■ Reverse certificates: Certificates generated by X that are the certificates of
other CAs

Figure 15.12 X.509 Hierarchy: A Hypothetical Example

U

V

W Y

Z

B

X

C A

Y,,Z..
Z,,Y..
Z,,X..

W,,X..
X,,W..
X,,Z..

V,,W..
W,,V..

U,,V..
V,,U..

Z,,B..X,,A..X,,C..

V,,Y..
Y,,V..

M15_STAL7484_08_GE_C15.indd 490 20/04/22 07:02

15.4 / X.509 CERTifiCATEs 491

In this example, user A can acquire the following certificates from the direc-
tory to establish a certification path to B:

 X V W W W V V W V V Y W Y V Z W Z V B W

When A has obtained these certificates, it can unwrap the certification path in
sequence to recover a trusted copy of B’s public key. Using this public key, A can
send encrypted messages to B. If A wishes to receive encrypted messages back
from B, or to sign messages sent to B, then B will require A’s public key, which can
be obtained from the following certification path:

 Z V Y W Y V V W V V W W W V X W X V A W

B can obtain this set of certificates from the directory, or A can provide them
as part of its initial message to B.

revOCatiOn Of CertifiCates Recall from Figure 15.11 that each certificate includes
a period of validity, much like a credit card. Typically, a new certificate is issued just
before the expiration of the old one. In addition, it may be desirable on occasion to
revoke a certificate before it expires, for one of the following reasons.

 1. The user’s private key is assumed to be compromised.

 2. The user is no longer certified by this CA. Reasons for this include that the
subject’s name has changed, the certificate is superseded, or the certificate was
not issued in conformance with the CA’s policies.

 3. The CA’s certificate is assumed to be compromised.

Each CA must maintain a list consisting of all revoked but not expired
 certificates issued by that CA, including both those issued to users and to other
CAs. These lists should also be posted on the directory.

Each certificate revocation list (CRL) posted to the directory is signed by the
issuer and includes (Figure 15.11b) the issuer’s name, the date the list was created,
the date the next CRL is scheduled to be issued, and an entry for each revoked
certificate. Each entry consists of the serial number of a certificate and revocation
date for that certificate. Because serial numbers are unique within a CA, the serial
number is sufficient to identify the certificate.

When a user receives a certificate in a message, the user must determine
whether the certificate has been revoked. The user could check the directory each
time a certificate is received. To avoid the delays (and possible costs) associated
with directory searches, it is likely that the user would maintain a local cache of
 certificates and lists of revoked certificates.

X.509 Version 3

The X.509 version 2 format does not convey all of the information that recent design
and implementation experience has shown to be needed. [FORD95] lists the follow-
ing requirements not satisfied by version 2.

M15_STAL7484_08_GE_C15.indd 491 20/04/22 07:02

492 CHAPTER 15 / CRyPTogRAPHiC KEy MAnAgEMEnT AnD DisTRibuTion

 1. The subject field is inadequate to convey the identity of a key owner to a
 public-key user. X.509 names may be relatively short and lacking in obvious
identification details that may be needed by the user.

 2. The subject field is also inadequate for many applications, which typically
 recognize entities by an Internet email address, a URL, or some other Internet-
related identification.

 3. There is a need to indicate security policy information. This enables a security
application or function, such as IPSec, to relate an X.509 certificate to a given
policy.

 4. There is a need to limit the damage that can result from a faulty or malicious
CA by setting constraints on the applicability of a particular certificate.

 5. It is important to be able to identify different keys used by the same owner at
different times. This feature supports key lifecycle management: in particular,
the ability to update key pairs for users and CAs on a regular basis or under
exceptional circumstances.

Rather than continue to add fields to a fixed format, standards developers
felt that a more flexible approach was needed. Thus, version 3 includes a number
of optional extensions that may be added to the version 2 format. Each extension
consists of an extension identifier, a criticality indicator, and an extension value.
The criticality indicator indicates whether an extension can be safely ignored. If the
indicator has a value of TRUE and an implementation does not recognize the
 extension, it must treat the certificate as invalid.

The certificate extensions fall into three main categories: key and policy
 information, subject and issuer attributes, and certification path constraints.

Key and POliCy infOrmatiOn These extensions convey additional information
about the subject and issuer keys, plus indicators of certificate policy. A certif-
icate policy is a named set of rules that indicates the applicability of a certifi-
cate to a particular community and/or class of application with common security
 requirements. For example, a policy might be applicable to the authentication of
electronic data interchange (EDI) transactions for the trading of goods within a
given price range.

This area includes:

◆■ Authority key identifier: Identifies the public key to be used to verify the
 signature on this certificate or CRL. Enables distinct keys of the same CA to
be differentiated. One use of this field is to handle CA key pair updating.

◆■ Subject key identifier: Identifies the public key being certified. Useful for sub-
ject key pair updating. Also, a subject may have multiple key pairs and, cor-
respondingly, different certificates for different purposes (e.g., digital signature
and encryption key agreement).

◆■ Key usage: Indicates a restriction imposed as to the purposes for which, and
the policies under which, the certified public key may be used. May indicate
one or more of the following: digital signature, nonrepudiation, key encryption,

M15_STAL7484_08_GE_C15.indd 492 20/04/22 07:02

15.4 / X.509 CERTifiCATEs 493

data encryption, key agreement, CA signature verification on certificates, CA
signature verification on CRLs.

◆■ Private-key usage period: Indicates the period of use of the private key cor-
responding to the public key. Typically, the private key is used over a different
period from the validity of the public key. For example, with digital signature
keys, the usage period for the signing private key is typically shorter than that
for the verifying public key.

◆■ Certificate policies: Certificates may be used in environments where multiple
policies apply. This extension lists policies that the certificate is recognized as
supporting, together with optional qualifier information.

◆■ Policy mappings: Used only in certificates for CAs issued by other CAs. Policy
mappings allow an issuing CA to indicate that one or more of that issuer’s
policies can be considered equivalent to another policy used in the subject
CA’s domain.

CertifiCate sUbjeCt and issUer attribUtes These extensions support alterna-
tive names, in alternative formats, for a certificate subject or certificate issuer and
can convey additional information about the certificate subject to increase a cer-
tificate user’s confidence that the certificate subject is a particular person or entity.
For example, information such as postal address, position within a corporation, or
picture image may be required.

The extension fields in this area include:

◆■ Subject alternative name: Contains one or more alternative names, using any
of a variety of forms. This field is important for supporting certain applications,
such as electronic mail, EDI, and IPSec, which may employ their own name
forms.

◆■ Issuer alternative name: Contains one or more alternative names, using any of
a variety of forms.

◆■ Subject directory attributes: Conveys any desired X.500 directory attribute
values for the subject of this certificate.

CertifiCatiOn Path COnstraints These extensions allow constraint specifications
to be included in certificates issued for CAs by other CAs. The constraints may
 restrict the types of certificates that can be issued by the subject CA or that may
occur subsequently in a certification chain.

The extension fields in this area include:

◆■ Basic constraints: Indicates if the subject may act as a CA. If so, a certification
path length constraint may be specified.

◆■ Name constraints: Indicates a name space within which all subject names in
subsequent certificates in a certification path must be located.

◆■ Policy constraints: Specifies constraints that may require explicit certifi-
cate policy identification or inhibit policy mapping for the remainder of the
 certification path.

M15_STAL7484_08_GE_C15.indd 493 20/04/22 07:02

494 CHAPTER 15 / CRyPTogRAPHiC KEy MAnAgEMEnT AnD DisTRibuTion

 15.5 PUBLIC-KEY INFRASTRUCTURE

NIST SP 800-32 (Introduction to Public Key Technology and the Federal PKI
Infrastructure) defines a public-key infrastructure (PKI) as a set of policies,
processes, server platforms, software, and workstations used for the purpose of
administering certificates and public–private key pairs, including the ability to
issue, maintain, and revoke public key certificates. The principal objective for
developing a PKI is to enable secure, convenient, and efficient acquisition of
public keys.

A PKI architecture defines the organization and interrelationships among
CAs and PKI users. PKI architectures satisfy the following requirements:

 1. Any participant can read a certificate to determine the name and public key of
the certificate’s owner.

 2. Any participant can verify that the certificate originated from the certificate
authority and is not counterfeit.

 3. Only the certificate authority can create and update certificates.

 4. Any participant can verify the currency of the certificate.

Figure 15.13 provides a typical architecture for a PKI. The essential compo-
nents are:

◆■ End entity: This can be an end user; a device, such as a router or server; a
process; or any item that can be identified in the subject name of a public key
certificate. End entities can also be consumers of PKI-related services and,
in some cases, providers of PKI-related services. For example, a Registration
Authority is considered to be an end entity from the point of view of the
Certification Authority.

◆■ Certification authority (CA): An authority trusted by one or more users to
create and assign public key certificates. Optionally the certification authority
may create the subjects’ keys. CAs digitally sign public key certificates, which
effectively binds the subject’s name to the public key. CAs are also respon-
sible for issuing Certificate Revocation Lists (CRLs). The CRL identifies cer-
tificates previously issued by the CA that are revoked before their expiration
date. A certificate could be revoked because the user’s private key is assumed
to be compromise, the user is no longer certified by this CA, or the certificate
is assumed to be compromised.

◆■ Registration authority (RA): An optional component that can be used to
offload many of the administrative functions that a CA ordinarily assumes.
The RA is normally associated with the end entity registration process. This
includes the verification of the identity of the end entity attempting to register
with the PKI and obtain a certificate for its public key.

◆■ Repository: Denotes any method for storing and retrieving PKI-related in-
formation, such as public key certificates and CRLs. A repository can be
an X.500-based directory with client access via the Lightweight Directory
Access Protocol (LDAP). It also can be something simple, such as a means for

M15_STAL7484_08_GE_C15.indd 494 20/04/22 07:02

15.5 / PubliC-KEy infRAsTRuCTuRE 495

retrieval of a flat file on a remote server via the File Transfer Protocol (FTP) or
the Hyper Text Transfer Protocol (HTTP).

◆■ Relying party: Any user or agent that relies on the data in a certificate in
 making decisions.

Figure 15.13 illustrates the interaction of the various components. Consider
a relying party Alice that needs to use Bob’s public key. Alice must first obtain in
a reliable, secure fashion a copy of the public key of the CA. This can be done in a
number of ways and depends on the particular PKI architecture and enterprise pol-
icy. If Alice wishes to send encrypted data to Bob, Alice checks with the Repository
to determine if Bob’s certificate has been revoked, and if not obtains a copy of
Bob’s certificate. Alice can then use Bob’s public key to encrypt data sent to Bob.
Bob can also send a document to Alice signed with Bob’s private key. Bob may in-
clude his certificate with the document or assume that Alice already has or can ob-
tain the certificate. In either case, Alice first uses the CA’s public key to verify that
the certificate is valid, then uses Bob’s public key (obtained from the certificate) to
validate Bob’s signature.

Application
for
certificate

Bob¿s
Public key
certificate

Bob¿s
Public key
certificate

Bob¿s
Public key
certificate

CA¿s
Public key

Document
signed with
Bob¿s private
key

Request
for issuing
certificate

Certificates
and certificate
revocation
lists (CRLs)

Registration
Authority (RA)

Certification
Authority (CA)

Repository

Signing
Party
Bob

Relying
Party Alice

Public key

Private key

Public key

Private key

Figure 15.13 PKI Scenario

M15_STAL7484_08_GE_C15.indd 495 20/04/22 07:02

496 CHAPTER 15 / CRyPTogRAPHiC KEy MAnAgEMEnT AnD DisTRibuTion

Rather than a single CA, an enterprise may need to rely on multiple CAs
and multiple repositories. CAs can be organized in a hierarchical fashion, with a
root CA that is widely trusted signing the public key certificate of subordinate CAs.
Many root certificates are embedded in Web browsers so they have built-in trust of
those CAs. Web servers, email clients, smartphones and many other types of hard-
ware and software also support PKI and contain trusted root certificates from the
major CAs.

 15.6 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

end-to-end encryption
key distribution
key distribution center (KDC)

key management
man-in-the-middle attack
master key

public-key certificate

Review Questions
 15.1 Explain why man-in-the-middle attacks are ineffective on the secret key distribution

protocol discussed in Figure 15.8.
 15.2 What is the difference between a session key and a master key?
 15.3 What is a key distribution center?
 15.4 What is one role that nonces play in key distribution using public-key cryptography?
 15.5 List four requirements for the distribution of public keys using the public-key

 certificates scheme.
 15.6 Discuss the potential security issues that arise due to a public-key–directory-based system.
 15.7 What is a public-key certificate?
 15.8 What are the requirements for the use of a public-key certificate scheme?
 15.9 What is the purpose of the X.509 standard?
 15.10 What types of certificates does an X.509 CA’s directory entry contain?
 15.11 What is a certificate revocation list?

Problems
 15.1 One local area network vendor provides a key distribution facility, as illustrated in

Figure 15.14. Describe the operation of the scheme.
 15.2 “We are under great pressure, Holmes.” Detective Lestrade looked nervous. “We

have learned that copies of sensitive government documents are stored in computers
of one foreign embassy here in London. Normally these documents exist in electronic
form only on a selected few government computers that satisfy the most stringent
security requirements. However, sometimes they must be sent through the network
connecting all government computers. But all messages in this network are encrypted
using a top-secret encryption algorithm certified by our best crypto experts. Even the
NSA and the KGB are unable to break it. And now these documents have appeared
in hands of diplomats of a small, otherwise insignificant, country. And we have no
idea how it could happen.”

M15_STAL7484_08_GE_C15.indd 496 20/04/22 07:02

15.6 / KEy TERMs, REviEw QuEsTions, AnD PRoblEMs 497

Figure 15.14 Figure for Problem 15.1

Key
Distribution

Center (KDC)

B A

(1) IDA, E(Ka, Na)

(2) IDA, E(Ka, Na), IDB, E(Kb, Nb)

(4) E(Ka, [Ks, IDB, Na])

(3) E(Kb, [Ks, IDA, Nb]), E(Ka, [Ks, IDB, Na])

“But you do have some suspicion who did it, do you?” asked Holmes.
“Yes, we did some routine investigation. There is a man who has legal access

to one of the government computers and has frequent contacts with diplomats from
the embassy. But the computer he has access to is not one of the trusted ones where
these documents are normally stored. He is the suspect, but we have no idea how he
could obtain copies of the documents. Even if he could obtain a copy of an encrypted
document, he couldn’t decrypt it.”

“Hmm, please describe the communication protocol used on the network.”
Holmes opened his eyes, thus proving that he had followed Lestrade’s talk with an
attention that contrasted with his sleepy look.

“Well, the protocol is as follows. Each node N of the network has been assigned
a unique secret key Kn. This key is used to secure communication between the node
and a trusted server. That is, all the keys are stored also on the server. User A, wishing
to send a secret message M to user B, initiates the following protocol:

1. A generates a random number R and sends to the server his name A, destination
B, and E(Ka, R).

2. Server responds by sending E(Kb, R) to A.
3. A sends E(R, M) together with E(Kb, R) to B.
4. B knows Kb, thus decrypts E(Kb, R), to get R and will subsequently use R to

decrypt E(R, M) to get M.

You see that a random key is generated every time a message has to be sent. I admit
the man could intercept messages sent between the top-secret trusted nodes, but I see
no way he could decrypt them.”

“Well, I think you have your man, Lestrade. The protocol isn’t secure because
the server doesn’t authenticate users who send him a request. Apparently designers
of the protocol have believed that sending E(Kx, R) implicitly authenticates user X as
the sender, as only X (and the server) knows Kx. But you know that E(Kx, R) can be
intercepted and later replayed. Once you understand where the hole is, you will be
able to obtain enough evidence by monitoring the man’s use of the computer he has
access to. Most likely he works as follows. After intercepting E(Ka, R) and E(R, M)

M15_STAL7484_08_GE_C15.indd 497 20/04/22 07:02

498 CHAPTER 15 / CRyPTogRAPHiC KEy MAnAgEMEnT AnD DisTRibuTion

(see steps 1 and 3 of the protocol), the man, let’s denote him as Z, will continue by
pretending to be A and . . .

Finish the sentence for Holmes.
 15.3 The 1988 version of X.509 lists properties that RSA keys must satisfy to be secure

given current knowledge about the difficulty of factoring large numbers. The discus-
sion concludes with a constraint on the public exponent and the modulus n:

It must be ensured that e 7 log2(n) to prevent attack by taking the eth
root mod n to disclose the plaintext.

Although the constraint is correct, the reason given for requiring it is incorrect. What
is wrong with the reason given and what is the correct reason?

 15.4 Determine the chain of certificates associated with the website www.pearson.com,
describing the type of each CA.

 15.5 NIST defines the term cryptoperiod as the time span during which a specific key is
authorized for use or in which the keys for a given system or application may remain
in effect. One document on key management uses the following time diagram for
a shared secret key.

Originator usage period

Recipient usage period

Cryptoperiod

Explain the overlap by giving an example application in which the originator’s usage
period for the shared secret key begins before the recipient’s usage period and also
ends before the recipients usage period.

 15.6 Consider the following protocol, designed to let A and B decide on a fresh, shared
session key KAB

= . We assume that they already share a long-term key KAB.
1. A S B: A, NA.
2. B S A: E(KAB, [NA, KAB

=])
3. A S B: E(KAB

= , NA)
a. We first try to understand the protocol designer’s reasoning:
—Why would A and B believe after the protocol ran that they share KAB

= with the
other party?

—Why would they believe that this shared key is fresh?
In both cases, you should explain both the reasons of both A and B, so your answer
should complete the sentences
A believes that she shares KAB

= with B since . . .
B believes that he shares KAB

= with A since . . .
A believes that KAB

= is fresh since . . .
B believes that KAB

= is fresh since . . .
b. Assume now that A starts a run of this protocol with B. However, the connection

is intercepted by the adversary C. Show how C can start a new run of the protocol
using reflection, causing A to believe that she has agreed on a fresh key with B (in
spite of the fact that she has only been communicating with C). Thus, in particular,
the belief in (a) is false.

c. Propose a modification of the protocol that prevents this attack.
 15.7 What are the core components of a PKI? Briefly describe each component.

M15_STAL7484_08_GE_C15.indd 498 20/04/22 07:02

http://www.pearson.com

15.6 / KEy TERMs, REviEw QuEsTions, AnD PRoblEMs 499

 15.8 Explain the problems with key management and how it affects symmetric
cryptography.

 15.9 What is the effect of adding the instruction EMKi

 EMKi: X S E(KMHi, X) i = 0, 1

 15.10 Suppose N different systems use the IBM Cryptographic Subsystem with host master
keys KMH[i](i = 1, 2, c N). Devise a method for communicating between sys-
tems without requiring the system to either share a common host master key or to
divulge their individual host master keys. Hint: Each system needs three variants of
its host master key.

 15.11 The principal objective of the IBM Cryptographic Subsystem is to protect transmis-
sions between a terminal and the processing system. Devise a procedure, perhaps
adding instructions, which will allow the processor to generate a session key KS and
distribute it to Terminal i and Terminal j without having to store a key-equivalent
variable in the host.

M15_STAL7484_08_GE_C15.indd 499 20/04/22 07:02

User Authentication
16.1 Remote User-Authentication Principles

The NIST Model for Electronic User Authentication
Means of Authentication
Multifactor Authentication
Mutual Authentication

16.2 Remote User-Authentication Using Symmetric Encryption

Mutual Authentication

16.3 Kerberos

Motivation
Kerberos Version 4
Kerberos Version 5

16.4 Remote User-Authentication Using Asymmetric Encryption

Mutual Authentication
One-Way Authentication

16.5 Federated Identity Management

Identity Management
Identity Federation

16.6 Key Terms, Review Questions, and Problems

CHAPTER16

500

M16_STAL7484_08_GE_C16.indd 500 30/04/22 8:35 AM

16.1 / Remote UseR-AUthenticAtion PRinciPles 501

This chapter examines some of the authentication functions that have been developed
to support network-based user authentication. The chapter begins with an introduction
to some of the concepts and key considerations for user authentication over a network
or the Internet. The next section examines user-authentication protocols that rely on
symmetric encryption. This is followed by a section on one of the earliest and also one
of the most widely used authentication services: Kerberos. Next, the chapter looks at
user-authentication protocols that rely on asymmetric encryption. This is followed by a
discussion of the X.509 user-authentication protocol. Finally, the concept of federated
identity is introduced.

 16.1 REMOTE USER-AUTHENTICATION PRINCIPLES

User authentication is the process of determining whether some user or some ap-
plication or process acting on behalf of a user is, in fact, who or what it declares itself
to be. Authentication technology provides access control for systems by checking to
see if a user’s credentials match the credentials in a database of authorized users or
in a data authentication server. Authentication enables organizations to keep their
networks secure by permitting only authenticated users (or processes) to access
its protected resources, which may include computer systems, networks, databases,
websites, and other network-based applications or services.

Note that user authentication is distinct from message authentication. As
defined in Chapter 12, message authentication is a procedure that allows communicat-
ing parties to verify that the contents of a received message have not been altered and
that the source is authentic. This chapter is concerned solely with user authentication.

The NIST Model for Electronic User Authentication

NIST SP 800-63 (Digital Identity Guidelines) defines a general model for user authen-
tication that involves a number of entities and procedures, as shown in Figure 16.1,
based on SP-800-63. Three concepts are important in understanding this model:

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

◆◆ Present an overview of techniques for remote user authentication using
symmetric encryption.

◆◆ Give a presentation on Kerberos.

◆◆ Explain the differences between versions 4 and 5 of Kerberos.

◆◆ Describe the use of Kerberos in multiple realms.

◆◆ Present an overview of techniques for remote user authentication using
asymmetric encryption.

◆◆ Understand the need for a federated identity management system.

M16_STAL7484_08_GE_C16.indd 501 30/04/22 8:35 AM

502 chAPteR 16 / UseR AUthenticAtion

◆■ Digital identity: The unique representation of a subject engaged in an online
transaction. The representation consists of an attribute or set of attributes that
uniquely describe a subject within a given context of a digital service, but does
not necessarily uniquely identify the subject in all contexts.

◆■ Identity proofing: Establishes that a subject is who they claim to be to a stated
level of certitude. This process involves collecting, validating, and verifying
information about a person.

◆■ Digital authentication: The process of determining the validity of one or more
authenticators used to claim a digital identity. Authentication establishes that
a subject attempting to access a digital service is in control of the technologies
used to authenticate. Successful authentication provides reasonable risk-based
assurances that the subject accessing the service today is the same as the sub-
ject that previously accessed the service.

Six entities are defined in Figure 16.1:

◆■ Credential service provider (CSP): A trusted entity that issues or registers
 subscriber authenticators. For this purpose, the CSP establishes a digital
 credential for each subscriber and issues electronic credentials to subscribers.
A CSP may be an independent third party or may issue credentials for its
own use.

◆■ Verifier: An entity that verifies the claimant’s identity by verifying the
 claimant’s possession and control of one or two authenticators using an
authentication protocol. To do this, the verifier may also need to validate
 credentials that link the authenticator(s) to the subscriber’s identifier and
check their status.

CSP 5 credential service provider
RP 5 relying party

Enrollment, identity proofing,
credential issuance

Digital authentication

CSP

RP

Applicant

becomes

enrollment and
identity proofing

authenticator
enrollment/

issuance

becomes

authenticated session

validate authenticator/
credential binding

authentication
assertion

authenticate

attributes

Subscriber

Claimant

Verifier

Figure 16.1 The NIST 800-63 Digital Identity Model

M16_STAL7484_08_GE_C16.indd 502 30/04/22 8:35 AM

16.1 / Remote UseR-AUthenticAtion PRinciPles 503

◆■ Relying party (RP): An entity that relies upon the subscriber’s authenticator(s)
and credentials or a verifier’s assertion of a claimant’s identity, typically to pro-
cess a transaction or grant access to information or a system.

◆■ Applicant: A subject undergoing the processes of enrollment and identity
proofing.

◆■ Claimant: A subject whose identity is to be verified using one or more authen-
tication protocols.

◆■ Subscriber: A party who has received a credential or authenticator from a CSP.

The left-hand portion of Figure 16.1 illustrates the process whereby an applicant
is enrolled into the system for purposes of accessing certain services and resources.
First, the applicant presents to the CSP evidence of possession of the attributes to be
associated with this digital identity. Upon successful proofing by the CSP, the applicant
becomes a subscriber. Then, depending on the details of the overall authentication sys-
tem, the CSP issues some sort of electronic credential to the subscriber. The credential
is a data structure that authoritatively binds an identity and additional attributes to one
or more authenticators possessed by a subscriber, and can be verified when presented
to the verifier in an authentication transaction. The authenticator could be an encryp-
tion key or an encrypted password that identifies the subscriber. The authenticator may
be issued by the CSP, generated directly by the subscriber, or provided by a third party.
The authenticator and credential may be used in subsequent authentication events.

Once a user is registered as a subscriber, the actual authentication process can
take place between the subscriber and one or more systems that perform authen-
tication (right-hand portion of Figure 16.1). The party to be authenticated is called
a claimant and the party verifying that identity is called a verifier. When a claimant
successfully demonstrates possession and control of an authenticator to a verifier
through an authentication protocol, the verifier can verify that the claimant is the
subscriber named in the corresponding credential. The verifier passes on an asser-
tion about the identity of the subscriber to the relying party (RP). That assertion
includes identity information about a subscriber, such as the subscriber name, an
identifier assigned at registration, or other subscriber attributes that were verified in
the registration process. The RP can use the authenticated information provided by
the verifier to make access control or authorization decisions.

In some cases, the verifier interacts with the CSP to access the credential that
binds the subscriber’s identity to their authenticator and to optionally obtain claim-
ant attributes. In other cases, the verifier does not need to communicate in real time
with the CSP to complete the authentication activity (e.g., some uses of digital cer-
tificates). Therefore, the dashed line between the verifier and the CSP represents a
logical link between the two entities.

An implemented system for authentication will differ from or be more com-
plex than this simplified model, but the model illustrates the key roles and functions
needed for a secure authentication system.

Means of Authentication

There are three general means, or authentication factors, of authenticating a user’s
identity, which can be used alone or in combination:

M16_STAL7484_08_GE_C16.indd 503 30/04/22 8:35 AM

504 chAPteR 16 / UseR AUthenticAtion

◆■ Knowledge factor (something the individual knows): Requires the user to
demonstrate knowledge of secret information. Routinely used in single-layer
authentication processes, knowledge factors can come in the form of pass-
words, passphrases, personal identification numbers (PINs), or answers to
secret questions.

◆■ Possession factor (something the individual possesses): Physical entity pos-
sessed by the authorized user to connect to the client computer or portal. This
type of authenticator used to be referred to as a token, but that term is now
deprecated. The term hardware token is a preferable alternative. Possession
factors fall into two categories:

Connected hardware tokens are items that connect to a computer logically
(e.g., via wireless) or physically in order to authenticate identity. Items such
as smart cards, wireless tags, and USB tokens are common connected tokens
used to serve as a possession factor.

Disconnected hardware tokens are items that do not directly connect to the
client computer, instead requiring input from the individual attempting to
sign in. Typically, a disconnected hardware token device will use a built-in
screen to display authentication data that are then utilized by the user to sign
in when prompted.

◆■ Inherence factor (something the individual is or does): Refers to characteris-
tics, called biometrics, that are unique or almost unique to the individual. These
include static biometrics, such as fingerprint, retina, and face; and dynamic bio-
metrics, such as voice, handwriting, and typing rhythm.

The specific items used during authentication, such as a password or hardware
token, are referred to as authenticators. All of these methods, properly implemented
and used, can provide secure user authentication. However, each method has prob-
lems (Table 16.1). An adversary may be able to guess or steal a password. Similarly,
an adversary may be able to forge or steal a card. A user may forget a password or
lose a card. A user may share a password or card with a colleague. Furthermore,
there is a significant administrative overhead for managing password and card
information on systems and securing such information on systems. With respect

Table 16.1 Authentication Factors

Factor Examples Properties

Knowledge User ID
Password
PIN

Can be shared
Many passwords easy to guess
Can be forgotten

Possession Smart Card
Electronic Badge
Electronic Key

Can be shared
Can be duplicated (cloned)
Can be lost or stolen

Inherence Fingerprint
Face
Iris
Voice print

Not possible to share
False positives and false
 negatives possible
Forging difficult

M16_STAL7484_08_GE_C16.indd 504 30/04/22 8:35 AM

16.1 / Remote UseR-AUthenticAtion PRinciPles 505

to biometric authenticators, there are a variety of problems, including dealing with
false positives and false negatives, user acceptance, cost, security of the sensor itself,
and convenience.

Multifactor Authentication

Multifactor authentication refers to the use of more than one of the authentication
means in the preceding list (Figure 16.2). Typically, this strategy involves the use of
authentication technologies from two of the classes of factors described above, such
as a PIN plus a hardware token (knowledge factor plus possession factor) or a PIN
and a biometric (knowledge factor plus inherence factor). Multifactor authentica-
tion will generally be more secure than the use of a single factor, because the failure
modes for different factors are largely independent. So, for example, a hardware
token might be lost or stolen, but the PIN required for use with the token would not
be lost or stolen at the same time. This assumption is not always true, however. For
example, a PIN attached to a hardware token is compromised at the same time that
the token is lost or stolen. Nevertheless, multifactor authentication is an important
means of reducing vulnerability.

Mutual Authentication

An important application area is that of mutual authentication protocols. Such pro-
tocols enable communicating parties to satisfy themselves mutually about each oth-
er’s identity and to exchange session keys. This topic was examined in Chapter 14.

Client Client

Authen
tic

ati
on

protoco
l

Authentication
logic using
first factor

Pass

Fail

Authen
tic

ati
on

protoco
l

Authentication
logic using

second factor

Pass

Fail

Figure 16.2 Multifactor Authentication

M16_STAL7484_08_GE_C16.indd 505 30/04/22 8:35 AM

506 chAPteR 16 / UseR AUthenticAtion

There, the focus was key distribution. We return to this topic here to consider the
wider implications of authentication.

Central to the problem of authenticated key exchange are two issues: confi-
dentiality and timeliness. To prevent masquerade and to prevent compromise of
session keys, essential identification and session-key information must be commu-
nicated in encrypted form. This requires the prior existence of secret or public keys
that can be used for this purpose. The second issue, timeliness, is important because
of the threat of message replays. Such replays, at worst, could allow an opponent to
compromise a session key or successfully impersonate another party. At minimum,
a successful replay can disrupt operations by presenting parties with messages that
appear genuine but are not.

[GONG93] lists the following examples of replay attacks:

1. The simplest replay attack is one in which the opponent simply copies a mes-
sage and replays it later.

2. An opponent can replay a timestamped message within the valid time window.
If both the original and the replay arrive within then time window, this inci-
dent can be logged.

3. As with example (2), an opponent can replay a timestamped message within
the valid time window, but in addition, the opponent suppresses the original
message. Thus, the repetition cannot be detected.

4. Another attack involves a backward replay without modification. This is a
replay back to the message sender. This attack is possible if symmetric encryp-
tion is used and the sender cannot easily recognize the difference between
messages sent and messages received on the basis of content.

One approach to coping with replay attacks is to attach a sequence number to
each message used in an authentication exchange. A new message is accepted only
if its sequence number is in the proper order. The difficulty with this approach is
that it requires each party to keep track of the last sequence number for each claim-
ant it has dealt with. Because of this overhead, sequence numbers are generally not
used for authentication and key exchange. Instead, one of the following two general
approaches is used:

◆■ Timestamps: Party A accepts a message as fresh only if the message contains
a timestamp that, in A’s judgment, is close enough to A’s knowledge of cur-
rent time. This approach requires that clocks among the various participants
be synchronized.

◆■ Challenge/response: Party A, expecting a fresh message from B, first sends
B a nonce (challenge) and requires that the subsequent message (response)
received from B contain the correct nonce value.

It can be argued (e.g., [LAM92a]) that the timestamp approach should not be
used for connection-oriented applications because of the inherent difficulties with
this technique. First, some sort of protocol is needed to maintain synchronization
among the various processor clocks. This protocol must be both fault tolerant, to cope
with network errors, and secure, to cope with hostile attacks. Second, the opportu-
nity for a successful attack will arise if there is a temporary loss of synchronization

M16_STAL7484_08_GE_C16.indd 506 30/04/22 8:35 AM

16.2 / Remote UseR-AUthenticAtion Using symmetRic encRyPtion 507

resulting from a fault in the clock mechanism of one of the parties. Finally, because of
the variable and unpredictable nature of network delays, distributed clocks cannot be
expected to maintain precise synchronization. Therefore, any timestamp-based pro-
cedure must allow for a window of time sufficiently large to accommodate network
delays yet sufficiently small to minimize the opportunity for attack.

On the other hand, the challenge-response approach is unsuitable for a con-
nectionless type of application, because it requires the overhead of a handshake
before any connectionless transmission, effectively negating the chief characteris-
tic of a connectionless transaction. For such applications, reliance on some sort of
secure time server and a consistent attempt by each party to keep its clocks in syn-
chronization may be the best approach (e.g., [LAM92b]).

 16.2 REMOTE USER-AUTHENTICATION USING
SYMMETRIC ENCRYPTION

Mutual Authentication

As was discussed in Chapter 14, a two-level hierarchy of symmetric encryption keys
can be used to provide confidentiality for communication in a distributed environ-
ment. In general, this strategy involves the use of a trusted key distribution center
(KDC). Each party in the network shares a secret key, known as a master key, with
the KDC. The KDC is responsible for generating keys to be used for a short time
over a connection between two parties, known as session keys, and for distributing
those keys using the master keys to protect the distribution. This approach is quite
common. As an example, we look at the Kerberos system in Section 16.3. The discus-
sion in this subsection is relevant to an understanding of the Kerberos mechanisms.

Needham and Schroeder [NEED78] put forth a protocol for secret key dis-
tribution using a KDC that includes authentication features. The protocol can be
summarized as follows.1

1. A S KDC: IDA } IDB }N1

2. KDC S A: E(Ka, [Ks } IDB }N1 }E(Kb, [Ks } IDA])])

3. A S B: E(Kb, [Ks } IDA])

4. B S A: E(Ks, N2)

5. A S B: E(Ks, f(N2)) where f() is a generic function that modifies the
 value of the nonce.

Secret keys Ka and Kb are shared between A and the KDC and B and the
KDC, respectively. The purpose of the protocol is to distribute securely a session
key Ks to A and B. Entity A securely acquires a new session key in step 2. The mes-
sage in step 3 can be decrypted, and hence understood, only by B. Step 4 reflects B’s
knowledge of Ks, and step 5 assures B of A’s knowledge of Ks and assures B that
this is a fresh message because of the use of the nonce N2. The purpose of steps 4

1The portion to the left of the colon indicates the sender and the receiver; the portion to the right indi-
cates the contents of the message; the symbol } indicates concatenation.

M16_STAL7484_08_GE_C16.indd 507 30/04/22 8:35 AM

508 chAPteR 16 / UseR AUthenticAtion

and 5 is to prevent a certain type of replay attack. In particular, if an opponent is
able to capture the message in step 3 and replay it, this might in some fashion dis-
rupt operations at B.

Despite the handshake of steps 4 and 5, the protocol is still vulnerable to a
form of replay attack. Suppose that an opponent, X, has been able to compromise
an old session key. Admittedly, this is a much more unlikely occurrence than that an
opponent has simply observed and recorded step 3. Nevertheless, it is a potential
security risk. X can impersonate A and trick B into using the old key by simply
replaying step 3. Unless B remembers indefinitely all previous session keys used
with A, B will be unable to determine that this is a replay. If X can intercept the
handshake message in step 4, then it can impersonate A’s response in step 5. From
this point on, X can send bogus messages to B that appear to B to come from A
using an authenticated session key.

Denning [DENN81, DENN82] proposes to overcome this weakness by a mod-
ification to the Needham/Schroeder protocol that includes the addition of a time-
stamp to steps 2 and 3. Her proposal assumes that the master keys, Ka and Kb, are
secure, and it consists of the following steps.

1. A S KDC: IDA } IDB

2. KDC S A: E(Ka, [Ks } IDB }T }E(Kb, [Ks } IDA }T])])

3. A S B: E(Kb, [Ks } IDA }T])

4. B S A: E(Ks, N1)

5. A S B: E(Ks, f(N1))

T is a timestamp that assures A and B that the session key has only just been
generated. Thus, both A and B know that the key distribution is a fresh exchange.
A and B can verify timeliness by checking that

� Clock - T � 6 ∆t1 + ∆t2

where ∆t1 is the estimated normal discrepancy between the KDC’s clock and the
local clock (at A or B) and ∆t2 is the expected network delay time. Each node can
set its clock against some standard reference source. Because the timestamp T is
encrypted using the secure master keys, an opponent, even with knowledge of an
old session key, cannot succeed because a replay of step 3 will be detected by B as
untimely.

A final point: Steps 4 and 5 were not included in the original presentation
[DENN81] but were added later [DENN82]. These steps confirm the receipt of the
session key at B.

The Denning protocol seems to provide an increased degree of security
compared to the Needham/Schroeder protocol. However, a new concern is raised:
namely, that this new scheme requires reliance on clocks that are synchronized
throughout the network. [GONG92] points out a risk involved. The risk is based
on the fact that the distributed clocks can become unsynchronized as a result
of sabotage on or faults in the clocks or the synchronization mechanism. The
 problem occurs when a sender’s clock is ahead of the intended recipient’s clock.
In this case, an opponent can intercept a message from the sender and replay
it later when the timestamp in the message becomes current at the recipient’s

M16_STAL7484_08_GE_C16.indd 508 30/04/22 8:35 AM

16.2 / Remote UseR-AUthenticAtion Using symmetRic encRyPtion 509

site. This replay could cause unexpected results. Gong refers to such attacks as
suppress-replay attacks.

One way to counter suppress-replay attacks is to enforce the requirement that
parties regularly check their clocks against the KDC’s clock. The other alternative,
which avoids the need for clock synchronization, is to rely on handshaking protocols
using nonces. This latter alternative is not vulnerable to a suppress-replay attack,
because the nonces the recipient will choose in the future are unpredictable to the
sender. The Needham/Schroeder protocol relies on nonces only but, as we have
seen, has other vulnerabilities.

In [KEHN92], an attempt is made to respond to the concerns about suppress-
replay attacks and at the same time fix the problems in the Needham/Schroeder
protocol. Subsequently, an inconsistency in this latter protocol was noted and an
improved strategy was presented in [NEUM93a]. The protocol is

1. A S B: IDA }Na

2. B S KDC: IDB }Nb }E(Kb, [IDA }Na }Tb])

3. KDC S A: E(Ka, [IDB }Na }Ks }Tb]) }E(Kb, [IDA }Ks }Tb]) }Nb

4. A S B: E(Kb, [IDA }Ks }Tb]) }E(Ks, Nb)

Let us follow this exchange step by step.

1. A initiates the authentication exchange by generating a nonce, Na, and sending
that plus its identifier to B in plaintext. This nonce will be returned to A in an
encrypted message that includes the session key, assuring A of its timeliness.

2. B alerts the KDC that a session key is needed. Its message to the KDC includes
its identifier and a nonce, Nb. This nonce will be returned to B in an encrypted
message that includes the session key, assuring B of its timeliness. B’s message
to the KDC also includes a block encrypted with the secret key shared by B
and the KDC. This block is used to instruct the KDC to issue credentials to A;
the block specifies the intended recipient of the credentials, a suggested expi-
ration time for the credentials, and the nonce received from A.

3. The KDC passes on to A B’s nonce and a block encrypted with the secret key
that B shares with the KDC. The block serves as a “ticket” that can be used
by A for subsequent authentications, as will be seen. The KDC also sends to
A a block encrypted with the secret key shared by A and the KDC. This block
verifies that B has received A’s initial message (IDB) and that this is a timely
message and not a replay (Na), and it provides A with a session key (Ks) and
the time limit on its use (Tb).

4. A transmits the ticket to B, together with the B’s nonce, the latter encrypted
with the session key. The ticket provides B with the secret key that is used to
decrypt E(Ks, Nb) to recover the nonce. The fact that B’s nonce is encrypted
with the session key authenticates that the message came from A and is not a
replay.

This protocol provides an effective, secure means for A and B to establish
a session with a secure session key. Furthermore, the protocol leaves A in posses-
sion of a key that can be used for subsequent authentication to B, avoiding the

M16_STAL7484_08_GE_C16.indd 509 30/04/22 8:35 AM

510 chAPteR 16 / UseR AUthenticAtion

need to contact the authentication server repeatedly. Suppose that A and B estab-
lish a session using the aforementioned protocol and then conclude that session.
Subsequently, but within the time limit established by the protocol, A desires a new
session with B. The following protocol ensues:

1. A S B: E(Kb, [IDA }Ks }Tb]) }Na
=

2. B S A: Nb
= }E(Ks, Na

=)

3. A S B: E(Ks, Nb
=)

When B receives the message in step 1, it verifies that the ticket has not expired. The
newly generated nonces Na

= and Nb
= assure each party that there is no replay attack.

In all the foregoing, the time specified in Tb is a time relative to B’s clock. Thus,
this timestamp does not require synchronized clocks, because B checks only self-
generated timestamps.

 16.3 KERBEROS

Kerberos is an authentication service that addresses the following problem: Assume
an open distributed environment in which users at workstations wish to access
 services on servers distributed throughout the network. We would like for servers to
be able to restrict access to authorized users and to be able to authenticate requests
for service. In this environment, a workstation cannot be trusted to identify its users
correctly to network services. In particular, the following three threats exist:

1. A user may gain access to a particular workstation and pretend to be another
user operating from that workstation.

2. A user may alter the network address of a workstation so that the requests
sent from the altered workstation appear to come from the impersonated
workstation.

3. A user may eavesdrop on exchanges and use a replay attack to gain entrance
to a server or to disrupt operations.

In any of these cases, an unauthorized user may be able to gain access to services
and data that he or she is not authorized to access. Rather than building in elab-
orate authentication protocols at each server, Kerberos provides a centralized
authentication server whose function is to authenticate users to servers and servers
to users. Unlike most other authentication schemes described in this book, Kerberos
relies exclusively on symmetric encryption, making no use of public-key encryption.

 The first widely used version of Kerberos was Version 4 [MILL88, STEI88].
Version 5 [KOHL94] corrects some of the security deficiencies of version 4 and has
been issued as a proposed Internet Standard (RFC 4120 and RFC 4121).

We begin this section with a brief discussion of the motivation for the
Kerberos approach. Then, because of the complexity of Kerberos, it is best to start
with a description of the authentication protocol used in version 4. This enables us
to see the essence of the Kerberos strategy without considering some of the details
required to handle subtle security threats. Finally, we examine version 5.

M16_STAL7484_08_GE_C16.indd 510 30/04/22 8:35 AM

16.3 / KeRbeRos 511

Motivation

If a set of users is provided with dedicated personal computers that have no network
connections, then a user’s resources and files can be protected by physically securing
each personal computer. When these users instead are served by a centralized time-
sharing system, the time-sharing operating system must provide the security. The
operating system can enforce access-control policies based on user identity and use
the logon procedure to identify users.

Today, neither of these scenarios is typical. More common is a distributed
architecture consisting of dedicated user workstations (clients) and distributed
or centralized servers. In this environment, three approaches to security can be
envisioned.

1. Rely on each individual client workstation to assure the identity of its user or
users and rely on each server to enforce a security policy based on user iden-
tification (ID).

2. Require that client systems authenticate themselves to servers, but trust the
client system concerning the identity of its user.

3. Require the user to prove his or her identity for each service invoked. Also
require that servers prove their identity to clients.

In a small, closed environment in which all systems are owned and operated
by a single organization, the first or perhaps the second strategy may suffice. But
in a more open environment in which network connections to other machines are
supported, the third approach is needed to protect user information and resources
housed at the server. Kerberos supports this third approach. Kerberos assumes a
distributed client/server architecture and employs one or more Kerberos servers to
provide an authentication service.

The first published report on Kerberos [STEI88] listed the following
requirements.

◆■ Secure: A network eavesdropper should not be able to obtain the necessary
information to impersonate a user. More generally, Kerberos should be strong
enough that a potential opponent does not find it to be the weak link.

◆■ Reliable: For all services that rely on Kerberos for access control, lack of
 availability of the Kerberos service means lack of availability of the supported
services. Hence, Kerberos should be highly reliable and should employ a
 distributed server architecture with one system able to back up another.

◆■ Transparent: Ideally, the user should not be aware that authentication is taking
place beyond the requirement to enter a password.

◆■ Scalable: The system should be capable of supporting large numbers of clients
and servers. This suggests a modular, distributed architecture.

To support these requirements, the overall scheme of Kerberos is that of a
trusted third-party authentication service that uses a protocol based on that pro-
posed by Needham and Schroeder [NEED78], which was discussed in Section 16.2.
It is trusted in the sense that clients and servers trust Kerberos to mediate their

M16_STAL7484_08_GE_C16.indd 511 30/04/22 8:35 AM

512 chAPteR 16 / UseR AUthenticAtion

mutual authentication. Assuming the Kerberos protocol is well designed, then the
authentication service is secure if the Kerberos server itself is secure.

Kerberos Version 4

Version 4 of Kerberos makes use of DES, in a rather elaborate protocol, to provide
the authentication service. Viewing the protocol as a whole, it is difficult to see the
need for the many of its elements. Therefore, we adopt a strategy used by Bill Bryant
of Project Athena [BRYA88] and build up to the full protocol by looking first at
several hypothetical dialogues. Each successive dialogue adds additional complexity
to counter security vulnerabilities revealed in the preceding dialogue.

After examining the protocol, we look at some other aspects of version 4.

A Simple AuthenticAtion DiAlogue In an unprotected network environment, any
client can apply to any server for service. The obvious security risk is that of imper-
sonation. An opponent can pretend to be another client and obtain unauthorized
privileges on server machines. To counter this threat, servers must be able to confirm
the identities of clients who request service. Each server can be required to under-
take this task for each client/server interaction, but in an open environment, this
places a substantial burden on each server.

An alternative is to use an authentication server (AS) that knows the passwords
of all users and stores these in a centralized database. In addition, the AS shares a
unique secret key with each server. These keys have been distributed physically or in
some other secure manner. Consider the following hypothetical dialogue:

(1) C S AS: IDC }PC } IDV

(2) AS S C: Ticket

(3) C S V: IDC }Ticket

Ticket = E(Kv, [IDC }ADC } IDV])

where

 C = client

 AS = authentication server

 V = server

 IDC = identifier of user on C

 IDV = identifier of V

 PC = password of user on C

 ADC = network address of C
 Kv = secret encryption key shared by AS and V

In this scenario, the user logs on to a workstation and requests access to server V.
The client module C in the user’s workstation requests the user’s password and then
sends a message to the AS that includes the user’s ID, the server’s ID, and the user’s
password. The AS checks its database to see if the user has supplied the proper pass-
word for this user ID and whether this user is permitted access to server V. If both

M16_STAL7484_08_GE_C16.indd 512 30/04/22 8:35 AM

16.3 / KeRbeRos 513

tests are passed, the AS accepts the user as authentic and must now convince the
server that this user is authentic. To do so, the AS creates a ticket that contains the
user’s ID and network address and the server’s ID. This ticket is encrypted using
the secret key shared by the AS and this server. This ticket is then sent back to C.
Because the ticket is encrypted, it cannot be altered by C or by an opponent.

With this ticket, C can now apply to V for service. C sends a message to V con-
taining C’s ID and the ticket. V decrypts the ticket and verifies that the user ID in
the ticket is the same as the unencrypted user ID in the message. If these two match,
the server considers the user authenticated and grants the requested service.

Each of the ingredients of message (3) is significant. The ticket is encrypted to
prevent alteration or forgery. The server’s ID (IDV) is included in the ticket so that
the server can verify that it has decrypted the ticket properly. IDC is included in the
ticket to indicate that this ticket has been issued on behalf of C. Finally, ADC serves
to counter the following threat. An opponent could capture the ticket transmitted
in message (2), then use the name IDC and transmit a message of form (3) from
another workstation. The server would receive a valid ticket that matches the user
ID and grant access to the user on that other workstation. To prevent this attack,
the AS includes in the ticket the network address from which the original request
came. Now the ticket is valid only if it is transmitted from the same workstation that
initially requested the ticket.

A more Secure AuthenticAtion DiAlogue Although the foregoing scenario
solves some of the problems of authentication in an open network environment,
problems remain. Two in particular stand out. First, we would like to minimize the
number of times that a user has to enter a password. Suppose each ticket can be
used only once. If user C logs on to a workstation in the morning and wishes to
check his or her mail at a mail server, C must supply a password to get a ticket for
the mail server. If C wishes to check the mail several times during the day, each
attempt requires reentering the password. We can improve matters by saying that
tickets are reusable. For a single logon session, the workstation can store the mail
server ticket after it is received and use it on behalf of the user for multiple accesses
to the mail server.

However, under this scheme, it remains the case that a user would need a new
ticket for every different service. If a user wished to access a print server, a mail
server, a file server, and so on, the first instance of each access would require a new
ticket and hence require the user to enter the password.

The second problem is that the earlier scenario involved a plaintext transmis-
sion of the password [message (1)]. An eavesdropper could capture the password
and use any service accessible to the victim.

To solve these additional problems, we introduce a scheme for avoiding plain-
text passwords and a new server, known as the ticket-granting server (TGS). The
new (but still hypothetical) scenario is as follows.

Once per user logon session:

(1) C S AS: IDC } IDtgs

(2) AS S C: E(Kc, Tickettgs)

M16_STAL7484_08_GE_C16.indd 513 30/04/22 8:35 AM

514 chAPteR 16 / UseR AUthenticAtion

Once per type of service:

(3) C S TGS: IDC } IDV }Tickettgs

(4) TGS S C: Ticketv

Once per service session:

(5) C S V: IDC }Ticketv

Tickettgs = E(Ktgs, [IDC }ADC } IDtgs }TS1 }Lifetime1])

Ticketv = E(Kv, [IDC }ADC } IDv }TS2 }Lifetime2])

The new service, TGS, issues tickets to users who have been authenticated to
AS. Thus, the user first requests a ticket-granting ticket (Tickettgs) from the AS. The
client module in the user workstation saves this ticket. Each time the user requires
access to a new service, the client applies to the TGS, using the ticket to authenticate
itself. The TGS then grants a ticket for the particular service. The client saves each
service-granting ticket and uses it to authenticate its user to a server each time a
particular service is requested. Let us look at the details of this scheme:

1. The client requests a ticket-granting ticket on behalf of the user by sending its
user’s ID to the AS, together with the TGS ID, indicating a request to use the
TGS service.

2. The AS responds with a ticket that is encrypted with a key that is derived from
the user’s password (Kc), which is already stored at the AS. When this response
arrives at the client, the client prompts the user for his or her password, gen-
erates the key, and attempts to decrypt the incoming message. If the correct
password is supplied, the ticket is successfully recovered.

Because only the correct user should know the password, only the correct
user can recover the ticket. Thus, we have used the password to obtain credentials
from Kerberos without having to transmit the password in plaintext. The ticket itself
consists of the ID and network address of the user, and the ID of the TGS. This
corresponds to the first scenario. The idea is that the client can use this ticket to
request multiple service-granting tickets. So the ticket-granting ticket is to be reus-
able. However, we do not wish an opponent to be able to capture the ticket and
use it. Consider the following scenario: An opponent captures the login ticket and
waits until the user has logged off his or her workstation. Then the opponent either
gains access to that workstation or configures his workstation with the same net-
work address as that of the victim. The opponent would be able to reuse the ticket to
spoof the TGS. To counter this, the ticket includes a timestamp, indicating the date
and time at which the ticket was issued, and a lifetime, indicating the length of time
for which the ticket is valid (e.g., eight hours). Thus, the client now has a reusable
ticket and need not bother the user for a password for each new service request.
Finally, note that the ticket-granting ticket is encrypted with a secret key known
only to the AS and the TGS. This prevents alteration of the ticket. The ticket is reen-
crypted with a key based on the user’s password. This assures that the ticket can be
recovered only by the correct user, providing the authentication.

M16_STAL7484_08_GE_C16.indd 514 30/04/22 8:35 AM

16.3 / KeRbeRos 515

Now that the client has a ticket-granting ticket, access to any server can be
obtained with steps 3 and 4.

3. The client requests a service-granting ticket on behalf of the user. For this pur-
pose, the client transmits a message to the TGS containing the user’s ID, the
ID of the desired service, and the ticket-granting ticket.

4. The TGS decrypts the incoming ticket using a key shared only by the AS and
the TGS (Ktgs) and verifies the success of the decryption by the presence of its
ID. It checks to make sure that the lifetime has not expired. Then it compares
the user ID and network address with the incoming information to authenti-
cate the user. If the user is permitted access to the server V, the TGS issues a
ticket to grant access to the requested service.

The service-granting ticket has the same structure as the ticket-granting ticket.
Indeed, because the TGS is a server, we would expect that the same elements are
needed to authenticate a client to the TGS and to authenticate a client to an appli-
cation server. Again, the ticket contains a timestamp and lifetime. If the user wants
access to the same service at a later time, the client can simply use the previously
acquired service-granting ticket and need not bother the user for a password. Note
that the ticket is encrypted with a secret key (Kv) known only to the TGS and the
server, preventing alteration.

Finally, with a particular service-granting ticket, the client can gain access to
the corresponding service with step 5.

5. The client requests access to a service on behalf of the user. For this purpose, the
client transmits a message to the server containing the user’s ID and the service-
granting ticket. The server authenticates by using the contents of the ticket.

This new scenario satisfies the two requirements of only one password query
per user session and protection of the user password.

the VerSion 4 AuthenticAtion DiAlogue Although the foregoing scenario en-
hances security compared to the first attempt, two additional problems remain. The
heart of the first problem is the lifetime associated with the ticket-granting ticket. If
this lifetime is very short (e.g., minutes), then the user will be repeatedly asked for a
password. If the lifetime is long (e.g., hours), then an opponent has a greater oppor-
tunity for replay. An opponent could eavesdrop on the network and capture a copy
of the ticket-granting ticket and then wait for the legitimate user to log out. Then the
opponent could forge the legitimate user’s network address and send the message of
step (3) to the TGS. This would give the opponent unlimited access to the resources
and files available to the legitimate user.

Similarly, if an opponent captures a service-granting ticket and uses it before it
expires, the opponent has access to the corresponding service.

Thus, we arrive at an additional requirement. A network service (the TGS or
an application service) must be able to prove that the person using a ticket is the
same person to whom that ticket was issued.

The second problem is that there may be a requirement for servers to authen-
ticate themselves to users. Without such authentication, an opponent could sabotage
the configuration so that messages to a server were directed to another location.

M16_STAL7484_08_GE_C16.indd 515 30/04/22 8:35 AM

516 chAPteR 16 / UseR AUthenticAtion

The false server would then be in a position to act as a real server and capture any
information from the user and deny the true service to the user.

We examine these problems in turn and refer to Table 16.2, which shows the
actual Kerberos protocol. Figure 16.3 provides a simplified overview.

First, consider the problem of captured ticket-granting tickets and the need to
determine that the ticket presenter is the same as the client for whom the ticket was
issued. The threat is that an opponent will steal the ticket and use it before it expires.
To get around this problem, let us have the AS provide both the client and the TGS
with a secret piece of information in a secure manner. Then the client can prove its
identity to the TGS by revealing the secret information—again in a secure manner.
An efficient way of accomplishing this is to use an encryption key as the secure
information; this is referred to as a session key in Kerberos.

Table 16.2a shows the technique for distributing the session key. As before,
the client sends a message to the AS requesting access to the TGS. The AS responds
with a message, encrypted with a key derived from the user’s password (Kc), that
contains the ticket. The encrypted message also contains a copy of the session
key, Kc,tgs, where the subscripts indicate that this is a session key for C and TGS.
Because this session key is inside the message encrypted with Kc, only the user’s
client can read it. The same session key is included in the ticket, which can be read
only by the TGS. Thus, the session key has been securely delivered to both C and
the TGS.

Note that several additional pieces of information have been added to this first
phase of the dialogue. Message (1) includes a timestamp, so that the AS knows that
the message is timely. Message (2) includes several elements of the ticket in a form
accessible to C. This enables C to confirm that this ticket is for the TGS and to learn
its expiration time.

(1) C S AS IDc } IDtgs }TS1

(2) AS S C E(Kc, [Kc, tgs } IDtgs }TS2 }Lifetime2 }Tickettgs])

Tickettgs = E(Ktgs, [Kc, tgs } IDC }ADC } IDtgs }TS2 }Lifetime2])

(a) Authentication Service Exchange to obtain ticket-granting ticket

(3) C S TGS IDv }Tickettgs }Authenticatorc

(4) TGS S C E(Kc, tgs, [Kc, v } IDv }TS4 }Ticketv])

Tickettgs = E(Ktgs, [Kc, tgs } IDC }ADC } IDtgs }TS2 }Lifetime2])
Ticketv = E(Kv, [Kc, v } IDC }ADC } IDv }TS4 }Lifetime4])

Authenticatorc = E(Kc, tgs, [IDC }ADC }TS3])

(b) Ticket-Granting Service Exchange to obtain service-granting ticket

(5) C S V Ticketv }Authenticatorc

(6) V S C E(Kc,v, [TS5 + 1]) (for mutual authentication)
Ticketv = E(Kv, [Kc, v } IDC }ADC } IDv }TS4 }Lifetime4])

Authenticatorc = E(Kc, v, [IDC }ADC }TS5])

(c) Client/Server Authentication Exchange to obtain service

Table 16.2 Summary of Kerberos Version 4 Message Exchanges

M16_STAL7484_08_GE_C16.indd 516 30/04/22 8:35 AM

16.3 / KeRbeRos 517

Armed with the ticket and the session key, C is ready to approach the TGS.
As before, C sends the TGS a message that includes the ticket plus the ID of the
requested service [message (3) in Table 16.2b]. In addition, C transmits an authen-
ticator, which includes the ID and address of C’s user and a timestamp. Unlike the
ticket, which is reusable, the authenticator is intended for use only once and has a
very short lifetime. The TGS can decrypt the ticket with the key that it shares with
the AS. This ticket indicates that user C has been provided with the session key
Kc,tgs. In effect, the ticket says, “Anyone who uses Kc,tgs must be C.” The TGS uses
the session key to decrypt the authenticator. The TGS can then check the name and
address from the authenticator with that of the ticket and with the network address
of the incoming message. If all match, then the TGS is assured that the sender of the
ticket is indeed the ticket’s real owner. In effect, the authenticator says, “At time TS3,
I hereby use Kc,tgs.” Note that the ticket does not prove anyone’s identity but is a
way to distribute keys securely. It is the authenticator that proves the client’s identity.
Because the authenticator can be used only once and has a short lifetime, the threat

Figure 16.3 Overview of Kerberos

Authentication
server

Ticket-
granting

server (TGS)

Host/
application

server

request tic
ket-

granting ticket

once per
user logon
session

1. User logs on to
workstation and
requests service on host

3. Workstation prompts
user for password to decrypt
incoming message, and then
send ticket and
authenticator that contains
user’s name, network
address, and time to TGS.

ticket + session key

request service-

granting ticket

ticket + session key

once per
type of service

4. TGS decrypts ticket and
authenticator, verifies request,
and then creates ticket for
requested application server.

Kerberos

5. Workstation sends
ticket and authenticator
to host.

6. Host verifies that
ticket and authenticator
match, and then grants
access to service. If
mutual authentication is
required, server returns
an authenticator.

request service
provide server

authenticator
once per
service session

2. AS verifies user’s access right in
database, and creates ticket-granting ticket
and session key. Results are encrypted
using key derived from user’s password.

M16_STAL7484_08_GE_C16.indd 517 30/04/22 8:35 AM

518 chAPteR 16 / UseR AUthenticAtion

Figure 16.4 Kerberos Exchanges

Client

Client authentication
IDc || IDtgs || TS1

Tickettgs, server ID, and client authentication
IDv || Tickettgs || Authenticatorc

Shared key and ticket
E(Kc,tgs, [Kc,v || IDv || TS4 || Ticketv])

Ticketv and client authentication
Ticketv || Authenticatorc

Service granted
E(Kc,v, [TS5 1 1])

Shared key and ticket
E(Kc, [Kc, tgs || IDtgs || TS2 ||

Lifetime2 || Tickettgs])

Authentication
server (AS)

Ticket-granting
server (TGS)

Service
provider

of an opponent stealing both the ticket and the authenticator for presentation later
is countered.

The reply from the TGS in message (4) follows the form of message (2). The
message is encrypted with the session key shared by the TGS and C and includes a
session key to be shared between C and the server V, the ID of V, and the timestamp
of the ticket. The ticket itself includes the same session key.

C now has a reusable service-granting ticket for V. When C presents this ticket,
as shown in message (5), it also sends an authenticator. The server can decrypt the
ticket, recover the session key, and decrypt the authenticator.

If mutual authentication is required, the server can reply as shown in message
(6) of Table 16.2. The server returns the value of the timestamp from the authentica-
tor, incremented by 1, and encrypted in the session key. C can decrypt this message
to recover the incremented timestamp. Because the message was encrypted by the
session key, C is assured that it could have been created only by V. The contents of
the message assure C that this is not a replay of an old reply.

Finally, at the conclusion of this process, the client and server share a secret key.
This key can be used to encrypt future messages between the two or to exchange a
new random session key for that purpose.

Figure 16.4 illustrates the Kerberos exchanges among the parties.

M16_STAL7484_08_GE_C16.indd 518 30/04/22 8:35 AM

16.3 / KeRbeRos 519

KerberoS reAlmS AnD multiple Kerberi A full-service Kerberos environment
consisting of a Kerberos server, a number of clients, and a number of application
servers requires the following:

1. The Kerberos server must have the user ID and hashed passwords of all partic-
ipating users in its database. All users are registered with the Kerberos server.

2. The Kerberos server must share a secret key with each server. All servers are
registered with the Kerberos server.

Such an environment is referred to as a Kerberos realm. The concept of
realm can be explained as follows. A Kerberos realm is a set of managed nodes
that share the same Kerberos database. The Kerberos database resides on the
Kerberos master computer system, which should be kept in a physically secure
room. A read-only copy of the Kerberos database might also reside on other
Kerberos computer systems. However, all changes to the database must be made
on the master computer system. Changing or accessing the contents of a Kerberos
database requires the Kerberos master password. A related concept is that of a
Kerberos principal, which is a service or user that is known to the Kerberos sys-
tem. Each Kerberos principal is identified by its principal name. Principal names
consist of three parts: a service or user name, an instance name, and a realm name.

Networks of clients and servers under different administrative organizations
typically constitute different realms. That is, it generally is not practical or does not
conform to administrative policy to have users and servers in one administrative
domain registered with a Kerberos server elsewhere. However, users in one realm
may need access to servers in other realms, and some servers may be willing to pro-
vide service to users from other realms, provided that those users are authenticated.

Kerberos provides a mechanism for supporting such interrealm authentication.
For two realms to support interrealm authentication, a third requirement is added:

3. The Kerberos server in each interoperating realm shares a secret key with the
server in the other realm. The two Kerberos servers are registered with each other.

The scheme requires that the Kerberos server in one realm trust the Kerberos
server in the other realm to authenticate its users. Furthermore, the participating
servers in the second realm must also be willing to trust the Kerberos server in the
first realm.

With these ground rules in place, we can describe the mechanism as follows
(Figure 16.5): A user wishing service on a server in another realm needs a ticket for
that server. The user’s client follows the usual procedures to gain access to the local
TGS and then requests a ticket-granting ticket for a remote TGS (TGS in another
realm). The client can then apply to the remote TGS for a service-granting ticket for
the desired server in the realm of the remote TGS.

The details of the exchanges illustrated in Figure 16.5 are as follows (compare
Table 16.2).

(1) C S AS: IDc } IDtgs }TS1

(2) AS S C: E(Kc, [Kc, tgs } IDtgs }TS2 }Lifetime2 }Tickettgs])

(3) C S TGS: IDtgsrem }Tickettgs }Authenticatorc

M16_STAL7484_08_GE_C16.indd 519 30/04/22 8:35 AM

520 chAPteR 16 / UseR AUthenticAtion

(4) TGS S C: E(Kc,tgs, [Kc, tgsrem } IDtgsrem }TS4 }Tickettgsrem])

(5) C S TGSrem: IDvrem }Tickettgsrem }Authenticatorc

(6) TGSrem S C: E(Kc,tgsrem, [Kc, vrem } IDvrem }TS6 }Ticketvrem])

(7) C S Vrem: Ticketvrem }Authenticatorc

The ticket presented to the remote server (Vrem) indicates the realm in which
the user was originally authenticated. The server chooses whether to honor the
remote request.

One problem presented by the foregoing approach is that it does not scale
well to many realms. If there are N realms, then there must be N(N - 1)/2 secure
key exchanges so that each Kerberos realm can interoperate with all other Kerberos
realms.

Figure 16.5 Request for Service in Another Realm

Authentication
server (AS)

Ticket-
granting

server (TGS)

Kerberos

Authentication
server (AS)

Ticket-
granting

server (TGS)

Kerberos

Client

Realm A

Host/
application

server

Realm B

1. Request ticket for local TGS

2. Ticket for local TGS

3. Request ticket for remoteTGS
4. Ticket for remote TGS

5. Request ticket

for rem
ote server

6. Ticket for rem
ote server

7.
 R

eq
ue

st
 re

m
ot

e
se

rv
ic

e

M16_STAL7484_08_GE_C16.indd 520 30/04/22 8:36 AM

16.3 / KeRbeRos 521

Kerberos Version 5

Kerberos version 5 is specified in RFC 4120 and provides a number of improve-
ments over version 4 [KOHL94]. To begin, we provide an overview of the changes
from version 4 to version 5 and then look at the version 5 protocol.

DifferenceS between VerSionS 4 AnD 5 Version 5 is intended to address the limita-
tions of version 4 in two areas: environmental shortcomings and technical deficien-
cies. Let us briefly summarize the improvements in each area.

Kerberos version 4 was developed for use within the Project Athena environ-
ment and, accordingly, did not fully address the need to be of general purpose. This
led to the following environmental shortcomings.

1. Encryption system dependence: Version 4 requires the use of DES. Export
restriction on DES as well as doubts about the strength of DES were thus of
concern. Version 5 makes use of AES.

2. Internet protocol dependence: Version 4 requires the use of Internet Protocol
(IP) addresses. Other address types, such as the ISO network address, are not
accommodated. Version 5 network addresses are tagged with type and length,
allowing any network address type to be used.

3. Message byte ordering: In version 4, the sender of a message employs a byte
ordering of its own choosing and tags the message to indicate least signifi-
cant byte in lowest address or most significant byte in lowest address. This
 technique works but does not follow established conventions. In version 5, all
message structures are defined using Abstract Syntax Notation One (ASN.1)
and Basic Encoding Rules (BER), which provide an unambiguous byte
ordering.

4. Ticket lifetime: Lifetime values in version 4 are encoded in an 8-bit quantity
in units of five minutes. Thus, the maximum lifetime that can be expressed is
28 * 5 = 1280 minutes (a little over 21 hours). This may be inadequate for
some applications (e.g., a long-running simulation that requires valid Kerberos
credentials throughout execution). In version 5, tickets include an explicit start
time and end time, allowing tickets with arbitrary lifetimes.

5. Authentication forwarding: Version 4 does not allow credentials issued to one
client to be forwarded to some other host and used by some other client. This
capability would enable a client to access a server and have that server access
another server on behalf of the client. For example, a client issues a request to
a print server that then accesses the client’s file from a file server, using the cli-
ent’s credentials for access. Version 5 provides this capability.

6. Interrealm authentication: In version 4, interoperability among N realms
 requires on the order of N2 Kerberos-to-Kerberos relationships, as described
earlier. Version 5 supports a method that requires fewer relationships, as
described shortly.

Apart from these environmental limitations, there are technical deficiencies
in the version 4 protocol itself. Most of these deficiencies were documented in
[BELL90], and version 5 attempts to address these. The deficiencies are the following.

M16_STAL7484_08_GE_C16.indd 521 30/04/22 8:36 AM

522 chAPteR 16 / UseR AUthenticAtion

1. Double encryption: Note in Table 16.2 [messages (2) and (4)] that tickets pro-
vided to clients are encrypted twice—once with the secret key of the target
server and then again with a secret key known to the client. The second en-
cryption is not necessary and is computationally wasteful.

2. PCBC encryption: Encryption in version 4 makes use of a nonstandard mode
of DES known as propagating cipher block chaining (PCBC). It has been
 demonstrated that this mode is vulnerable to an attack involving the interchange
of ciphertext blocks [KOHL89]. PCBC was intended to provide an integrity check
as part of the encryption operation. Version 5 provides explicit integrity mecha-
nisms, allowing the standard CBC mode to be used for encryption. In particular, a
checksum or hash code is attached to the message prior to encryption using CBC.

3. Session keys: Each ticket includes a session key that is used by the client to
encrypt the authenticator sent to the service associated with that ticket. In
addition, the session key may subsequently be used by the client and the server
to protect messages passed during that session. However, because the same
ticket may be used repeatedly to gain service from a particular server, there is
the risk that an opponent will replay messages from an old session to the client
or the server. In version 5, it is possible for a client and server to negotiate a
subsession key, which is to be used only for that one connection. A new access
by the client would result in the use of a new subsession key.

4. Password attacks: Both versions are vulnerable to a password attack. The mes-
sage from the AS to the client includes material encrypted with a key based on
the client’s password. An opponent can capture this message and attempt to
decrypt it by trying various passwords. If the result of a test decryption is of the
proper form, then the opponent has discovered the client’s password and may
subsequently use it to gain authentication credentials from Kerberos. Version
5 does provide a mechanism known as preauthentication, which should make
password attacks more difficult, but it does not prevent them.

the VerSion 5 AuthenticAtion DiAlogue Table 16.3 summarizes the basic version
5 dialogue. This is best explained by comparison with version 4 (Table 16.2).

First, consider the authentication service exchange. Message (1) is a client request
for a ticket-granting ticket. As before, it includes the ID of the user and the TGS. The
following new elements are added:

◆■ Realm: Indicates realm of user

◆■ Options: Used to request that certain flags be set in the returned ticket

◆■ Times: Used by the client to request the following time settings in the ticket:

—from: the desired start time for the requested ticket
—till: the requested expiration time for the requested ticket
—rtime: requested renew-till time

◆■ Nonce: A random value to be repeated in message (2) to assure that the
response is fresh and has not been replayed by an opponent

Message (2) returns a ticket-granting ticket, identifying information for the
client, and a block encrypted using the encryption key based on the user’s password.

M16_STAL7484_08_GE_C16.indd 522 30/04/22 8:36 AM

16.3 / KeRbeRos 523

(1) C S AS Options } IDc }Realmc } IDtgs }Times }Nonce1

(2) AS S C RealmC } IDC }Tickettgs }E(Kc, [Kc,tgs }Times }Nonce1 }Realmtgs } IDtgs])

Tickettgs = E(Ktgs, [Flags }Kc,tgs }Realmc } IDC }ADC }Times])

(a) Authentication Service Exchange to obtain ticket-granting ticket

(3) C S TGS Options } IDv }Times }Nonce2 }Tickettgs }Authenticatorc

(4) TGS S C Realmc } IDC }Ticketv }E(Kc,tgs, [Kc,v }Times }Nonce2 }Realmv } IDv])

Tickettgs = E(Ktgs, [Flags }Kc,tgs }Realmc } IDC }ADC }Times])
Ticketv = E(Kv, [Flags }Kc,v }Realmc } IDC }ADC }Times])

Authenticatorc = E(Kc,tgs, [IDC }Realmc }TS1])

(b) Ticket-Granting Service Exchange to obtain service-granting ticket

(5) C S V Options }Ticketv }Authenticatorc

(6) V S C EKc,v
[TS2 }Subkey }Seq #]

Ticketv = E(Kv, [Flag }Kc,v }Realmc } IDC }ADC }Times])
Authenticatorc = E(Kc,v, [IDC }Relamc }TS2 }Subkey }Seq #])

(c) Client/Server Authentication Exchange to obtain service

Table 16.3 Summary of Kerberos Version 5 Message Exchanges

This block includes the session key to be used between the client and the TGS, times
specified in message (1), the nonce from message (1), and TGS identifying informa-
tion. The ticket itself includes the session key, identifying information for the cli-
ent, the requested time values, and flags that reflect the status of this ticket and the
requested options.

Let us now compare the ticket-granting service exchange for versions 4 and 5.
We see that message (3) for both versions includes an authenticator, a ticket, and the
name of the requested service. In addition, version 5 includes requested times and
options for the ticket and a nonce—all with functions similar to those of message
(1). The authenticator itself is essentially the same as the one used in version 4.

Message (4) has the same structure as message (2). It returns a ticket plus
information needed by the client, with the information encrypted using the session
key now shared by the client and the TGS.

Finally, for the client/server authentication exchange, several new features
 appear in version 5. In message (5), the client may request as an option that mutual
authentication is required. The authenticator includes several new fields:

◆■ Subkey: The client’s choice for an encryption key to be used to protect this
specific application session. If this field is omitted, the session key from the
ticket (Kc,v) is used.

◆■ Sequence number: An optional field that specifies the starting sequence num-
ber to be used by the server for messages sent to the client during this session.
Messages may be sequence numbered to detect replays.

If mutual authentication is required, the server responds with message (6).
This message includes the timestamp from the authenticator. Note that in version 4,
the timestamp was incremented by one. This is not necessary in version 5, because

M16_STAL7484_08_GE_C16.indd 523 30/04/22 8:36 AM

524 chAPteR 16 / UseR AUthenticAtion

the nature of the format of messages is such that it is not possible for an oppo-
nent to create message (6) without knowledge of the appropriate encryption keys.
The subkey field, if present, overrides the subkey field, if present, in message (5).
The optional sequence number field specifies the starting sequence number to be
used by the client.

 16.4 REMOTE USER-AUTHENTICATION USING
ASYMMETRIC ENCRYPTION

Mutual Authentication

In Chapter 15, we presented one approach to the use of public-key encryption for
the purpose of session-key distribution (Figure 15.5). This protocol assumes that
each of the two parties is in possession of the current public key of the other. It may
not be practical to require this assumption.

A protocol using timestamps is provided in [DENN81]:

1. A S AS: IDA } IDB

2. AS S A: E(PRas, [IDA }PUa }T]) }E(PRas, [IDB }PUb }T])

3. A S B: E(PRas, [IDA }PUa }T]) }E(PRas, [IDB }PUb }T]) }
 E(PUb, E(PRa, [Ks }T]))

In this case, the central system is referred to as an authentication server (AS),
because it is not actually responsible for secret-key distribution. Rather, the AS pro-
vides public-key certificates. The session key is chosen and encrypted by A; hence,
there is no risk of exposure by the AS. The timestamps protect against replays of
compromised keys.

This protocol is compact but, as before, requires the synchronization of clocks.
Another approach, proposed by Woo and Lam [WOO92a], makes use of nonces.
The protocol consists of the following steps.

1. A S KDC: IDA } IDB

2. KDC S A: E(PRauth, [IDB }PUb])

3. A S B: E(PUb, [Na } IDA])

4. B S KDC: IDA } IDB }E(PUauth, Na)

5. KDC S B: E(PRauth, [IDA }PUa]) }E(PUb, E(PRauth, [Na }Ks } IDB]))

6. B S A: E(PUa, [E(PRauth, [(Na }Ks } IDB)]) }Nb])

7. A S B: E(Ks, Nb)

In step 1, A informs the KDC of its intention to establish a secure connection
with B. The KDC returns to A a copy of B’s public-key certificate (step 2). Using B’s
public key, A informs B of its desire to communicate and sends a nonce Na (step 3).
In step 4, B asks the KDC for A’s public-key certificate and requests a session key;
B includes A’s nonce so that the KDC can stamp the session key with that nonce.
The nonce is protected using the KDC’s public key. In step 5, the KDC returns
to B a copy of A’s public-key certificate, plus the information {Na, Ks, IDB}. This

M16_STAL7484_08_GE_C16.indd 524 30/04/22 8:36 AM

16.4 / Remote UseR-AUthenticAtion Using AsymmetRic encRyPtion 525

information basically says that Ks is a secret key generated by the KDC on behalf of
B and tied to Na; the binding of Ks and Na will assure A that Ks is fresh. This triple is
encrypted using the KDC’s private key to allow B to verify that the triple is in fact
from the KDC. It is also encrypted using B’s public key so that no other entity may
use the triple in an attempt to establish a fraudulent connection with A. In step 6,
the triple {Na, Ks, IDB}, still encrypted with the KDC’s private key, is relayed to A,
together with a nonce Nb generated by B. All the foregoing are encrypted using A’s
public key. A retrieves the session key Ks, uses it to encrypt Nb, and returns it to B.
This last message assures B of A’s knowledge of the session key.

This seems to be a secure protocol that takes into account the various attacks.
However, the authors themselves spotted a flaw and submitted a revised version of
the algorithm in [WOO92b]:

1. A S KDC: IDA } IDB

2. KDC S A: E(PRauth, [IDB }PUb])

3. A S B: E(PUb, [Na } IDA])

4. B S KDC: IDA } IDB }E(PUauth, Na)

5. KDC S B: E(PRauth, [IDA }PUa]) }E(PUb, E(PRauth, [Na }Ks } IDA } IDB]))

6. B S A: E(PUa, [Nb }E(PRauth, [Na }Ks } IDA } IDB])])

7. A S B: E(Ks, Nb)

The identifier of A, IDA, is added to the set of items encrypted with the KDC’s
private key in steps 5 and 6. This binds the session key Ks to the identities of the two
parties that will be engaged in the session. This inclusion of IDA accounts for the fact
that the nonce value Na is considered unique only among all nonces generated by
A, not among all nonces generated by all parties. Thus, it is the pair {IDA, Na} that
uniquely identifies the connection request of A.

In both this example and the protocols described earlier, protocols that
appeared secure were revised after additional analysis. These examples highlight the
difficulty of getting things right in the area of authentication.

One-Way Authentication

One-way authentication involves a single transfer of information from one user (A)
intended for another (B). In its simplest form, one way authentication would estab-
lish the identity of A, the identity of B, and establish that some sort of authentica-
tion token actually was generated by A and actually was intended to be sent to B.
An email message is an example of an application that lends itself to one-way au-
thentication. We have already presented public-key encryption approaches that are
suited to electronic mail, including the straightforward encryption of the entire mes-
sage for confidentiality (Figure 12.1b), authentication (Figure 12.1c), or both (Figure
12.1d). These approaches require that either the sender know the recipient’s public
key (confidentiality), the recipient know the sender’s public key (authentication),
or both (confidentiality plus authentication). In addition, the public-key algorithm
must be applied once or twice to what may be a long message.

If confidentiality is the primary concern, then the following may be more efficient:

A S B: E(PUb, Ks) }E(Ks, M)

M16_STAL7484_08_GE_C16.indd 525 30/04/22 8:36 AM

526 chAPteR 16 / UseR AUthenticAtion

In this case, the message is encrypted with a one-time secret key. A also encrypts this
one-time key with B’s public key. Only B will be able to use the corresponding private
key to recover the one-time key and then use that key to decrypt the message. This
scheme is more efficient than simply encrypting the entire message with B’s public key.

If authentication is the primary concern, then a digital signature may suffice, as
was illustrated in Figure 13.1:

A S B: M }E(PRa, H(M))

This method guarantees that A cannot later deny having sent the message.
However, this technique is open to another kind of fraud. Bob composes a mes-
sage to his boss Alice that contains an idea that will save the company money. He
 appends his digital signature and sends it into the email system. Eventually, the mes-
sage will get delivered to Alice’s mailbox. But suppose that Max has heard of Bob’s
idea and gains access to the mail queue before delivery. He finds Bob’s message,
strips off his signature, appends his, and requeues the message to be delivered to
Alice. Max gets credit for Bob’s idea.

To counter such a scheme, both the message and signature can be encrypted
with the recipient’s public key:

A S B: E(PUb, [M }E(PRa, H(M))])

The latter two schemes require that B know A’s public key and be convinced
that it is timely. An effective way to provide this assurance is the digital certificate,
described in Chapter 14. Now we have

A S B: M }E(PRa, H(M)) }E(PRas, [T } IDA }PUa])

In addition to the message, A sends B the signature encrypted with A’s private
key and A’s certificate encrypted with the private key of the authentication server.
The recipient of the message first uses the certificate to obtain the sender’s public
key and verify that it is authentic and then uses the public key to verify the message
itself. If confidentiality is required, then the entire message can be encrypted with
B’s public key. Alternatively, the entire message can be encrypted with a one-time
secret key; the secret key is also transmitted, encrypted with B’s public key. This
approach is explored in Chapter 21.

 16.5 FEDERATED IDENTITY MANAGEMENT

Federated identity management is a relatively new concept dealing with the use of
a common identity management scheme across multiple enterprises and numerous
applications and supporting many thousands, even millions, of users. We begin our
overview with a discussion of the concept of identity management and then examine
federated identity management.

Identity Management

Identity management is a centralized, automated approach to provide enterprise-
wide access to resources by employees and other authorized individuals. The focus
of identity management is defining an identity for each user (human or process),

M16_STAL7484_08_GE_C16.indd 526 30/04/22 8:36 AM

16.5 / FedeRAted identity mAnAgement 527

associating attributes with the identity, and enforcing a means by which a user can
verify identity. The central concept of an identity management system is the use of
single sign-on (SSO).

SSO enables a user to access all network resources after a single authentication.
Typical services provided by a federated identity management system include

the following:

◆■ Point of contact: Includes authentication that a user corresponds to the user
name provided, and management of user/server sessions.

◆■ SSO protocol services: Provides a vendor-neutral security token service for
supporting a single sign on to federated services.

◆■ Trust services: Federation relationships require a trust relationship-based
federation between business partners. A trust relationship is represented by
the combination of the security tokens used to exchange information about a
user, the cryptographic information used to protect these security tokens, and
optionally the identity mapping rules applied to the information contained
within this token.

◆■ Key services: Management of keys and certificates.

◆■ Identity services: Services that provide the interface to local data stores, includ-
ing user registries and databases, for identity-related information management.

◆■ Authorization: Granting access to specific services and/or resources based on
the authentication.

◆■ Provisioning: Includes creating an account in each target system for the user,
enrollment or registration of user in accounts, establishment of access rights or
credentials to ensure the privacy and integrity of account data.

◆■ Management: Services related to runtime configuration and deployment.

Note that Kerberos contains a number of the elements of an identity manage-
ment system.

Figure 16.6 illustrates entities and data flows in a generic identity management
architecture. A principal is an identity holder. Typically, this is a human user that
seeks access to resources and services on the network. User devices, agent processes,
and server systems may also function as principals. Principals authenticate them-
selves to an identity provider. The identity provider associates authentication infor-
mation with a principal, as well as attributes and one or more identifiers.

Increasingly, digital identities incorporate attributes other than simply an
identifier and authentication information (such as passwords and biometric infor-
mation). An attribute service manages the creation and maintenance of such attri-
butes. For example, a user needs to provide a shipping address each time an order is
placed at a new Web merchant, and this information needs to be revised when the
user moves. Identity management enables the user to provide this information once,
so that it is maintained in a single place and released to data consumers in accor-
dance with authorization and privacy policies. Users may create some of the attri-
butes to be associated with their digital identity, such as an address. Administrators
may also assign attributes to users, such as roles, access permissions, and employee
information.

M16_STAL7484_08_GE_C16.indd 527 30/04/22 8:36 AM

528 chAPteR 16 / UseR AUthenticAtion

Data consumers are entities that obtain and employ data maintained and
 provided by identity and attribute providers, which are often used to support autho-
rization decisions and to collect audit information. For example, a database server
or file server is a data consumer that needs a client’s credentials so as to know what
access to provide to that client.

Identity Federation

Identity federation is, in essence, an extension of identity management to multiple
security domains. Such domains include autonomous internal business units, exter-
nal business partners, and other third-party applications and services. The goal is to
provide the sharing of digital identities so that a user can be authenticated a single
time and then access applications and resources across multiple domains. Because
these domains are relatively autonomous or independent, no centralized control is
possible. Rather, the cooperating organizations must form a federation based on
agreed standards and mutual levels of trust to securely share digital identities.

Federated identity management refers to the agreements, standards, and tech-
nologies that enable the portability of identities, identity attributes, and entitlements
across multiple enterprises and numerous applications and supporting many thou-
sands, even millions, of users. When multiple organizations implement interoperable
federated identity schemes, an employee in one organization can use a single sign-
on to access services across the federation with trust relationships associated with
the identity. For example, an employee may log onto her corporate intranet and be
authenticated to perform authorized functions and access authorized services on
that intranet. The employee could then access their health benefits from an outside
health-care provider without having to reauthenticate.

Beyond SSO, federated identity management provides other capabilities. One
is a standardized means of representing attributes. Increasingly, digital identities

Figure 16.6 Generic Identity Management Architecture

Identity
provider

Attribute
service

Data
consumer Principal

Administrator

M16_STAL7484_08_GE_C16.indd 528 30/04/22 8:36 AM

16.5 / FedeRAted identity mAnAgement 529

incorporate attributes other than simply an identifier and authentication informa-
tion (such as passwords and biometric information). Examples of attributes include
account numbers, organizational roles, physical location, and file ownership. A user
may have multiple identifiers; for example, each identifier may be associated with a
unique role with its own access permissions.

Another key function of federated identity management is identity map-
ping. Different security domains may represent identities and attributes differently.
Further, the amount of information associated with an individual in one domain
may be more than is necessary in another domain. The federated identity manage-
ment protocols map identities and attributes of a user in one domain to the require-
ments of another domain.

Figure 16.7 illustrates entities and data flows in a generic federated identity
management architecture.

The identity provider acquires attribute information through dialogue and pro-
tocol exchanges with users and administrators. For example, a user needs to provide
a shipping address each time an order is placed at a new Web merchant, and this

Figure 16.7 Federated Identity Operation

User

1
Identity provider
(source domain)

Service provider
(destination domain)

1 End user’s browser or other application engages
in an authentication dialogue with identity provider
in the same domain. End user also provides attribute
values associated with user’s identity.

2 Some attributes associated with an identity, such as
allowable roles, may be provided by an administrator
in the same domain.

3 A service provider in a remote domain, which the user
wishes to access, obtains identity information,
authentication information, and associated attributes
from the identity provider in the source domain.

4 Service provider opens session with remote user and
enforces access control restrictions based on user’s
identity and attributes.

Administrator

2

3

4

M16_STAL7484_08_GE_C16.indd 529 30/04/22 8:36 AM

530 chAPteR 16 / UseR AUthenticAtion

information needs to be revised when the user moves. Identity management enables
the user to provide this information once, so that it is maintained in a single place and
released to data consumers in accordance with authorization and privacy policies.

Service providers are entities that obtain and employ data maintained and
provided by identity providers, often to support authorization decisions and to col-
lect audit information. For example, a database server or file server is a data con-
sumer that needs a client’s credentials so as to know what access to provide to that
client. A service provider can be in the same domain as the user and the identity
provider. The power of this approach is for federated identity management, in which
the service provider is in a different domain (e.g., a vendor or supplier network).

Key Terms

authentication
authentication server

federated identity
management

Kerberos

nonce
replay attack
timestamp

Review Questions

 16.1 Give examples of replay attacks.
 16.2 List three general approaches to dealing with replay attacks.
 16.3 What is a suppress-replay attack?
 16.4 What problem was Kerberos designed to address?
 16.5 In Kerberos, what is the purpose of the centralized authentication server?
 16.6 Which approach to secure user authentication in a distributed environment does

Kerberos support?
 16.7 What four requirements were defined for Kerberos?
 16.8 What entities constitute a full-service Kerberos environment?
 16.9 In the context of Kerberos, explain the concept of realm.
 16.10 What are the principal differences between version 4 and version 5 of Kerberos?

Problems

 16.1 In Section 16.4, we outlined the public-key scheme proposed in [WOO92a] for the
distribution of secret keys. The revised version includes IDA in steps 5 and 6. What
attack, specifically, is countered by this revision?

 16.2 The protocol referred to in Problem 16.1 can be reduced from seven steps to five, hav-
ing the following sequence:
a. A S B:
b. A S KDC:
c. KDC S B:
d. B S A:
e. A S B:

 16.6 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

M16_STAL7484_08_GE_C16.indd 530 30/04/22 8:36 AM

16.6 / Key teRms, Review QUestions, And PRoblems 531

Show the message transmitted at each step. Hint: The final message in this protocol is
the same as the final message in the original protocol.

 16.3 Explain why replacing the timestamp by a nonce in the protocol proposed by Denning,
and described in Section 16.2, does not offer protection against suppress-replay attacks.

 16.4 There are three typical ways to use nonces as challenges. Suppose Na is a nonce gener-
ated by A, A and B share key K, and f() is a function (such as an increment). The three
usages are

Usage 1 Usage 2 Usage 3

(1) A S B: Na (1) A S B: E(K, Na) (1) A S B: E(K, Na)

(2) B S A: E(K, Na) (2) B S A: Na (2) B S A: E(K, f(Na))

Describe situations for which each usage is appropriate.
 16.5 In addition to providing a standard for public-key certificate formats, X.509 specifies

an authentication protocol. The original version of X.509 contains a security flaw. The
essence of the protocol is as follows.

 A S B: A {tA, rA, IDB}

 B S A: B {tB, rB, IDA, rA}

 A S B: A {rB}

where tA and tB are timestamps, rA and rB are nonces and the notation X{Y} indicates
that the message Y is transmitted, encrypted, and signed by X.

The text of X.509 states that checking timestamps tA and tB is optional for
three-way authentication. But consider the following example: Suppose A and B have
used the preceding protocol on some previous occasion, and that opponent C has in-
tercepted the preceding three messages. In addition, suppose that timestamps are not
used and are all set to 0. Finally, suppose C wishes to impersonate A to B. C initially
sends the first captured message to B:

 C S B: A {0, rA, IDB}

B responds, thinking it is talking to A but is actually talking to C:

 B S C: B {0, r B
= , IDA, rA}

C meanwhile causes A to initiate authentication with C by some means. As a result, A
sends C the following:

 A S C: A {0, r A
= , IDC}

C responds to A using the same nonce provided to C by B:

 C S A: C {0, r B
= , IDA, r A

= }

A responds with

 A S C: A {r B
= }

M16_STAL7484_08_GE_C16.indd 531 30/04/22 8:36 AM

532 chAPteR 16 / UseR AUthenticAtion

This is exactly what C needs to convince B that it is talking to A, so C now repeats the
incoming message back out to B.

 C S B: A {r B
= }

So B will believe it is talking to A whereas it is actually talking to C. Suggest a simple
solution to this problem that does not involve the use of timestamps.

 16.6 Consider a one-way authentication technique based on asymmetric encryption:

 A S B: IDA

 B S A: R1

 A S B: E(PRa, R1)

a. Explain the protocol.
b. What type of attack is this protocol susceptible to?

 16.7 Consider a one-way authentication technique based on asymmetric encryption:

 A S B: IDA }E(PUB, RA)

 B S A: RA

a. Explain the protocol.
b. What type of attack is this protocol susceptible to?

 16.8 In Kerberos, when Bob receives a ticket from Alice, how does he know it is not genuine?
 16.9 In Kerberos, how does Bob know that the received token is not corresponding to

Alice’s?
 16.10 In Kerberos, how does Alice know that a reply to an earlier message is from Bob?
 16.11 In Kerberos, where do Alice and Bob find the session key that they need to secure

their communication?

M16_STAL7484_08_GE_C16.indd 532 30/04/22 8:36 AM

Transport-Level Security
17.1 Web Security Considerations

Web Security Threats
Web Traffic Security Approaches

17.2 Transport Layer Security

TLS Architecture
TLS Record Protocol
Change Cipher Spec Protocol
Alert Protocol
Handshake Protocol
Cryptographic Computations
SSL/TLS Attacks
TLSv1.3

17.3 HTTPS

Connection Initiation
Connection Closure

17.4 Secure Shell (SSH)

Transport Layer Protocol
User Authentication Protocol
Connection Protocol

17.5 Review Questions and Problems

Part Six: Network aNd iNterNet Security

CHAPTER17

533

M17_STAL7484_08_GE_C17.indd 533 30/04/22 8:44 AM

534 CHAPTER 17 / TRAnSPoRT-LEvEL SECuRiTy

Virtually all businesses, most government agencies, and many individuals now have
Web sites. The number of individuals and companies with Internet access is expanding
rapidly and all of these have graphical Web browsers. As a result, businesses are enthu-
siastic about setting up facilities on the Web for electronic commerce. But the reality
is that the Internet and the Web are extremely vulnerable to compromises of various
sorts. As businesses wake up to this reality, the demand for secure Web services grows.

The topic of Web security is a broad one and can easily fill a book. In this chap-
ter, we begin with a discussion of the general requirements for Web security and then
focus on three standardized schemes that are becoming increasingly important as part
of Web commerce and that focus on security at the transport layer: SSL/TLS, HTTPS,
and SSH.

 17.1 WEB SECURITY CONSIDERATIONS

The World Wide Web is fundamentally a client/server application running over the
Internet and TCP/IP intranets. As such, the security tools and approaches discussed
so far in this book are relevant to the issue of Web security. However, the following
characteristics of Web usage suggest the need for tailored security tools:

■■ Although Web browsers are very easy to use, Web servers are relatively easy
to configure and manage, and Web content is increasingly easy to develop, the
underlying software is extraordinarily complex. This complex software may
hide many potential security flaws. The short history of the Web is filled with
examples of new and upgraded systems, properly installed, that are vulnerable
to a variety of security attacks.

■■ A Web server can be exploited as a launching pad into the corporation’s or
agency’s entire computer complex. Once the Web server is subverted, an
attacker may be able to gain access to data and systems not part of the Web
itself but connected to the server at the local site.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

■◆ Summarize Web security threats and Web traffic security approaches.

■◆ Present an overview of Transport Layer Security (TLS).

■◆ Understand the differences between Secure Sockets Layer and Transport
Layer Security.

■◆ Compare the pseudorandom function used in Transport Layer Security
with those discussed earlier in the book.

■◆ Present an overview of HTTPS (HTTP over SSL).

■◆ Present an overview of Secure Shell (SSH).

M17_STAL7484_08_GE_C17.indd 534 30/04/22 8:44 AM

17.1 / WEb SECuRiTy ConSidERATionS 535

■■ Casual and untrained (in security matters) users are common clients for Web-
based services. Such users are not necessarily aware of the security risks that
exist and do not have the tools or knowledge to take effective countermeasures.

Web Security Threats

Table 17.1 provides a summary of the types of security threats faced when using the
Web. One way to group these threats is in terms of passive and active attacks. Passive
attacks include eavesdropping on network traffic between browser and server and
gaining access to information on a Web site that is supposed to be restricted. Active
attacks include impersonating another user, altering messages in transit between cli-
ent and server, and altering information on a Web site.

Another way to classify Web security threats is in terms of the location of the
threat: Web server, Web browser, and network traffic between browser and server.
Issues of server and browser security fall into the category of computer system secu-
rity; Part Six of this book addresses the issue of system security in general but is also
applicable to Web system security. Issues of traffic security fall into the category of
network security and are addressed in this chapter.

Web Traffic Security Approaches

A number of approaches to providing Web security are possible. The various
approaches that have been considered are similar in the services they provide and,
to some extent, in the mechanisms that they use, but they differ with respect to their
scope of applicability and their relative location within the TCP/IP protocol stack.

Threats Consequences Countermeasures

Integrity • Modification of user data
• Trojan horse browser
• Modification of memory
• Modification of message

 traffic in transit

• Loss of information
• Compromise of machine
• Vulnerability to all other

threats

Cryptographic
checksums

Confidentiality • Eavesdropping on the net
• Theft of info from server
• Theft of data from client
• Info about network

configuration
• Info about which client talks

to server

• Loss of information
• Loss of privacy

Encryption, Web
proxies

Denial of
Service

• Killing of user threads
• Flooding machine with bogus

requests
• Filling up disk or memory
• Isolating machine by DNS

attacks

• Disruptive
• Annoying
• Prevent user from getting work

done

Difficult to prevent

Authentication • Impersonation of legitimate
users

• Data forgery

• Misrepresentation of user
• Belief that false information

is valid

Cryptographic
techniques

Table 17.1 A Comparison of Threats on the Web

M17_STAL7484_08_GE_C17.indd 535 30/04/22 8:44 AM

536 CHAPTER 17 / TRAnSPoRT-LEvEL SECuRiTy

Figure 17.1 illustrates this difference. One way to provide Web security is
to use IP security (IPsec) (Figure 17.1a). The advantage of using IPsec is that it is
transparent to end users and applications and provides a general-purpose solution.
Furthermore, IPsec includes a filtering capability so that only selected traffic need
incur the overhead of IPsec processing.

Another relatively general-purpose solution is to implement security just
above TCP (Figure 17.1b). The foremost example of this approach is the Secure
Sockets Layer (SSL) and the follow-on Internet standard known as Transport Layer
Security (TLS). At this level, there are two implementation choices. For full gener-
ality, SSL (or TLS) could be provided as part of the underlying protocol suite and
therefore be transparent to applications. Alternatively, TLS can be embedded in
specific packages. For example, virtually all browsers come equipped with TLS, and
most Web servers have implemented the protocol.

Application-specific security services are embedded within the particular
application. Figure 17.1c shows examples of this architecture. The advantage of this
approach is that the service can be tailored to the specific needs of a given application.

 17.2 TRANSPORT LAYER SECURITY

One of the most widely used security services is Transport Layer Security (TSL);
the current version is Version 1.2, defined in RFC 5246. TLS is an Internet stan-
dard that evolved from a commercial protocol known as Secure Sockets Layer
(SSL). Although SSL implementations are still around, it has been deprecated by
IETF and is disabled by most corporations offering TLS software. TLS is a general-
purpose service implemented as a set of protocols that rely on TCP. At this level,
there are two implementation choices. For full generality, TLS could be provided as
part of the underlying protocol suite and therefore be transparent to applications.
Alternatively, TLS can be embedded in specific packages. For example, most brows-
ers come equipped with TLS, and most Web servers have implemented the protocol.

TLS Architecture

TLS is designed to make use of TCP to provide a reliable end-to-end secure ser-
vice. TLS is not a single protocol but rather two layers of protocols, as illustrated in
Figure 17.2.

Figure 17.1 Relative Location of Security Facilities in the TCP/IP Protocol Stack

SMTPHTTP

TCP

IP/IPSec

(a) Network level

FTP

SMTPHTTP

TCP

SSL or TLS

IP

(b) Transport level

FTP

IP

S/MIME

HTTPKerberos

UDP

SMTP

(c) Application level

TCP

M17_STAL7484_08_GE_C17.indd 536 30/04/22 8:44 AM

17.2 / TRAnSPoRT LAyER SECuRiTy 537

The TLS Record Protocol provides basic security services to various higher-
layer protocols. In particular, the Hypertext Transfer Protocol (HTTP), which
provides the transfer service for Web client/server interaction, can operate on top
of TLS. Three higher-layer protocols are defined as part of TLS: the Handshake
Protocol; the Change Cipher Spec Protocol; and the Alert Protocol. These TLS-
specific protocols are used in the management of TLS exchanges and are examined
later in this section. A fourth protocol, the Heartbeat Protocol, is defined in a sepa-
rate RFC and is also discussed subsequently in this section.

Two important TLS concepts are the TLS session and the TLS connection,
which are defined in the specification as follows:

■■ Connection: A connection is a transport (in the OSI layering model definition)
that provides a suitable type of service. For TLS, such connections are peer-to-
peer relationships. The connections are transient. Every connection is associ-
ated with one session.

■■ Session: A TLS session is an association between a client and a server. Sessions
are created by the Handshake Protocol. Sessions define a set of cryptographic
security parameters, which can be shared among multiple connections. Sessions
are used to avoid the expensive negotiation of new security parameters for
each connection.

Between any pair of parties (applications such as HTTP on client and server),
there may be multiple secure connections. In theory, there may also be multiple
simultaneous sessions between parties, but this feature is not used in practice.

There are a number of states associated with each session. Once a session is
 established, there is a current operating state for both read and write (i.e., receive
and send). In addition, during the Handshake Protocol, pending read and write
states are created. Upon successful conclusion of the Handshake Protocol, the pend-
ing states become the current states.

A session state is defined by the following parameters:

■■ Session identifier: An arbitrary byte sequence chosen by the server to identify
an active or resumable session state.

■■ Peer certificate: An X509.v3 certificate of the peer. This element of the state
may be null.

Figure 17.2 TLS Protocol Stack

IP

TCP

Record protocol

Handshake
protocol

Change
cipher spec

protocol

Alert
protocol HTTP

Heartbeat
protocol

M17_STAL7484_08_GE_C17.indd 537 30/04/22 8:44 AM

538 CHAPTER 17 / TRAnSPoRT-LEvEL SECuRiTy

■■ Compression method: The algorithm used to compress data prior to encryption.

■■ Cipher spec: Specifies the bulk data encryption algorithm (such as null, AES,
etc.) and a hash algorithm (such as MD5 or SHA-1) used for MAC calculation.
It also defines cryptographic attributes such as the hash_size.

■■ Master secret: 48-byte secret shared between the client and server.

■■ Is resumable: A flag indicating whether the session can be used to initiate new
connections.

A connection state is defined by the following parameters:

■■ Server and client random: Byte sequences that are chosen by the server and
client for each connection.

■■ Server write MAC secret: The secret key used in MAC operations on data sent
by the server.

■■ Client write MAC secret: The symmetric key used in MAC operations on data
sent by the client.

■■ Server write key: The symmetric encryption key for data encrypted by the
server and decrypted by the client.

■■ Client write key: The symmetric encryption key for data encrypted by the
 client and decrypted by the server.

■■ Initialization vectors: When a block cipher in CBC mode is used, an initial-
ization vector (IV) is maintained for each key. This field is first initialized by
the TLS Handshake Protocol. Thereafter, the final ciphertext block from each
 record is preserved for use as the IV with the following record.

■■ Sequence numbers: Each party maintains separate sequence numbers for
transmitted and received messages for each connection. When a party sends or
receives a “change cipher spec message,” the appropriate sequence number is
set to zero. Sequence numbers may not exceed 264 - 1.

TLS Record Protocol

The TLS Record Protocol provides two services for TLS connections:

■■ Confidentiality: The Handshake Protocol defines a shared secret key that is
used for conventional encryption of TLS payloads.

■■ Message Integrity: The Handshake Protocol also defines a shared secret key
that is used to form a message authentication code (MAC).

Figure 17.3 indicates the overall operation of the TLS Record Protocol. The
Record Protocol takes an application message to be transmitted, fragments the data
into manageable blocks, optionally compresses the data, applies a MAC, encrypts,
adds a header, and transmits the resulting unit in a TCP segment. Received data
are decrypted, verified, decompressed, and reassembled before being delivered to
higher-level users.

The first step is fragmentation. Each upper-layer message is fragmented into
blocks of 214 bytes (16,384 bytes) or less. Next, compression is optionally applied.
Compression must be lossless and may not increase the content length by more than

M17_STAL7484_08_GE_C17.indd 538 30/04/22 8:44 AM

17.2 / TRAnSPoRT LAyER SECuRiTy 539

1024 bytes.1 In TLSv2, no compression algorithm is specified, so the default com-
pression algorithm is null.

The next step in processing is to compute a message authentication code over
the compressed data. TLS makes use of the HMAC algorithm defined in RFC 2104.
Recall from Chapter 12 that HMAC is defined as

 HMACK(M) = H[(K+ ⊕ opad) ‘ H[(K+ ⊕ ipad) ‘ M]]

where

H = embedded hash function (for TLS, either MD5 or SHA-1)

M = message input to HMAC

K+ = secret key padded with zeros on the left so that the result is equal to
the block length of the hash code (for MD5 and SHA-1, block
length = 512 bits)

ipad = 00110110 (36 in hexadecimal) repeated 64 times (512 bits)
opad = 01011100 (5C in hexadecimal) repeated 64 times (512 bits)

For TLS, the MAC calculation encompasses the fields indicated in the
 following expression:

HMAC_hash(MAC_write_secret, seq_num ‘ TLSCompressed.type ‘
TLSCompressed.version ‘ TLSCompressed.length ‘ TLSCompressed.fragment)

The MAC calculation covers all of the fields XXX, plus the field
TLSCompressed.version, which is the version of the protocol being employed.

Next, the compressed message plus the MAC are encrypted using symmetric
encryption. Encryption may not increase the content length by more than 1024 bytes,

Figure 17.3 TLS Record Protocol Operation

Application data

Fragment

Compress

Add MAC

Encrypt

Append TLS
record header

1Of course, one hopes that compression shrinks rather than expands the data. However, for very short
blocks, it is possible, because of formatting conventions, that the compression algorithm will actually pro-
vide output that is longer than the input.

M17_STAL7484_08_GE_C17.indd 539 30/04/22 8:44 AM

540 CHAPTER 17 / TRAnSPoRT-LEvEL SECuRiTy

so that the total length may not exceed 214 + 2048. The following encryption algo-
rithms are permitted:

Block Cipher Stream Cipher

Algorithm Key Size Algorithm Key Size

AES
3DES

128, 256
168

RC4-128 128

For stream encryption, the compressed message plus the MAC are encrypted.
Note that the MAC is computed before encryption takes place and that the MAC is
then encrypted along with the plaintext or compressed plaintext.

For block encryption, padding may be added after the MAC prior to encryp-
tion. The padding is in the form of a number of padding bytes followed by a one-
byte indication of the length of the padding. The padding can be any amount that
results in a total that is a multiple of the cipher’s block length, up to a maximum
of 255 bytes. For example, if the cipher block length is 16 bytes (e.g., AES) and if
the plaintext (or compressed text if compression is used) plus MAC plus padding
length byte is 79 bytes long, then the padding length (in bytes) can be 1, 17, 33, and
so on, up to 161. At a padding length of 161, the total length is 79 + 161 = 240. A
variable padding length may be used to frustrate attacks based on an analysis of
the lengths of exchanged messages.

The final step of TLS Record Protocol processing is to prepend a header con-
sisting of the following fields:

■■ Content Type (8 bits): The higher-layer protocol used to process the enclosed
fragment.

■■ Major Version (8 bits): Indicates major version of TLS in use. For TLSv2, the
value is 3.

■■ Minor Version (8 bits): Indicates minor version in use. For TLSv2, the value is 1.

■■ Compressed Length (16 bits): The length in bytes of the plaintext fragment
(or compressed fragment if compression is used). The maximum value is
214 + 2048.

The content types that have been defined are change_cipher_spec,
alert, handshake, and application_data. The first three are the TLS-
specific protocols, discussed next. Note that no distinction is made among the vari-
ous applications (e.g., HTTP) that might use TLS; the content of the data created by
such applications is opaque to TLS.

Figure 17.4 illustrates the TLS record format.

Change Cipher Spec Protocol

The Change Cipher Spec Protocol is one of the four TLS-specific protocols that use
the TLS Record Protocol, and it is the simplest. This protocol consists of a single
message (Figure 17.5a), which consists of a single byte with the value 1. The sole pur-
pose of this message is to cause the pending state to be copied into the current state,
which updates the cipher suite to be used on this connection.

M17_STAL7484_08_GE_C17.indd 540 30/04/22 8:44 AM

17.2 / TRAnSPoRT LAyER SECuRiTy 541

Alert Protocol

The Alert Protocol is used to convey TLS-related alerts to the peer entity. As with
other applications that use TLS, alert messages are compressed and encrypted, as
specified by the current state.

Each message in this protocol consists of two bytes (Figure 17.5b). The first
byte takes the value warning (1) or fatal (2) to convey the severity of the message.
If the level is fatal, TLS immediately terminates the connection. Other connections
on the same session may continue, but no new connections on this session may be
established. The second byte contains a code that indicates the specific alert.

Examples of fatal alerts are bad_record_mac (an incorrect MAC was received)
and handshake_failure (sender was unable to negotiate an acceptable set of secu-
rity parameters given the options available). An example of a warning alert is
 unsupported_certificate (the type of the received certificate is not supported).

Handshake Protocol

The most complex part of TLS is the Handshake Protocol. This protocol allows the
server and client to authenticate each other and to negotiate an encryption and
MAC algorithm and cryptographic keys to be used to protect data sent in a TLS
record. The Handshake Protocol is used before any application data is transmitted.

Figure 17.4 TLS Record Format

Content
type

Major
version

Minor
version

Compressed
length

Plaintext
(optionally

compressed)

MAC (0, 16, or 20 bytes)
E

nc
ry

pt
ed

Figure 17.5 TLS Record Protocol Payload

1

(a) Change Cipher Spec Protocol

1 byte

Type

(c) Handshake Protocol

1 byte

Length

3 bytes

Content

Ú 0 bytes

(d) Other Upper-Layer Protocol (e.g., HTTP)

Opaque content

Ú 1 byte

Level

(b) Alert Protocol

1 byte 1 byte

Alert

M17_STAL7484_08_GE_C17.indd 541 30/04/22 8:44 AM

542 CHAPTER 17 / TRAnSPoRT-LEvEL SECuRiTy

Message Type Parameters

hello_request null

client_hello version, random, session id, cipher suite, compression method

server_hello version, random, session id, cipher suite, compression method

certificate chain of X.509v3 certificates

server_key_exchange parameters, signature

certificate_request type, authorities

server_done null

certificate_verify signature

client_key_exchange parameters, signature

finished hash value

Table 17.2 TLS Handshake Protocol Message Types

The Handshake Protocol consists of a series of messages exchanged by client and
server. All of these have the format shown in Figure 17.5c . Each message has three fields:

■■ Type (1 byte): Indicates one of 10 messages. Table 17.2 lists the defined mes-
sage types.

■■ Length (3 bytes): The length of the message in bytes.

■■ Content (# 0 bytes): The parameters associated with this message; these are
listed in Table 17.2.

Figure 17.6 shows the initial exchange needed to establish a logical connection
between client and server. The exchange can be viewed as having four phases.

Phase 1. establish security caPabilities Phase 1 initiates a logical connection
and establishes the security capabilities that will be associated with it. The exchange
is initiated by the client, which sends a client_hello message with the following
parameters:

■■ Version: The highest TLS version understood by the client.

■■ Random: A client-generated random structure consisting of a 32-bit timestamp
and 28 bytes generated by a secure random number generator. These values
serve as nonces and are used during key exchange to prevent replay attacks.

■■ Session ID: A variable-length session identifier. A nonzero value indicates that
the client wishes to update the parameters of an existing connection or to cre-
ate a new connection on this session. A zero value indicates that the client
wishes to establish a new connection on a new session.

■■ CipherSuite: This is a list that contains the combinations of cryptographic
algorithms supported by the client, in decreasing order of preference. Each
element of the list (each cipher suite) defines both a key exchange algorithm
and a CipherSpec; these are discussed subsequently.

■■ Compression Method: This is a list of the compression methods the client
supports.

M17_STAL7484_08_GE_C17.indd 542 30/04/22 8:44 AM

17.2 / TRAnSPoRT LAyER SECuRiTy 543

Figure 17.6 Handshake Protocol Action

Client Server

Phase 1
Establish security capabilities, including
protocol version, session ID, cipher suite,
compression method, and initial random
numbers.

Phase 2
Server may send certificate, key exchange,
and request certificate. Server signals end
of hello message phase.

Phase 3
Client sends certificate if requested. Client
sends key exchange. Client may send
certificate verification.

Phase 4
Change cipher suite and finish
handshake protocol.

Note: Shaded transfers are
optional or situation-dependent
messages that are not always sent.

finished

change_cipher_spec

finished

change_cipher_spec

certificate_verify

client_key_exchange

certificate

server_hello_done
certificate_request

server_key_exchange

certificate

server_hello

client_hello

T
im

e

After sending the client_hello message, the client waits for the server_
hello message, which contains the same parameters as the client_hello
 message. For the server_hello message, the following conventions apply. The
Version field contains the lowest of the version suggested by the client and the highest
supported by the server. The Random field is generated by the server and is indepen-
dent of the client’s Random field. If the SessionID field of the client was nonzero, the
same value is used by the server; otherwise the server’s SessionID field contains the
value for a new session. The CipherSuite field contains the single cipher suite selected

M17_STAL7484_08_GE_C17.indd 543 30/04/22 8:44 AM

544 CHAPTER 17 / TRAnSPoRT-LEvEL SECuRiTy

by the server from those proposed by the client. The Compression field contains the
compression method selected by the server from those proposed by the client.

The first element of the Ciphersuite parameter is the key exchange method
(i.e., the means by which the cryptographic keys for conventional encryption and
MAC are exchanged). The following key exchange methods are supported.

■■ RSA: The secret key is encrypted with the receiver’s RSA public key. A public-
key certificate for the receiver’s key must be made available.

■■ Fixed Diffie–Hellman: This is a Diffie–Hellman key exchange in which the
server’s certificate contains the Diffie–Hellman public parameters signed by
the certificate authority (CA). That is, the public-key certificate contains the
Diffie–Hellman public-key parameters. The client provides its Diffie–Hellman
public-key parameters either in a certificate, if client authentication is required,
or in a key exchange message. This method results in a fixed secret key between
two peers based on the Diffie–Hellman calculation using the fixed public keys.

■■ Ephemeral Diffie-Hellman: This technique is used to create ephemeral (tem-
porary, one-time) secret keys. In this case, the Diffie–Hellman public keys are
exchanged and signed using the sender’s private RSA or DSS key. The receiver
can use the corresponding public key to verify the signature. Certificates are used
to authenticate the public keys. This would appear to be the most secure of the
three Diffie–Hellman options because it results in a temporary, authenticated key.

■■ Anonymous Diffie–Hellman: The base Diffie–Hellman algorithm is used with
no authentication. That is, each side sends its public Diffie–Hellman parame-
ters to the other with no authentication. This approach is vulnerable to man-in-
the-middle attacks, in which the attacker conducts anonymous Diffie–Hellman
with both parties.

Following the definition of a key exchange method is the CipherSpec, which
includes the following fields:

■■ CipherAlgorithm: Any of the algorithms mentioned earlier: RC4, RC2, DES,
3DES, DES40, or IDEA

■■ MACAlgorithm: MD5 or SHA-1

■■ CipherType: Stream or Block

■■ IsExportable: True or False

■■ HashSize: 0, 16 (for MD5), or 20 (for SHA-1) bytes

■■ Key Material: A sequence of bytes that contain data used in generating the
write keys

■■ IV Size: The size of the Initialization Value for Cipher Block Chaining (CBC)
encryption

Phase 2. server authentication and Key exchange The server begins this
phase by sending its certificate if it needs to be authenticated; the message con-
tains one or a chain of X.509 certificates. The certificate message is required for
any agreed-on key exchange method except anonymous Diffie–Hellman. Note

M17_STAL7484_08_GE_C17.indd 544 30/04/22 8:44 AM

17.2 / TRAnSPoRT LAyER SECuRiTy 545

that if fixed Diffie–Hellman is used, this certificate message functions as the serv-
er’s key exchange message because it contains the server’s public Diffie–Hellman
parameters.

Next, a server_key_exchange message may be sent if it is required. It is not
required in two instances: (1) The server has sent a certificate with fixed Diffie–
Hellman parameters; or (2) RSA key exchange is to be used. The server_key_
exchange message is needed for the following:

■■ Anonymous Diffie–Hellman: The message content consists of the two global
Diffie–Hellman values (a prime number and a primitive root of that number)
plus the server’s public Diffie–Hellman key (see Figure 10.1).

■■ Ephemeral Diffie–Hellman: The message content includes the three Diffie–
Hellman parameters provided for anonymous Diffie–Hellman plus a signature
of those parameters.

■■ RSA key exchange (in which the server is using RSA but has a signature-only
RSA key): Accordingly, the client cannot simply send a secret key encrypted
with the server’s public key. Instead, the server must create a temporary RSA
public/private key pair and use the server_key_exchange message to send the
public key. The message content includes the two parameters of the temporary
RSA public key (exponent and modulus; see Figure 9.5) plus a signature of
those parameters.

Some further details about the signatures are warranted. As usual, a signature
is created by taking the hash of a message and encrypting it with the sender’s private
key. In this case, the hash is defined as

 hash(ClientHello.random ‘ ServerHello.random ‘ ServerParams)

So the hash covers not only the Diffie–Hellman or RSA parameters but also the
two nonces from the initial hello messages. This ensures against replay attacks and
misrepresentation. In the case of a DSS signature, the hash is performed using the
SHA-1 algorithm. In the case of an RSA signature, both an MD5 and an SHA-1 hash
are calculated, and the concatenation of the two hashes (36 bytes) is encrypted with
the server’s private key.

Next, a nonanonymous server (server not using anonymous Diffie–Hellman)
can request a certificate from the client. The certificate_request message includes
two parameters: certificate_type and certificate_authorities. The certificate type
indicates the public-key algorithm and its use:

■■ RSA, signature only

■■ DSS, signature only

■■ RSA for fixed Diffie–Hellman; in this case the signature is used only for
authentication, by sending a certificate signed with RSA

■■ DSS for fixed Diffie–Hellman; again, used only for authentication

The second parameter in the certificate_request message is a list of the distin-
guished names of acceptable certificate authorities.

M17_STAL7484_08_GE_C17.indd 545 30/04/22 8:44 AM

546 CHAPTER 17 / TRAnSPoRT-LEvEL SECuRiTy

The final message in phase 2, and one that is always required, is the server_
done message, which is sent by the server to indicate the end of the server hello
and associated messages. After sending this message, the server will wait for a client
response. This message has no parameters.

Phase 3. client authentication and Key exchange Upon receipt of the
server_done message, the client should verify that the server provided a valid
certificate (if required) and check that the server_hello parameters are ac-
ceptable. If all is satisfactory, the client sends one or more messages back to the
server.

If the server has requested a certificate, the client begins this phase by send-
ing a certificate message. If no suitable certificate is available, the client sends a
no_certificate alert instead.

Next is the client_key_exchange message, which must be sent in this phase.
The content of the message depends on the type of key exchange, as follows:

■■ RSA: The client generates a 48-byte pre-master secret and encrypts with
the public key from the server’s certificate or temporary RSA key from
a server_key_exchange message. Its use to compute a master secret is
explained later.

■■ Ephemeral or Anonymous Diffie–Hellman: The client’s public Diffie–Hellman
parameters are sent.

■■ Fixed Diffie–Hellman: The client’s public Diffie–Hellman parameters were
sent in a certificate message, so the content of this message is null.

Finally, in this phase, the client may send a certificate_verify message to pro-
vide explicit verification of a client certificate. This message is only sent following
any client certificate that has signing capability (i.e., all certificates except those con-
taining fixed Diffie–Hellman parameters). This message signs a hash code based on
the preceding messages, defined as

CertificateVerify.signature.md5_hash
 MD5(handshake_messages);
Certificate.signature.sha_hash
 SHA(handshake_messages);

where handshake_messages refers to all Handshake Protocol messages sent or
received starting at client_hello but not including this message. If the user’s
private key is DSS, then it is used to encrypt the SHA-1 hash. If the user’s private
key is RSA, it is used to encrypt the concatenation of the MD5 and SHA-1 hashes. In
either case, the purpose is to verify the client’s ownership of the private key for the
client certificate. Even if someone is misusing the client’s certificate, he or she would
be unable to send this message.

Phase 4. Finish Phase 4 completes the setting up of a secure connection. The client
sends a change_cipher_spec message and copies the pending CipherSpec into the
current CipherSpec. Note that this message is not considered part of the Handshake
Protocol but is sent using the Change Cipher Spec Protocol. The client then imme-
diately sends the finished message under the new algorithms, keys, and secrets.

M17_STAL7484_08_GE_C17.indd 546 30/04/22 8:44 AM

17.2 / TRAnSPoRT LAyER SECuRiTy 547

The finished message verifies that the key exchange and authentication processes
were successful. The content of the finished message is:

PRF(master_secret, finished_label, MD5(handshake_messages) ‘ SHA@1
(handshake_messages))

where finished_label is the string “client finished” for the client and “server
finished” for the server.

In response to these two messages, the server sends its own change_ cipher_
spec message, transfers the pending to the current CipherSpec, and sends its fin-
ished message. At this point, the handshake is complete and the client and server
may begin to exchange application-layer data.

Cryptographic Computations

Two further items are of interest: (1) the creation of a shared master secret by means
of the key exchange; and (2) the generation of cryptographic parameters from the
master secret.

Master secret creation The shared master secret is a one-time 48-byte value
(384 bits) generated for this session by means of secure key exchange. The creation
is in two stages. First, a pre_master_secret is exchanged. Second, the master_
secret is calculated by both parties. For pre_master_secret exchange, there
are two possibilities.

■■ RSA: A 48-byte pre_master_secret is generated by the client, encrypted with
the server’s public RSA key, and sent to the server. The server decrypts the
ciphertext using its private key to recover the pre_master_secret.

■■ Diffie–Hellman: Both client and server generate a Diffie–Hellman public key.
After these are exchanged, each side performs the Diffie–Hellman calculation
to create the shared pre_master_secret.

Both sides now compute the master_secret as

master_secret =
 PRF(pre_master_secret, “master secret”, ClientHello.random ‘ ServerHello
.random)

where ClientHello.random and ServerHello.random are the two nonce
values exchanged in the initial hello messages.

The algorithm is performed until 48 bytes of pseudorandom output are pro-
duced. The calculation of the key block material (MAC secret keys, session encryp-
tion keys, and IVs) is defined as

key_block =
 PRF(SecurityParameters.master_secret, “key expansion”,
SecurityParameters.server_random ‘ SecurityParameters.client_random)

until enough output has been generated.

M17_STAL7484_08_GE_C17.indd 547 30/04/22 8:44 AM

548 CHAPTER 17 / TRAnSPoRT-LEvEL SECuRiTy

generation oF cryPtograPhic ParaMeters CipherSpecs require a client write
MAC secret, a server write MAC secret, a client write key, a server write key, a
client write IV, and a server write IV, which are generated from the master secret
in that order. These parameters are generated from the master secret by hashing
the master secret into a sequence of secure bytes of sufficient length for all needed
parameters.

The generation of the key material from the master secret uses the same for-
mat for generation of the master secret from the pre-master secret as

key_block = MD5(master_secret ‘ SHA(‘A’ ‘ master_secret ‘
ServerHello.random ‘ ClientHello.random)) ‘

MD5(master_secret ‘ SHA(‘BB’ ‘ master_secret ‘
ServerHello.random ‘ ClientHello.random)) ‘

MD5(master_secret ‘ SHA(‘CCC’ ‘ master_secret ‘
ServerHello.random ‘ ClientHello.random)) ‘ c

until enough output has been generated. The result of this algorithmic structure is a
pseudorandom function. We can view the master_secret as the pseudorandom
seed value to the function. The client and server random numbers can be viewed as
salt values to complicate cryptanalysis (see Chapter 21 for a discussion of the use of
salt values).

PseudorandoM Function TLS makes use of a pseudorandom function referred
to as PRF to expand secrets into blocks of data for purposes of key generation or
validation. The objective is to make use of a relatively small, shared secret value but
to generate longer blocks of data in a way that is secure from the kinds of attacks
made on hash functions and MACs. The PRF is based on the data expansion func-
tion (Figure 17.7) given as

P_hash(secret, seed) = HMAC_hash(secret, A(1) ‘ seed) ‘
 HMAC_hash(secret, A(2) ‘ seed) ‘
 HMAC_hash(secret, A(3) ‘ seed) ‘

where A() is defined as

A(0) = seed
A(i) = HMAC_hash(secret, A(i - 1))

The data expansion function makes use of the HMAC algorithm with either MD5
or SHA-1 as the underlying hash function. As can be seen, P_hash can be iterated
as many times as necessary to produce the required quantity of data. For example, if
P_SHA256 was used to generate 80 bytes of data, it would have to be iterated three
times (through A(3)), producing 96 bytes of data of which the last 16 would be dis-
carded. In this case, P_MD5 would have to be iterated four times, producing exactly
64 bytes of data. Note that each iteration involves two executions of HMAC, each of
which in turn involves two executions of the underlying hash algorithm.

M17_STAL7484_08_GE_C17.indd 548 30/04/22 8:44 AM

17.2 / TRAnSPoRT LAyER SECuRiTy 549

To make PRF as secure as possible, it uses two hash algorithms in a way that
should guarantee its security if either algorithm remains secure. PRF is defined as

 PRF(secret, label, seed) = P_6hash7(secret, label ‘ seed)

PRF takes as input a secret value, an identifying label, and a seed value and
produces an output of arbitrary length.

SSL/TLS ATTACKS

Since the first introduction of SSL in 1994, and the subsequent standardization
of TLS, numerous attacks have been devised against these protocols. The appear-
ance of each attack has necessitated changes in the protocol, the encryption tools
used, or some aspect of the implementation of SSL and TLS to counter these
threats.

Figure 17.7 TLS Function P_hash(secret, seed)

Secret

Seed

Seed

A(1)
HMAC

Secret

Secret

Length 5 hash size

Secret

Seed

A(2)
HMAC

HMAC Secret

Seed

A(3)
HMAC

HMAC

Secret HMAC

M17_STAL7484_08_GE_C17.indd 549 30/04/22 8:44 AM

550 CHAPTER 17 / TRAnSPoRT-LEvEL SECuRiTy

attacK categories We can group the attacks into four general categories:

■■ Attacks on the handshake protocol: As early as 1998, an approach to com-
promising the handshake protocol based on exploiting the formatting and
implementation of the RSA encryption scheme was presented [BLEI98].
As countermeasures were implemented the attack was refined and adjusted
to not only thwart the countermeasures but also speed up the attack [e.g.,
BARD12].

■■ Attacks on the record and application data protocols: A number of vulner-
abilities have been discovered in these protocols, leading to patches to coun-
ter the new threats. As a recent example, in 2011, researchers Thai Duong
and Juliano Rizzo demonstrated a proof of concept called BEAST (Browser
Exploit Against SSL/TLS) that turned what had been considered only a theo-
retical vulnerability into a practical attack [GOOD11]. BEAST leverages a
type of cryptographic attack called a chosen-plaintext attack. The attacker
mounts the attack by choosing a guess for the plaintext that is associated
with a known ciphertext. The researchers developed a practical algorithm
for launching successful attacks. Subsequent patches were able to thwart this
attack. The authors of the BEAST attack are also the creators of the 2012
CRIME (Compression Ratio Info-leak Made Easy) attack, which can allow
an attacker to recover the content of web cookies when data compression is
used along with TLS [GOOD12]. When used to recover the content of secret
authentication cookies, it allows an attacker to perform session hijacking on
an authenticated web session.

■■ Attacks on the PKI: Checking the validity of X.509 certificates is an activity
subject to a variety of attacks, both in the context of SSL/TLS and elsewhere.
For example, [GEOR12] demonstrated that commonly used libraries for
SSL/TLS suffer from vulnerable certificate validation implementations. The
 authors revealed weaknesses in the source code of OpenSSL, GnuTLS, JSSE,
ApacheHttpClient, Weberknecht, cURL, PHP, Python and applications built
upon or with these products.

■■ Other attacks: [MEYE13] lists a number of attacks that do not fit into any
of the preceding categories. One example is an attack announced in 2011
by the German hacker group The Hackers Choice, which is a DoS attack
[KUMA11b]. The attack creates a heavy processing load on a server by over-
whelming the target with SSL/TLS handshake requests. Boosting system load
is done by establishing new connections or using renegotiation. Assuming that
the majority of computation during a handshake is done by the server, the
attack creates more system load on the server than on the source device, lead-
ing to a DoS. The server is forced to continuously recompute random numbers
and keys.

The history of attacks and countermeasures for SSL/TLS is representative
of that for other Internet-based protocols. A “perfect” protocol and a “perfect”
implementation strategy are never achieved. A constant back-and-forth between
threats and countermeasures determines the evolution of Internet-based
protocols.

M17_STAL7484_08_GE_C17.indd 550 30/04/22 8:44 AM

17.3 / HTTPS 551

TLSv1.3

In 2014, the IETF TLS working group began work on a version 1.3 of TLS. The pri-
mary aim is to improve the security of TLS. As of this writing, TLSv1.3 is still in
a draft stage, but the final standard is likely to be very close to the current draft.
Among the significant changes from version 1.2 are the following:

■■ TLSv1.3 removes support for a number of options and functions. Remov-
ing code that implements functions no longer needed reduces the chances
of potentially dangerous coding errors and reduces the attack surface. The
deleted items include:

–Compression
–Ciphers that do not offer authenticated encryption
–Static RSA and DH key exchange
–32-bit timestamp as part of the Random parameter in the client_hello

message
–Renegotiation
–Change Cipher Spec Protocol
–RC4
–Use of MD5 and SHA-224 hashes with signatures

■■ TLSv1.3 uses Diffie–Hellman or Elliptic Curve Diffie–Hellman for key
exchange and does not permit RSA. The danger with RSA is that if the private
key is compromised, all handshakes using these cipher suites will be compro-
mised. With DH or ECDH, a new key is negotiated for each handshake.

■■ TLSv1.3 allows for a “1 round trip time” handshake by changing the order of
message sent with establishing a secure connection. The client sends a Client
Key Exchange message containing its cryptographic parameters for key estab-
lishment before a cipher suite has been negotiated. This enables a server
to calculate keys for encryption and authentication before sending its first
response. Reducing the number of packets sent during this handshake phase
speeds up the process and reduces the attack surface.

These changes should improve the efficiency and security of TLS.

 17.3 HTTPS

Hyper Text Transfer Protocol Secure (HTTPS) is the secure version of HTTP.
HTTPS encrypts all communications between the browser and the website. Web
browsers such as Safari, Firefox, and Chrome also display a padlock icon in the ad-
dress bar to visually indicate that a HTTPS connection is in effect.

Data sent using HTTPS provides three important areas of protection:

■■ Encryption: Encrypts the exchanged data to keep it secure from eavesdrop-
pers. The encryption covers the URL of the requested document, the contents
of the document, the contents of browser forms (filled in by browser user), the
cookies sent from browser to server and from server to browser, and the con-
tents of the HTTP header.

M17_STAL7484_08_GE_C17.indd 551 30/04/22 8:44 AM

552 CHAPTER 17 / TRAnSPoRT-LEvEL SECuRiTy

■■ Data integrity: Data cannot be modified or corrupted during transfer, inten-
tionally or otherwise, without being detected.

■■ Authentication: Proves that your users communicate with the intended web-
site. It protects against man-in-the-middle attacks and builds user trust, which
translates into other business benefits.

Connection Initiation

For HTTPS, the agent acting as the HTTP client also acts as the TLS client. The
client initiates a connection to the server on the appropriate port and then sends
the TLS ClientHello to begin the TLS handshake. When the TLS handshake has
finished, the client may then initiate the first HTTP request. All HTTP data is to be
sent as TLS application data. Normal HTTP behavior, including retained connec-
tions, should be followed.

There are three levels of awareness of a connection in HTTPS. At the HTTP
level, an HTTP client requests a connection to an HTTP server by sending a con-
nection request to the next lowest layer. Typically, the next lowest layer is TCP, but it
also may be TLS/SSL. At the level of TLS, a session is established between a TLS cli-
ent and a TLS server. This session can support one or more connections at any time.
As we have seen, a TLS request to establish a connection begins with the establish-
ment of a TCP connection between the TCP entity on the client side and the TCP
entity on the server side.

Connection Closure

An HTTP client or server can indicate the closing of a connection by including the
following line in an HTTP record: Connection: close. This indicates that the
connection will be closed after this record is delivered.

The closure of an HTTPS connection requires that TLS close the connection
with the peer TLS entity on the remote side, which will involve closing the underly-
ing TCP connection. At the TLS level, the proper way to close a connection is for
each side to use the TLS alert protocol to send a close_notify alert. TLS imple-
mentations must initiate an exchange of closure alerts before closing a connection.
A TLS implementation may, after sending a closure alert, close the connection
without waiting for the peer to send its closure alert, generating an “incomplete
close”. Note that an implementation that does this may choose to reuse the session.
This should only be done when the application knows (typically through detecting
HTTP message boundaries) that it has received all the message data that it cares
about.

HTTP clients also must be able to cope with a situation in which the underly-
ing TCP connection is terminated without a prior close_notify alert and without
a Connection: close indicator. Such a situation could be due to a programming
error on the server or a communication error that causes the TCP connection to
drop. However, the unannounced TCP closure could be evidence of some sort of
attack. So the HTTPS client should issue some sort of security warning when this
occurs.

M17_STAL7484_08_GE_C17.indd 552 30/04/22 8:44 AM

17.4 / SECuRE SHELL (SSH) 553

 17.4 SECURE SHELL (SSH)

Secure Shell (SSH) is a protocol for secure network communications designed to
be relatively simple and inexpensive to implement. The initial version, SSH1 was
focused on providing a secure remote logon facility to replace TELNET and other
 remote logon schemes that provided no security. SSH also provides a more general
client/server capability and can be used for such network functions as file transfer and
email. A new version, SSH2, fixes a number of security flaws in the original scheme.
SSH2 is documented as a proposed standard in IETF RFCs 4250 through 4256.

SSH client and server applications are widely available for most operating
 systems. It has become the method of choice for remote login and X tunneling and is
rapidly becoming one of the most pervasive applications for encryption technology
outside of embedded systems.

SSH is organized as three protocols that typically run on top of TCP
(Figure 17.8):

■■ Transport Layer Protocol: Provides server authentication, data confidentiality,
and data integrity with forward secrecy (i.e., if a key is compromised during
one session, the knowledge does not affect the security of earlier sessions). The
transport layer may optionally provide compression.

■■ User Authentication Protocol: Authenticates the user to the server.

■■ Connection Protocol: Multiplexes multiple logical communications channels
over a single, underlying SSH connection.

Figure 17.8 SSH Protocol Stack

IP

Internet protocol provides datagram delivery across
multiple networks.

TCP
Transmission control protocol provides reliable, connection-
oriented end-to-end delivery.

SSH Transport Layer Protocol
Provides server authentication, confidentiality, and integrity.
It may optionally also provide compression.

SSH User
Authentication Protocol
Authenticates the client-side
user to the server.

Multiplexes the encrypted
tunnel into several logical
channels.

SSH
Connection Protocol

M17_STAL7484_08_GE_C17.indd 553 30/04/22 8:44 AM

554 CHAPTER 17 / TRAnSPoRT-LEvEL SECuRiTy

Transport Layer Protocol

host Keys Server authentication occurs at the transport layer, based on the server
possessing a public/private key pair. A server may have multiple host keys using
multiple different asymmetric encryption algorithms. Multiple hosts may share
the same host key. In any case, the server host key is used during key exchange to
authenticate the identity of the host. For this to be possible, the client must have a
priori knowledge of the server’s public host key. RFC 4251 dictates two alternative
trust models that can be used:

1. The client has a local database that associates each host name (as typed by
the user) with the corresponding public host key. This method requires no
centrally administered infrastructure and no third-party coordination. The
downside is that the database of name-to-key associations may become bur-
densome to maintain.

2. The host name-to-key association is certified by a trusted certification author-
ity (CA). The client only knows the CA root key and can verify the validity of
all host keys certified by accepted CAs. This alternative eases the maintenance
problem, since ideally, only a single CA key needs to be securely stored on the
client. On the other hand, each host key must be appropriately certified by a
central authority before authorization is possible.

PacKet exchange Figure 17.9 illustrates the sequence of events in the SSH
Transport Layer Protocol. First, the client establishes a TCP connection to the server.
This is done via the TCP protocol and is not part of the Transport Layer Protocol.
Once the connection is established, the client and server exchange data, referred to
as packets, in the data field of a TCP segment. Each packet is in the following format
(Figure 17.10).

■■ Packet length: Length of the packet in bytes, not including the packet length
and MAC fields.

■■ Padding length: Length of the random padding field.

■■ Payload: Useful contents of the packet. Prior to algorithm negotiation, this
field is uncompressed. If compression is negotiated, then in subsequent
 packets, this field is compressed.

■■ Random padding: Once an encryption algorithm has been negotiated, this
field is added. It contains random bytes of padding so that the total length of
the packet (excluding the MAC field) is a multiple of the cipher block size, or
8 bytes for a stream cipher.

■■ Message authentication code (MAC): If message authentication has been
negotiated, this field contains the MAC value. The MAC value is computed
over the entire packet plus a sequence number, excluding the MAC field. The
sequence number is an implicit 32-bit packet sequence that is initialized to
zero for the first packet and incremented for every packet. The sequence num-
ber is not included in the packet sent over the TCP connection.

M17_STAL7484_08_GE_C17.indd 554 30/04/22 8:44 AM

17.4 / SECuRE SHELL (SSH) 555

Figure 17.9 SSH Transport Layer Protocol Packet Exchanges

Client Server

SSH-protoversion-softwareversion
Identification string

exchange

Algorithm
negotiation

End of
key exchange

Service
request

SSH-protoversion-softwareversion

SSH_MSG_KEXINIT

SSH_MSG_KEXINIT

SSH_MSG_NEWKEYS

SSH_MSG_NEWKEYS

SSH_MSG_SERVICE_REQUEST

Establish TCP Connection

Key Exchange

Once an encryption algorithm has been negotiated, the entire packet
 (excluding the MAC field) is encrypted after the MAC value is calculated.

The SSH Transport Layer packet exchange consists of a sequence of steps
(Figure 17.9). The first step, the identification string exchange, begins with the client
sending a packet with an identification string of the form:

SSH-protoversion-softwareversion SP comments CR LF

where SP,CR, and LF are space character, carriage return, and line feed, respec-
tively. An example of a valid string is SSH-2.0-billsSSH_3.6.3q3<CR><LF>.
The server responds with its own identification string. These strings are used in the
Diffie–Hellman key exchange.

Next comes algorithm negotiation. Each side sends an SSH_MSG_KEXINIT
containing lists of supported algorithms in the order of preference to the sender.
There is one list for each type of cryptographic algorithm. The algorithms
include key exchange, encryption, MAC algorithm, and compression algorithm.

M17_STAL7484_08_GE_C17.indd 555 30/04/22 8:44 AM

556 CHAPTER 17 / TRAnSPoRT-LEvEL SECuRiTy

Table 17.3 shows the allowable options for encryption, MAC, and compression.
For each category, the algorithm chosen is the first algorithm on the client’s list
that is also supported by the server.

The next step is key exchange. The specification allows for alternative methods
of key exchange, but at present, only two versions of Diffie–Hellman key exchange
are specified. Both versions are defined in RFC 2409 and require only one packet in
each direction. The following steps are involved in the exchange. In this, C is the client;
S is the server; p is a large safe prime; g is a generator for a subgroup of GF(p); q is the
order of the subgroup; V_S is S’s identification string; V_C is C’s identification string;
K_S is S’s public host key; I_C is C’s SSH_MSG_KEXINIT message and I_S is S’s
SSH_MSG_KEXINIT message that have been exchanged before this part begins. The val-
ues of p, g, and q are known to both client and server as a result of the algorithm selection
negotiation. The hash function hash() is also decided during algorithm negotiation.

1. C generates a random number x(1 6 x 6 q) and computes e = gx mod p. C
sends e to S.

2. S generates a random number y(0 6 y 6 q) and computes f = gy mod p.
S receives e. It computes K = ey mod p, H = hash(V_C ‘ V_S ‘ I_C ‘ I_S ‘ K_S ‘

Figure 17.10 SSH Transport Layer Protocol Packet Formation

pdlpktl

pktl 5 packet length
pdl 5 padding length

Padding seq #

Payload

SSH Packet

Compressed payload

Ciphertext

COMPRESS

ENCRYPT MAC

M17_STAL7484_08_GE_C17.indd 556 30/04/22 8:44 AM

17.4 / SECuRE SHELL (SSH) 557

e ‘ f ‘ K), and signature s on H with its private host key. S sends (K_S ‘ f ‘ s)
to C. The signing operation may involve a second hashing operation.

3. C verifies that K_S really is the host key for S (e.g., using certificates or a
local database). C is also allowed to accept the key without verification; how-
ever, doing so will render the protocol insecure against active attacks (but may
be desirable for practical reasons in the short term in many environments). C
then computes K = f x mod p, H = hash(V_C ‘ V_S ‘ I_C ‘ I_S ‘ K_S ‘ e ‘ f ‘ K),
and verifies the signature s on H.

As a result of these steps, the two sides now share a master key K. In addition, the
server has been authenticated to the client, because the server has used its private key
to sign its half of the Diffie-Hellman exchange. Finally, the hash value H serves as a ses-
sion identifier for this connection. Once computed, the session identifier is not changed,
even if the key exchange is performed again for this connection to obtain fresh keys.

The end of key exchange is signaled by the exchange of SSH_MSG_NEWKEYS
packets. At this point, both sides may start using the keys generated from K, as dis-
cussed subsequently.

MAC algorithm

hmac-sha1* HMAC-SHA1; digest
length = key length = 20

hmac-sha1-96** First 96 bits of HMAC-
SHA1; digest length = 12;
key length = 20

hmac-md5 HMAC-MD5; digest
length = key length = 16

hmac-md5-96 First 96 bits of
HMAC-MD5;
digest length = 12;
key length = 16

Compression algorithm

none* No compression

zlib Defined in RFC 1950 and
RFC 1951

Cipher

3des-cbc* Three-key 3DES in CBC
mode

blowfish-cbc Blowfish in CBC mode

twofish256-cbc Twofish in CBC mode with
a 256-bit key

twofish192-cbc Twofish with a 192-bit key

twofish128-cbc Twofish with a 128-bit key

aes256-cbc AES in CBC mode with a
256-bit key

aes192-cbc AES with a 192-bit key

aes128-cbc** AES with a 128-bit key

Serpent256-cbc Serpent in CBC mode with
a 256-bit key

Serpent192-cbc Serpent with a 192-bit key

Serpent128-cbc Serpent with a 128-bit key

arcfour RC4 with a 128-bit key

cast128-cbc CAST-128 in CBC mode

* = Required
** = Recommended

Table 17.3 SSH Transport Layer Cryptographic Algorithms

M17_STAL7484_08_GE_C17.indd 557 30/04/22 8:44 AM

558 CHAPTER 17 / TRAnSPoRT-LEvEL SECuRiTy

The final step is service request. The client sends an SSH_MSG_SERVICE_
REQUEST packet to request either the User Authentication or the Connection
Protocol. Subsequent to this, all data is exchanged as the payload of an SSH
Transport Layer packet, protected by encryption and MAC.

Key generation The keys used for encryption and MAC (and any needed IVs) are
generated from the shared secret key K, the hash value from the key exchange H,
and the session identifier, which is equal to H unless there has been a subsequent
key exchange after the initial key exchange. The values are computed as follows.

■■ Initial IV client to server: HASH(K ‘ H ‘ “A” ‘ session_id)

■■ Initial IV server to client: HASH(K ‘ H ‘ “B” ‘ session_id)

■■ Encryption key client to server: HASH(K ‘ H ‘ “C” ‘ session_id)

■■ Encryption key server to client: HASH(K ‘ H ‘ “D” ‘ session_id)

■■ Integrity key client to server: HASH(K ‘ H ‘ “E” ‘ session_id)

■■ Integrity key server to client: HASH(K ‘ H ‘ “F” ‘ session_id)

where HASH() is the hash function determined during algorithm negotiation.

User Authentication Protocol

The User Authentication Protocol provides the means by which the client is
 authenticated to the server.

Message tyPes and ForMats Three types of messages are always used in the User
Authentication Protocol. Authentication requests from the client have the format:

byte SSH_MSG_USERAUTH_REQUEST (50)

string user name

string service name

string method name

 . . . method specific fields

where user name is the authorization identity the client is claiming, service
name is the facility to which the client is requesting access (typically the SSH
Connection Protocol), and method name is the authentication method being
used in this request. The first byte has decimal value 50, which is interpreted as
SSH_MSG_USERAUTH_REQUEST.

If the server either (1) rejects the authentication request or (2) accepts the
 request but requires one or more additional authentication methods, the server
sends a message with the format:

byte SSH_MSG_USERAUTH_FAILURE (51)

name-list authentications that can continue

boolean partial success

M17_STAL7484_08_GE_C17.indd 558 30/04/22 8:44 AM

17.4 / SECuRE SHELL (SSH) 559

where the name-list is a list of methods that may productively continue the dialog.
If the server accepts authentication, it sends a single byte message: SSH_MSG_
USERAUTH_SUCCESS (52).

Message exchange The message exchange involves the following steps.

1. The client sends a SSH_MSG_USERAUTH_REQUEST with a requested method
of none.

2. The server checks to determine if the user name is valid. If not, the server
 returns SSH_MSG_USERAUTH_FAILURE with the partial success value of
false. If the user name is valid, the server proceeds to step 3.

3. The server returns SSH_MSG_USERAUTH_FAILURE with a list of one or more
authentication methods to be used.

4. The client selects one of the acceptable authentication methods and sends a
SSH_MSG_USERAUTH_REQUEST with that method name and the required
method-specific fields. At this point, there may be a sequence of exchanges to
perform the method.

5. If the authentication succeeds and more authentication methods are required,
the server proceeds to step 3, using a partial success value of true. If the
authentication fails, the server proceeds to step 3, using a partial success value
of false.

6. When all required authentication methods succeed, the server sends a
SSH_MSG_USERAUTH_SUCCESS message, and the Authentication Protocol is over.

authentication Methods The server may require one or more of the following
authentication methods.

■■ publickey: The details of this method depend on the public-key algo-
rithm chosen. In essence, the client sends a message to the server that con-
tains the client’s public key, with the message signed by the client’s private
key. When the server receives this message, it checks whether the supplied
key is acceptable for authentication and, if so, it checks whether the signa-
ture is correct.

■■ password: The client sends a message containing a plaintext password,
which is protected by encryption by the Transport Layer Protocol.

■■ hostbased: Authentication is performed on the client’s host rather than the
client itself. Thus, a host that supports multiple clients would provide authentica-
tion for all its clients. This method works by having the client send a signature
created with the private key of the client host. Thus, rather than directly verify-
ing the user’s identity, the SSH server verifies the identity of the client host—and
then believes the host when it says the user has already authenticated on the
client side.

M17_STAL7484_08_GE_C17.indd 559 30/04/22 8:44 AM

560 CHAPTER 17 / TRAnSPoRT-LEvEL SECuRiTy

Connection Protocol

The SSH Connection Protocol runs on top of the SSH Transport Layer Protocol and
assumes that a secure authentication connection is in use.2 That secure authentica-
tion connection, referred to as a tunnel, is used by the Connection Protocol to mul-
tiplex a number of logical channels.

channel MechanisM All types of communication using SSH, such as a terminal ses-
sion, are supported using separate channels. Either side may open a channel. For each
channel, each side associates a unique channel number, which need not be the same on
both ends. Channels are flow controlled using a window mechanism. No data may be
sent to a channel until a message is received to indicate that window space is available.

The life of a channel progresses through three stages: opening a channel, data
transfer, and closing a channel.

When either side wishes to open a new channel, it allocates a local number for
the channel and then sends a message of the form:

byte SSH_MSG_CHANNEL_OPEN

string channel type

uint32 sender channel

uint32 initial window size

uint32 maximum packet size

.... channel type specific data follows

where uint32 means unsigned 32-bit integer. The channel type identifies the appli-
cation for this channel, as described subsequently. The sender channel is the local
channel number. The initial window size specifies how many bytes of channel
data can be sent to the sender of this message without adjusting the window. The
maximum packet size specifies the maximum size of an individual data packet
that can be sent to the sender. For example, one might want to use smaller pack-
ets for interactive connections to get better interactive response on slow links.

If the remote side is able to open the channel, it returns a SSH_MSG_CHANNEL_
OPEN_CONFIRMATION message, which includes the sender channel number, the
recipient channel number, and window and packet size values for incoming traffic.
Otherwise, the remote side returns a SSH_MSG_CHANNEL_OPEN_FAILURE
 message with a reason code indicating the reason for failure.

Once a channel is open, data transfer is performed using a SSH_MSG_CHANNEL_
DATA message, which includes the recipient channel number and a block of data.
These messages, in both directions, may continue as long as the channel is open.

When either side wishes to close a channel, it sends a SSH_MSG_CHANNEL_
CLOSE message, which includes the recipient channel number.

2RFC 4254, The Secure Shell (SSH) Connection Protocol, states that the Connection Protocol runs on
top of the Transport Layer Protocol and the User Authentication Protocol. RFC 4251, SSH Protocol
Architecture, states that the Connection Protocol runs over the User Authentication Protocol. In fact, the
Connection Protocol runs over the Transport Layer Protocol, but assumes that the User Authentication
Protocol has been previously invoked.

M17_STAL7484_08_GE_C17.indd 560 30/04/22 8:44 AM

17.4 / SECuRE SHELL (SSH) 561

Figure 17.11 provides an example of Connection Protocol Message Exchange.

channel tyPes Four channel types are recognized in the SSH Connection Protocol
specification.

■■ session: The remote execution of a program. The program may be a shell, an
application such as file transfer or email, a system command, or some built-in
subsystem. Once a session channel is opened, subsequent requests are used to
start the remote program.

■■ x11: This refers to the X Window System, a computer software system and
 network protocol that provides a graphical user interface (GUI) for net-
worked computers. X allows applications to run on a network server but to be
displayed on a desktop machine.

■■ forwarded-tcpip: This is remote port forwarding, as explained in the next subsection.

■■ direct-tcpip: This is local port forwarding, as explained in the next subsection.

Figure 17.11 Example of SSH Connection Protocol Message Exchange

Client Server

SSH_MSG_CHANNEL_OPEN
Open a
channel

Data
transfer

Close a
channel

SSH_MSG_CHANNEL_OPEN_CONFIRMATION

SSH_MSG_CHANNEL_DATA

SSH_MSG_CHANNEL_DATA

SSH_MSG_CHANNEL_DATA

SSH_MSG_CHANNEL_DATA

SSH_MSG_CHANNEL_CLOSE

Establish Authenticated Transport Layer Connection

M17_STAL7484_08_GE_C17.indd 561 30/04/22 8:44 AM

562 CHAPTER 17 / TRAnSPoRT-LEvEL SECuRiTy

Port Forwarding One of the most useful features of SSH is port forwarding. In
essence, port forwarding provides the ability to convert any insecure TCP con-
nection into a secure SSH connection. This is also referred to as SSH tunneling.
We need to know what a port is in this context. A port is an identifier of a user of
TCP. So, any application that runs on top of TCP has a port number. Incoming TCP
traffic is delivered to the appropriate application on the basis of the port number.
An application may employ multiple port numbers. For example, for the Simple
Mail Transfer Protocol (SMTP), the server side generally listens on port 25, so an
incoming SMTP request uses TCP and addresses the data to destination port 25.
TCP recognizes that this is the SMTP server address and routes the data to the
SMTP server application.

Figure 17.12 illustrates the basic concept behind port forwarding. We have a
client application that is identified by port number x and a server application identi-
fied by port number y. At some point, the client application invokes the local TCP
entity and requests a connection to the remote server on port y. The local TCP entity

Figure 17.12 SSH Transport Layer Packet Exchanges

Client Server

Client
application

Unsecure TCP connection

(a) Connection via TCP

TCP
entity

x y

Server
application

TCP
entity

Client
application

Secure SSH tunnel

(b) Connection via SSH tunnel

SSH
entity

x y

Server
application

SSH
entity

Unsecure TCP connectionTCP
entity

a b
TCP
entity

M17_STAL7484_08_GE_C17.indd 562 30/04/22 8:44 AM

17.4 / SECuRE SHELL (SSH) 563

negotiates a TCP connection with the remote TCP entity, such that the connection
links local port x to remote port y.

To secure this connection, SSH is configured so that the SSH Transport Layer
Protocol establishes a TCP connection between the SSH client and server entities,
with TCP port numbers a and b, respectively. A secure SSH tunnel is established
over this TCP connection. Traffic from the client at port x is redirected to the local
SSH entity and travels through the tunnel where the remote SSH entity delivers
the data to the server application on port y. Traffic in the other direction is similarly
redirected.

SSH supports two types of port forwarding: local forwarding and remote for-
warding. Local forwarding allows the client to set up a “hijacker” process. This will
intercept selected application-level traffic and redirect it from an unsecured TCP
connection to a secure SSH tunnel. SSH is configured to listen on selected ports.
SSH grabs all traffic using a selected port and sends it through an SSH tunnel. On
the other end, the SSH server sends the incoming traffic to the destination port dic-
tated by the client application.

The following example should help clarify local forwarding. Suppose you have
an email client on your desktop and use it to get email from your mail server via the
Post Office Protocol (POP). The assigned port number for POP3 is port 110. We can
secure this traffic in the following way:

1. The SSH client sets up a connection to the remote server.

2. Select an unused local port number, say 9999, and configure SSH to accept
traffic from this port destined for port 110 on the server.

3. The SSH client informs the SSH server to create a connection to the destina-
tion, in this case mailserver port 110.

4. The client takes any bits sent to local port 9999 and sends them to the server
inside the encrypted SSH session. The SSH server decrypts the incoming bits
and sends the plaintext to port 110.

5. In the other direction, the SSH server takes any bits received on port 110 and
sends them inside the SSH session back to the client, who decrypts and sends
them to the process connected to port 9999.

With remote forwarding, the user’s SSH client acts on the server’s behalf. The
client receives traffic with a given destination port number, places the traffic on the
correct port and sends it to the destination the user chooses. A typical example of
remote forwarding is the following. You wish to access a server at work from your
home computer. Because the work server is behind a firewall, it will not accept an
SSH request from your home computer. However, from work you can set up an SSH
tunnel using remote forwarding. This involves the following steps.

1. From the work computer, set up an SSH connection to your home computer.
The firewall will allow this, because it is a protected outgoing connection.

2. Configure the SSH server to listen on a local port, say 22, and to deliver data
across the SSH connection addressed to remote port, say 2222.

M17_STAL7484_08_GE_C17.indd 563 30/04/22 8:44 AM

564 CHAPTER 17 / TRAnSPoRT-LEvEL SECuRiTy

3. You can now go to your home computer, and configure SSH to accept traffic
on port 2222.

4. You now have an SSH tunnel that can be used for remote logon to the work
server.

 17.5 REVIEW QUESTIONS AND PROBLEMS

Review Questions

 17.1 What are the advantages of each of the three approaches shown in Figure 17.1?
 17.2 What protocols comprise TLS?
 17.3 What is the difference between a TLS connection and a TLS session?
 17.4 List and briefly define the parameters that define a TLS session state.
 17.5 List and briefly define the parameters that define a TLS session connection.
 17.6 What services are provided by the TLS Record Protocol?
 17.7 What steps are involved in the TLS Record Protocol transmission?
 17.8 Briefly discuss the different levels of awareness of a connection in HTTPS.
 17.9 Which protocol was replaced by SSH and why? Which version is currently in the pro-

cess of being standardized?
 17.10 List and briefly define the SSH protocols.

Problems

 17.1 In SSL and TLS, why is there a separate Change Cipher Spec Protocol rather than
including a change_cipher_spec message in the Handshake Protocol?

 17.2 What purpose does the MAC serve during the change cipher spec TLS exchange?
 17.3 Consider the following threats to Web security and describe how each is countered by

a particular feature of TLS.
a. Brute-Force Cryptanalytic Attack: An exhaustive search of the key space for a

conventional encryption algorithm.
b. Known Plaintext Dictionary Attack: Many messages will contain predictable

plaintext, such as the HTTP GET command. An attacker constructs a diction-
ary containing every possible encryption of the known-plaintext message. When
an encrypted message is intercepted, the attacker takes the portion containing
the encrypted known plaintext and looks up the ciphertext in the dictionary. The
ciphertext should match against an entry that was encrypted with the same secret
key. If there are several matches, each of these can be tried against the full cipher-
text to determine the right one. This attack is especially effective against small key
sizes (e.g., 40-bit keys).

c. Replay Attack: Earlier TLS handshake messages are replayed.
d. Man-in-the-Middle Attack: An attacker interposes during key exchange, acting as

the client to the server and as the server to the client.
e. Password Sniffing: Passwords in HTTP or other application traffic are eaves-

dropped.
f. IP Spoofing: Uses forged IP addresses to fool a host into accepting bogus data.
g. IP Hijacking: An active, authenticated connection between two hosts is disrupted

and the attacker takes the place of one of the hosts.

M17_STAL7484_08_GE_C17.indd 564 30/04/22 8:44 AM

17.5 / REviEW QuESTionS And PRobLEmS 565

h. SYN Flooding: An attacker sends TCP SYN messages to request a connection
but does not respond to the final message to establish the connection fully. The
 attacked TCP module typically leaves the “half-open connection” around for a few
minutes. Repeated SYN messages can clog the TCP module.

 17.4 Based on what you have learned in this chapter, is it possible in TLS for the receiver
to reorder TLS record blocks that arrive out of order? If so, explain how it can be
done. If not, why not?

 17.5 For SSH packets, what is the advantage, if any, of not including the MAC in the scope
of the packet encryption?

M17_STAL7484_08_GE_C17.indd 565 30/04/22 8:44 AM

18.1 Wireless Security

Wireless Network Threats
Wireless Security Measures

18.2 Mobile Device Security

Security Threats
Mobile Device Security Strategy

18.3 IEEE 802.11 Wireless LAN Overview

The Wi-Fi Alliance
IEEE 802 Protocol Architecture
IEEE 802.11 Network Components and Architectural Model
IEEE 802.11 Services

18.4 IEEE 802.11i Wireless LAN Security

IEEE 802.11i Services
IEEE 802.11i Phases of Operation
Discovery Phase
Authentication Phase
Key Management Phase
Protected Data Transfer Phase
The IEEE 802.11i Pseudorandom Function

18.5 Key Terms, Review Questions, and Problems

18CHAPTER

Wireless Network Security

566

M18_STAL7484_08_GE_C18.indd 566 05/04/22 10:39 PM

18.1 / WireleSS Security 567

This chapter begins with a general overview of wireless security issues. We then focus
on the relatively new area of mobile device security, examining threats and counter-
measures for mobile devices used in the enterprise. Then, we look at the IEEE 802.11i
standard for wireless LAN security. This standard is part of IEEE 802.11, also referred
to as Wi-Fi. We begin the discussion with an overview of IEEE 802.11, and then we
look in some detail at IEEE 802.11i.

 18.1 WIRELESS SECURITY

Wireless networks, and the wireless devices that use them, introduce a host of secu-
rity problems over and above those found in wired networks. Some of the key fac-
tors contributing to the higher security risk of wireless networks compared to wired
networks include the following [MA10]:

 ■ Channel: Wireless networking typically involves broadcast communications,
which is far more susceptible to eavesdropping and jamming than wired
networks. Wireless networks are also more vulnerable to active attacks that
exploit vulnerabilities in communications protocols.

 ■ Mobility: Wireless devices are, in principal and usually in practice, far more
portable and mobile than wired devices. This mobility results in a number of
risks, described subsequently.

 ■ Resources: Some wireless devices, such as smartphones and tablets, have
sophisticated operating systems but limited memory and processing resources
with which to counter threats, including denial of service and malware.

 ■ Accessibility: Some wireless devices, such as sensors and robots, may be left
unattended in remote and/or hostile locations. This greatly increases their
 vulnerability to physical attacks.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

 ◆ Present an overview of security threats and countermeasures for wireless
networks.

 ◆ Understand the unique security threats posed by the use of mobile devices
with enterprise networks.

 ◆ Describe the principal elements in a mobile device security strategy.

 ◆ Understand the essential elements of the IEEE 802.11 wireless LAN
 standard.

 ◆ Summarize the various components of the IEEE 802.11i wireless LAN
 security architecture.

M18_STAL7484_08_GE_C18.indd 567 05/04/22 10:39 PM

568 cHAPter 18 / WireleSS NetWork Security

In simple terms, the wireless environment consists of three components that
provide point of attack (Figure 18.1). The wireless client can be a cell phone, a
 Wi-Fi–enabled laptop or tablet, a wireless sensor, a Bluetooth device, and so on. The
wireless access point provides a connection to the network or service. Examples of
access points are cell towers, Wi-Fi hotspots, and wireless access points to wired local
or wide area networks. The transmission medium, which carries the radio waves for
data transfer, is also a source of vulnerability.

Wireless Network Threats

[CHOI08] lists the following security threats to wireless networks:

 ■ Accidental association: Company wireless LANs or wireless access points to
wired LANs in close proximity (e.g., in the same or neighboring buildings)
may create overlapping transmission ranges. A user intending to connect to
one LAN may unintentionally lock on to a wireless access point from a neigh-
boring network. Although the security breach is accidental, it nevertheless
 exposes resources of one LAN to the accidental user.

 ■ Malicious association: In this situation, a wireless device is configured to
 appear to be a legitimate access point, enabling the operator to steal pass-
words from legitimate users and then penetrate a wired network through a
legitimate wireless access point.

 ■ Ad hoc networks: These are peer-to-peer networks between wireless comput-
ers with no access point between them. Such networks can pose a security
threat due to a lack of a central point of control.

 ■ Nontraditional networks: Nontraditional networks and links, such as personal
network Bluetooth devices, barcode readers, and handheld PDAs, pose a secu-
rity risk in terms of both eavesdropping and spoofing.

 ■ Identity theft (MAC spoofing): This occurs when an attacker is able to eaves-
drop on network traffic and identify the MAC address of a computer with
network privileges.

 ■ Man-in-the middle attacks: This type of attack is described in Chapter 10 in
the context of the Diffie–Hellman key exchange protocol. In a broader sense,
this attack involves persuading a user and an access point to believe that they
are talking to each other when in fact the communication is going through an
intermediate attacking device. Wireless networks are particularly vulnerable
to such attacks.

Figure 18.1 Wireless Networking Components

Endpoint Wireless medium Access point

M18_STAL7484_08_GE_C18.indd 568 05/04/22 10:39 PM

18.1 / WireleSS Security 569

 ■ Denial of service (DoS): This type of attack is discussed in detail in Chapter
21. In the context of a wireless network, a DoS attack occurs when an attacker
continually bombards a wireless access point or some other accessible wireless
port with various protocol messages designed to consume system resources.
The wireless environment lends itself to this type of attack, because it is so
easy for the attacker to direct multiple wireless messages at the target.

 ■ Network injection: A network injection attack targets wireless access points
that are exposed to nonfiltered network traffic, such as routing protocol mes-
sages or network management messages. An example of such an attack is
one in which bogus reconfiguration commands are used to affect routers and
switches to degrade network performance.

Wireless Security Measures

Following [CHOI08], we can group wireless security measures into those dealing
with wireless transmissions, wireless access points, and wireless networks (consisting
of wireless routers and endpoints).

Securing WireleSS TranSmiSSionS The principal threats to wireless transmission
are eavesdropping, altering or inserting messages, and disruption. To deal with
eavesdropping, two types of countermeasures are appropriate:

 ■ Signal-hiding techniques: Organizations can take a number of measures to
make it more difficult for an attacker to locate their wireless access points,
including turning off service set identifier (SSID) broadcasting by wireless
 access points; assigning cryptic names to SSIDs; reducing signal strength to the
lowest level that still provides requisite coverage; and locating wireless access
points in the interior of the building, away from windows and exterior walls.
Greater security can be achieved by the use of directional antennas and of
signal-shielding techniques.

 ■ Encryption: Encryption of all wireless transmission is effective against eaves-
dropping to the extent that the encryption keys are secured.

The use of encryption and authentication protocols is the standard method of
countering attempts to alter or insert transmissions.

The methods discussed in Chapter 21 for dealing with DoS apply to wireless
transmissions. Organizations can also reduce the risk of unintentional DoS attacks.
Site surveys can detect the existence of other devices using the same frequency
range, to help determine where to locate wireless access points. Signal strengths can
be adjusted and shielding used in an attempt to isolate a wireless environment from
competing nearby transmissions.

Securing WireleSS acceSS PoinTS The main threat involving wireless access points
is unauthorized access to the network. The principal approach for preventing such
access is the IEEE 802.1X standard for port-based network access control. The stan-
dard provides an authentication mechanism for devices wishing to attach to a LAN
or wireless network. The use of 802.1X can prevent rogue access points and other
unauthorized devices from becoming insecure backdoors.

Section 16.3 provides an introduction to 802.1X.

M18_STAL7484_08_GE_C18.indd 569 05/04/22 10:39 PM

570 cHAPter 18 / WireleSS NetWork Security

Securing WireleSS neTWorkS [CHOI08] recommends the following techniques
for wireless network security:

1. Use encryption. Wireless routers are typically equipped with built-in encryp-
tion mechanisms for router-to-router traffic.

2. Use antivirus and antispyware software, and a firewall. These facilities should
be enabled on all wireless network endpoints.

3. Turn off identifier broadcasting. Wireless routers are typically configured to
broadcast an identifying signal so that any device within range can learn of the
router’s existence. If a network is configured so that authorized devices know
the identity of routers, this capability can be disabled, so as to thwart attackers.

4. Change the identifier on your router from the default. Again, this measure
thwarts attackers who will attempt to gain access to a wireless network using
default router identifiers.

5. Change your router’s pre-set password for administration. This is another
 prudent step.

6. Allow only specific computers to access your wireless network. A router can
be configured to only communicate with approved MAC addresses. Of course,
MAC addresses can be spoofed, so this is just one element of a security strategy.

 18.2 MOBILE DEVICE SECURITY

Prior to the widespread use of smartphones, the dominant paradigm for computer
and network security in organizations was as follows. Corporate IT was tightly con-
trolled. User devices were typically limited to Windows PCs. Business applications
were controlled by IT and either run locally on endpoints or on physical servers
in data centers. Network security was based upon clearly defined perimeters that
 separated trusted internal networks from the untrusted Internet. Since then, there
have been massive changes in each of these assumptions. An organization’s networks
must accommodate the following:

 ■ Growing use of new devices: Organizations are experiencing significant growth
in employee use of mobile devices. In many cases, employees are allowed to
use a combination of endpoint devices as part of their day-to-day activities.

 ■ Cloud-based applications: Applications no longer run solely on physical
servers in corporate data centers. Quite the opposite, applications can run
 anywhere—on traditional physical servers, on mobile virtual servers, or in the
cloud. Additionally, end users can now take advantage of a wide variety of
cloud-based applications and IT services for personal and professional use.
Facebook can be used for an employee’s personal profiles or as a component
of a corporate marketing campaign. Employees depend upon Skype to speak
with friends abroad or for legitimate business video conferencing. Dropbox
and Box can be used to distribute documents between corporate and personal
devices for mobility and user productivity.

M18_STAL7484_08_GE_C18.indd 570 05/04/22 10:39 PM

18.2 / Mobile Device Security 571

 ■ De-perimeterization: Given new device proliferation, application mobility,
and cloud-based consumer and corporate services, the notion of a static net-
work perimeter is all but gone. Now there are a multitude of network perim-
eters around devices, applications, users, and data. These perimeters have also
become quite dynamic as they must adapt to various environmental conditions
such as user role, device type, server virtualization mobility, network location,
and time-of-day.

 ■ External business requirements: The enterprise must also provide guests,
third-party contractors, and business partners network access using various
devices from a multitude of locations.

The central element in all of these changes is the mobile computing device.
Mobile devices have become an essential element for organizations as part of the
overall network infrastructure. Mobile devices such as smartphones, tablets, and
memory sticks provide increased convenience for individuals as well as the potential
for increased productivity in the workplace. Because of their widespread use and
unique characteristics, security for mobile devices is a pressing and complex issue. In
essence, an organization needs to implement a security policy through a combina-
tion of security features built into the mobile devices and additional security con-
trols provided by network components that regulate the use of the mobile devices.

Security Threats

Mobile devices need additional, specialized protection measures beyond those
 implemented for other client devices, such as desktop and laptop devices that are
used only within the organization’s facilities and on the organization’s networks. SP
800-14 (Guidelines for Managing and Securing Mobile Devices in the Enterprise, July
2012) lists seven major security concerns for mobile devices. We examine each of
these in turn.

lack of PhySical SecuriTy conTrolS Mobile devices are typically under the com-
plete control of the user, and are used and kept in a variety of locations outside the
organization’s control, including off premises. Even if a device is required to remain
on premises, the user may move the device within the organization between secure
and nonsecured locations. Thus, theft and tampering are realistic threats.

The security policy for mobile devices must be based on the assumption that
any mobile device may be stolen or at least accessed by a malicious party. The threat
is twofold: A malicious party may attempt to recover sensitive data from the device
itself, or may use the device to gain access to the organization’s resources.

uSe of unTruSTed mobile deviceS In addition to company-issued and company-
controlled mobile devices, virtually all employees will have personal smartphones
and/or tablets. The organization must assume that these devices are not trustworthy.
That is, the devices may not employ encryption and either the user or a third party
may have installed a bypass to the built-in restrictions on security, operating system
use, and so on.

M18_STAL7484_08_GE_C18.indd 571 05/04/22 10:39 PM

572 cHAPter 18 / WireleSS NetWork Security

uSe of unTruSTed neTWorkS If a mobile device is used on premises, it can connect
to organization resources over the organization’s own in-house wireless networks.
However, for off-premises use, the user will typically access organizational resources
via Wi-Fi or cellular access to the Internet and from the Internet to the organiza-
tion. Thus, traffic that includes an off-premises segment is potentially susceptible to
eavesdropping or man-in-the-middle types of attacks. Thus, the security policy must
be based on the assumption that the networks between the mobile device and the
organization are not trustworthy.

uSe of aPPlicaTionS creaTed by unknoWn ParTieS By design, it is easy to find
and install third-party applications on mobile devices. This poses the obvious risk of
installing malicious software. An organization has several options for dealing with
this threat, as described subsequently.

inTeracTion WiTh oTher SySTemS A common feature found on smartphones and
tablets is the ability to automatically synchronize data, apps, contacts, photos, and so
on with other computing devices and with cloud-based storage. Unless an organiza-
tion has control of all the devices involved in synchronization, there is considerable
risk of the organization’s data being stored in an unsecured location, plus the risk of
the introduction of malware.

uSe of unTruSTed conTenT Mobile devices may access and use content that other
computing devices do not encounter. An example is the Quick Response (QR) code,
which is a two-dimensional barcode. QR codes are designed to be captured by a mo-
bile device camera and used by the mobile device. The QR code translates to a URL,
so that a malicious QR code could direct the mobile device to malicious Web sites.

uSe of locaTion ServiceS The GPS capability on mobile devices can be used to
maintain a knowledge of the physical location of the device. While this feature might
be useful to an organization as part of a presence service, it creates security risks. An
attacker can use the location information to determine where the device and user
are located, which may be of use to the attacker.

Mobile Device Security Strategy

With the threats listed in the preceding discussion in mind, we outline the principal
elements of a mobile device security strategy. They fall into three categories: device
security, client/server traffic security, and barrier security (Figure 18.2).

device SecuriTy A number of organizations will supply mobile devices for
 employee use and preconfigure those devices to conform to the enterprise secu-
rity policy. However, many organizations will find it convenient or even necessary
to adopt a bring-your-own-device (BYOD) policy that allows the personal mobile
devices of employees to have access to corporate resources. IT managers should be
able to inspect each device before allowing network access. IT will want to estab-
lish configuration guidelines for operating systems and applications. For example,
“rooted” or “jail-broken” devices are not permitted on the network, and mobile

M18_STAL7484_08_GE_C18.indd 572 05/04/22 10:39 PM

18.2 / Mobile Device Security 573

devices cannot store corporate contacts on local storage. Whether a device is owned
by the organization or BYOD, the organization should configure the device with
security controls, including the following:

 ■ Enable auto-lock, which causes the device to lock if it has not been used for a
given amount of time, requiring the user to re-enter a four-digit PIN or a pass-
word to re-activate the device.

 ■ Enable password or PIN protection. The PIN or password is needed to unlock
the device. In addition, it can be configured so that email and other data on the
device are encrypted using the PIN or password and can only be retrieved with
the PIN or password.

 ■ Avoid using auto-complete features that remember user names or passwords.

 ■ Enable remote wipe.

 ■ Ensure that SSL protection is enabled, if available.

 ■ Make sure that software, including operating systems and applications, is up
to date.

 ■ Install antivirus software as it becomes available.

Figure 18.2 Mobile Device Security Elements

Firewall

Firewall limits
scope of data
and application
access

Authentication
and access control
protocols used to
verify device and user
and establish limits
on access

Mobile device is
configured with
security mechanisms and
parameters to conform to
organization security policy

Traffic is encrypted;
uses SSL or IPsec
VPN tunnel

Authentication/
access control
server

Mobile device
configuration
server

Application/
database
server

M18_STAL7484_08_GE_C18.indd 573 05/04/22 10:39 PM

574 cHAPter 18 / WireleSS NetWork Security

 ■ Either sensitive data should be prohibited from storage on the mobile device
or it should be encrypted.

 ■ IT staff should also have the ability to remotely access devices, wipe the device
of all data, and then disable the device in the event of loss or theft.

 ■ The organization may prohibit all installation of third-party applications,
 implement whitelisting to prohibit installation of all unapproved applica-
tions, or implement a secure sandbox that isolates the organization’s data and
 applications from all other data and applications on the mobile device. Any
application that is on an approved list should be accompanied by a digital sig-
nature and a public-key certificate from an approved authority.

 ■ The organization can implement and enforce restrictions on what devices can
synchronize and on the use of cloud-based storage.

 ■ To deal with the threat of untrusted content, security responses can include
training of personnel on the risks inherent in untrusted content and disabling
camera use on corporate mobile devices.

 ■ To counter the threat of malicious use of location services, the security policy
can dictate that such service is disabled on all mobile devices.

Traffic SecuriTy Traffic security is based on the usual mechanisms for encryption
and authentication. All traffic should be encrypted and travel by secure means, such
as SSL or IPv6. Virtual private networks (VPNs) can be configured so that all traffic
between the mobile device and the organization’s network is via a VPN.

A strong authentication protocol should be used to limit the access from
the device to the resources of the organization. Often, a mobile device has a sin-
gle device-specific authenticator, because it is assumed that the device has only
one user. A preferable strategy is to have a two-layer authentication mechanism,
which involves authenticating the device and then authenticating the user of the
device.

barrier SecuriTy The organization should have security mechanisms to protect the
network from unauthorized access. The security strategy can also include firewall
policies specific to mobile device traffic. Firewall policies can limit the scope of data
and application access for all mobile devices. Similarly, intrusion detection and in-
trusion prevention systems can be configured to have tighter rules for mobile device
traffic.

 18.3 IEEE 802.11 WIRELESS LAN OVERVIEW

IEEE 802 is a committee that has developed standards for a wide range of local area
networks (LANs). In 1990, the IEEE 802 Committee formed a new working group,
IEEE 802.11, with a charter to develop a protocol and transmission specifications
for wireless LANs (WLANs). Since that time, the demand for WLANs at different
frequencies and data rates has exploded. Keeping pace with this demand, the IEEE
802.11 working group has issued an ever-expanding list of standards. Table 18.1
briefly defines key terms used in the IEEE 802.11 standard.

M18_STAL7484_08_GE_C18.indd 574 05/04/22 10:39 PM

18.3 / ieee 802.11 WireleSS lAN overvieW 575

The Wi-Fi Alliance

The first 802.11 standard to gain broad industry acceptance was 802.11b. Although
802.11b products are all based on the same standard, there is always a concern
whether products from different vendors will successfully interoperate. To meet
this concern, the Wireless Ethernet Compatibility Alliance (WECA), an indus-
try consortium, was formed in 1999. This organization, subsequently renamed the
Wi-Fi (Wireless Fidelity) Alliance, created a test suite to certify interoperability for
802.11b products. The term used for certified 802.11b products is Wi-Fi. Wi-Fi cer-
tification has been extended to 802.11g products. The Wi-Fi Alliance has also devel-
oped a certification process for 802.11a products, called Wi-Fi5. The Wi-Fi Alliance
is concerned with a range of market areas for WLANs, including enterprise, home,
and hot spots.

More recently, the Wi-Fi Alliance has developed certification procedures for
IEEE 802.11 security standards, referred to as Wi-Fi Protected Access (WPA). The
most recent version of WPA, known as WPA2, incorporates all of the features of the
IEEE 802.11i WLAN security specification.

IEEE 802 Protocol Architecture

Before proceeding, we need to briefly preview the IEEE 802 protocol architecture.
IEEE 802.11 standards are defined within the structure of a layered set of protocols.
This structure, used for all IEEE 802 standards, is illustrated in Figure 18.3.

PhySical layer The lowest layer of the IEEE 802 reference model is the physical
layer, which includes such functions as encoding/decoding of signals and bit trans-
mission/reception. In addition, the physical layer includes a specification of the
transmission medium. In the case of IEEE 802.11, the physical layer also defines
frequency bands and antenna characteristics.

Access point (AP) Any entity that has station functionality and provides access to the distri-
bution system via the wireless medium for associated stations.

Basic service set (BSS) A set of stations controlled by a single coordination function.

Coordination function The logical function that determines when a station operating within a BSS
is permitted to transmit and may be able to receive PDUs.

Distribution system (DS) A system used to interconnect a set of BSSs and integrated LANs to create
an ESS.

Extended service set (ESS) A set of one or more interconnected BSSs and integrated LANs that
appear as a single BSS to the LLC layer at any station associated with one
of these BSSs.

MAC protocol data unit
(MPDU)

The unit of data exchanged between two peer MAC entities using the ser-
vices of the physical layer.

MAC service data unit
(MSDU)

Information that is delivered as a unit between MAC users.

Station Any device that contains an IEEE 802.11 conformant MAC and physical
layer.

Table 18.1 IEEE 802.11 Terminology

M18_STAL7484_08_GE_C18.indd 575 05/04/22 10:39 PM

576 cHAPter 18 / WireleSS NetWork Security

media acceSS conTrol All LANs consist of collections of devices that share the
network’s transmission capacity. Some means of controlling access to the transmis-
sion medium is needed to provide an orderly and efficient use of that capacity. This
is the function of a media access control (MAC) layer. The MAC layer receives data
from a higher-layer protocol, typically the Logical Link Control (LLC) layer, in the
form of a block of data known as the MAC service data unit (MSDU). In general,
the MAC layer performs the following functions:

 ■ On transmission, assemble data into a frame, known as a MAC protocol data
unit (MPDU) with address and error-detection fields.

 ■ On reception, disassemble frame, and perform address recognition and error
detection.

 ■ Govern access to the LAN transmission medium.

The exact format of the MPDU differs somewhat for the various MAC proto-
cols in use. In general, all of the MPDUs have a format similar to that of Figure 18.4.
The fields of this frame are as follows.

 ■ MAC Control: This field contains any protocol control information needed for
the functioning of the MAC protocol. For example, a priority level could be
indicated here.

 ■ Destination MAC Address: The destination physical address on the LAN for
this MPDU.

 ■ Source MAC Address: The source physical address on the LAN for this MPDU.

Figure 18.3 IEEE 802.11 Protocol Stack

Logical Link
Control

Medium Access
Control

Physical
Encoding/decoding of signals
Bit transmission/reception
Transmission medium

Assemble data into frame
Addressing
Error detection
Medium access

Flow control
Error control

General IEEE 802
functions

Specific IEEE 802.11
functions

Frequency band definition
Wireless signal encoding

Reliable data delivery
Wireless access control protocols

M18_STAL7484_08_GE_C18.indd 576 05/04/22 10:39 PM

18.3 / ieee 802.11 WireleSS lAN overvieW 577

 ■ MAC Service Data Unit: The data from the next higher layer.

 ■ CRC: The cyclic redundancy check field; also known as the Frame Check
Sequence (FCS) field. This is an error-detecting code, such as that which is
used in other data-link control protocols. The CRC is calculated based on the
bits in the entire MPDU. The sender calculates the CRC and adds it to the
frame. The receiver performs the same calculation on the incoming MPDU
and compares that calculation to the CRC field in that incoming MPDU. If
the two values don’t match, then one or more bits have been altered in transit.

The fields preceding the MSDU field are referred to as the MAC header, and
the field following the MSDU field is referred to as the MAC trailer. The header and
trailer contain control information that accompany the data field and that are used
by the MAC protocol.

logical link conTrol In most data-link control protocols, the data-link protocol
entity is responsible not only for detecting errors using the CRC, but for recovering
from those errors by retransmitting damaged frames. In the LAN protocol archi-
tecture, these two functions are split between the MAC and LLC layers. The MAC
layer is responsible for detecting errors and discarding any frames that contain er-
rors. The LLC layer optionally keeps track of which frames have been successfully
received and retransmits unsuccessful frames.

IEEE 802.11 Network Components and Architectural Model

Figure 18.5 illustrates the model developed by the 802.11 working group. The small-
est building block of a wireless LAN is a basic service set (BSS), which consists of
wireless stations executing the same MAC protocol and competing for access to the
same shared wireless medium. A BSS may be isolated, or it may connect to a back-
bone distribution system (DS) through an access point (AP). The AP functions as a
bridge and a relay point. In a BSS, client stations do not communicate directly with
one another. Rather, if one station in the BSS wants to communicate with another
station in the same BSS, the MAC frame is first sent from the originating station
to the AP and then from the AP to the destination station. Similarly, a MAC frame
from a station in the BSS to a remote station is sent from the local station to the AP
and then relayed by the AP over the DS on its way to the destination station. The
BSS generally corresponds to what is referred to as a cell in the literature. The DS
can be a switch, a wired network, or a wireless network.

When all the stations in the BSS are mobile stations that communicate directly
with one another (not using an AP), the BSS is called an independent BSS (IBSS).
An IBSS is typically an ad hoc network. In an IBSS, the stations all communicate
directly, and no AP is involved.

Figure 18.4 General IEEE 802 MPDU Format

MAC
Control

MAC header MAC trailer

Destination
MAC Address

Source
MAC Address MAC Service Data Unit (MSDU) CRC

M18_STAL7484_08_GE_C18.indd 577 05/04/22 10:39 PM

578 cHAPter 18 / WireleSS NetWork Security

A simple configuration is shown in Figure 18.5, in which each station belongs
to a single BSS; that is, each station is within wireless range only of other stations
within the same BSS. It is also possible for two BSSs to overlap geographically, so
that a single station could participate in more than one BSS. Furthermore, the asso-
ciation between a station and a BSS is dynamic. Stations may turn off, come within
range, and go out of range.

An extended service set (ESS) consists of two or more basic service sets
 interconnected by a distribution system. The extended service set appears as a single
logical LAN to the logical link control (LLC) level.

IEEE 802.11 Services

IEEE 802.11 defines nine services that need to be provided by the wireless LAN to
achieve functionality equivalent to that which is inherent to wired LANs. Table 18.2
lists the services and indicates two ways of categorizing them.

1. The service provider can be either the station or the DS. Station services are
implemented in every 802.11 station, including AP stations. Distribution ser-
vices are provided between BSSs; these services may be implemented in an AP
or in another special-purpose device attached to the distribution system.

2. Three of the services are used to control IEEE 802.11 LAN access and confi-
dentiality. Six of the services are used to support delivery of MSDUs between
stations. If the MSDU is too large to be transmitted in a single MPDU, it may
be fragmented and transmitted in a series of MPDUs.

Figure 18.5 IEEE 802.11 Extended Service Set

STA 2

STA 3

STA 4

STA 1

STA 6 STA 7

STA 8

AP 2

AP 1

Basic Service
Set (BSS)

Basic Service
Set (BSS)

Distribution System

M18_STAL7484_08_GE_C18.indd 578 05/04/22 10:39 PM

18.3 / ieee 802.11 WireleSS lAN overvieW 579

Following the IEEE 802.11 document, we next discuss the services in an order
designed to clarify the operation of an IEEE 802.11 ESS network. MSDU delivery,
which is the basic service, already has been mentioned. Services related to security
are introduced in Section 18.4.

diSTribuTion of meSSageS WiThin a dS The two services involved with the dis-
tribution of messages within a DS are distribution and integration. Distribution is
the primary service used by stations to exchange MPDUs when the MPDUs must
traverse the DS to get from a station in one BSS to a station in another BSS. For
example, suppose a frame is to be sent from station 2 (STA 2) to station 7 (STA 7)
in Figure 18.5. The frame is sent from STA 2 to AP 1, which is the AP for this BSS.
The AP gives the frame to the DS, which has the job of directing the frame to the AP
associated with STA 7 in the target BSS. AP 2 receives the frame and forwards it to
STA 7. How the message is transported through the DS is beyond the scope of the
IEEE 802.11 standard.

If the two stations that are communicating are within the same BSS, then the
distribution service logically goes through the single AP of that BSS.

The integration service enables transfer of data between a station on an IEEE
802.11 LAN and a station on an integrated IEEE 802.x LAN. The term integrated
refers to a wired LAN that is physically connected to the DS and whose stations
may be logically connected to an IEEE 802.11 LAN via the integration service. The
integration service takes care of any address translation and media conversion logic
required for the exchange of data.

aSSociaTion-relaTed ServiceS The primary purpose of the MAC layer is to
transfer MSDUs between MAC entities; this purpose is fulfilled by the distribu-
tion service. For that service to function, it requires information about stations
within the ESS that is provided by the association-related services. Before the
distribution service can deliver data to or accept data from a station, that sta-
tion must be associated. Before looking at the concept of association, we need

Service Provider Used to support

Association Distribution system MSDU delivery

Authentication Station LAN access and security

Deauthentication Station LAN access and security

Disassociation Distribution system MSDU delivery

Distribution Distribution system MSDU delivery

Integration Distribution system MSDU delivery

MSDU delivery Station MSDU delivery

Privacy Station LAN access and security

Reassociation Distribution system MSDU delivery

Table 18.2 IEEE 802.11 Services

M18_STAL7484_08_GE_C18.indd 579 05/04/22 10:39 PM

580 cHAPter 18 / WireleSS NetWork Security

to describe the concept of mobility. The standard defines three transition types,
based on mobility:

 ■ No transition: A station of this type is either stationary or moves only within
the direct communication range of the communicating stations of a single BSS.

 ■ BSS transition: This is defined as a station movement from one BSS to another
BSS within the same ESS. In this case, delivery of data to the station requires that
the addressing capability be able to recognize the new location of the station.

 ■ ESS transition: This is defined as a station movement from a BSS in one ESS
to a BSS within another ESS. This case is supported only in the sense that
the station can move. Maintenance of upper-layer connections supported by
802.11 cannot be guaranteed. In fact, disruption of service is likely to occur.

To deliver a message within a DS, the distribution service needs to know where
the destination station is located. Specifically, the DS needs to know the identity
of the AP to which the message should be delivered in order for that message to reach
the destination station. To meet this requirement, a station must maintain an associa-
tion with the AP within its current BSS. Three services relate to this requirement:

 ■ Association: Establishes an initial association between a station and an AP.
Before a station can transmit or receive frames on a wireless LAN, its iden-
tity and address must be known. For this purpose, a station must establish an
 association with an AP within a particular BSS. The AP can then communicate
this information to other APs within the ESS to facilitate routing and delivery
of addressed frames.

 ■ Reassociation: Enables an established association to be transferred from one
AP to another, allowing a mobile station to move from one BSS to another.

 ■ Disassociation: A notification from either a station or an AP that an existing
association is terminated. A station should give this notification before leaving
an ESS or shutting down. However, the MAC management facility protects
itself against stations that disappear without notification.

 18.4 IEEE 802.11i WIRELESS LAN SECURITY

There are two characteristics of a wired LAN that are not inherent in a wireless LAN.

1. In order to transmit over a wired LAN, a station must be physically connected
to the LAN. On the other hand, with a wireless LAN, any station within radio
range of the other devices on the LAN can transmit. In a sense, there is a form
of authentication with a wired LAN in that it requires some positive and pre-
sumably observable action to connect a station to a wired LAN.

2. Similarly, in order to receive a transmission from a station that is part of a
wired LAN, the receiving station also must be attached to the wired LAN.
On the other hand, with a wireless LAN, any station within radio range can
 receive. Thus, a wired LAN provides a degree of privacy, limiting reception of
data to stations connected to the LAN.

M18_STAL7484_08_GE_C18.indd 580 05/04/22 10:39 PM

18.4 / ieee 802.11i WireleSS lAN Security 581

These differences between wired and wireless LANs suggest the increased
need for robust security services and mechanisms for wireless LANs. The original
802.11 specification included a set of security features for privacy and authenti-
cation that were quite weak. For privacy, 802.11 defined the Wired Equivalent
Privacy (WEP) algorithm. The privacy portion of the 802.11 standard contained
major weaknesses. Subsequent to the development of WEP, the 802.11i task group
has developed a set of capabilities to address the WLAN security issues. In order
to accelerate the introduction of strong security into WLANs, the Wi-Fi Alliance
promulgated Wi-Fi Protected Access (WPA) as a Wi-Fi standard. WPA is a set of
security mechanisms that eliminates most 802.11 security issues and was based on
the current state of the 802.11i standard. The final form of the 802.11i standard is
referred to as Robust Security Network (RSN). The Wi-Fi Alliance certifies ven-
dors in compliance with the full 802.11i specification under the WPA2 program.

The RSN specification is quite complex, and occupies 145 pages of the 2012
IEEE 802.11 standard. In this section, we provide an overview.

IEEE 802.11i Services

The 802.11i RSN security specification defines the following services.

 ■ Authentication: A protocol is used to define an exchange between a user and
an AS that provides mutual authentication and generates temporary keys to
be used between the client and the AP over the wireless link.

 ■ Access control:1 This function enforces the use of the authentication function,
routes the messages properly, and facilitates key exchange. It can work with a
variety of authentication protocols.

 ■ Privacy with message integrity: MAC-level data (e.g., an LLC PDU) are
 encrypted along with a message integrity code that ensures that the data have
not been altered.

Figure 18.6a indicates the security protocols used to support these services,
while Figure 18.6b lists the cryptographic algorithms used for these services.

IEEE 802.11i Phases of Operation

The operation of an IEEE 802.11i RSN can be broken down into five distinct phases
of operation. The exact nature of the phases will depend on the configuration and
the end points of the communication. Possibilities include (see Figure 18.5):

1. Two wireless stations in the same BSS communicating via the access point
(AP) for that BSS.

2. Two wireless stations (STAs) in the same ad hoc IBSS communicating directly
with each other.

1In this context, we are discussing access control as a security function. This is a different function than
media access control (MAC) as described in Section 18.3. Unfortunately, the literature and the standards
use the term access control in both contexts.

M18_STAL7484_08_GE_C18.indd 581 05/04/22 10:39 PM

582 cHAPter 18 / WireleSS NetWork Security

3. Two wireless stations in different BSSs communicating via their respective
APs across a distribution system.

4. A wireless station communicating with an end station on a wired network via
its AP and the distribution system.

IEEE 802.11i security is concerned only with secure communication between
the STA and its AP. In case 1 in the preceding list, secure communication is assured
if each STA establishes secure communications with the AP. Case 2 is similar, with
the AP functionality residing in the STA. For case 3, security is not provided across
the distribution system at the level of IEEE 802.11, but only within each BSS. End-
to-end security (if required) must be provided at a higher layer. Similarly, in case 4,
security is only provided between the STA and its AP.

Figure 18.6 Elements of IEEE 802.11i

Access Control
Se

rv
ic

es
P

ro
to

co
ls IEEE 802.1

Port-based
Access Control

Extensible
Authentication
Protocol (EAP)

Authentication
and Key

Generation

(a) Services and protocols

Confidentiality, Data
Origin Authentication

and Integrity and
Replay Protection

TKIP CCMP

Robust Security Network (RSN)

Se
rv

ic
es

A
lg

or
ith

m
s

Confidentiality

TKIP
(Michael

MIC)

CCM
(AES-
CBC-
MAC)

CCM
(AES-
CTR)

NIST
Key

Wrap

HMAC-
MD5

HMAC-
SHA-1

Integrity and
Data Origin

Authentication

(b) Cryptographic algorithms

Key
Generation

TKIP
(RC4)

Robust Security Network (RSN)

HMAC-
SHA-1

RFC
1750

CBC-MAC 5 Cipher Block Chaining Message Authentication Code (MAC)
CCM 5 Counter Mode with Cipher Block Chaining Message Authentication Code
CCMP 5 Counter Mode with Cipher Block Chaining MAC Protocol
TKIP 5 Temporal Key Integrity Protocol

M18_STAL7484_08_GE_C18.indd 582 05/04/22 10:39 PM

18.4 / ieee 802.11i WireleSS lAN Security 583

With these considerations in mind, Figure 18.7 depicts the five phases of oper-
ation for an RSN and maps them to the network components involved. One new
component is the authentication server (AS). The rectangles indicate the exchange
of sequences of MPDUs. The five phases are defined as follows.

 ■ Discovery: An AP uses messages called Beacons and Probe Responses to
advertise its IEEE 802.11i security policy. The STA uses these to identify an
AP for a WLAN with which it wishes to communicate. The STA associates
with the AP, which it uses to select the cipher suite and authentication mecha-
nism when the Beacons and Probe Responses present a choice.

 ■ Authentication: During this phase, the STA and AS prove their identities to
each other. The AP blocks non-authentication traffic between the STA and AS
until the authentication transaction is successful. The AP does not participate
in the authentication transaction other than forwarding traffic between the
STA and AS.

 ■ Key generation and distribution: The AP and the STA perform several opera-
tions that cause cryptographic keys to be generated and placed on the AP and
the STA. Frames are exchanged between the AP and STA only.

 ■ Protected data transfer: Frames are exchanged between the STA and the end
station through the AP. As denoted by the shading and the encryption module
icon, secure data transfer occurs between the STA and the AP only; security is
not provided end-to-end.

Figure 18.7 IEEE 802.11i Phases of Operation

Phase 1 - Discovery

STA AP AS End Station

Phase 5 - Connection Termination

Phase 3 - Key Management

Phase 4 - Protected Data Transfer

Phase 2 - Authentication

M18_STAL7484_08_GE_C18.indd 583 05/04/22 10:39 PM

584 cHAPter 18 / WireleSS NetWork Security

 ■ Connection termination: The AP and STA exchange frames. During this phase,
the secure connection is torn down and the connection is restored to the origi-
nal state.

Discovery Phase

We now look in more detail at the RSN phases of operation, beginning with the
discovery phase, which is illustrated in the upper portion of Figure 18.8. The purpose
of this phase is for an STA and an AP to recognize each other, agree on a set of secu-
rity capabilities, and establish an association for future communication using those
security capabilities.

Figure 18.8 IEEE 802.11i Phases of Operation: Capability Discovery,
Authentication, and Association

STA AP AS

Probe requestStation sends a request
to join network AP sends possible

security parameter
(security capabilities set
per the security policy)

AP performs
null authentication

AP sends the associated
security parameters

Station sends a
request to perform

 null authentication

Station sends a request to
associate with AP with

security parameters

Station sets selected
security parameters

Open system
authentication request

Probe response

802.1X EAP request

Access request
(EAP request)

802.1X EAP response

Accept/EAP-success
key material

802.1X EAP success

Association request

Association response

 Open system
authentication response

802.1X-controlled port blocked

802.1X-controlled port blocked

Extensible Authentication Protocol Exchange

M18_STAL7484_08_GE_C18.indd 584 05/04/22 10:39 PM

18.4 / ieee 802.11i WireleSS lAN Security 585

SecuriTy caPabiliTieS During this phase, the STA and AP decide on specific tech-
niques in the following areas:

 ■ Confidentiality and MPDU integrity protocols for protecting unicast traffic
(traffic only between this STA and AP)

 ■ Authentication method

 ■ Cryptography key management approach

Confidentiality and integrity protocols for protecting multicast/broadcast traf-
fic are dictated by the AP, since all STAs in a multicast group must use the same
protocols and ciphers. The specification of a protocol, along with the chosen key
length (if variable) is known as a cipher suite. The options for the confidentiality and
integrity cipher suite are

 ■ WEP, with either a 40-bit or 104-bit key, which allows backward compatibility
with older IEEE 802.11 implementations

 ■ TKIP

 ■ CCMP

 ■ Vendor-specific methods

The other negotiable suite is the authentication and key management (AKM)
suite, which defines (1) the means by which the AP and STA perform mutual
authentication and (2) the means for deriving a root key from which other keys may
be generated. The possible AKM suites are

 ■ IEEE 802.1X

 ■ Pre-shared key (no explicit authentication takes place and mutual authentica-
tion is implied if the STA and AP share a unique secret key)

 ■ Vendor-specific methods

mPdu exchange The discovery phase consists of three exchanges.

 ■ Network and security capability discovery: During this exchange, STAs dis-
cover the existence of a network with which to communicate. The AP either
periodically broadcasts its security capabilities (not shown in figure), indicated
by RSN IE (Robust Security Network Information Element), in a specific
channel through the Beacon frame; or responds to a station’s Probe Request
through a Probe Response frame. A wireless station may discover available
access points and corresponding security capabilities by either passively moni-
toring the Beacon frames or actively probing every channel.

 ■ Open system authentication: The purpose of this frame sequence, which pro-
vides no security, is simply to maintain backward compatibility with the IEEE
802.11 state machine, as implemented in existing IEEE 802.11 hardware. In
essence, the two devices (STA and AP) simply exchange identifiers.

 ■ Association: The purpose of this stage is to agree on a set of security capa-
bilities to be used. The STA then sends an Association Request frame to
the AP. In this frame, the STA specifies one set of matching capabilities

M18_STAL7484_08_GE_C18.indd 585 05/04/22 10:39 PM

586 cHAPter 18 / WireleSS NetWork Security

(one authentication and key management suite, one pairwise cipher suite,
and one group-key cipher suite) from among those advertised by the AP.
If there is no match in capabilities between the AP and the STA, the AP
refuses the Association Request. The STA blocks it too, in case it has associ-
ated with a rogue AP or someone is inserting frames illicitly on its channel.
As shown in Figure 18.8, the IEEE 802.1X controlled ports are blocked, and
no user traffic goes beyond the AP. The concept of blocked ports is explained
subsequently.

Authentication Phase

As was mentioned, the authentication phase enables mutual authentication between
an STA and an authentication server (AS) located in the DS. Authentication is
designed to allow only authorized stations to use the network and to provide the
STA with assurance that it is communicating with a legitimate network.

ieee 802.1x acceSS conTrol aPProach IEEE 802.11i makes use of another stan-
dard that was designed to provide access control functions for LANs. The standard
is IEEE 802.1X, Port-Based Network Access Control. The authentication protocol
that is used, the Extensible Authentication Protocol (EAP), is defined in the IEEE
802.1X standard. IEEE 802.1X uses the terms supplicant, authenticator, and authen-
tication server (AS). In the context of an 802.11 WLAN, the first two terms corre-
spond to the wireless station and the AP. The AS is typically a separate device on the
wired side of the network (i.e., accessible over the DS) but could also reside directly
on the authenticator.

Before a supplicant is authenticated by the AS using an authentication proto-
col, the authenticator only passes control or authentication messages between the
supplicant and the AS; the 802.1X control channel is unblocked, but the 802.11 data
channel is blocked. Once a supplicant is authenticated and keys are provided, the
authenticator can forward data from the supplicant, subject to predefined access
control limitations for the supplicant to the network. Under these circumstances, the
data channel is unblocked.

As indicated in Figure 16.5, 802.1X uses the concepts of controlled and uncon-
trolled ports. Ports are logical entities defined within the authenticator and refer to
physical network connections. For a WLAN, the authenticator (the AP) may have
only two physical ports: one connecting to the DS and one for wireless communica-
tion within its BSS. Each logical port is mapped to one of these two physical ports.
An uncontrolled port allows the exchange of PDUs between the supplicant and the
other AS, regardless of the authentication state of the supplicant. A controlled port
allows the exchange of PDUs between a supplicant and other systems on the LAN
only if the current state of the supplicant authorizes such an exchange. IEEE 802.1X
is covered in more detail in Chapter 16.

The 802.1X framework, with an upper-layer authentication protocol, fits nicely
with a BSS architecture that includes a number of wireless stations and an AP. However,
for an IBSS, there is no AP. For an IBSS, 802.11i provides a more complex solution
that, in essence, involves pairwise authentication between stations on the IBSS.

M18_STAL7484_08_GE_C18.indd 586 05/04/22 10:39 PM

18.4 / IEEE 802.11I WIrElEss lan sEcurIty 587

MPDU ExchangE The lower part of Figure 18.8 shows the MPDU exchange dic-
tated by IEEE 802.11 for the authentication phase. We can think of authentication
phase as consisting of the following three phases.

 ■ Connect to AS: The STA sends a request to its AP (the one with which it has
an association) for connection to the AS. The AP acknowledges this request
and sends an access request to the AS.

 ■ EAP exchange: This exchange authenticates the STA and AS to each other.
A number of alternative exchanges are possible, as explained subsequently.

 ■ Secure key delivery: Once authentication is established, the AS generates a
master session key (MSK), also known as the Authentication, Authorization,
and Accounting (AAA) key and sends it to the STA. As explained subse-
quently, all the cryptographic keys needed by the STA for secure communi-
cation with its AP are generated from this MSK. IEEE 802.11i does not pre-
scribe a method for secure delivery of the MSK but relies on EAP for this.
Whatever method is used, it involves the transmission of an MPDU containing
an encrypted MSK from the AS, via the AP, to the AS.

EaP ExchangE As mentioned, there are a number of possible EAP exchanges that
can be used during the authentication phase. Typically, the message flow between
STA and AP employs the EAP over LAN (EAPOL) protocol, and the message
flow between the AP and AS uses the Remote Authentication Dial In User Service
(RADIUS) protocol, although other options are available for both STA-to-AP and
AP-to-AS exchanges. [FRAN07] provides the following summary of the authentica-
tion exchange using EAPOL and RADIUS.

1. The EAP exchange begins with the AP issuing an EAP-Request/Identity
frame to the STA.

2. The STA replies with an EAP-Response/Identity frame, which the AP receives
over the uncontrolled port. The packet is then encapsulated in RADIUS over
EAP and passed on to the RADIUS server as a RADIUS-Access-Request packet.

3. The AAA server replies with a RADIUS-Access-Challenge packet, which is
passed on to the STA as an EAP-Request. This request is of the appropriate
authentication type and contains relevant challenge information.

4. The STA formulates an EAP-Response message and sends it to the AS. The
response is translated by the AP into a Radius-Access-Request with the
response to the challenge as a data field. Steps 3 and 4 may be repeated mul-
tiple times, depending on the EAP method in use. For TLS tunneling methods,
it is common for authentication to require 10 to 20 round trips.

5. The AAA server grants access with a Radius-Access-Accept packet. The AP
issues an EAP-Success frame. (Some protocols require confirmation of the
EAP success inside the TLS tunnel for authenticity validation.) The controlled
port is authorized, and the user may begin to access the network.

Note from Figure 18.8 that the AP controlled port is still blocked to general
user traffic. Although the authentication is successful, the ports remain blocked until

M18_STAL7484_08_GE_C18.indd 587 09/04/22 10:58 AM

588 cHAPter 18 / WireleSS NetWork Security

the temporal keys are installed in the STA and AP, which occurs during the 4-Way
Handshake.

Key Management Phase

During the key management phase, a variety of cryptographic keys are generated
and distributed to STAs. There are two types of keys: pairwise keys used for commu-
nication between an STA and an AP and group keys used for multicast communica-
tion. Figure 18.9, based on [FRAN07], shows the two key hierarchies, and Table 18.3
defines the individual keys.

Figure 18.9 IEEE 802.11i Key Hierarchies

Out-of-band path EAP method path
PSK

256 bits

384 bits (CCMP)
512 bits (TKIP)

128 bits (CCMP)
256 bits (TKIP)

40 bits, 104 bits (WEP)
128 bits (CCMP)
256 bits (TKIP)

256 bits

128 bits

No modification
Legend

Possible truncation
PRF (pseudo random
function) using
HMAC-SHA-1

128 bits

User-defined
cryptoid

EAP
authentication

Following EAP authentication
or PSK

During 4-way handshake

These keys are
components of the PTK

≥ 256 bits

PMK

KCK

PTK

KTKEK

AAAK or MSK

(b) Group key hierarchy

(a) Pairwise key hierarchy

256 bits Changes periodically
or if compromised

Changes based on
policy (dissociation,
deauthentication)

GMK (generated by AS)

GTK

Group master key

Group temporal key

Pairwise master key

Pairwise transient key

EAPOL key encryption keyEAPOL key confirmation key Temporal key

Pre-shared key AAA key

M18_STAL7484_08_GE_C18.indd 588 05/04/22 10:39 PM

18.4 / ieee 802.11i WireleSS lAN Security 589

Abbreviation Name Description / Purpose Size (bits) Type

AAA Key Authentication,
Accounting, and
Authorization Key

Used to derive the PMK.
Used with the IEEE
802.1X authentication
and key management
approach. Same as
MMSK.

Ú 256 Key generation key,
root key

PSK Pre-shared Key Becomes the PMK in
pre-shared key environ-
ments.

256 Key generation key,
root key

PMK Pairwise Master Key Used with other inputs to
derive the PTK.

256 Key generation key

GMK Group Master Key Used with other inputs to
derive the GTK.

128 Key generation key

PTK Pair-wise Transient
Key

Derived from the PMK.
Comprises the EAPOL-
KCK, EAPOL-KEK, and
TK and (for TKIP) the
MIC key.

512 (TKIP)
384 (CCMP)

Composite key

TK Temporal Key Used with TKIP or
CCMP to provide confi-
dentiality and integrity
protection for unicast
user traffic.

256 (TKIP)
128 (CCMP)

Traffic key

GTK Group Temporal Key Derived from the GMK.
Used to provide confi-
dentiality and integrity
protection for multicast/
broadcast user traffic.

256 (TKIP)
128 (CCMP)

40,104 (WEP)

Traffic key

MIC Key Message Integrity
Code Key

Used by TKIP’s Michael
MIC to provide integrity
protection of messages.

64 Message integrity key

EAPOL-KCK EAPOL-Key
Confirmation Key

Used to provide integrity
protection for key mate-
rial distributed during the
4-Way Handshake.

128 Message integrity key

EAPOL-KEK EAPOL-Key
Encryption Key

Used to ensure the con-
fidentiality of the GTK
and other key material in
the 4-Way Handshake.

128 Traffic key / key
encryption key

WEP Key Wired Equivalent
Privacy Key

Used with WEP. 40,104 Traffic key

Table 18.3 IEEE 802.11i Keys for Data Confidentiality and Integrity Protocols

M18_STAL7484_08_GE_C18.indd 589 05/04/22 10:39 PM

590 cHAPter 18 / WireleSS NetWork Security

PairWiSe keyS Pairwise keys are used for communication between a pair of devices,
typically between an STA and an AP. These keys form a hierarchy beginning with
a master key from which other keys are derived dynamically and used for a limited
period of time.

At the top level of the hierarchy are two possibilities. A pre-shared key (PSK)
is a secret key shared by the AP and a STA and installed in some fashion outside the
scope of IEEE 802.11i. The other alternative is the master session key (MSK), also
known as the AAAK, which is generated using the IEEE 802.1X protocol during
the authentication phase, as described previously. The actual method of key genera-
tion depends on the details of the authentication protocol used. In either case (PSK
or MSK), there is a unique key shared by the AP with each STA with which it com-
municates. All the other keys derived from this master key are also unique between
an AP and an STA. Thus, each STA, at any time, has one set of keys, as depicted in
the hierarchy of Figure 18.9a, while the AP has one set of such keys for each of its
STAs.

The pairwise master key (PMK) is derived from the master key. If a PSK is
used, then the PSK is used as the PMK; if a MSK is used, then the PMK is derived
from the MSK by truncation (if necessary). By the end of the authentication phase,
marked by the 802.1X EAP Success message (Figure 18.8), both the AP and the
STA have a copy of their shared PMK.

The PMK is used to generate the pairwise transient key (PTK), which in fact
consists of three keys to be used for communication between an STA and AP after
they have been mutually authenticated. To derive the PTK, the HMAC-SHA-1
function is applied to the PMK, the MAC addresses of the STA and AP, and nonces
generated when needed. Using the STA and AP addresses in the generation of the
PTK provides protection against session hijacking and impersonation; using nonces
provides additional random keying material.

The three parts of the PTK are as follows.

 ■ EAP Over LAN (EAPOL) Key Confirmation Key (EAPOL-KCK): Supports
the integrity and data origin authenticity of STA-to-AP control frames during
operational setup of an RSN. It also performs an access control function:
proof-of-possession of the PMK. An entity that possesses the PMK is autho-
rized to use the link.

 ■ EAPOL Key Encryption Key (EAPOL-KEK): Protects the confidentiality of
keys and other data during some RSN association procedures.

 ■ Temporal Key (TK): Provides the actual protection for user traffic.

grouP keyS Group keys are used for multicast communication in which one STA
sends MPDU’s to multiple STAs. At the top level of the group key hierarchy is the
group master key (GMK). The GMK is a key-generating key used with other inputs
to derive the group temporal key (GTK). Unlike the PTK, which is generated using
material from both AP and STA, the GTK is generated by the AP and transmit-
ted to its associated STAs. Exactly how this GTK is generated is undefined. IEEE
802.11i, however, requires that its value is computationally indistinguishable from

M18_STAL7484_08_GE_C18.indd 590 05/04/22 10:39 PM

18.4 / ieee 802.11i WireleSS lAN Security 591

random. The GTK is distributed securely using the pairwise keys that are already
established. The GTK is changed every time a device leaves the network.

PairWiSe key diSTribuTion The upper part of Figure 18.10 shows the MPDU
 exchange for distributing pairwise keys. This exchange is known as the 4-way
 handshake. The STA and AP use this handshake to confirm the existence of the

Figure 18.10 IEEE 802.11i Phases of Operation: Four-Way Handshake and Group Key Handshake

STA AP

Message 1 delivers a nonce to
the STA so that it can generate
the PTK.

Message 1 delivers a new GTK to
the STA. The GTK is encrypted
before it is sent and the entire
message is integrity protected.

The AP installs the GTK.

Message 3 demonstrates to
the STA that the authenticator
is alive, ensures that the PTK is
fresh (new) and that there is no
man-in-the-middle.

Message 2 delivers another nonce to the
AP so that it can also generate the
PTK. It demonstrates to the AP that
the STA is alive, ensures that the
PTK is fresh (new) and that there is no
man-in-the-middle.

The STA decrypts the GTK
and installs it for use.

Message 2 is delivered to the
AP. This frame serves only as
an acknowledgment to the AP.

Message 4 serves as an acknowledgment to
Message 3. It serves no cryptographic
function. This message also ensures the
reliable start of the group key handshake.

Message 2
EAPOL-key (Snonce,

Unicast, MIC)

Message 1
EAPOL-key (Anonce, Unicast)

Message 1
EAPOL-key (GTK, MIC)

Message 4
EAPOL-key (Unicast, MIC)

Message 2
EAPOL-key (MIC)

Message 3
EAPOL-key (Install PTK,

Unicast, MIC)

AP’s 802.1X-controlled port blocked

AP’s 802.1X-controlled port
 unblocked for unicast traffic

M18_STAL7484_08_GE_C18.indd 591 05/04/22 10:39 PM

592 cHAPter 18 / WireleSS NetWork Security

PMK, verify the selection of the cipher suite, and derive a fresh PTK for the follow-
ing data session. The four parts of the exchange are as follows.

 ■ AP S STA: Message includes the MAC address of the AP and a nonce
(Anonce)

 ■ STA S AP: The STA generates its own nonce (Snonce) and uses both nonces
and both MAC addresses, plus the PMK, to generate a PTK. The STA then
sends a message containing its MAC address and Snonce, enabling the AP to
generate the same PTK. This message includes a message integrity code
(MIC)2 using HMAC-MD5 or HMAC-SHA-1-128. The key used with the MIC
is KCK.

 ■ AP S STA: The AP is now able to generate the PTK. The AP then sends a
message to the STA, containing the same information as in the first message,
but this time including a MIC.

 ■ STA S AP: This is merely an acknowledgment message, again protected by
a MIC.

grouP key diSTribuTion For group key distribution, the AP generates a GTK and
distributes it to each STA in a multicast group. The two-message exchange with each
STA consists of the following:

 ■ AP S STA: This message includes the GTK, encrypted either with RC4 or
with AES. The key used for encryption is KEK, using a key wrapping algo-
rithm (as discussed in Chapter 12). A MIC value is appended.

 ■ STA S AP: The STA acknowledges receipt of the GTK. This message includes
a MIC value.

Protected Data Transfer Phase

IEEE 802.11i defines two schemes for protecting data transmitted in 802.11 MPDUs:
the Temporal Key Integrity Protocol (TKIP), and the Counter Mode-CBC MAC
Protocol (CCMP).

TkiP TKIP is designed to require only software changes to devices that are im-
plemented with the older wireless LAN security approach called Wired Equivalent
Privacy (WEP). TKIP provides two services:

 ■ Message integrity: TKIP adds a message integrity code (MIC) to the 802.11
MAC frame after the data field. The MIC is generated by an algorithm, called
Michael, that computes a 64-bit value using as input the source and destination
MAC address values and the Data field, plus key material.

 ■ Data confidentiality: Data confidentiality is provided by encrypting the
MPDU plus MIC value using RC4.

2 While MAC is commonly used in cryptography to refer to a Message Authentication Code, the term
MIC is used instead in connection with 802.11i because MAC has another standard meaning, Media
Access Control, in networking.

M18_STAL7484_08_GE_C18.indd 592 05/04/22 10:39 PM

18.4 / ieee 802.11i WireleSS lAN Security 593

The 256-bit TK (Figure 18.9) is employed as follows. Two 64-bit keys are used
with the Michael message digest algorithm to produce a message integrity code.
One key is used to protect STA-to-AP messages, and the other key is used to protect
AP-to-STA messages. The remaining 128 bits are truncated to generate the RC4 key
used to encrypt the transmitted data.

For additional protection, a monotonically increasing TKIP sequence counter
(TSC) is assigned to each frame. The TSC serves two purposes. First, the TSC is included
with each MPDU and is protected by the MIC to protect against replay attacks. Second,
the TSC is combined with the session TK to produce a dynamic encryption key that
changes with each transmitted MPDU, thus making cryptanalysis more difficult.

ccmP CCMP is intended for newer IEEE 802.11 devices that are equipped with
the hardware to support this scheme. As with TKIP, CCMP provides two services:

 ■ Message integrity: CCMP uses the cipher block chaining message authentica-
tion code (CBC-MAC), described in Chapter 12.

 ■ Data confidentiality: CCMP uses the CTR block cipher mode of operation
with AES for encryption. CTR is described in Chapter 7.

The same 128-bit AES key is used for both integrity and confidentiality. The
scheme uses a 48-bit packet number to construct a nonce to prevent replay attacks.

The IEEE 802.11i Pseudorandom Function

At a number of places in the IEEE 802.11i scheme, a pseudorandom function (PRF)
is used. For example, it is used to generate nonces, to expand pairwise keys, and to gen-
erate the GTK. Best security practice dictates that different pseudorandom number
streams be used for these different purposes. However, for implementation efficiency,
we would like to rely on a single pseudorandom number generator function.

The PRF is built on the use of HMAC-SHA-1 to generate a pseudorandom
bit stream. Recall that HMAC-SHA-1 takes a message (block of data) and a key of
length at least 160 bits and produces a 160-bit hash value. SHA-1 has the property
that the change of a single bit of the input produces a new hash value with no appar-
ent connection to the preceding hash value. This property is the basis for pseudoran-
dom number generation.

The IEEE 802.11i PRF takes four parameters as input and produces the
desired number of random bits. The function is of the form PRF(K, A, B, Len), where

K = a secret key

A = a text string specific to the application (e.g., nonce generation or pairwise
key expansion)

B = some data specific to each case
Len = desired number of pseudorandom bits

For example, for the pairwise transient key for CCMP:

PTK = PRF (PMK, “Pairwise key expansion”, min (AP-
Addr, STA-Addr) || max (AP-Addr, STA-Addr) || min
(Anonce, Snonce) || max (Anonce, Snonce), 384)

M18_STAL7484_08_GE_C18.indd 593 05/04/22 10:39 PM

594 cHAPter 18 / WireleSS NetWork Security

So, in this case, the parameters are

K = PMK

A = the text string “Pairwise key expansion”

B = a sequence of bytes formed by concatenating the two MAC addresses
and the two nonces

Len = 384 bits

Similarly, a nonce is generated by

Nonce = PRF (Random Number, “InitCounter”, MAC || Time, 256)

where Time is a measure of the network time known to the nonce generator.
The group temporal key is generated by

GTK = PRF (GMK, “Group key expansion”, MAC || Gnonce, 256)

Figure 18.11 illustrates the function PRF(K, A, B, Len). The parameter K
serves as the key input to HMAC. The message input consists of four items con-
catenated together: the parameter A, a byte with value 0, the parameter B, and a
counter i. The counter is initialized to 0. The HMAC algorithm is run once, produc-
ing a 160-bit hash value. If more bits are required, HMAC is run again with the same
inputs, except that i is incremented each time until the necessary number of bits is
generated. We can express the logic as

PRF (K, A, B, Len)
R

S

 null string
for i

S

 0 to ((Len + 159)/160 − 1) do
R

S

 R || HMAC-SHA-1 (K, A || 0 || B || i)
Return Truncate-to-Len (R, Len)

Figure 18.11 IEEE 802.11i Pseudorandom Function

HMAC-SHA-1

| |

K

A 0 B i

R 5 HMAC-SHA-1(K, A || 0 || B || i)

1 1

M18_STAL7484_08_GE_C18.indd 594 05/04/22 10:39 PM

18.5 / key terMS, revieW QueStioNS, AND ProbleMS 595

 18.5 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

group keys
IEEE 802.11

media access control (MAC)
pairwise keys

pseudorandom function (PRF)
Wi-Fi

Review Questions

 18.1 What is the basic building block of an 802.11 WLAN?
 18.2 List and briefly define threats to a wireless network.
 18.3 List and briefly define IEEE 802.11 services.
 18.4 List some security threats related to mobile devices.
 18.5 How is the concept of an association related to that of mobility?
 18.6 What security areas are addressed by IEEE 802.11i?
 18.7 Briefly describe the five IEEE 802.11i phases of operation.
 18.8 What is the difference between TKIP and CCMP?

Problems

 18.1 In IEEE 802.11, open system authentication simply consists of two communications.
An authentication is requested by the client, which contains the station ID (typically
the MAC address). This is followed by an authentication response from the AP/router
containing a success or failure message. An example of when a failure may occur is if
the client’s MAC address is explicitly excluded in the AP/router configuration.
a. What are the benefits of this authentication scheme?
b. What are the security vulnerabilities of this authentication scheme?

 18.2 Prior to the introduction of IEEE 802.11i, the security scheme for IEEE 802.11 was
Wired Equivalent Privacy (WEP). WEP assumed all devices in the network share a
secret key. The purpose of the authentication scenario is for the STA to prove that
it possesses the secret key. Authentication proceeds as shown in Figure 18.12. The
STA sends a message to the AP requesting authentication. The AP issues a challenge,
which is a sequence of 128 random bytes sent as plaintext. The STA encrypts the
challenge with the shared key and returns it to the AP. The AP decrypts the incoming
value and compares it to the challenge that it sent. If there is a match, the AP confirms
that authentication has succeeded.
a. What are the benefits of this authentication scheme?
b. This authentication scheme is incomplete. What is missing and why is this impor-

tant? Hint: The addition of one or two messages would fix the problem.
c. What is a cryptographic weakness of this scheme?

M18_STAL7484_08_GE_C18.indd 595 05/04/22 10:39 PM

596 cHAPter 18 / WireleSS NetWork Security

 18.3 For WEP, data integrity and data confidentiality are achieved using the RC4 stream
encryption algorithm. The transmitter of an MPDU performs the following steps, re-
ferred to as encapsulation:
1. The transmitter selects an initial vector (IV) value.
2. The IV value is concatenated with the WEP key shared by transmitter and receiver

to form the seed, or key input, to RC4.
3. A 32-bit cyclic redundancy check (CRC) is computed over all the bits of the MAC

data field and appended to the data field. The CRC is a common error-detection
code used in data link control protocols. In this case, the CRC serves as a integrity
check value (ICV).

4. The result of step 3 is encrypted using RC4 to form the ciphertext block.
5. The plaintext IV is prepended to the ciphertext block to form the encapsulated

MPDU for transmission.
a. Draw a block diagram that illustrates the encapsulation process.
b. Describe the steps at the receiver end to recover the plaintext and perform the

integrity check.
c. Draw a block diagram that illustrates part b.

 18.4 A potential weakness of the CRC as an integrity check is that it is a linear function.
This means that you can predict which bits of the CRC are changed if a single bit of
the message is changed. Furthermore, it is possible to determine which combination
of bits could be flipped in the message so that the net result is no change in the CRC.
Thus, there are a number of combinations of bit flippings of the plaintext message
that leave the CRC unchanged, so message integrity is defeated. However, in WEP, if
an attacker does not know the encryption key, the attacker does not have access to the
plaintext, only to the ciphertext block. Does this mean that the ICV is protected from
the bit flipping attack? Explain.

Figure 18.12 WEP Authentication; refer to Problem 18.2

STA AP

RequestStation sends a request
for authentication

AP sends challenge message
containing 128-bit random
number

AP decrypts challenge response.
If match, send authentication
success message

Station responds
with encrypted version

of challenge number

Response

Challenge

 Success

M18_STAL7484_08_GE_C18.indd 596 05/04/22 10:39 PM

597

Electronic Mail Security

CHAPTER19
19.1 Internet Mail Architecture

Email Components
Email Protocols

19.2 Email Formats

RFC 5322
Multipurpose Internet Mail Extensions

19.3 Email Threats and Comprehensive Email Security

19.4 S/MIME

Operational Description
S/MIME Message Content Types
S/MIME Messages
S/MIME Certificate Processing
Enhanced Security Services

19.5 DNSSEC

Domain Name System
DNS Security Extensions

19.6 DNS-Based Authentication of Named Entities

TLSA Record
Use of DANE for SMTP
Use of DNSSEC for S/MIME

19.7 Sender Policy Framework

SPF on the Sender Side
SPF on the Receiver Side

M19_STAL7484_08_GE_C19.indd 597 20/04/22 14:09

598 CHAPTER 19 / ElECTRoniC MAil SECuRiTy

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

◆◆ Summarize the key functional components of the Internet mail architecture.

◆◆ Explain the basic functionality of SMTP, POP3, and IMAP.

◆◆ Explain the need for MIME as an enhancement to ordinary email.

◆◆ Describe the key elements of MIME.

◆◆ Understand the functionality of S/MIME and the security threats it addresses.

◆◆ Understand the basic mechanisms of STARTTLS and its role in email
 security.

◆◆ Understand the basic mechanisms of DANE and its role in email security.

◆◆ Understand the basic mechanisms of SPF and its role in email security.

◆◆ Understand the basic mechanisms of DKIM and its role in email security.

◆◆ Understand the basic mechanisms of DMARC and its role in email security.

19.8 DomainKeys Identified Mail

Email Threats
DKIM Strategy
DKIM Functional Flow

19.9 Domain-Based Message Authentication, Reporting, and Conformance

Identifier Alignment
DMARC on the Sender Side
DMARC on the Receiver Side
DMARC Reports

19.10 Key Terms, Review Questions, and Problems

In virtually all distributed environments, electronic mail is the most heavily used
 network-based application. Users expect to be able to, and do, send email to others
who are connected directly or indirectly to the Internet, regardless of host operating
system or communications suite. With the explosively growing reliance on email, there
grows a demand for authentication and confidentiality services. A complementary set
of standards related to secure email have been developed. This chapter provides an
overview.

M19_STAL7484_08_GE_C19.indd 598 20/04/22 14:09

19.1 / inTERnET MAil ARCHiTECTuRE 599

 19.1 INTERNET MAIL ARCHITECTURE

For an understanding of the topics in this chapter, it is useful to have a basic grasp of
the Internet mail architecture, which is currently defined in RFC 5598 (Internet Mail
Architecture, July 2009). This section provides an overview of the basic concepts.

Email Components

At its most fundamental level, the Internet mail architecture consists of a user world
in the form of Message User Agents (MUA), and the transfer world, in the form
of the Message Handling Service (MHS), which is composed of Message Transfer
Agents (MTA). The MHS accepts a message from one user and delivers it to one
or more other users, creating a virtual MUA-to-MUA exchange environment. This
architecture involves three types of interoperability. One is directly between users:
messages must be formatted by the MUA on behalf of the message author so that
the message can be displayed to the message recipient by the destination MUA.
There are also interoperability requirements between the MUA and the MHS—first
when a message is posted from an MUA to the MHS and later when it is deliv-
ered from the MHS to the destination MUA. Interoperability is required among the
MTA components along the transfer path through the MHS.

Figure 19.1 illustrates the key components of the Internet mail architecture,
which include the following.

◆■ Message User Agent (MUA): Operates on behalf of user actors and user
applications. It is their representative within the email service. Typically, this
function is housed in the user’s computer and is referred to as a client email
program or a local network email server. The author MUA formats a message
and performs initial submission into the MHS via a MSA. The recipient MUA
processes received mail for storage and/or display to the recipient user.

◆■ Mail Submission Agent (MSA): Accepts the message submitted by an MUA
and enforces the policies of the hosting domain and the requirements of
Internet standards. This function may be located together with the MUA or
as a separate functional model. In the latter case, the Simple Mail Transfer
Protocol (SMTP) is used between the MUA and the MSA.

◆■ Message Transfer Agent (MTA): Relays mail for one application-level hop. It
is like a packet switch or IP router in that its job is to make routing assessments
and to move the message closer to the recipients. Relaying is performed by a
sequence of MTAs until the message reaches a destination MDA. An MTA
also adds trace information to the message header. SMTP is used between
MTAs and between an MTA and an MSA or MDA.

◆■ Mail Delivery Agent (MDA): Responsible for transferring the message from
the MHS to the MS.

◆■ Message Store (MS): An MUA can employ a long-term MS. An MS can be
located on a remote server or on the same machine as the MUA. Typically,
an MUA retrieves messages from a remote server using POP (Post Office
Protocol) or IMAP (Internet Message Access Protocol).

M19_STAL7484_08_GE_C19.indd 599 20/04/22 14:09

600 CHAPTER 19 / ElECTRoniC MAil SECuRiTy

Figure 19.1 Function Modules and Standardized Protocols Used between
them in the Internet Mail Architecture

Message user
agent (MUA)

Message
author

Message
recipient

ESMTP
(Submission)

SMTP

SMTP SMTP

ESMTP
(Submission)

(SMTP,
local)

(IMAP, POP,
local)

Mail submission
agent (MSA)

Message transfer
agent (MTA)

Message transfer
agent (MTA)

MESSAGE HANDLING
SYSTEM (MHS)

Message transfer
agent (MTA)

Mail delivery
agent (MDA)

Message store
(MS)

Message user
agent (MUA)

Two other concepts need to be defined. An administrative management domain
(ADMD) is an Internet email provider. Examples include a department that oper-
ates a local mail relay (MTA), an IT department that operates an enterprise mail
relay, and an ISP that operates a public shared email service. Each ADMD can have
different operating policies and trust-based decision making. One obvious example
is the distinction between mail that is exchanged within an organization and mail
that is exchanged between independent organizations. The rules for handling the
two types of traffic tend to be quite different.

The Domain Name System (DNS) is a directory lookup service that provides a
mapping between the name of a host on the Internet and its numerical address. DNS
is discussed subsequently in this chapter.

Email Protocols

Two types of protocols are used for transferring email. The first type is used to move
messages through the Internet from source to destination. The protocol used for this
purpose is SMTP, with various extensions and in some cases restrictions. The second
type consists of protocols used to transfer messages between mail servers, of which
IMAP and POP are the most commonly used.

M19_STAL7484_08_GE_C19.indd 600 20/04/22 14:09

19.2 / EMAil FoRMATS 601

Simple mail TranSfer proTocol SMTP encapsulates an email message in an
 envelope and is used to relay the encapsulated messages from source to destination
through multiple MTAs. SMTP was originally specified in 1982 as RFC 821 and has
undergone several revisions, the most current being RFC 5321 (October 2008). These
revisions have added additional commands and introduced extensions. The term
Extended SMTP (ESMTP) is often used to refer to these later versions of SMTP.

SMTP is a text-based client-server protocol where the client (email sender)
contacts the server (next-hop recipient) and issues a set of commands to tell the
server about the message to be sent, then sending the message itself. The majority of
these commands are ASCII text messages sent by the client and a resulting return
code (and additional ASCII text) returned by the server.

The transfer of a message from a source to its ultimate destination can occur
over a single SMTP client/server conversation over a single TCP connection.
Alternatively, an SMTP server may be an intermediate relay that assumes the role
of an SMTP client after receiving a message and then forwards that message to an
SMTP server along a route to the ultimate destination.

The operation of SMTP consists of a series of commands and responses exchanged
between the SMTP sender and receiver. The initiative is with the SMTP sender, who
establishes the TCP connection. Once the connection is established, the SMTP sender
sends commands over the connection to the receiver. Each command consists of a single
line of text, beginning with a four-letter command code followed in some cases by an
argument field. Each command generates exactly one reply from the SMTP receiver.
Most replies are a single-line, although multiple-line replies are possible. Each reply
begins with a three-digit code and may be followed by additional information.

Similar mechanisms are available for running TLS over IMAP and POP protocols.
Historically, MUA/MSA message transfers have used SMTP. The standard

currently preferred is SUBMISSION, defined in RFC 6409 (Message Submission
for Mail, November 2011). Although SUBMISSION derives from SMTP, it uses a
separate TCP port and imposes distinct requirements, such as access authorization.

mail acceSS proTocolS (pop3, imap) Post Office Protocol (POP3) allows an
email client (user agent) to download an email from an email server (MTA). POP3
user agents connect via TCP to the server (typically port 110). The user agent enters
a username and password (either stored internally for convenience or entered each
time by the user for stronger security). After authorization, the UA can issue POP3
commands to retrieve and delete mail.

As with POP3, Internet Mail Access Protocol (IMAP) also enables an email
client to access mail on an email server. IMAP also uses TCP, with server TCP port
143. IMAP is more complex than POP3. IMAP provides stronger authentication
than POP3 and provides other functions not supported by POP3.

 19.2 EMAIL FORMATS

To understand S/MIME, we need first to have a general understanding of the
 underlying email format that it uses, namely, MIME. But to understand the sig-
nificance of MIME, we need to go back to the traditional email format standard,

M19_STAL7484_08_GE_C19.indd 601 20/04/22 14:09

602 CHAPTER 19 / ElECTRoniC MAil SECuRiTy

RFC 822, which is still in common use. The most recent version of this format speci-
fication is RFC 5322 (Internet Message Format, October 2008). Accordingly, this sec-
tion first provides an introduction to these two earlier standards and then moves on
to a discussion of S/MIME.

RFC 5322

RFC 5322 defines a format for text messages that are sent using electronic mail. It
has been the standard for Internet-based text mail messages and remains in com-
mon use. In the RFC 5322 context, messages are viewed as having an envelope and
contents. The envelope contains whatever information is needed to accomplish
transmission and delivery. The contents compose the object to be delivered to the
recipient. The RFC 5322 standard applies only to the contents. However, the content
standard includes a set of header fields that may be used by the mail system to cre-
ate the envelope, and the standard is intended to facilitate the acquisition of such
information by programs.

The overall structure of a message that conforms to RFC 5322 is very simple.
A message consists of some number of header lines (the header) followed by
 unrestricted text (the body). The header is separated from the body by a blank line.
Put differently, a message is ASCII text, and all lines up to the first blank line are
 assumed to be header lines used by the user agent part of the mail system.

A header line usually consists of a keyword, followed by a colon, followed by
the keyword’s arguments; the format allows a long line to be broken up into several
lines. The most frequently used keywords are From, To, Subject, and Date. Here is an
example message:

Date: October 8, 2009 2:15:49 PM EDT

From: “William Stallings” <ws@shore.net>

Subject: The Syntax in RFC 5322

To: Smith@Other-host.com

Cc: Jones@Yet-Another-Host.com

Hello. This section begins the actual

message body, which is delimited from the

message heading by a blank line.

Another field that is commonly found in RFC 5322 headers is Message-ID.
This field contains a unique identifier associated with this message.

Multipurpose Internet Mail Extensions

Multipurpose Internet Mail Extension (MIME) is an extension to the RFC 5322
framework that is intended to address some of the problems and limitations of the
use of Simple Mail Transfer Protocol (SMTP) or some other mail transfer protocol
and RFC 5322 for electronic mail. RFCs 2045 through 2049 define MIME, and there
have been a number of updating documents since then.

M19_STAL7484_08_GE_C19.indd 602 20/04/22 14:09

19.2 / EMAil FoRMATS 603

As justification for the use of MIME, [PARZ06] lists the following limitations
of the SMTP/5322 scheme.

1. SMTP cannot transmit executable files or other binary objects. A number of
schemes are in use for converting binary files into a text form that can be used
by SMTP mail systems, including the popular UNIX UUencode/UUdecode
scheme. However, none of these is a standard or even a de facto standard.

2. SMTP cannot transmit text data that includes national language characters,
because these are represented by 8-bit codes with values of 128 decimal or
higher, and SMTP is limited to 7-bit ASCII.

3. SMTP servers may reject mail message over a certain size.

4. SMTP gateways that translate between ASCII and the character code EBCDIC
do not use a consistent set of mappings, resulting in translation problems.

5. SMTP gateways to X.400 electronic mail networks cannot handle nontextual
data included in X.400 messages.

6. Some SMTP implementations do not adhere completely to the SMTP
 standards defined in RFC 821. Common problems include:

—Deletion, addition, or reordering of carriage return and linefeed

—Truncating or wrapping lines longer than 76 characters

—Removal of trailing white space (tab and space characters)

—Padding of lines in a message to the same length

—Conversion of tab characters into multiple space characters

MIME is intended to resolve these problems in a manner that is compatible
with existing RFC 5322 implementations.

overview The MIME specification includes the following elements.

1. Five new message header fields are defined, which may be included in an
RFC 5322 header. These fields provide information about the body of the
message.

2. A number of content formats are defined, thus standardizing representations
that support multimedia electronic mail.

3. Transfer encodings are defined that enable the conversion of any content
 format into a form that is protected from alteration by the mail system.

In this subsection, we introduce the five message header fields. The next two
subsections deal with content formats and transfer encodings.

The five header fields defined in MIME are as follows:

◆■ MIME-Version: Must have the parameter value 1.0. This field indicates that
the message conforms to RFCs 2045 and 2046.

◆■ Content-Type: Describes the data contained in the body with sufficient detail
that the receiving user agent can pick an appropriate agent or mechanism to
represent the data to the user or otherwise deal with the data in an appropriate
manner.

M19_STAL7484_08_GE_C19.indd 603 20/04/22 14:09

604 CHAPTER 19 / ElECTRoniC MAil SECuRiTy

◆■ Content-Transfer-Encoding: Indicates the type of transformation that has
been used to represent the body of the message in a way that is acceptable for
mail transport.

◆■ Content-ID: Used to identify MIME entities uniquely in multiple contexts.

◆■ Content-Description: A text description of the object with the body; this is
useful when the object is not readable (e.g., audio data).

Any or all of these fields may appear in a normal RFC 5322 header. A compli-
ant implementation must support the MIME-Version, Content-Type, and Content-
Transfer-Encoding fields; the Content-ID and Content-Description fields are
 optional and may be ignored by the recipient implementation.

mime conTenT TypeS The bulk of the MIME specification is concerned with
the definition of a variety of content types. This reflects the need to provide stan-
dardized ways of dealing with a wide variety of information representations in a
multimedia environment.

Table 19.1 lists the content types specified in RFC 2046. There are seven dif-
ferent major types of content and a total of 15 subtypes. In general, a content type
declares the general type of data, and the subtype specifies a particular format for
that type of data.

Type Subtype Description

Text Plain Unformatted text; may be ASCII or ISO 8859.
Enriched Provides greater format flexibility.

Multipart Mixed The different parts are independent but are to be transmitted
together. They should be presented to the receiver in the order that
they appear in the mail message.

Parallel Differs from Mixed only in that no order is defined for delivering
the parts to the receiver.

Alternative The different parts are alternative versions of the same informa-
tion. They are ordered in increasing faithfulness to the original, and
the recipient’s mail system should display the “best” version to the
user.

Digest Similar to Mixed, but the default type/subtype of each part is mes-
sage/rfc822.

Message rfc822 The body is itself an encapsulated message that conforms to RFC 822.
Partial Used to allow fragmentation of large mail items, in a way that is

transparent to the recipient.
External-body Contains a pointer to an object that exists elsewhere.

Image jpeg The image is in JPEG format, JFIF encoding.
gif The image is in GIF format.

Video mpeg MPEG format.
Audio Basic Single-channel 8-bit ISDN m -law encoding at a sample rate of

8 kHz.
Application PostScript Adobe Postscript format.

octet-stream General binary data consisting of 8-bit bytes.

Table 19.1 MIME Content Types

M19_STAL7484_08_GE_C19.indd 604 20/04/22 14:09

19.2 / EMAil FoRMATS 605

For the text type of body, no special software is required to get the full meaning
of the text aside from support of the indicated character set. The primary subtype is
plain text, which is simply a string of ASCII characters or ISO 8859 characters. The
enriched subtype allows greater formatting flexibility.

The multipart type indicates that the body contains multiple, independent parts.
The Content-Type header field includes a parameter (called boundary) that defines the
delimiter between body parts. This boundary should not appear in any parts of the mes-
sage. Each boundary starts on a new line and consists of two hyphens followed by the
boundary value. The final boundary, which indicates the end of the last part, also has a
suffix of two hyphens. Within each part, there may be an optional ordinary MIME header.

There are four subtypes of the multipart type, all of which have the same overall
syntax. The multipart/mixed subtype is used when there are multiple independent body
parts that need to be bundled in a particular order. For the multipart/parallel subtype,
the order of the parts is not significant. If the recipient’s system is appropriate, the mul-
tiple parts can be presented in parallel. For example, a picture or text part could be
accompanied by a voice commentary that is played while the picture or text is displayed.

For the multipart/alternative subtype, the various parts are different represen-
tations of the same information.

In this subtype, the body parts are ordered in terms of increasing preference.
The multipart/digest subtype is used when each of the body parts is inter-

preted as an RFC 5322 message with headers. This subtype enables the construction
of a message whose parts are individual messages. For example, the moderator of a
group might collect email messages from participants, bundle these messages, and
send them out in one encapsulating MIME message.

The message type provides a number of important capabilities in MIME.
The message/rfc822 subtype indicates that the body is an entire message, including
header and body. Despite the name of this subtype, the encapsulated message may
be not only a simple RFC 5322 message, but also any MIME message.

The message/partial subtype enables fragmentation of a large message into
a number of parts, which must be reassembled at the destination. For this subtype,
three parameters are specified in the Content-Type: Message/Partial field: an id
common to all fragments of the same message, a sequence number unique to each
fragment, and the total number of fragments.

The message/external-body subtype indicates that the actual data to be conveyed
in this message are not contained in the body. Instead, the body contains the information
needed to access the data. As with the other message types, the message/external-body
subtype has an outer header and an encapsulated message with its own header. The only
necessary field in the outer header is the Content-Type field, which identifies this as a
message/external-body subtype. The inner header is the message header for the encap-
sulated message. The Content-Type field in the outer header must include an access-type
parameter, which indicates the method of access, such as FTP (file transfer protocol).

The application type refers to other kinds of data, typically either uninter-
preted binary data or information to be processed by a mail-based application.

mime TranSfer encodingS The other major component of the MIME specifica-
tion, in addition to content type specification, is a definition of transfer encodings
for message bodies. The objective is to provide reliable delivery across the largest
range of environments.

M19_STAL7484_08_GE_C19.indd 605 20/04/22 14:09

606 CHAPTER 19 / ElECTRoniC MAil SECuRiTy

The MIME standard defines two methods of encoding data. The Content-
Transfer-Encoding field can actually take on six values, as listed in Table 19.2.
However, three of these values (7-bit, 8-bit, and binary) indicate that no encoding has
been done but provide some information about the nature of the data. For SMTP
transfer, it is safe to use the 7-bit form. The 8-bit and binary forms may be usable in
other mail transport contexts. Another Content-Transfer-Encoding value is x-token,
which indicates that some other encoding scheme is used for which a name is to be
supplied. This could be a vendor-specific or application-specific scheme. The two
actual encoding schemes defined are quoted-printable and base64. Two schemes are
defined to provide a choice between a transfer technique that is essentially human
readable and one that is safe for all types of data in a way that is reasonably compact.

The quoted-printable transfer encoding is useful when the data consists largely
of octets that correspond to printable ASCII characters. In essence, it represents
nonsafe characters by the hexadecimal representation of their code and introduces
reversible (soft) line breaks to limit message lines to 76 characters.

The base64 transfer encoding, also known as radix-64 encoding, is a common
one for encoding arbitrary binary data in such a way as to be invulnerable to the pro-
cessing by mail-transport programs.

canonical form An important concept in MIME and S/MIME is that of canonical
form. Canonical form is a format, appropriate to the content type, that is standard-
ized for use between systems. This is in contrast to native form, which is a format that
may be peculiar to a particular system. RFC 2049 defines these two forms as follows:

◆■ Native form: The body to be transmitted is created in the system’s native format.
The native character set is used and, where appropriate, local end-of-line conven-
tions are used as well. The body may be any format that corresponds to the local
model for the representation of some form of information. Examples include a
UNIX-style text file, or a Sun raster image, or a VMS indexed file, and audio data in
a system-dependent format stored only in memory. In essence, the data are created
in the native form that corresponds to the type specified by the media type.

◆■ Canonical form: The entire body, including out-of-band information such as
record lengths and possibly file attribute information, is converted to a univer-
sal canonical form. The specific media type of the body as well as its associated

7 bit The data are all represented by short lines of ASCII characters.

8 bit The lines are short, but there may be non-ASCII characters (octets with the
high-order bit set).

binary Not only may non-ASCII characters be present but the lines are not necessarily
short enough for SMTP transport.

quoted-printable Encodes the data in such a way that if the data being encoded are mostly ASCII
text, the encoded form of the data remains largely recognizable by humans.

base64 Encodes data by mapping 6-bit blocks of input to 8-bit blocks of output, all of
which are printable ASCII characters.

x-token A named nonstandard encoding.

Table 19.2 MIME Transfer Encodings

M19_STAL7484_08_GE_C19.indd 606 20/04/22 14:09

19.3 / EMAil THREATS And CoMPREHEnSivE EMAil SECuRiTy 607

attributes dictates the nature of the canonical form that is used. Conversion to
the proper canonical form may involve character set conversion, transforma-
tion of audio data, compression, or various other operations specific to the
various media types.

 19.3 EMAIL THREATS AND COMPREHENSIVE EMAIL SECURITY

For both organizations and individuals, email is both pervasive and especially vul-
nerable to a wide range of security threats. In general terms, email security threats
can be classified as follows:

◆■ Authenticity-related threats: Could result in unauthorized access to an enter-
prise’s email system.

◆■ Integrity-related threats: Could result in unauthorized modification of email
content.

◆■ Confidentiality-related threats: Could result in unauthorized disclosure of
 sensitive information.

◆■ Availability-related threats: Could prevent end users from being able to send
or receive email.

A useful list of specific email threats, together with approaches to mitigation,
is provided in NIST SP 800-177 (Trustworthy Email, September 2015) and is shown
in Table 19.3.

SP 800-177 recommends use of a variety of standardized protocols as a means
for countering these threats. These include:

◆■ STARTTLS: An SMTP security extension that provides authentication, integ-
rity, non-repudiation (via digital signatures) and confidentiality (via encryp-
tion) for the entire SMTP message by running SMTP over TLS.

◆■ S/MIME: Provides authentication, integrity, non-repudiation (via digital
 signatures) and confidentiality (via encryption) of the message body carried
in SMTP messages.

◆■ DNS Security Extensions (DNSSEC): Provides authentication and integ-
rity protection of DNS data, and is an underlying tool used by various email
 security protocols.

◆■ DNS-based Authentication of Named Entities (DANE): Is designed to over-
come problems in the certificate authority (CA) system by providing an
 alternative channel for authenticating public keys based on DNSSEC, with the
result that the same trust relationships used to certify IP addresses are used to
certify servers operating on those addresses.

◆■ Sender Policy Framework (SPF): Uses the Domain Name System (DNS) to
allow domain owners to create records that associate the domain name with
a specific IP address range of authorized message senders. It is a simple mat-
ter for receivers to check the SPF TXT record in the DNS to confirm that the

M19_STAL7484_08_GE_C19.indd 607 20/04/22 14:09

608 CHAPTER 19 / ElECTRoniC MAil SECuRiTy

Threat
Impact on Purported

Sender Impact on Receiver Mitigation

Email sent by unauthor-
ized MTA in enterprise
(e.g., malware botnet)

Loss of reputation, valid
email from enterprise
may be blocked as pos-
sible spam/phishing
attack.

UBE and/or email con-
taining malicious links
may be delivered into
user inboxes.

Deployment of domain-
based authentication
techniques. Use of digi-
tal signatures over email.

Email message sent
using spoofed or unreg-
istered sending domain

Loss of reputation, valid
email from enterprise
may be blocked as pos-
sible spam/phishing
attack.

UBE and/or email con-
taining malicious links
may be delivered into
user inboxes.

Deployment of domain-
based authentication
techniques. Use of digi-
tal signatures over email.

Email message sent
using forged sending
address or email address
(i.e., phishing, spear
phishing)

Loss of reputation, valid
email from enterprise
may be blocked as pos-
sible spam/phishing
attack.

UBE and/or email
containing malicious
links may be delivered.
Users may inadvertently
divulge sensitive infor-
mation or PII.

Deployment of domain-
based authentication
techniques. Use of digi-
tal signatures over email.

Email modified in transit Leak of sensitive infor-
mation or PII.

Leak of sensitive infor-
mation, altered message
may contain malicious
information.

Use of TLS to encrypt
email transfer between
servers. Use of end-to-
end email encryption.

Disclosure of sensitive
information (e.g., PII)
via monitoring and cap-
turing of email traffic

Leak of sensitive infor-
mation or PII.

Leak of sensitive infor-
mation, altered message
may contain malicious
information.

Use of TLS to encrypt
email transfer between
servers. Use of end-to-
end email encryption.

Unsolicited Bulk Email
(UBE) (i.e., spam)

None, unless purported
sender is spoofed.

UBE and/or email con-
taining malicious links
may be delivered into
user inboxes.

Techniques to address
UBE.

DoS/DDoS attack
against an enterprises’
email servers

Inability to send email. Inability to receive
email.

Multiple mail servers,
use of cloud-based email
providers.

Table 19.3 Email Threats and Mitigations

purported sender of a message is permitted to use that source address and
reject mail that does not come from an authorized IP address.

◆■ DomainKeys Identified Mail (DKIM): Enables an MTA to sign selected
 headers and the body of a message. This validates the source domain of the
mail and provides message body integrity.

◆■ Domain-based Message Authentication, Reporting, and Conformance
(DMARC): Lets senders know the proportionate effectiveness of their SPF
and DKIM policies, and signals to receivers what action should be taken in
various individual and bulk attack scenarios.

Figure 19.2 shows how these components interact to provide message authen-
ticity and integrity. Not shown, for simplicity, is that S/MIME also provides message
confidentiality by encrypting messages.

M19_STAL7484_08_GE_C19.indd 608 20/04/22 14:09

19.4 / S/MiME 609

Figure 19.2 The Interrelationship of DNSSEC, SPF, DKIM, DMARC, DANE, and
S/MIME for Assuring Message Authenticity and Integrity

msg

msg

sig

msg

sig

msg

sig

Sender
MUA

Sender’s S/MIME
signing key

(private key)

DKIM
signature

DKIM TXT RR provides

sending MTA’s public key

to receiving MTA

DMARC TXT tells receiving

MTA that sender uses

DKIM and SPF

DANE TLSA RR

specifies SMTP

TLS certifi
cate

Receiver MUA
verifies S/MIME

signature

DNSSEC secured

DNSSEC secured

MTA’s DKIM
signing key

DANE 5 DNS-based Authentication of Named Entities
DKIM 5 DomainKeys Identified Mail
DMARC 5 Domain-based Message Authentication, Reporting, and Conformance
DNSSEC 5 Domain Name System Security Extensions
SPF 5 Sender Policy Framework
S/MIME 5 Secure Multi-Purpose Internet Mail Extensions
TLSA RR 5 Transport Layer Security Authentication Resource Record

SP
F T

XT sp
ecf

ies

sen
de

r’s
 IP

 ad
dr

ess

Sender
DNS

Receiver
DNS

Receiver
MUA

Sending
MTA

Receiving
MTA

 19.4 S/MIME

Secure/Multipurpose Internet Mail Extension (S/MIME) is a security enhancement
to the MIME Internet email format standard based on technology from RSA Data
Security. S/MIME is a complex capability that is defined in a number of documents.
The most important documents relevant to S/MIME include the following:

◆■ RFC 5750, S/MIME Version 3.2 Certificate Handling: Specifies conventions
for X.509 certificate usage by (S/MIME) v3.2.

◆■ RFC 5751, S/MIME) Version 3.2 Message Specification: The principal defining
document for S/MIME message creation and processing.

M19_STAL7484_08_GE_C19.indd 609 20/04/22 14:09

610 CHAPTER 19 / ElECTRoniC MAil SECuRiTy

◆■ RFC 4134, Examples of S/MIME Messages: Gives examples of message bodies
formatted using S/MIME.

◆■ RFC 2634, Enhanced Security Services for S/MIME: Describes four optional
security service extensions for S/MIME.

◆■ RFC 5652, Cryptographic Message Syntax (CMS): Describes the Cryptographic
Message Syntax (CMS). This syntax is used to digitally sign, digest, authenti-
cate, or encrypt arbitrary message content.

◆■ RFC 3370, CMS Algorithms: Describes the conventions for using several
 cryptographic algorithms with the CMS.

◆■ RFC 5752, Multiple Signatures in CMS: Describes the use of multiple, parallel
signatures for a message.

◆■ RFC 1847, Security Multiparts for MIME—Multipart/Signed and Multipart/
Encrypted: Defines a framework within which security services may be applied
to MIME body parts. The use of a digital signature is relevant to S/MIME, as
explained subsequently.

Operational Description

S/MIME provides for four message-related services: authentication, confidentiality,
compression, and email compatibility (Table 19.4). This subsection provides an over-
view. We then look in more detail at this capability by examining message formats
and message preparation.

auThenTicaTion Authentication is provided by means of a digital signature, using
the general scheme discussed in Chapter 13 and illustrated in Figure 13.1. Most
commonly RSA with SHA-256 is used. The sequence is as follows:

1. The sender creates a message.

2. SHA-256 is used to generate a 256-bit message digest of the message.

3. The message digest is encrypted with RSA using the sender’s private key,
and the result is appended to the message. Also appended is identifying

Function Typical Algorithm Typical Action

Digital signature RSA/SHA-256 A hash code of a message is created using SHA-256.
This message digest is encrypted using SHA-256
with the sender’s private key and included with
the message.

Message encryption AES-128 with CBC A message is encrypted using AES-128 with CBC
with a one-time session key generated by the
sender. The session key is encrypted using RSA
with the recipient’s public key and included with
the message.

Compression unspecified A message may be compressed for storage or trans-
mission.

Email compatibility Radix-64 conversion To provide transparency for email applications, an
encrypted message may be converted to an ASCII
string using radix-64 conversion.

Table 19.4 Summary of S/MIME Services

M19_STAL7484_08_GE_C19.indd 610 20/04/22 14:09

19.4 / S/MiME 611

information for the signer, which will enable the receiver to retrieve the
 signer’s public key.

4. The receiver uses RSA with the sender’s public key to decrypt and recover the
message digest.

5. The receiver generates a new message digest for the message and compares it with
the decrypted hash code. If the two match, the message is accepted as authentic.

The combination of SHA-256 and RSA provides an effective digital signa-
ture scheme. Because of the strength of RSA, the recipient is assured that only
the possessor of the matching private key can generate the signature. Because of
the strength of SHA-256, the recipient is assured that no one else could generate a
new message that matches the hash code and, hence, the signature of the original
message.

Although signatures normally are found attached to the message or file that
they sign, this is not always the case: Detached signatures are supported. A detached
signature may be stored and transmitted separately from the message it signs.
This is useful in several contexts. A user may wish to maintain a separate signa-
ture log of all messages sent or received. A detached signature of an executable
program can detect subsequent virus infection. Finally, detached signatures can be
used when more than one party must sign a document, such as a legal contract.
Each person’s signature is independent and therefore is applied only to the docu-
ment. Otherwise, signatures would have to be nested, with the second signer signing
both the document and the first signature, and so on.

confidenTialiTy S/MIME provides confidentiality by encrypting messages. Most
commonly AES with a 128-bit key is used, with the cipher block chaining (CBC)
mode. The key itself is also encrypted, typically with RSA, as explained below.

As always, one must address the problem of key distribution. In S/MIME, each
symmetric key, referred to as a content-encryption key, is used only once. That is, a
new key is generated as a random number for each message. Because it is to be used
only once, the content-encryption key is bound to the message and transmitted with
it. To protect the key, it is encrypted with the receiver’s public key. The sequence can
be described as follows:

1. The sender generates a message and a random 128-bit number to be used as a
content-encryption key for this message only.

2. The message is encrypted using the content-encryption key.

3. The content-encryption key is encrypted with RSA using the recipient’s public
key and is attached to the message.

4. The receiver uses RSA with its private key to decrypt and recover the
 content-encryption key.

5. The content-encryption key is used to decrypt the message.

Several observations may be made. First, to reduce encryption time, the combi-
nation of symmetric and public-key encryption is used in preference to simply using
public-key encryption to encrypt the message directly: Symmetric algorithms are sub-
stantially faster than asymmetric ones for a large block of content. Second, the use of
the public-key algorithm solves the session-key distribution problem, because only

M19_STAL7484_08_GE_C19.indd 611 20/04/22 14:09

612 CHAPTER 19 / ElECTRoniC MAil SECuRiTy

the recipient is able to recover the session key that is bound to the message. Note that
we do not need a session-key exchange protocol of the type discussed in Chapter 14,
because we are not beginning an ongoing session. Rather, each message is a one-time
independent event with its own key. Furthermore, given the store-and-forward nature
of electronic mail, the use of handshaking to assure that both sides have the same ses-
sion key is not practical. Finally, the use of one-time symmetric keys strengthens what
is already a strong symmetric encryption approach. Only a small amount of plaintext
is encrypted with each key, and there is no relationship among the keys. Thus, to the
extent that the public-key algorithm is secure, the entire scheme is secure.

confidenTialiTy and auThenTicaTion As Figure 19.3 illustrates, both confidential-
ity and encryption may be used for the same message. The figure shows a sequence in

Figure 19.3 Simplified S/MIME Functional Flow

Sign
(e.g., RSA/
SHA-256)

Sender’s
private key

(a) Sender signs, then encrypts message

(b) Receiver decrypts message, then verifies sender’s signature

One-time
secret key

Encrypt
(e.g,

AES-128/
CBC

Encrypt
(e.g., RSA)

msg msg

sig sig

msg

sig

Receiver’s
public key

Sender’s
public key

Decrypt
(e.g., RSA)

Receiver’s
private key

Secret key
generated by

sender

Decrypt
(e.g,

AES-128/
CBC

Verify
signature

(e.g., RSA/
SHA-256)

sig

msg

msg

M19_STAL7484_08_GE_C19.indd 612 20/04/22 14:10

19.4 / S/MiME 613

which a signature is generated for the plaintext message and appended to the message.
Then the plaintext message and signature are encrypted as a single block using symmetric
encryption and the symmetric encryption key is encrypted using public-key encryption.

S/MIME allows the signing and message encryption operations to be per-
formed in either order. If signing is done first, the identity of the signer is hidden
by the encryption. Plus, it is generally more convenient to store a signature with a
plaintext version of a message. Furthermore, for purposes of third-party verification,
if the signature is performed first, a third party need not be concerned with the sym-
metric key when verifying the signature.

If encryption is done first, it is possible to verify a signature without exposing
the message content. This can be useful in a context in which automatic signature
verification is desired, as no private key material is required to verify a signature.
However, in this case the recipient cannot determine any relationship between the
signer and the unencrypted content of the message.

email compaTibiliTy When S/MIME is used, at least part of the block to be transmitted
is encrypted. If only the signature service is used, then the message digest is encrypted
(with the sender’s private key). If the confidentiality service is used, the message plus
signature (if present) are encrypted (with a one-time symmetric key). Thus, part or all
of the resulting block consists of a stream of arbitrary 8-bit octets. However, many elec-
tronic mail systems only permit the use of blocks consisting of ASCII text. To accom-
modate this restriction, S/MIME provides the service of converting the raw 8-bit binary
stream to a stream of printable ASCII characters, a process referred to as 7-bit encoding.

The scheme typically used for this purpose is base64 conversion. Each group
of three octets of binary data is mapped into four ASCII characters. Base64 is
described in RFC 4648 (The base16, base32, and base64 Data Encodings).

One noteworthy aspect of the base64 algorithm is that it blindly converts the
input stream to base64 format regardless of content, even if the input happens to
be ASCII text. Thus, if a message is signed but not encrypted and the conversion
is applied to the entire block, the output will be unreadable to the casual observer,
which provides a certain level of confidentiality.

RFC 5751 also recommends that even if outer 7-bit encoding is not used, the
original MIME content should be 7-bit encoded. The reason for this is that it allows
the MIME entity to be handled in any environment without changing it. For exam-
ple, a trusted gateway might remove the encryption, but not the signature, of a mes-
sage, and then forward the signed message on to the end recipient so that they can
verify the signatures directly. If the transport internal to the site is not 8-bit clean,
such as on a wide area network with a single mail gateway, verifying the signature
will not be possible unless the original MIME entity was only 7-bit data.

compreSSion S/MIME also offers the ability to compress a message. This has the
benefit of saving space both for email transmission and for file storage. Compression
can be applied in any order with respect to the signing and message encryption
 operations. RFC 5751 provides the following guidelines:

◆■ Compression of binary encoded encrypted data is discouraged, since it will not yield
significant compression. Base64 encrypted data could very well benefit, however.

◆■ If a lossy compression algorithm is used with signing, you will need to compress
first, then sign.

M19_STAL7484_08_GE_C19.indd 613 20/04/22 14:10

614 CHAPTER 19 / ElECTRoniC MAil SECuRiTy

S/MIME Message Content Types

S/MIME uses the following message content types, which are defined in RFC 5652,
Cryptographic Message Syntax:

◆■ Data: Refers to the inner MIME-encoded message content, which may then
be encapsulated in a SignedData, EnvelopedData, or CompressedData
content type.

◆■ SignedData: Used to apply a digital signature to a message.

◆■ EnvelopedData: This consists of encrypted content of any type and encrypted-
content encryption keys for one or more recipients.

◆■ CompressedData: Used to apply data compression to a message.

The Data content type is also used for a procedure known as clear signing.
For clear signing, a digital signature is calculated for a MIME-encoded message and
the two parts, the message and signature, form a multipart MIME message. Unlike
SignedData, which involves encapsulating the message and signature in a special
format, clear-signed messages can be read and their signatures verified by email
entities that do not implement S/MIME.

The following rules, in the following order, should be followed by a sending agent.

1. If the sending agent has a list of preferred decrypting capabilities from an
 intended recipient, it SHOULD choose the first (highest preference) capabil-
ity on the list that it is capable of using.

2. If the sending agent has no such list of capabilities from an intended recipi-
ent but has received one or more messages from the recipient, then the
outgoing message SHOULD use the same encryption algorithm as was
used on the last signed and encrypted message received from that intended
recipient.

3. If the sending agent has no knowledge about the decryption capabilities of the
intended recipient and is willing to risk that the recipient may not be able to
decrypt the message, then the sending agent SHOULD use triple DES.

4. If the sending agent has no knowledge about the decryption capabilities of the
intended recipient and is not willing to risk that the recipient may not be able
to decrypt the message, then the sending agent MUST use RC2/40.

If a message is to be sent to multiple recipients and a common encryption
 algorithm cannot be selected for all, then the sending agent will need to send
two messages. However, in that case, it is important to note that the security
of the message is made vulnerable by the transmission of one copy with lower
security.

S/MIME Messages

S/MIME makes use of a number of new MIME content types. All of the new applica-
tion types use the designation PKCS. This refers to a set of public-key cryptography
specifications issued by RSA Laboratories and made available for the S/MIME effort.

We examine each of these in turn after first looking at the general procedures
for S/MIME message preparation.

M19_STAL7484_08_GE_C19.indd 614 20/04/22 14:10

19.4 / S/MiME 615

Securing a mIME enTiTy S/MIME secures a MIME entity with a signature,
 encryption, or both. A MIME entity may be an entire message (except for the RFC
5322 headers), or if the MIME content type is multipart, then a MIME entity is one
or more of the subparts of the message. The MIME entity is prepared according
to the normal rules for MIME message preparation. Then the MIME entity plus
some security-related data, such as algorithm identifiers and certificates, are pro-
cessed by S/MIME to produce what is known as a PKCS object. A PKCS object is
then treated as message content and wrapped in MIME (provided with appropriate
MIME headers). This process should become clear as we look at specific objects and
provide examples.

In all cases, the message to be sent is converted to canonical form. In particu-
lar, for a given type and subtype, the appropriate canonical form is used for the mes-
sage content. For a multipart message, the appropriate canonical form is used for each
subpart.

The use of transfer encoding requires special attention. For most cases, the
result of applying the security algorithm will be to produce an object that is partially
or totally represented in arbitrary binary data. This will then be wrapped in an outer
MIME message and transfer encoding can be applied at that point, typically base64.
However, in the case of a multipart signed message (described in more detail later),
the message content in one of the subparts is unchanged by the security process.
Unless that content is 7 bit, it should be transfer encoded using base64 or quoted-
printable so that there is no danger of altering the content to which the signature
was applied.

We now look at each of the S/MIME content types.

envelopeddaTa An application/pkcs7-mime subtype is used for one of four catego-
ries of S/MIME processing, each with a unique smime-type parameter. In all cases,
the resulting entity, (referred to as an object) is represented in a form known as Basic
Encoding Rules (BER), which is defined in ITU-T Recommendation X.209. The
BER format consists of arbitrary octet strings and is therefore binary data. Such an
object should be transfer encoded with base64 in the outer MIME message. We first
look at envelopedData.

The steps for preparing an envelopedData MIME entity are:

1. Generate a pseudorandom session key for a particular symmetric encryption
algorithm (RC2/40 or triple DES).

2. For each recipient, encrypt the session key with the recipient’s public RSA key.

3. For each recipient, prepare a block known as RecipientInfo that contains
an identifier of the recipient’s public-key certificate,1 an identifier of the
 algorithm used to encrypt the session key, and the encrypted session key.

4. Encrypt the message content with the session key.

The RecipientInfo blocks followed by the encrypted content constitute the
envelopedData. This information is then encoded into base64. A sample message
(excluding the RFC 5322 headers) is given below.

1This is an X.509 certificate, discussed later in this section.

M19_STAL7484_08_GE_C19.indd 615 20/04/22 14:10

616 CHAPTER 19 / ElECTRoniC MAil SECuRiTy

Content-Type: application/pkcs7-mime; smime-type=enveloped-

data; name=smime.p7m

Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename=smime.p7m

rfvbnj756tbBghyHhHUujhJhjH77n8HHGT9HG4VQpfyF467GhIGfHfYT6

7n8HHGghyHhHUujhJh4VQpfyF467GhIGfHfYGTrfvbnjT6jH7756tbB9H

f8HHGTrfvhJhjH776tbB9HG4VQbnj7567GhIGfHfYT6ghyHhHUujpfyF4

0GhIGfHfQbnj756YT64V

To recover the encrypted message, the recipient first strips off the base64
 encoding. Then the recipient’s private key is used to recover the session key. Finally,
the message content is decrypted with the session key.

SigneddaTa The signedData smime-type can be used with one or more signers.
For clarity, we confine our description to the case of a single digital signature. The
steps for preparing a signedData MIME entity are as follows.

1. Select a message digest algorithm (SHA or MD5).

2. Compute the message digest (hash function) of the content to be signed.

3. Encrypt the message digest with the signer’s private key.

4. Prepare a block known as SignerInfo that contains the signer’s public-key
certificate, an identifier of the message digest algorithm, an identifier of the
 algorithm used to encrypt the message digest, and the encrypted message
digest.

The signedData entity consists of a series of blocks, including a message
digest algorithm identifier, the message being signed, and SignerInfo. The
signedData entity may also include a set of public-key certificates sufficient to
constitute a chain from a recognized root or top-level certification authority to the
signer. This information is then encoded into base64. A sample message (excluding
the RFC 5322 headers) is the following.

Content-Type: application/pkcs7-mime; smime-type=signed-

data; name=smime.p7m

Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename=smime.p7m

567GhIGfHfYT6ghyHhHUujpfyF4f8HHGTrfvhJhjH776tbB9HG4VQbnj7

77n8HHGT9HG4VQpfyF467GhIGfHfYT6rfvbnj756tbBghyHhHUujhJhjH

HUujhJh4VQpfyF467GhIGfHfYGTrfvbnjT6jH7756tbB9H7n8HHGghyHh

6YT64V0GhIGfHfQbnj75

To recover the signed message and verify the signature, the recipient first strips
off the base64 encoding. Then the signer’s public key is used to decrypt the message
digest. The recipient independently computes the message digest and compares it to
the decrypted message digest to verify the signature.

M19_STAL7484_08_GE_C19.indd 616 20/04/22 14:10

19.4 / S/MiME 617

clear Signing Clear signing is achieved using the multipart content type with a signed
subtype. As was mentioned, this signing process does not involve transforming the mes-
sage to be signed, so that the message is sent “in the clear.” Thus, recipients with MIME
capability but not S/MIME capability are able to read the incoming message.

A multipart/signed message has two parts. The first part can be any MIME
type but must be prepared so that it will not be altered during transfer from source
to destination. This means that if the first part is not 7 bit, then it needs to be encoded
using base64 or quoted-printable. Then this part is processed in the same manner as
signedData, but in this case an object with signedData format is created that
has an empty message content field. This object is a detached signature. It is then
transfer encoded using base64 to become the second part of the multipart/signed
message. This second part has a MIME content type of application and a subtype of
pkcs7-signature. Here is a sample message:

Content-Type: multipart/signed;

protocol=”application/pkcs7-signature”;

micalg=sha1; boundary=boundary42

—boundary42

Content-Type: text/plain

This is a clear-signed message.

—boundary42

Content-Type: application/pkcs7-signature; name=smime.p7s

Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename=smime.p7s

ghyHhHUujhJhjH77n8HHGTrfvbnj756tbB9HG4VQpfyF467GhIGfHfYT6

4VQpfyF467GhIGfHfYT6jH77n8HHGghyHhHUujhJh756tbB9HGTrfvbnj

n8HHGTrfvhJhjH776tbB9HG4VQbnj7567GhIGfHfYT6ghyHhHUujpfyF4

7GhIGfHfYT64VQbnj756

—boundary42—

The protocol parameter indicates that this is a two-part clear-signed entity.
The micalg parameter indicates the type of message digest used. The receiver can
verify the signature by taking the message digest of the first part and comparing this
to the message digest recovered from the signature in the second part.

regiSTraTion requeST Typically, an application or user will apply to a certifi-
cation authority for a public-key certificate. The application/pkcs10 S/MIME
 entity is used to transfer a certification request. The certification request includes
 certificationRequestInfo block, followed by an identifier of the public-key
 encryption algorithm, followed by the signature of the certificationRequestInfo
block, made using the sender’s private key. The certificationRequestInfo
block includes a name of the certificate subject (the entity whose public key is to be
certified) and a bit-string representation of the user’s public key.

M19_STAL7484_08_GE_C19.indd 617 20/04/22 14:10

618 CHAPTER 19 / ElECTRoniC MAil SECuRiTy

cerTificaTeS-only meSSage A message containing only certificates or a certificate
revocation list (CRL) can be sent in response to a registration request. The message
is an application/pkcs7-mime type/subtype with an smime-type parameter of degen-
erate. The steps involved are the same as those for creating a signedData message,
except that there is no message content and the signerInfo field is empty.

S/MIME Certificate Processing

S/MIME uses public-key certificates that conform to version 3 of X.509 (see
Chapter 14). S/MIME managers and/or users must configure each client with a list of
trusted keys and with certificate revocation lists. That is, the responsibility is local for
maintaining the certificates needed to verify incoming signatures and to encrypt outgo-
ing messages. On the other hand, the certificates are signed by certification authorities.

uSer agenT role An S/MIME user has several key management functions to
perform.

◆■ Key generation: The user of some related administrative utility (e.g., one
 associated with LAN management) MUST be capable of generating separate
Diffie–Hellman and DSS key pairs and SHOULD be capable of generating
RSA key pairs. Each key pair MUST be generated from a good source of
nondeterministic random input and be protected in a secure fashion. A user
agent SHOULD generate RSA key pairs with a length in the range of 768 to
1024 bits and MUST NOT generate a length of less than 512 bits.

◆■ Registration: A user’s public key must be registered with a certification
 authority in order to receive an X.509 public-key certificate.

◆■ Certificate storage and retrieval: A user requires access to a local list of certifi-
cates in order to verify incoming signatures and to encrypt outgoing messages.
Such a list could be maintained by the user or by some local administrative
entity on behalf of a number of users.

Enhanced Security Services

RFC 2634 defines four enhanced security services for S/MIME:

◆■ Signed receipts: A signed receipt may be requested in a SignedData object.
Returning a signed receipt provides proof of delivery to the originator of a
message and allows the originator to demonstrate to a third party that the
 recipient received the message. In essence, the recipient signs the entire
 original message plus the original (sender’s) signature and appends the new
signature to form a new S/MIME message.

◆■ Security labels: A security label may be included in the authenticated
 attributes of a SignedData object. A security label is a set of security infor-
mation regarding the sensitivity of the content that is protected by S/MIME
encapsulation. The labels may be used for access control, by indicating which
users are permitted access to an object. Other uses include priority (secret,
confidential, restricted, and so on) or role based, describing which kind of
people can see the information (e.g., patient’s health-care team, medical bill-
ing agents).

M19_STAL7484_08_GE_C19.indd 618 20/04/22 14:10

19.5 / dnSSEC 619

◆■ Secure mailing lists: When a user sends a message to multiple recipients, a cer-
tain amount of per-recipient processing is required, including the use of each
recipient’s public key. The user can be relieved of this work by employing the
services of an S/MIME Mail List Agent (MLA). An MLA can take a single
incoming message, perform the recipient-specific encryption for each recipi-
ent, and forward the message. The originator of a message need only send the
message to the MLA with encryption performed using the MLA’s public key.

◆■ Signing certificates: This service is used to securely bind a sender’s certificate
to their signature through a signing certificate attribute.

 19.5 DNSSEC

DNS Security Extensions (DNSSEC) are used by several protocols that provide
email security. This section provides a brief overview of the Domain Name System
(DNS) and then looks at DNSSEC.

Domain Name System

DNS is a directory lookup service that provides a mapping between the name of a
host on the Internet and its numeric IP address. DNS is essential to the functioning
of the Internet. The DNS is used by MUAs and MTAs to find the address of the
next hop server for mail delivery. Sending MTAs query DNS for the Mail Exchange
Resource Record (MX RR) of the recipient’s domain (the right hand side of the
“@” symbol) in order to find the receiving MTA to contact.

Four elements comprise the DNS:

◆■ Domain name space: DNS uses a tree-structured name space to identify
 resources on the Internet.

◆■ DNS database: Conceptually, each node and leaf in the name space tree struc-
ture names a set of information (e.g., IP address, name server for this domain
name) that is contained in resource record. The collection of all RRs is orga-
nized into a distributed database.

◆■ Name servers: These are server programs that hold information about a por-
tion of the domain name tree structure and the associated RRs.

◆■ Resolvers: These are programs that extract information from name servers in
response to client requests. A typical client request is for an IP address corre-
sponding to a given domain name.

The dnS daTabaSe DNS is based on a hierarchical database containing resource
records (RRs) that include the name, IP address, and other information about hosts.
The key features of the database are as follows:

◆■ Variable-depth hierarchy for names: DNS allows essentially unlimited levels and
uses the period (.) as the level delimiter in printed names, as described earlier.

◆■ Distributed database: The database resides in DNS servers scattered through-
out the Internet.

M19_STAL7484_08_GE_C19.indd 619 20/04/22 14:10

620 CHAPTER 19 / ElECTRoniC MAil SECuRiTy

◆■ Distribution controlled by the database: The DNS database is divided into
thousands of separately managed zones, which are managed by separate
 administrators. Distribution and update of records is controlled by the database
software.

Using this database, DNS servers provide a name-to-address directory service
for network applications that need to locate specific servers. For example, every
time an email message is sent or a Web page is accessed, there must be a DNS name
lookup to determine the IP address of the email server or Web server.

Table 19.5 lists the various types of resource records.

dnS operaTion DNS operation typically includes the following steps (Figure 19.4):

1. A user program requests an IP address for a domain name.

2. A resolver module in the local host or local ISP queries a local name server in
the same domain as the resolver.

3. The local name server checks to see if the name is in its local database or cache,
and, if so, returns the IP address to the requestor. Otherwise, the name server
queries other available name servers, if necessary going to the root server, as
explained subsequently.

4. When a response is received at the local name server, it stores the name/
address mapping in its local cache and may maintain this entry for the amount
of time specified in the time-to-live field of the retrieved RR.

5. The user program is given the IP address or an error message.

The distributed DNS database that supports the DNS functionality must be
updated frequently because of the rapid and continued growth of the Internet.
Further, the DNS must cope with dynamic assignment of IP addresses, such as is

Type Description

A A host address. This RR type maps the name of a system to its IPv4 address. Some sys-
tems (e.g., routers) have multiple addresses, and there is a separate RR for each.

AAAA Similar to A type, but for IPv6 addresses.
CNAME Canonical name. Specifies an alias name for a host and maps this to the canonical

(true) name.
HINFO Host information. Designates the processor and operating system used by the host.
MINFO Mailbox or mail list information. Maps a mailbox or mail list name to a host name.
MX Mail exchange. Identifies the system(s) via which mail to the queried domain name

should be relayed.
NS Authoritative name server for this domain.
PTR Domain name pointer. Points to another part of the domain name space.
SOA Start of a zone of authority (which part of naming hierarchy is implemented). Includes

parameters related to this zone.
SRV For a given service provides name of server or servers in domain that provide that service.
TXT Arbitrary text. Provides a way to add text comments to the database.
WKS Well-known services. May list the application services available at this host.

Table 19.5 Resource Record Types

M19_STAL7484_08_GE_C19.indd 620 20/04/22 14:10

19.5 / dnSSEC 621

done for home DSL users by their ISP. Accordingly, dynamic updating functions
for DNS have been defined. In essence, DNS name servers automatically send out
updates to other relevant name servers as conditions warrant.

DNS Security Extensions

DNSSEC provides end-to-end protection through the use of digital signatures that
are created by responding zone administrators and verified by a recipient’s resolver
software. In particular, DNSSEC avoids the need to trust intermediate name servers
and resolvers that cache or route the DNS records originating from the responding
zone administrator before they reach the source of the query. DNSSEC consists of
a set of new resource record types and modifications to the existing DNS protocol,
and is defined in the following documents:

◆■ RFC 4033, DNS Security Introduction and Requirements: Introduces the
DNS security extensions and describes their capabilities and limitations. The
document also discusses the services that the DNS security extensions do and
do not provide.

◆■ RFC 4034, Resource Records for the DNS Security Extensions: Defines four
new resource records that provide security for DNS.

◆■ RFC 4035, Protocol Modifications for the DNS Security Extensions: Defines
the concept of a signed zone, along with the requirements for serving and
 resolving by using DNSSEC. These techniques allow a security-aware resolver
to authenticate both DNS resource records and authoritative DNS error
indications.

Figure 19.4 DNS Name Resolution

User
program

User
system

Internet
user

query query

query

user
response

response

res
ponse

Name
resolver

Cache

Cache

Database

Database

Cache

Name
server

Foreign
name
server

M19_STAL7484_08_GE_C19.indd 621 20/04/22 14:10

622 CHAPTER 19 / ElECTRoniC MAil SECuRiTy

dnSSec operaTion In essence, DNSSEC is designed to protect DNS clients
from accepting forged or altered DNS resource records. It does this by using digital
 signatures to provide:

◆■ Data origin authentication: Ensures that data has originated from the correct
source.

◆■ Data integrity verification: Ensures that the content of a RR has not been
modified.

The DNS zone administrator digitally signs every Resource Record set (RRset) in
the zone, and publishes this collection of digital signatures, along with the zone admin-
istrator’s public key, in the DNS itself. In DNSSEC, trust in the public key (for signature
verification) of the source is established not by going to a third party or a chain of third
parties (as in public key infrastructure [PKI] chaining), but by starting from a trusted
zone (such as the root zone) and establishing the chain of trust down to the current
source of response through successive verifications of signature of the public key of a
child by its parent. The public key of the trusted zone is called the trust anchor.

reSource recordS for dnSSec RFC 4034 defines four new DNS resource
records:

◆■ DNSKEY: Contains a public key.

◆■ RRSIG: A resource record digital signature.

◆■ NSEC: Authenticated denial of existence record.

◆■ DS: Delegation signer.

An RRSIG is associated with each RRset, where an RRset is the set of
 resource records that have the same label, class, and type. When a client requests
data, an RRset is returned, together with the associated digital signature in an
RRSIG record. The client obtains the relevant DNSKEY public key and verifies the
signature for this RRset.

DNSSEC depends on establishing the authenticity of the DNS hierarchy leading
to the domain name in question, and thus its operation depends on beginning the use
of cryptographic digital signatures in the root zone. The DS resource record facilitates
key signing and authentication between DNS zones to create an authentication chain,
or trusted sequence of signed data, from the root of the DNS tree down to a specific
domain name. To secure all DNS lookups, including those for non-existent domain
names and record types, DNSSEC uses the NSEC resource record to authenticate
negative responses to queries. NSEC is used to identify the range of DNS names or
resource record types that do not exist among the sequence of domain names in a zone.

 19.6 DNS-BASED AUTHENTICATION OF NAMED ENTITIES

DANE is a protocol to allow X.509 certificates, commonly used for Transport Layer
Security (TLS), to be bound to DNS names using DNSSEC. It is proposed in RFC
6698 as a way to authenticate TLS client and server entities without a certificate
authority (CA).

M19_STAL7484_08_GE_C19.indd 622 20/04/22 14:10

19.6 / dnS-BASEd AuTHEnTiCATion oF nAMEd EnTiTiES 623

The rationale for DANE is the vulnerability of the use of CAs in a global PKI sys-
tem. Every browser developer and operating system supplier maintains a list of CA root
certificates as trust anchors. These are called the software’s root certificates and are stored
in its root certificate store. The PKIX procedure allows a certificate recipient to trace a
certificate back to the root. So long as the root certificate remains trustworthy, and the
authentication concludes successfully, the client can proceed with the connection.

However, if any of the hundreds of CAs operating on the Internet is compro-
mised, the effects can be widespread. The attacker can obtain the CA’s private key,
get issued certificates under a false name, or introduce new bogus root certificates
into a root certificate store. There is no limitation of scope for the global PKI and
a compromise of a single CA damages the integrity of the entire PKI system. In
 addition, some CAs have engaged in poor security practices. For example, some CAs
have issued wildcard certificates that allow the holder to issue sub-certificates for
any domain or entity, anywhere in the world.

The purpose of DANE is to replace reliance on the security of the CA system
with reliance on the security provided by DNSSEC. Given that the DNS administra-
tor for a domain name is authorized to give identifying information about the zone, it
makes sense to allow that administrator to also make an authoritative binding between
the domain name and a certificate that might be used by a host at that domain name.

TLSA Record

DANE defines a new DNS record type, TLSA, that can be used for a secure method
of authenticating SSL/TLS certificates. The TLSA provides for:

◆■ Specifying constraints on which CA can vouch for a certificate, or which
 specific PKIX end-entity certificate is valid.

◆■ Specifying that a service certificate or a CA can be directly authenticated in
the DNS itself.

The TLSA RR enables certificate issue and delivery to be tied to a given
 domain. A server domain owner creates a TLSA resource record that identifies
the certificate and its public key. When a client receives an X.509 certificate in the
TLS negotiation, it looks up the TLSA RR for that domain and matches the TLSA
data against the certificate as part of the client’s certificate validation procedure.

Figure 19.5 shows the format of a TLSA RR as it is transmitted to a requesting
entity. It contains four fields. The Certificate Usage field defines four different usage
models, to accommodate users who require different forms of authentication. The
usage models are:

◆■ PKIX-TA (CA constraint): Specifies which CA should be trusted to authenticate
the certificate for the service. This usage model limits which CA can be used to
issue certificates for a given service on a host. The server certificate chain must pass
PKIX validation that terminates with a trusted root certificate stored in the client.

◆■ PKIX-EE (service certificate constraint): Defines which specific end entity
service certificate should be trusted for the service. This usage model limits
which end entity certificate can be used by a given service on a host. The server
certificate chain must pass PKIX validation that terminates with a trusted root
certificate stored in the client.

M19_STAL7484_08_GE_C19.indd 623 20/04/22 14:10

624 CHAPTER 19 / ElECTRoniC MAil SECuRiTy

◆■ DANE-TA (trust anchor assertion): Specifies a domain-operated CA to be
used as a trust anchor. This usage model allows a domain name administrator
to specify a new trust anchor—for example, if the domain issues its own certifi-
cates under its own CA that is not expected to be in the end users’ collection
of trust anchors. The server certificate chain is self-issued and does not need to
verify against a trusted root stored in the client.

◆■ DANE-EE (domain-issued certificate): Specifies a domain-operated CA to
be used as a trust anchor. This certificate usage allows a domain name admin-
istrator to issue certificates for a domain without involving a third-party CA.
The server certificate chain is self-issued and does not need to verify against a
trusted root stored in the client.

The first two usage models are designed to co-exist with and strengthen the pub-
lic CA system. The final two usage models operate without the use of public CAs.

The Selector field indicates whether the full certificate will be matched or just
the value of the public key. The match is made between the certificate presented
in TLS negotiation and the certificate in the TLSA RR. The Matching Type field
indicates how the match of the certificate is made. The options are exact match,
 SHA-256 hash match, or SHA-512 hash match. The Certificate Association Data is
the raw certificate data in hex format.

Use of DANE for SMTP

DANE can be used in conjunction with SMTP over TLS, as provided by STARTTLS,
to more fully secure email delivery. DANE can authenticate the certificate of the
SMTP submission server that the user’s mail client (MUA) communicates with. It
can also authenticate the TLS connections between SMTP servers (MTAs). The
use of DANE with SMTP is documented in an Internet Draft (SMTP Security via
Opportunistic DANE TLS, draft-ietf-dane-smtp-with-dane-19, May 29, 2015).

As discussed in Section 19.1, SMTP can use the STARTTLS extension to run
SMTP over TLS, so that the entire email message plus SMTP envelope are encrypted.
This is done opportunistically, that is, if both sides support STARTTLS. Even when
TLS is used to provide confidentiality, it is vulnerable to attack in the following ways:

◆■ Attackers can strip away the TLS capability advertisement and downgrade the
connection to not use TLS.

◆■ TLS connections are often unauthenticated (e.g., the use of self-signed certifi-
cates as well as mismatched certificates is common).

Figure 19.5 TLSA RR Transmission Format

Certificate usage Selector Matching type

Certificate association data

0Bit: 318 16 24

M19_STAL7484_08_GE_C19.indd 624 20/04/22 14:10

19.7 / SEndER PoliCy FRAMEwoRk 625

DANE can address both these vulnerabilities. A domain can use the presence
of the TLSA RR as an indicator that encryption must be performed, thus prevent-
ing malicious downgrade. A domain can authenticate the certificate used in the TLS
connection setup using a DNSSEC-signed TLSA RR.

Use of DNSSEC for S/MIME

DNSSEC can be used in conjunction with S/MIME to more fully secure email
 delivery, in a manner similar to the DANE functionality. This use is documented in
an Internet Draft (Using Secure DNS to Associate Certificates with Domain Names
for S/MIME, draft-ietf-dane-smime-09, August 27, 2015), which proposes a new
SMIMEA DNS RR. The purpose of the SMIMEA RR is to associate certificates
with DNS domain names.

As discussed in Section 19.4, S/MIME messages often contain certificates
that can assist in authenticating the message sender and can be used in encrypt-
ing messages sent in reply. This feature requires that the receiving MUA validate
the certificate associated with the purported sender. SMIMEA RRs can provide a
 secure means of doing this validation.

In essence, the SMIMEA RR will have the same format and content as the
TLSA RR, with the same functionality. The difference is that it is geared to the
needs of MUAs in dealing with domain names as specified in email addresses
in the message body, rather than domain names specified in the outer SMTP
envelope.

 19.7 SENDER POLICY FRAMEWORK

SPF is the standardized way for a sending domain to identify and assert the mail
senders for a given domain. The problem that SPF addresses is the following: With
the current email infrastructure, any host can use any domain name for each of the
various identifiers in the mail header, not just the domain name where the host is
located. Two major drawbacks of this freedom are:

◆■ It is a major obstacle to reducing unsolicited bulk email (UBE), also known as
spam. It makes it difficult for mail handlers to filter out emails on the basis of
known UBE sources.

◆■ ADMDs (see Section 19.1) are understandably concerned about the ease with
which other entities can make use of their domain names, often with malicious
intent.

RFC 7208 defines the SPF. It provides a protocol by which ADMDs can
 authorize hosts to use their domain names in the “MAIL FROM” or “HELO” identi-
ties. Compliant ADMDs publish Sender Policy Framework (SPF) records in the DNS
specifying which hosts are permitted to use their names, and compliant mail receiv-
ers use the published SPF records to test the authorization of sending Mail Transfer
Agents (MTAs) using a given “HELO” or “MAIL FROM” identity during a mail
transaction.

M19_STAL7484_08_GE_C19.indd 625 20/04/22 14:10

626 CHAPTER 19 / ElECTRoniC MAil SECuRiTy

SPF works by checking a sender’s IP address against the policy encoded in any
SPF record found at the sending domain. The sending domain is the domain used in
the SMTP connection, not the domain indicated in the message header as displayed
in the MUA. This means that SPF checks can be applied before the message content
is received from the sender.

Figure 19.6 is an example in which SPF would come into play. Assume that the
sender’s IP address is 192.168.0.1. The message arrives from the MTA with domain
mta.example.net. The sender uses the MAIL FROM tag of alice@example.org,
 indicating that the message originates in the example.org domain. But the message
header specifies alice.sender@example.net. The receiver uses SPF to query for the
SPF RR that corresponds to example.com to check if the IP address 192.168.0.1 is
listed as a valid sender, and then takes appropriate action based on the results of
checking the RR.

SPF on the Sender Side

A sending domain needs to identify all the senders for a given domain and add that
information into the DNS as a separate resource record. Next, the sending domain
encodes the appropriate policy for each sender using the SPF syntax. The encod-
ing is done in a TXT DNS resource record as a list of mechanisms and modifiers.
Mechanisms are used to define an IP address or range of addresses to be matched,
and modifiers indicate the policy for a given match. Table 19.6 lists the most
 important mechanisms and modifiers used in SPF.

The SPF syntax is fairly complex and can express complex relationships
 between senders. For more detail, see RFC 7208.

S: 220 foo.com Simple Mail Transfer Service Ready

C: HELO mta.example.net

S: 250 OK

C: MAIL FROM:<alice@example.org>

S: 250 OK

C: RCPT TO:<Jones@foo.com>

S: 250 OK

C: DATA

S: 354 Start mail input; end with <crlf>.<crlf>

C: To: bob@foo.com

C: From: alice.sender@example.net

C: Date: Today

C: Subject: Meeting Today

 . . .

Figure 19.6 Example in which SMTP Envelope Header Does
Not Match Message Header

M19_STAL7484_08_GE_C19.indd 626 20/04/22 14:10

http://foo.com
http://mta.example.net
http://example.org

19.7 / SEndER PoliCy FRAMEwoRk 627

SPF on the Receiver Side

If SPF is implemented at a receiver, the SPF entity uses the SMTP envelope MAIL
FROM: address domain and the IP address of the sender to query an SPF TXT RR.
The SPF checks can be started before the body of the email message is received,
which may result in blocking the transmission of the email content. Alternatively,
the entire message can be absorbed and buffered until all the checks are finished.
In either case, checks must be completed before the mail message is sent to the end
user’s inbox.

The checking involves the following rules:

1. If no SPF TXT RR is returned, the default behavior is to accept the message.

2. If the SPF TXT RR has formatting errors, the default behavior is to accept the
message.

Tag Description

ip4 Specifies an IPv4 address or range of addresses that are authorized senders for
a domain.

ip6 Specifies an IPv6 address or range of addresses that are authorized senders for
a domain.

mx Asserts that the listed hosts for the Mail Exchange RRs are also valid senders for
the domain.

include Lists another domain where the receiver should look for an SPF RR for further
senders. This can be useful for large organizations with many domains or
sub-domains that have a single set of shared senders. The include mechanism is
recursive, in that the SPF check in the record found is tested in its entirety before
proceeding. It is not simply a concatenation of the checks.

all Matches every IP address that has not otherwise been matched.

(a) SPF Mechanisms

Modifier Description

+ The given mechanism check must pass. This is the default mechanism and does not
need to be explicitly listed.

- The given mechanism is not allowed to send email on behalf of the domain.

∼ The given mechanism is in transition and if an email is seen from the listed host/IP
address, then it should be accepted but marked for closer inspection.

? The SPF RR explicitly states nothing about the mechanism. In this case, the default
behavior is to accept the email. (This makes it equivalent to = + > unless some sort
of discrete or aggregate message review is conducted.)

(b) SPF Mechanism Modifiers

Table 19.6 Common SPF Mechanisms and Modifiers

M19_STAL7484_08_GE_C19.indd 627 20/04/22 14:10

628 CHAPTER 19 / ElECTRoniC MAil SECuRiTy

3. Otherwise the mechanisms and modifiers in the RR are used to determine
disposition of the email message.

Figure 19.7 illustrates SPF operation.

 19.8 DOMAINKEYS IDENTIFIED MAIL

DomainKeys Identified Mail (DKIM) is a specification for cryptographically
signing email messages, permitting a signing domain to claim responsibility for a
message in the mail stream. Message recipients (or agents acting in their behalf)
can verify the signature by querying the signer’s domain directly to retrieve the
appropriate public key and thereby can confirm that the message was attested to
by a party in possession of the private key for the signing domain. DKIM is an
Internet Standard (RFC 6376: DomainKeys Identified Mail (DKIM) Signatures).
DKIM has been widely adopted by a range of email providers, including
 corporations, government agencies, gmail, Yahoo!, and many Internet Service
Providers (ISPs).

Email Threats

RFC 4686 (Analysis of Threats Motivating DomainKeys Identified Mail) describes
the threats being addressed by DKIM in terms of the characteristics, capabilities,
and location of potential attackers.

Figure 19.7 Sender Policy Framework Operation

Sender
Inbound

mail server

SPF record
lookup

Authorization
pass/fail Further

policy
checks

Inbox

Junk email

Quarantine

Block/delete

DNS

Internet

M19_STAL7484_08_GE_C19.indd 628 20/04/22 14:10

19.8 / doMAinkEyS idEnTiFiEd MAil 629

characTeriSTicS RFC 4686 characterizes the range of attackers on a spectrum of
three levels of threat.

1. At the low end are attackers who simply want to send email that a recipient
does not want to receive. The attacker can use one of a number of commercially
available tools that allow the sender to falsify the origin address of messages.
This makes it difficult for the receiver to filter spam on the basis of originating
address or domain.

2. At the next level are professional senders of bulk spam mail. These attackers
often operate as commercial enterprises and send messages on behalf of third
parties. They employ more comprehensive tools for attack, including Mail
Transfer Agents (MTAs) and registered domains and networks of compro-
mised computers (zombies), to send messages and (in some cases) to harvest
addresses to which to send.

3. The most sophisticated and financially motivated senders of messages are
those who stand to receive substantial financial benefit, such as from an
email-based fraud scheme. These attackers can be expected to employ all
of the above mechanisms and additionally may attack the Internet infra-
structure itself, including DNS cache-poisoning attacks and IP routing
attacks.

capabiliTieS RFC 4686 lists the following as capabilities that an attacker might
have.

1. Submit messages to MTAs and Message Submission Agents (MSAs) at
 multiple locations in the Internet.

2. Construct arbitrary Message Header fields, including those claiming to be
mailing lists, resenders, and other mail agents.

3. Sign messages on behalf of domains under their control.

4. Generate substantial numbers of either unsigned or apparently signed
 messages that might be used to attempt a denial-of-service attack.

5. Resend messages that may have been previously signed by the domain.

6. Transmit messages using any envelope information desired.

7. Act as an authorized submitter for messages from a compromised computer.

8. Manipulation of IP routing. This could be used to submit messages from
 specific IP addresses or difficult-to-trace addresses, or to cause diversion of
messages to a specific domain.

9. Limited influence over portions of DNS using mechanisms such as cache
 poisoning. This might be used to influence message routing or to falsify adver-
tisements of DNS-based keys or signing practices.

10. Access to significant computing resources, for example, through the conscrip-
tion of worm-infected “zombie” computers. This could allow the “bad actor” to
perform various types of brute-force attacks.

11. Ability to eavesdrop on existing traffic, perhaps from a wireless network.

M19_STAL7484_08_GE_C19.indd 629 20/04/22 14:10

630 CHAPTER 19 / ElECTRoniC MAil SECuRiTy

locaTion DKIM focuses primarily on attackers located outside of the admin-
istrative units of the claimed originator and the recipient. These administrative
units frequently correspond to the protected portions of the network adjacent to
the originator and recipient. It is in this area that the trust relationships required
for authenticated message submission do not exist and do not scale adequately
to be practical. Conversely, within these administrative units, there are other
mechanisms (such as authenticated message submission) that are easier to deploy
and more likely to be used than DKIM. External bad actors are usually attempt-
ing to exploit the “any-to-any” nature of email that motivates most recipient
MTAs to accept messages from anywhere for delivery to their local domain. They
may generate messages without signatures, with incorrect signatures, or with cor-
rect signatures from domains with little traceability. They may also pose as mail-
ing lists, greeting cards, or other agents that legitimately send or resend messages
on behalf of others.

DKIM Strategy

DKIM is designed to provide an email authentication technique that is transpar-
ent to the end user. In essence, a user’s email message is signed by a private key of
the administrative domain from which the email originates. The signature covers all
of the content of the message and some of the RFC 5322 message headers. At the
 receiving end, the MDA can access the corresponding public key via a DNS and
verify the signature, thus authenticating that the message comes from the claimed
administrative domain. Thus, mail that originates from somewhere else but claims to
come from a given domain will not pass the authentication test and can be rejected.
This approach differs from that of S/MIME, which use the originator’s private key to
sign the content of the message. The motivation for DKIM is based on the following
reasoning:

1. S/MIME depends on both the sending and receiving users employing S/
MIME. For almost all users, the bulk of incoming mail does not use S/
MIME, and the bulk of the mail the user wants to send is to recipients not
using S/MIME.

2. S/MIME signs only the message content. Thus, RFC 5322 header information
concerning origin can be compromised.

3. DKIM is not implemented in client programs (MUAs) and is therefore trans-
parent to the user; the user need not take any action.

4. DKIM applies to all mail from cooperating domains.

5. DKIM allows good senders to prove that they did send a particular message
and to prevent forgers from masquerading as good senders.

Figure 19.8 is a simple example of the operation of DKIM. We begin with a
message generated by a user and transmitted into the MHS to an MSA that is within
the user’s administrative domain. An email message is generated by an email client
program. The content of the message, plus selected RFC 5322 headers, is signed by
the email provider using the provider’s private key. The signer is associated with a

M19_STAL7484_08_GE_C19.indd 630 20/04/22 14:10

19.8 / doMAinkEyS idEnTiFiEd MAil 631

Figure 19.8 Simple Example of DKIM Deployment

Mail origination
network

Mail delivery
network

DNS Public key query/response

DNS 5 Domain Name System
MDA 5 Mail Delivery Agent
MSA 5 Mail Submission Agent
MTA 5 Message Transfer Agent
MUA 5 Message User Agent

SMTP

MUA

MUA

SMTP

SMTP

Signer Verifier

SMTP
POP, IMAP

M
T

A
M

SA

M
T

A
M

D
A

D
N

S

domain, which could be a corporate local network, an ISP, or a public email facility
such as gmail. The signed message then passes through the Internet via a sequence
of MTAs. At the destination, the MDA retrieves the public key for the incoming
signature and verifies the signature before passing the message on to the destination
email client. The default signing algorithm is RSA with SHA-256. RSA with SHA-1
also may be used.

DKIM Functional Flow

Figure 19.9 provides a more detailed look at the elements of DKIM operation.
Basic message processing is divided between a signing Administrative Management
Domain (ADMD) and a verifying ADMD. At its simplest, this is between the origi-
nating ADMD and the delivering ADMD, but it can involve other ADMDs in the
handling path.

Signing is performed by an authorized module within the signing ADMD and uses
private information from a Key Store. Within the originating ADMD, this might be per-
formed by the MUA, MSA, or an MTA. Verifying is performed by an authorized module
within the verifying ADMD. Within a delivering ADMD, verifying might be performed
by an MTA, MDA or MUA. The module verifies the signature or determines whether a
particular signature was required. Verifying the signature uses public information from
the Key Store. If the signature passes, reputation information is used to assess the signer

M19_STAL7484_08_GE_C19.indd 631 20/04/22 14:10

632 CHAPTER 19 / ElECTRoniC MAil SECuRiTy

Figure 19.9 DKIM Functional Flow

Originating or relaying ADMD:
Sign message with SDID

RFC 5322 message

yes

pass fail

no

Relaying or delivering ADMD:
Message signed?

Verify
signature

Private
key

store

(paired)

Public
key

store

Remote
sender

practices

Local info
on sender
practices

Reputation/
accreditation
information

Assessments

Message
filtering
engine

Check
signing

practices

Internet

and that information is passed to the message filtering system. If the signature fails or
there is no signature using the author’s domain, information about signing practices
related to the author can be retrieved remotely and/or locally, and that information is
passed to the message filtering system. For example, if the sender (e.g., gmail) uses DKIM
but no DKIM signature is present, then the message may be considered fraudulent.

The signature is inserted into the RFC 5322 message as an additional header
entry, starting with the keyword Dkim-Signature. You can view examples from your
own incoming mail by using the View Long Headers (or similar wording) option for
an incoming message. Here is an example:

Dkim-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed;
 d=gmail.com; s=gamma; h=domainkey-
 signature:mime-version:received:date:

M19_STAL7484_08_GE_C19.indd 632 20/04/22 14:10

http://d=gmail.com

19.8 / doMAinkEyS idEnTiFiEd MAil 633

 message-id:subject :from:to:content-type:
 content-transfer-encoding;
 bh=5mZvQDyCRuyLb1Y28K4zgS2MPOemFToDBgvbJ
 7GO90s=;
 b=PcUvPSDygb4ya5Dyj1rbZGp/VyRiScuaz7TTG

J5qW5slM+klzv6kcfYdGDHzEVJW+Z
 FetuPfF1ETOVhELtwH0zjSccOyPkEiblOf6gILO
 bm3DDRm3Ys1/FVrbhVOlA+/jH9Aei
 uIIw/5iFnRbSH6qPDVv/beDQqAWQfA/wF7O5k=

Before a message is signed, a process known as canonicalization is performed
on both the header and body of the RFC 5322 message. Canonicalization is neces-
sary to deal with the possibility of minor changes in the message made en route,
including character encoding, treatment of trailing white space in message lines, and
the “folding” and “unfolding” of header lines. The intent of canonicalization is to
make a minimal transformation of the message (for the purpose of signing; the mes-
sage itself is not changed, so the canonicalization must be performed again by the
verifier) that will give it its best chance of producing the same canonical value at
the receiving end. DKIM defines two header canonicalization algorithms (“simple”
and “relaxed”) and two for the body (with the same names). The simple algorithm
tolerates almost no modification, while the relaxed algorithm tolerates common
modifications.

The signature includes a number of fields. Each field begins with a tag consist-
ing of a tag code followed by an equals sign and ends with a semicolon. The fields
include the following:

◆■ v= DKIM version/

◆■ a= Algorithm used to generate the signature; must be either rsa-sha1 or
rsa-sha256

◆■ c= Canonicalization method used on the header and the body.

◆■ d= A domain name used as an identifier to refer to the identity of a responsible
person or organization. In DKIM, this identifier is called the Signing Domain
IDentifier (SDID). In our example, this field indicates that the sender is using
a gmail address.

◆■ s= In order that different keys may be used in different circumstances for the
same signing domain (allowing expiration of old keys, separate departmen-
tal signing, or the like), DKIM defines a selector (a name associated with a
key) that is used by the verifier to retrieve the proper key during signature
verification.

◆■ h= Signed Header fields. A colon-separated list of header field names that
identify the header fields presented to the signing algorithm. Note that in our
example above, the signature covers the domainkey-signature field. This refers
to an older algorithm (since replaced by DKIM) that is still in use.

◆■ bh= The hash of the canonicalized body part of the message. This provides
 additional information for diagnosing signature verification failures.

◆■ b= The signature data in base64 format; this is the encrypted hash code.

M19_STAL7484_08_GE_C19.indd 633 20/04/22 14:10

634 CHAPTER 19 / ElECTRoniC MAil SECuRiTy

 19.9 DOMAIN-BASED MESSAGE AUTHENTICATION,
REPORTING, AND CONFORMANCE

Domain-Based Message Authentication, Reporting, and Conformance (DMARC)
 allows email senders to specify policy on how their mail should be handled, the
types of reports that receivers can send back, and the frequency those reports
should be sent. It is defined in RFC 7489 (Domain-based Message Authentication,
Reporting, and Conformance, March 2015).

DMARC works with SPF and DKIM. SPF and DKM enable senders to advise
receivers, via DNS, whether mail purporting to come from the sender is valid, and
whether it should be delivered, flagged, or discarded. However, neither SPF nor
DKIM include a mechanism to tell receivers if SPF or DKIM are in use, nor do they
have feedback mechanism to inform senders of the effectiveness of the anti-spam
techniques. For example, if a message arrives at a receiver without a DKIM signa-
ture, DKIM provides no mechanism to allow the receiver to learn if the message is
authentic but was sent from a sender that did not implement DKIM, or if the mes-
sage is a spoof. DMARC addresses these issues essentially by standardizing how
email receivers perform email authentication using SPF and DKIM mechanisms.

Identifier Alignment

DKIM, SPF, and DMARC authenticate various aspects of an individual message.
DKIM authenticates the domain that affixed a signature to the message. SPF focuses
on the SMTP envelope, defined in RFC 5321. It can authenticate either the domain that
appears in the MAIL FROM portion of the SMTP envelope or the HELO domain, or
both. These may be different domains, and they are typically not visible to the end user.

DMARC authentication deals with the From domain in the message header,
as defined in RFC 5322. This field is used as the central identity of the DMARC
mechanism because it is a required message header field and therefore guaran-
teed to be present in compliant messages, and most MUAs represent the RFC 5322
From field as the originator of the message and render some or all of this header
field’s content to end users. The email address in this field is the one used by end
users to identify the source of the message and therefore is a prime target for abuse.

DMARC requires that From address match (be aligned with) an Authenticated
Identifier from DKIM or SPF. In the case of DKIM, the match is made between
the DKIM signing domain and the From domain. In the case of SPF, the match is
 between the SPF-authenticated domain and the From domain.

DMARC on the Sender Side

A mail sender that uses DMARC must also use SPF or DKIM, or both. The sender
posts a DMARC policy in the DNS that advises receivers on how to treat mes-
sages that purport to originate from the sender’s domain. The policy is in the form
of a DNS TXT resource record. The sender also needs to establish email addresses
to receive aggregate and forensic reports. As these email addresses are published

M19_STAL7484_08_GE_C19.indd 634 20/04/22 14:10

19.9 / doMAin-BASEd MESSAGE AuTHEnTiCATion 635

Tag (Name) Description

v= (Version) Version field that must be present as the first element. By default the value is
always DMARC1.

p= (Policy) Mandatory policy field. May take values none or quarantine or reject. This
allows for a gradually tightening policy where the sender domain recommends
no specific action on mail that fails DMARC checks (p= none), through treating
failed mail as suspicious (p= quarantine), to rejecting all failed mail
(p= reject), preferably at the SMTP transaction stage.

aspf= (SPF Policy) Values are r (default) for relaxed and s for strict SPF domain enforcement. Strict
alignment requires an exact match between the From address domain and the
(passing) SPF check must exactly match the MailFrom address (HELO address).
Relaxed requires that only the From and MailFrom address domains be in align-
ment. For example, the MailFrom address domain smtp.example.org and the
From address announce@example.org are in alignment, but not a strict match.

adkim= (DKIM Policy) Optional. Values are r (default) for relaxed and s for strict DKIM domain
enforcement. Strict alignment requires an exact match between the From domain
in the message header and the DKIM domain presented in the
(d= DKIM), tag. Relaxed requires only that the domain part is in alignment
(as in aspf).

fo= (Failure reporting
options)

Optional. Ignore if a ruf argument is not also present. Value 0 indicates the
receiver should generate a DMARC failure report if all underlying mechanisms
fail to produce an aligned pass result. Value 1 means generate a DMARC failure
report if any underlying mechanism produces something other than an aligned
pass result. Other possible values are d (generate a DKIM failure report if a
signature failed evaluation), and s (generate an SPF failure report if the message
failed SPF evaluation). These values are not exclusive and may be combined.

ruf= Optional, but requires the fo argument to be present. Lists a series of URIs
(currently just mailto:<emailaddress>) that list where to send forensic feedback
reports. This is for reports on message-specific failures.

rua= Optional list of URIs (like in ruf= , using the mailto: URI) listing where to send
aggregate feedback back to the sender. These reports are sent based on the inter-
val requested using the ri= option with a default of 86400 seconds if not listed.

ri= (Reporting interval) Optional with the default value of 86400 seconds. The value listed is the report-
ing interval desired by the sender.

pct= (Percent) Optional with the default value of 100. Expresses the percentage of a sender’s
mail that should be subject to the given DMARC policy. This allows senders to
ramp up their policy enforcement gradually and prevent having to commit to a
rigorous policy before getting feedback on their existing policy.

sp= (Receiver Policy) Optional with a default value of none. Other values include the same range of
values as the p= argument. This is the policy to be applied to mail from all identi-
fied subdomains of the given DMARC RR.

Table 19.7 DMARC Tag and Value Descriptions

unencrypted in the DNS TXT RR, they are easily discovered, leaving the poster
subject to unsolicited bulk email. Thus, the poster of the DNS TXT RR needs to
employ some kind of abuse countermeasures.

Similar to SPF and DKIM, the DMARC policy in the TXT RR is encoded
in a series of tag=value pairs separated by semicolons. Table 19.7 describes the
 common tags.

M19_STAL7484_08_GE_C19.indd 635 20/04/22 14:10

http://smtp.example.org

636 CHAPTER 19 / ElECTRoniC MAil SECuRiTy

Once the DMARC RR is posted, messages from the sender are typically
 processed as follows:

1. The domain owner constructs an SPF policy and publishes it in its DNS database.
The domain owner also configures its system for DKIM signing. Finally, the do-
main owner publishes via the DNS a DMARC message- handling policy.

2. The author generates a message and hands the message to the domain owner’s
designated mail submission service.

3. The submission service passes relevant details to the DKIM signing module in
order to generate a DKIM signature to be applied to the message.

4. The submission service relays the now-signed message to its designated trans-
port service for routing to its intended recipient(s).

DMARC on the Receiver Side

A message generated on the sender side may pass through other relays but even-
tually arrives at a receiver’s transport service. The typical processing order for
DMARC on the receiving side is the following:

1. The receiver performs standard validation tests, such as checking against IP
blocklists and domain reputation lists, as well as enforcing rate limits from a
particular source.

2. The receiver extracts the RFC 5322 From address from the message. This must
contain a single, valid address or else the mail is refused as an error.

3. The receiver queries for the DMARC DNS record based on the sending
domain. If none exists, terminate DMARC processing.

4. The receiver performs DKIM signature checks. If more than one DKIM signa-
ture exists in the message, one must verify.

5. The receiver queries for the sending domain’s SPF record and performs SPF
validation checks.

6. The receiver conducts Identifier Alignment checks between the RFC 5321
From and the results of the SPF and DKIM records (if present).

7. The results of these steps are passed to the DMARC module along with the Author’s
domain. The DMARC module attempts to retrieve a policy from the DNS for
that domain. If none is found, the DMARC module determines the organizational
domain and repeats the attempt to retrieve a policy from the DNS.

8. If a policy is found, it is combined with the Author’s domain and the SPF and
DKIM results to produce a DMARC policy result (a “pass” or “fail”) and can
optionally cause one of two kinds of reports to be generated.

9. Recipient transport service either delivers the message to the recipient inbox
or takes other local policy action based on the DMARC result.

10. When requested, Recipient transport service collects data from the message
delivery session to be used in providing feedback.

Figure 19.10, based on one at DMARC.org, summarizes the sending and
 receiving functional flow.

M19_STAL7484_08_GE_C19.indd 636 20/04/22 14:10

http://DMARC.org

Figure 19.10 DMARC Functional Flow

DKIM

DKIM

SPF SPF

Failure
report

Block

Pass

Sender Receiver

Fail

Quaran-
tine

Author composes
and sends email

Standard processing
(including antispam)

Sending mail server
attaches DKIM signature

Standard validation
tests at receiver
(including IP

blocklists,
reputation, rate

limits, etc)

Retrieve verified
DKIM domains

Retrieve
“envelope from”

via SPF

Update periodic
aggregate report

to be sent to sender

Apply
DMARC

policy

19.9 / doMAin-BASEd MESSAGE AuTHEnTiCATion 637

M19_STAL7484_08_GE_C19.indd 637 20/04/22 14:10

638 CHAPTER 19 / ElECTRoniC MAil SECuRiTy

DMARC Reports

DMARC reporting provides the sender’s feedback on their SPF, DKIM, Identifier
Alignment, and message disposition policies, which enable the sender to make these poli-
cies more effective. Two types of reports are sent: aggregate reports and forensic reports.

Aggregate reports are sent by receivers periodically and include aggregate
 figures for successful and unsuccessful message authentications, including:

◆■ The sender’s DMARC policy for that interval.

◆■ The message disposition by the receiver (i.e., delivered, quarantined, rejected).

◆■ SPF result for a given SPF identifier.

◆■ DKIM result for a given DKIM identifier.

◆■ Whether identifiers are in alignment or not.

◆■ Results classified by sender subdomain.

◆■ The sending and receiving domain pair.

◆■ The policy applied, and whether this is different from the policy requested.

◆■ The number of successful authentications.

◆■ Totals for all messages received.

This information enables the sender to identify gaps in email infrastruc-
ture and policy. SP 800-177 recommends that a sending domain begin by setting
a DMARC policy of p= none, so that the ultimate disposition of a message that
fails some check is determined by the receiver’s local policy. As DMARC aggregate
reports are collected, the sender will have a quantitatively better assessment of the
extent to which the sender’s email is authenticated by outside receivers, and will
be able to set a policy of p=reject, indicating that any message that fails the SPF,
DKIM, and alignment checks really should be rejected. From their own traffic analy-
sis, receivers can develop a determination of whether a sender’s p=reject policy is
sufficiently trustworthy to act on.

A forensic report helps the sender refine the component SPF and DKIM
mechanisms as well as alerting the sender that their domain is being used as part
of a phishing/spam campaign. Forensic reports are similar in format to aggregation
reports, with these changes:

◆■ Receivers include as much of the message and message header as is reason-
able to allow the domain to investigate the failure. Add an Identity-Alignment
field, with DKIM and SPF DMARC-method fields as appropriate.

◆■ Optionally add a Delivery-Result field.

◆■ Add DKIM Domain, DKIM Identity, and DKIM selector fields, if the message
was DKIM signed. Optionally also add DKIM Canonical header and body fields.

◆■ Add an additional DMARC authentication failure type, for use when some
authentication mechanisms fail to produce aligned identifiers.

M19_STAL7484_08_GE_C19.indd 638 20/04/22 14:10

19.10 / kEy TERMS, REviEw QuESTionS, And PRoBlEMS 639

 19.10 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

base64 transfer encoding
detached signature
electronic mail

Post Office Protocol
(POP3)

session key

Simple Mail Transfer Protocol
(SMTP)

trust

Review Questions
 19.1 What types of interoperability issues are involved in Internet mail architecture and

how are they handled?
 19.2 Briefly explain the protocol(s) that are recommended to enhance threat reduction.
 19.3 What is the difference between a MIME content type and a MIME transfer encoding?
 19.4 How does SPF work on the sender and receiver sides?
 19.5 What are the strategies of the DomainKeys Identified Mail?
 19.6 What is the role of STARTTLS in email security and how does it work?
 19.7 What are the four principal services provided by S/MIME?
 19.8 What is the utility of a detached signature?
 19.9 What is DKIM?

Problems
 19.1 The character sequence “<CR><LF>.<CR><LF>” indicates the end of mail data to a

SMTP-server. What happens if the mail data itself contains that character sequence?
 19.2 Using a comparison table, describe an example(s) of how SMTP, POP3, and IMAP

correlate with and differ from each other.
 19.3 If a lossless compression algorithm, such as ZIP, is used with S/MIME, why is it prefer-

able to generate a signature before applying compression?
 19.4 Before the deployment of the Domain Name System, a simple text file (HOSTS.TXT)

centrally maintained at the SRI Network Information Center was used to enable
mapping between host names and addresses. Each host connected to the Internet had
to have an updated local copy of it to be able to use host names instead of having to
cope directly with their IP addresses. Discuss the main advantages of the DNS over
the old centralized HOSTS.TXT system.

 19.5 Consider base64 conversion as a form of encryption. In this case, there is no key. But
suppose that an opponent knew only that some form of substitution algorithm was
being used to encrypt English text and did not guess that it was base64. How effective
would this algorithm be against cryptanalysis?

 19.6 Encode the text “ciphertext” using the following techniques. Assume characters are
stored in 8-bit ASCII with zero parity.
a. base64
b. Quoted-printable

 19.7 Describe the mechanisms of DANE and DMARC in email security using at least two
different examples.

M19_STAL7484_08_GE_C19.indd 639 20/04/22 14:10

IP Security

CHAPTER20
20.1 IP Security Overview

Applications of IPsec
IPsec Documents
IPsec Services

20.2 IP Security Policy

Security Associations
Security Association Database
Security Policy Database
IP Traffic Processing

20.3 Encapsulating Security Payload

ESP Format
Encryption and Authentication Algorithms
Padding
Anti-Replay Service
Transport and Tunnel Modes

20.4 Combining Security Associations

Authentication Plus Confidentiality
Basic Combinations of Security Associations

20.5 Internet Key Exchange

Key Determination Protocol
Header and Payload Formats

20.6 Key Terms, Review Questions, and Problems

640

M20_STAL7484_08_GE_C20.indd 640 05/04/22 20:10

20.1 / IP SecurIty OvervIew 641

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

 ◆ Present an overview of IP security (IPsec).

 ◆ Explain the difference between transport mode and tunnel mode.

 ◆ Understand the concept of security association.

 ◆ Explain the difference between the security association database and the
security policy database.

 ◆ Summarize the traffic processing functions performed by IPsec for out-
bound packets and for inbound packets.

 ◆ Present an overview of Encapsulating Security Payload.

 ◆ Discuss the alternatives for combining security associations.

 ◆ Present an overview of Internet Key Exchange.

 ◆ Summarize the alternative cryptographic suites approved for use with IPsec.

1In this chapter, the term IP packet refers to either an IPv4 datagram or an IPv6 packet.

There are application-specific security mechanisms for a number of application areas,
including electronic mail (S/MIME, PGP), client/server (Kerberos), Web access
(Secure Sockets Layer), and others. However, users have security concerns that cut
across protocol layers. For example, an enterprise can run a secure, private IP net-
work by disallowing links to untrusted sites, encrypting packets that leave the prem-
ises, and authenticating packets that enter the premises.1 By implementing security at
the IP level, an organization can ensure secure networking not only for applications
that have security mechanisms but also for the many security-ignorant applications.

IP-level security encompasses three functional areas: authentication, confiden-
tiality, and key management. The authentication mechanism assures that a received
packet was, in fact, transmitted by the party identified as the source in the packet
header. In addition, this mechanism assures that the packet has not been altered in
transit. The confidentiality facility enables communicating nodes to encrypt messages
to prevent eavesdropping by third parties. The key management facility is concerned
with the secure exchange of keys.

We begin this chapter with an overview of IP security (IPsec) and an introduction
to the IPsec architecture. We then look at each of the three functional areas in detail.

 20.1 IP SECURITY OVERVIEW

In 1994, the Internet Architecture Board (IAB) issued a report titled “Security in
the Internet Architecture” (RFC 1636). The report identified key areas for security
mechanisms. Among these were the need to secure the network infrastructure from

M20_STAL7484_08_GE_C20.indd 641 05/04/22 20:10

642 cHAPter 20 / IP SecurIty

unauthorized monitoring and control of network traffic and the need to secure end-
user-to-end-user traffic using authentication and encryption mechanisms.

To provide security, the IAB included authentication and encryption as nec-
essary security features in the next-generation IP, which has been issued as IPv6.
Fortunately, these security capabilities were designed to be usable with both ver-
sions currently in use: IPv4 and IPv6. This means that vendors can begin offering
these features now, and many vendors now do have some IPsec capability in their
products. The IPsec specification now exists as a set of Internet standards.

Applications of IPsec

IPsec provides the capability to secure communications across a LAN, across private
and public WANs, and across the Internet. Examples of its use include:

 ■ Secure branch office connectivity over the Internet: A company can build a
secure virtual private network over the Internet or over a public WAN. This
enables a business to rely heavily on the Internet and reduce its need for pri-
vate networks, saving costs and network management overhead.

 ■ Secure remote access over the Internet: An end user whose system is equipped
with IP security protocols can make a local call to an Internet Service Provider
(ISP) and gain secure access to a company network. This reduces the cost of
toll charges for traveling employees and telecommuters.

 ■ Establishing extranet and intranet connectivity with partners: IPsec can be
used to secure communication with other organizations, ensuring authentica-
tion and confidentiality and providing a key exchange mechanism.

 ■ Enhancing electronic commerce security: Even though some Web and elec-
tronic commerce applications have built-in security protocols, the use of IPsec
enhances that security. IPsec guarantees that all traffic designated by the net-
work administrator is both encrypted and authenticated, adding an additional
layer of security to whatever is provided at the application layer.

The principal feature of IPsec that enables it to support these varied applica-
tions is that it can encrypt and/or authenticate all traffic at the IP level. Thus, all dis-
tributed applications (including remote logon, client/server, email, file transfer, Web
access, and so on) can be secured.

IPsec Documents

IPsec encompasses three functional areas: authentication, confidentiality, and key
management. The totality of the IPsec specification is scattered across dozens of
RFCs and draft IETF documents, making this the most complex and difficult to
grasp of all IETF specifications. The best way to grasp the scope of IPsec is to consult
the latest version of the IPsec document roadmap, which as of this writing is RFC
6071 [IP Security (IPsec) and Internet Key Exchange (IKE) Document Roadmap,
February 2011]. The documents can be categorized into the following groups.

 ■ Architecture: Covers the general concepts, security requirements, definitions,
and mechanisms defining IPsec technology. The current specification is RFC
4301, Security Architecture for the Internet Protocol.

M20_STAL7484_08_GE_C20.indd 642 05/04/22 20:10

20.2 / IP SecurIty POlIcy 643

 ■ Authentication Header (AH): AH is an extension header to provide mes-
sage authentication. The current specification is RFC 4302, IP Authentication
Header. Because message authentication is provided by ESP, the use of AH
is deprecated. It is included in IPsecv3 for backward compatibility but should
not be used in new applications. We do not discuss AH in this chapter.

 ■ Encapsulating Security Payload (ESP): ESP consists of an encapsulat-
ing header and trailer used to provide encryption or combined encryption/
authentication. The current specification is RFC 4303, IP Encapsulating
Security Payload (ESP).

 ■ Internet Key Exchange (IKE): This is a collection of documents describing
the key management schemes for use with IPsec. The main specification is
RFC 7296, Internet Key Exchange (IKEv2) Protocol, but there are a number
of related RFCs.

 ■ Cryptographic algorithms: This category encompasses a large set of documents
that define and describe cryptographic algorithms for encryption, message authen-
tication, pseudorandom functions (PRFs), and cryptographic key exchange.

 ■ Other: There are a variety of other IPsec-related RFCs, including those deal-
ing with security policy and management information base (MIB) content.

IPsec Services

IPsec provides security services at the IP layer by enabling a system to select
 required security protocols, determine the algorithm(s) to use for the service(s), and
put in place any cryptographic keys required to provide the requested services. Two
protocols are used to provide security: an authentication protocol designated by the
header of the protocol, Authentication Header (AH); and a combined encryption/
authentication protocol designated by the format of the packet for that protocol,
Encapsulating Security Payload (ESP). RFC 4301 lists the following services:

 ■ Access control

 ■ Connectionless integrity

 ■ Data origin authentication

 ■ Rejection of replayed packets (a form of partial sequence integrity)

 ■ Confidentiality (encryption)

 ■ Limited traffic flow confidentiality

 20.2 IP SECURITY POLICY

Fundamental to the operation of IPsec is the concept of a security policy applied to
each IP packet that transits from a source to a destination. IPsec policy is determined
primarily by the interaction of two databases, the security association database
(SAD) and the security policy database (SPD). This section provides an overview
of these two databases and then summarizes their use during IPsec operation.
Figure 20.1 illustrates the relevant relationships.

M20_STAL7484_08_GE_C20.indd 643 05/04/22 20:10

644 cHAPter 20 / IP SecurIty

Security Associations

A key concept that appears in both the authentication and confidentiality mecha-
nisms for IP is the security association (SA). An association is a one-way logical con-
nection between a sender and a receiver that affords security services to the traffic
carried on it. If a peer relationship is needed for two-way secure exchange, then two
security associations are required.

A security association is uniquely identified by three parameters.

 ■ Security Parameters Index (SPI): A 32-bit unsigned integer assigned to this
SA and having local significance only. The SPI is carried in AH and ESP head-
ers to enable the receiving system to select the SA under which a received
packet will be processed.

 ■ IP Destination Address: This is the address of the destination endpoint of the SA,
which may be an end-user system or a network system such as a firewall or router.

 ■ Security Protocol Identifier: This field from the outer IP header indicates
whether the association is an AH or ESP security association.

Hence, in any IP packet, the security association is uniquely identified by the
Destination Address in the IPv4 or IPv6 header and the SPI in the enclosed exten-
sion header (AH or ESP).

Security Association Database

In each IPsec implementation, there is a nominal2 Security Association Database
that defines the parameters associated with each SA. A security association is nor-
mally defined by the following parameters in an SAD entry.

 ■ Security Parameter Index: A 32-bit value selected by the receiving end of an
SA to uniquely identify the SA. In an SAD entry for an outbound SA, the SPI
is used to construct the packet’s AH or ESP header. In an SAD entry for an
inbound SA, the SPI is used to map traffic to the appropriate SA.

2Nominal in the sense that the functionality provided by a Security Association Database must be present
in any IPsec implementation, but the way in which that functionality is provided is up to the implementer.

Figure 20.1 IPsec Architecture

SPD

SAD

IKEv2 IKEv2

IPsecv3 IPsecv3

Security
association
database

Key exchange

IKE SA

IPsec SA Pair

ESP protects data

Security
association
database

Security
policy

database

Security
policy

database

SAD

SPD

M20_STAL7484_08_GE_C20.indd 644 05/04/22 20:10

20.2 / IP SecurIty POlIcy 645

 ■ Sequence Number Counter: A 32-bit value used to generate the Sequence
Number field in AH or ESP headers, described in Section 20.3 (required for all
implementations).

 ■ Sequence Counter Overflow: A flag indicating whether overflow of the
Sequence Number Counter should generate an auditable event and prevent
further transmission of packets on this SA (required for all implementations).

 ■ Anti-Replay Window: Used to determine whether an inbound AH or ESP
packet is a replay, described in Section 20.3 (required for all implementations).

 ■ AH Information: Authentication algorithm, keys, key lifetimes, and related
parameters being used with AH (required for AH implementations).

 ■ ESP Information: Encryption and authentication algorithm, keys, initialization
values, key lifetimes, and related parameters being used with ESP (required
for ESP implementations).

 ■ Lifetime of this Security Association: A time interval or byte count after which an
SA must be replaced with a new SA (and new SPI) or terminated, plus an indica-
tion of which of these actions should occur (required for all implementations).

 ■ IPsec Protocol Mode: Tunnel, transport, or wildcard.

 ■ Path MTU: Any observed path maximum transmission unit (maximum size of
a packet that can be transmitted without fragmentation) and aging variables
(required for all implementations).

The key management mechanism that is used to distribute keys is coupled to
the authentication and privacy mechanisms only by way of the Security Parameters
Index (SPI). Hence, authentication and privacy have been specified independent of
any specific key management mechanism.

IPsec provides the user with considerable flexibility in the way in which IPsec
services are applied to IP traffic. As we will see later, SAs can be combined in a number
of ways to yield the desired user configuration. Furthermore, IPsec provides a high
degree of granularity in discriminating between traffic that is afforded IPsec protection
and traffic that is allowed to bypass IPsec, as in the former case relating IP traffic to
specific SAs.

Security Policy Database

The means by which IP traffic is related to specific SAs (or no SA in the case of traf-
fic allowed to bypass IPsec) is the nominal Security Policy Database (SPD). In its
simplest form, an SPD contains entries, each of which defines a subset of IP traffic
and points to an SA for that traffic. In more complex environments, there may be
multiple entries that potentially relate to a single SA or multiple SAs associated with
a single SPD entry. The reader is referred to the relevant IPsec documents for a full
discussion.

Each SPD entry is defined by a set of IP and upper-layer protocol field values,
called selectors. In effect, these selectors are used to filter outgoing traffic in order
to map it into a particular SA. Outbound processing obeys the following general
sequence for each IP packet.

1. Compare the values of the appropriate fields in the packet (the selector fields)
against the SPD to find a matching SPD entry, which will point to zero or more SAs.

M20_STAL7484_08_GE_C20.indd 645 05/04/22 20:10

646 cHAPter 20 / IP SecurIty

2. Determine the SA if any for this packet and its associated SPI.

3. Do the required IPsec processing (i.e., AH or ESP processing).

The following selectors determine an SPD entry:

 ■ Remote IP Address: This may be a single IP address, an enumerated list or range
of addresses, or a wildcard (mask) address. The latter two are required to support
more than one destination system sharing the same SA (e.g., behind a firewall).

 ■ Local IP Address: This may be a single IP address, an enumerated list or range
of addresses, or a wildcard (mask) address. The latter two are required to sup-
port more than one source system sharing the same SA (e.g., behind a firewall).

 ■ Next Layer Protocol: The IP protocol header (IPv4, IPv6, or IPv6 Extension)
includes a field (Protocol for IPv4, Next Header for IPv6 or IPv6 Extension)
that designates the protocol operating over IP. This is an individual protocol
number, ANY, or for IPv6 only, OPAQUE. If AH or ESP is used, then this IP
protocol header immediately precedes the AH or ESP header in the packet.

 ■ Name: A user identifier from the operating system. This is not a field in the IP
or upper-layer headers but is available if IPsec is running on the same operat-
ing system as the user.

 ■ Local and Remote Ports: These may be individual TCP or UDP port values, an
enumerated list of ports, or a wildcard port.

Table 20.1 provides an example of an SPD on a host system (as opposed to a
network system such as a firewall or router). This table reflects the following con-
figuration: A local network configuration consists of two networks. The basic cor-
porate network configuration has the IP network number 1.2.3.0/24. The local con-
figuration also includes a secure LAN, often known as a DMZ, that is identified as
1.2.4.0/24. The DMZ is protected from both the outside world and the rest of the
corporate LAN by firewalls. The host in this example has the IP address 1.2.3.10, and
it is authorized to connect to the server 1.2.4.10 in the DMZ.

The entries in the SPD should be self-explanatory. For example, UDP port 500
is the designated port for IKE. Any traffic from the local host to a remote host for
purposes of an IKE exchange bypasses the IPsec processing.

Protocol Local IP Port Remote IP Port Action Comment

UDP 1.2.3.101 500 * 500 BYPASS IKE

ICMP 1.2.3.101 * * * BYPASS Error messages

* 1.2.3.101 * 1.2.3.0/24 * PROTECT: ESP
intransport-mode

Encrypt intranet traffic

TCP 1.2.3.101 * 1.2.4.10 80 PROTECT: ESP
intransport-mode

Encrypt to server

TCP 1.2.3.101 * 1.2.4.10 443 BYPASS TLS: avoid double encryption

* 1.2.3.101 * 1.2.4.0/24 * DISCARD Others in DMZ

* 1.2.3.101 * * * BYPASS Internet

Table 20.1 Host SPD Example

M20_STAL7484_08_GE_C20.indd 646 05/04/22 20:10

20.2 / IP SecurIty POlIcy 647

IP Traffic Processing

IPsec is executed on a packet-by-packet basis. When IPsec is implemented, each
outbound IP packet is processed by the IPsec logic before transmission, and each
inbound packet is processed by the IPsec logic after reception and before passing
the packet contents on to the next higher layer (e.g., TCP or UDP). We look at the
logic of these two situations in turn.

OutbOund Packets Figure 20.2 highlights the main elements of IPsec processing
for outbound traffic. A block of data from a higher layer, such as TCP, is passed
down to the IP layer and an IP packet is formed, consisting of an IP header and an
IP body. Then the following steps occur:

1. IPsec searches the SPD for a match to this packet.

2. If no match is found, then the packet is discarded and an error message is generated.

3. If a match is found, further processing is determined by the first matching
entry in the SPD. If the policy for this packet is DISCARD, then the packet is
discarded. If the policy is BYPASS, then there is no further IPsec processing;
the packet is forwarded to the network for transmission.

4. If the policy is PROTECT, then a search is made of the SAD for a matching
entry. If no entry is found, then IKE is invoked to create an SA with the appro-
priate keys and an entry is made in the SA.

5. The matching entry in the SAD determines the processing for this packet. Either
encryption, authentication, or both can be performed, and either transport or tun-
nel mode can be used. The packet is then forwarded to the network for transmission.

Figure 20.2 Processing Model for Outbound Packets

Outbound IP packet
(e.g., from TCP or UDP)

No match
found

No match
found

Match found

Match
found

DISCARD PROTECT

BYPASS

Forward
packet via

IP

Internet
key

exchange

Process
(AH/ESP)

Determine
policy

Search
security policy

database

Discard
packet

Search
security association

database

M20_STAL7484_08_GE_C20.indd 647 05/04/22 20:10

648 cHAPter 20 / IP SecurIty

InbOund Packets Figure 20.3 highlights the main elements of IPsec processing for
inbound traffic. An incoming IP packet triggers the IPsec processing. The following
steps occur:

1. IPsec determines whether this is an unsecured IP packet or one that has ESP
or AH headers/trailers, by examining the IP Protocol field (IPv4) or Next
Header field (IPv6).

2. If the packet is unsecured, IPsec searches the SPD for a match to this packet.
If the first matching entry has a policy of BYPASS, the IP header is processed
and stripped off and the packet body is delivered to the next higher layer, such
as TCP. If the first matching entry has a policy of PROTECT or DISCARD, or
if there is no matching entry, the packet is discarded.

3. For a secured packet, IPsec searches the SAD. If no match is found, the packet
is discarded. Otherwise, IPsec applies the appropriate ESP or AH processing.
Then, the IP header is processed and stripped off and the packet body is deliv-
ered to the next higher layer, such as TCP.

 20.3 ENCAPSULATING SECURITY PAYLOAD

ESP can be used to provide confidentiality, data origin authentication, connection-
less integrity, an anti-replay service (a form of partial sequence integrity), and (lim-
ited) traffic flow confidentiality. The set of services provided depends on options
selected at the time of Security Association (SA) establishment and on the location
of the implementation in a network topology.

ESP can work with a variety of encryption and authentication algorithms,
including authenticated encryption algorithms such as GCM.

Figure 20.3 Processing Model for Inbound Packets

Search
security policy

database

Search
security association

database

Packet
type

Inbound IP packet
(from Internet)

Discard
packet

No match
found

IP IPSec

Not
BYPASS

Match
foundBYPASS

Deliver packet
to higher layer

(e.g., TCP, UDP)

Process
(AH/ESP)

M20_STAL7484_08_GE_C20.indd 648 05/04/22 20:10

20.3 / encAPSulAtIng SecurIty PAylOAd 649

ESP Format

Figure 20.4a shows the top-level format of an ESP packet. It contains the following fields.

 ■ Security Parameters Index (32 bits): Identifies a security association.

 ■ Sequence Number (32 bits): A monotonically increasing counter value; this
provides an anti-replay function, as discussed for AH.

 ■ Payload Data (variable): This is a transport-level segment (transport mode) or
IP packet (tunnel mode) that is protected by encryption.

 ■ Padding (0–255 bytes): The purpose of this field is discussed later.

 ■ Pad Length (8 bits): Indicates the number of pad bytes immediately preceding
this field.

 ■ Next Header (8 bits): Identifies the type of data contained in the payload data
field by identifying the first header in that payload (e.g., an extension header
in IPv6, or an upper-layer protocol such as TCP).

 ■ Integrity Check Value (variable): A variable-length field (must be an integral
number of 32-bit words) that contains the Integrity Check Value computed
over the ESP packet minus the Authentication Data field.

When any combined mode algorithm is employed, the algorithm itself is
expected to return both decrypted plaintext and a pass/fail indication for the integ-
rity check. For combined mode algorithms, the ICV that would normally appear
at the end of the ESP packet (when integrity is selected) may be omitted. When
the ICV is omitted and integrity is selected, it is the responsibility of the combined
mode algorithm to encode within the Payload Data an ICV-equivalent means of
verifying the integrity of the packet.

Two additional fields may be present in the payload (Figure 20.4b).
An initialization value (IV), or nonce, is present if this is required by the encryption
or authenticated encryption algorithm used for ESP. If tunnel mode is being used,
then the IPsec implementation may add traffic flow confidentiality (TFC) padding
after the Payload Data and before the Padding field, as explained subsequently.

Encryption and Authentication Algorithms

The Payload Data, Padding, Pad Length, and Next Header fields are encrypted by
the ESP service. If the algorithm used to encrypt the payload requires cryptographic
synchronization data, such as an initialization vector (IV), then these data may be
carried explicitly at the beginning of the Payload Data field. If included, an IV is
usually not encrypted, although it is often referred to as being part of the ciphertext.

The ICV field is optional. It is present only if the integrity service is selected
and is provided by either a separate integrity algorithm or a combined mode algo-
rithm that uses an ICV. The ICV is computed after the encryption is performed. This
order of processing facilitates rapid detection and rejection of replayed or bogus
packets by the receiver prior to decrypting the packet, hence potentially reducing
the impact of denial of service (DoS) attacks. It also allows for the possibility of
parallel processing of packets at the receiver that is decryption can take place in par-
allel with integrity checking. Note that because the ICV is not protected by encryp-
tion, a keyed integrity algorithm must be employed to compute the ICV.

M20_STAL7484_08_GE_C20.indd 649 05/04/22 20:10

650 cHAPter 20 / IP SecurIty

Padding

The Padding field serves several purposes:

 ■ If an encryption algorithm requires the plaintext to be a multiple of some
number of bytes (e.g., the multiple of a single block for a block cipher), the
Padding field is used to expand the plaintext (consisting of the Payload Data,
Padding, Pad Length, and Next Header fields) to the required length.

 ■ The ESP format requires that the Pad Length and Next Header fields be right
aligned within a 32-bit word. Equivalently, the ciphertext must be an integer
multiple of 32 bits. The Padding field is used to assure this alignment.

 ■ Additional padding may be added to provide partial traffic-flow confidential-
ity by concealing the actual length of the payload.

Anti-Replay Service

A replay attack is one in which an attacker obtains a copy of an authenticated packet
and later transmits it to the intended destination. The receipt of duplicate, authenti-
cated IP packets may disrupt service in some way or may have some other undesired

Figure 20.4 ESP Packet Format

Security parameters index (SPI)

32 bits

Sequence number

Padding (0–255 bytes)
Pad length Next header

Payload data (variable)

Integrity check value - ICV (variable)

IC
V

 c
ov

er
ag

e

E
nc

ry
pt

ed
E

nc
ry

pt
ed

(a) Top-level format of an ESP Packet

(b) Substructure of payload data

Security parameters index (SPI)
Sequence number

Initialization value - IV (optional)

Padding (0–255 bytes)
TFC padding (optional, variable)

Pad length Next header

Rest of payload data (variable)

Integrity check value - ICV (variable)

IC
V

 c
ov

er
ag

e

P
ay

lo
ad

M20_STAL7484_08_GE_C20.indd 650 05/04/22 20:10

20.3 / encAPSulAtIng SecurIty PAylOAd 651

consequence. The Sequence Number field is designed to thwart such attacks. First,
we discuss sequence number generation by the sender, and then we look at how it is
processed by the recipient.

When a new SA is established, the sender initializes a sequence number
 counter to 0. Each time that a packet is sent on this SA, the sender increments the
counter and places the value in the Sequence Number field. Thus, the first value to
be used is 1. If anti-replay is enabled (the default), the sender must not allow the
sequence number to cycle past 232 - 1 back to zero. Otherwise, there would be mul-
tiple valid packets with the same sequence number. If the limit of 232 - 1 is reached,
the sender should terminate this SA and negotiate a new SA with a new key.

Because IP is a connectionless, unreliable service, the protocol does not guarantee
that packets will be delivered in order and does not guarantee that all packets will be
delivered. Therefore, the IPsec authentication document dictates that the receiver should
implement a window of size W, with a default of W = 64. The right edge of the win-
dow represents the highest sequence number, N, so far received for a valid packet. For
any packet with a sequence number in the range from N - W + 1 to N that has been
correctly received (i.e., properly authenticated), the corresponding slot in the window is
marked (Figure 20.5). Inbound processing proceeds as follows when a packet is received:

1. If the received packet falls within the window and is new, the MAC is checked.
If the packet is authenticated, the corresponding slot in the window is marked.

2. If the received packet is to the right of the window and is new, the MAC is
checked. If the packet is authenticated, the window is advanced so that this
sequence number is the right edge of the window, and the corresponding slot
in the window is marked.

3. If the received packet is to the left of the window or if authentication fails, the
packet is discarded; this is an auditable event.

Transport and Tunnel Modes

Both AH and ESP support two modes of use: transport and tunnel mode. The opera-
tion of these two modes is best understood in the context of a description of ESP,
which is more widely used than AH. In what follows, we look at the scope of ESP for

Figure 20.5 Anti-replay Mechanism

Fixed window size W

N

N 1 1N 2W

Marked if valid
packet received

Unmarked if valid
packet not yet received

• • •

Advance window if
valid packet to the

right is received

M20_STAL7484_08_GE_C20.indd 651 05/04/22 20:10

652 cHAPter 20 / IP SecurIty

the two modes. The former technique is supported by a transport mode SA, while the
latter technique uses a tunnel mode SA.

The considerations are somewhat different for IPv4 and IPv6. We use the
packet formats of Figure 20.6a as a starting point.

transPOrt MOde esP Transport mode provides protection primarily for upper-layer
protocols. That is, transport mode protection extends to the payload of an IP packet.

Figure 20.6 Scope of ESP Encryption and Authentication

Orig IP
hdr

Hop-by-hop, dest,
routing, fragmentIPv6

IPv4

New IP
hdrIPv4

(b) Transport Mode

New IP
hdr

Ext
headersIPv6

authenticated
encrypted

authenticated
encrypted

authenticated
encrypted

authenticated
encrypted

(c) Tunnel Mode

Orig IP
hdr

Ext
headers TCP Data

ESP
trlr

ESP
auth

ESP
hdr

ESP
auth

Orig IP
hdr TCP Data

ESP
trlr

ESP
auth

ESP
hdr

Dest TCP Data

TCP Data

ESP
trlr

ESP
trlr

ESP
hdr

ESP
hdr

Orig IP
hdr

Extension headers
(if present) TCP DataIPv6

Orig IP
hdr TCP DataIPv4

(a) Before Applying ESP

Orig IP
hdr

ESP
auth

M20_STAL7484_08_GE_C20.indd 652 05/04/22 20:10

20.3 / encAPSulAtIng SecurIty PAylOAd 653

Examples include a TCP or UDP segment or an ICMP packet, all of which operate
directly above IP in a host protocol stack. Typically, transport mode is used for end-to-
end communication between two hosts (e.g., a client and a server, or two workstations;
see Figure 20.7). When a host runs AH or ESP over IPv4, the payload is the data that
normally follow the IP header. For IPv6, the payload is the data that normally follow
both the IP header and any IPv6 extensions headers that are present, with the possible
exception of the destination options header, which may be included in the protection.
Transport mode ESP is used to encrypt and optionally authenticate the data carried by
IP (e.g., a TCP segment), as shown in Figure 20.6b. For this mode using IPv4, the ESP
header is inserted into the IP packet immediately prior to the transport-layer header
(e.g., TCP, UDP, ICMP), and an ESP trailer (Padding, Pad Length, and Next Header
fields) is placed after the IP packet. If authentication is selected, the ESP Authentication
Data field is added after the ESP trailer. The entire transport-level segment plus the ESP
trailer are encrypted. Authentication covers all of the ciphertext plus the ESP header.

In the context of IPv6, ESP is viewed as an end-to-end payload; that is, it is not
examined or processed by intermediate routers. Therefore, the ESP header appears after
the IPv6 base header and the hop-by-hop, routing, and fragment extension headers. The
destination options extension header could appear before or after the ESP header,
depending on the semantics desired. For IPv6, encryption covers the entire transport-level
segment plus the ESP trailer plus the destination options extension header if it occurs
after the ESP header. Again, authentication covers the ciphertext plus the ESP header.

Transport mode operation may be summarized as follows.

1. At the source, the block of data consisting of the ESP trailer plus the entire
transport-layer segment is encrypted and the plaintext of this block is replaced
with its ciphertext to form the IP packet for transmission. Authentication is
added if this option is selected.

2. The packet is then routed to the destination. Each intermediate router needs
to examine and process the IP header plus any plaintext IP extension headers
but does not need to examine the ciphertext.

3. The destination node examines and processes the IP header plus any plaintext
IP extension headers. Then, on the basis of the SPI in the ESP header, the
destination node decrypts the remainder of the packet to recover the plaintext
transport-layer segment.

Transport mode operation provides confidentiality for any application that
uses it, thus avoiding the need to implement confidentiality in every individual
application. One drawback to this mode is that it is possible to do traffic analysis on
the transmitted packets.

Figure 20.7 End-to-end IPsec Transport-Mode Encryption

Internal
Network

External
Network

Encrypted
TCP Session

M20_STAL7484_08_GE_C20.indd 653 05/04/22 20:10

654 cHAPter 20 / IP SecurIty

tunnel MOde esP Tunnel mode provides protection to the entire IP packet (Figure
20.6c). To achieve this, after the AH or ESP fields are added to the IP packet, the en-
tire packet plus security fields is treated as the payload of new outer IP packet with
a new outer IP header. The entire original, inner, packet travels through a tunnel
from one point of an IP network to another; no routers along the way are able to
examine the inner IP header. Because the original packet is encapsulated, the new,
larger packet may have totally different source and destination addresses, adding to
the security. Tunnel mode is used when one or both ends of a security association
(SA) are a security gateway, such as a firewall or router that implements IPsec. With
tunnel mode, a number of hosts on networks behind firewalls may engage in secure
communications without implementing IPsec. The unprotected packets generated by
such hosts are tunneled through external networks by tunnel mode SAs set up by the
IPsec software in the firewall or secure router at the boundary of the local network.

Here is an example of how tunnel mode IPsec operates. Host A on a network
generates an IP packet with the destination address of host B on another network. This
packet is routed from the originating host to a firewall or secure router at the bound-
ary of A’s network. The firewall filters all outgoing packets to determine the need
for IPsec processing. If this packet from A to B requires IPsec, the firewall performs
IPsec processing and encapsulates the packet with an outer IP header. The source IP
address of this outer IP packet is this firewall, and the destination address may be a
firewall that forms the boundary to B’s local network. This packet is now routed to B’s
firewall, with intermediate routers examining only the outer IP header. At B’s firewall,
the outer IP header is stripped off, and the inner packet is delivered to B.

Whereas the transport mode is suitable for protecting connections between
hosts that support the ESP feature, the tunnel mode is useful in a configuration that
includes a firewall or other sort of security gateway that protects a trusted network
from external networks. In this latter case, encryption occurs only between an exter-
nal host and the security gateway or between two security gateways. This relieves
hosts on the internal network of the processing burden of encryption and simplifies
the key distribution task by reducing the number of needed keys. Further, it thwarts
traffic analysis based on ultimate destination.

Tunnel mode can be used to implement a secure virtual private network. A virtual
private network (VPN) is a private network that is configured within a public network
(a carrier’s network or the Internet) in order to take advantage of the economies of
scale and management facilities of large networks. VPNs are widely used by enterprises
to create wide area networks that span large geographic areas, to provide site-to-site
connections to branch offices, and to allow mobile users to dial up their company LANs.
From the point of view of the provider, the pubic network facility is shared by many
customers, with the traffic of each customer segregated from other traffic. Traffic desig-
nated as VPN traffic can only go from a VPN source to a destination in the same VPN. It
is often the case that encryption and authentication facilities are provided for the VPN.

Figure 20.8 shows a typical scenario of IPsec tunnel mode for implementing a
VPN. An organization maintains LANs at dispersed locations. Nonsecure IP traf-
fic is conducted on each LAN. For traffic offsite, through some sort of private or
public network, IPsec protocols are used. These protocols operate in networking
devices, such as a router or firewall, that connect each LAN to the outside world.
The IPsec networking device will typically encrypt and compress all traffic going

M20_STAL7484_08_GE_C20.indd 654 05/04/22 20:10

20.3 / encAPSulAtIng SecurIty PAylOAd 655

into the Internet or other network and decrypt and decompress traffic coming from
the network; these operations are transparent to workstations and servers on the
LAN. Secure transmission is also possible with individual users who connect to the
Internet or other network. Such user workstations must implement the IPsec proto-
cols to provide security.

Transport Mode SA Tunnel Mode SA

AH Authenticates IP payload and selected
portions of IP header and IPv6 exten-
sion headers.

Authenticates entire inner IP packet (inner
header plus IP payload) plus selected portions
of outer IP header and outer IPv6 extension
headers.

ESP Encrypts IP payload and any IPv6 exten-
sion headers following the ESP header.

Encrypts entire inner IP packet.

ESP with
Authentication

Encrypts IP payload and any IPv6 exten-
sion headers following the ESP header.
Authenticates IP payload but not IP
header.

Encrypts entire inner IP packet. Authenticates
inner IP packet.

Table 20.2 Tunnel Mode and Transport Mode Functionality

Networking device
with IPSec

Networking
device

with IPSec

Ethernet
switch

Ethernet
switch

Unprotected
IP traffic

Legend:

User system
with IPSec

Public (Internet)
or Private
Network

IP traffic
protected
by IPSec

Virtual tunnel
protected
by IPSec

Figure 20.8 Example of Virtual Private Network Implemented with IPsec Tunnel Mode

M20_STAL7484_08_GE_C20.indd 655 05/04/22 20:10

656 cHAPter 20 / IP SecurIty

Figure 20.9 Protocol Operation for ESP

Data

Data

TCP
hdr Data

TCP
hdr

DataOrig IP
hdr

TCP
hdr Data ESP

trlr
ESP
hdr

Orig IP
hdr

ESP
auth

New IP
hdr

TCP
hdr

Data ESP
trlr

ESP
hdr

Orig IP
hdr

ESP
auth

TCP
hdr

Data

Orig IP
hdr

TCP
hdr Data

Orig IP
hdr

TCP
hdr

Data

(a) Transport mode

(b) Tunnel mode

ESP
trlr

ESP
hdr

ESP
auth

Application

TCP

IP

IPsec

Application

TCP

IP

IPsec

IP

Table 20.2 summarizes transport and tunnel mode functionality. Figure 20.9
shows the protocol architecture for the transport and tunnel modes.

 20.4 COMBINING SECURITY ASSOCIATIONS

An individual SA can implement either the AH or ESP protocol but not both.
Sometimes a particular traffic flow will call for the services provided by both AH and
ESP. Further, a particular traffic flow may require IPsec services between hosts and,

M20_STAL7484_08_GE_C20.indd 656 05/04/22 20:10

20.4 / cOmbInIng SecurIty ASSOcIAtIOnS 657

for that same flow, separate services between security gateways, such as firewalls. In
all of these cases, multiple SAs must be employed for the same traffic flow to achieve
the desired IPsec services. The term security association bundle refers to a sequence of
SAs through which traffic must be processed to provide a desired set of IPsec services.
The SAs in a bundle may terminate at different endpoints or at the same endpoints.

Security associations may be combined into bundles in two ways:

 ■ Transport adjacency: Refers to applying more than one security protocol to
the same IP packet without invoking tunneling. This approach to combining
AH and ESP allows for only one level of combination; further nesting yields
no added benefit since the processing is performed at one IPsec instance: the
(ultimate) destination.

 ■ Iterated tunneling: Refers to the application of multiple layers of security protocols
effected through IP tunneling. This approach allows for multiple levels of nesting,
since each tunnel can originate or terminate at a different IPsec site along the path.

The two approaches can be combined, for example, by having a transport SA be-
tween hosts travel part of the way through a tunnel SA between security gateways.

One interesting issue that arises when considering SA bundles is the order in
which authentication and encryption may be applied between a given pair of end-
points and the ways of doing so. We examine that issue next. Then we look at combi-
nations of SAs that involve at least one tunnel.

Authentication Plus Confidentiality

Encryption and authentication can be combined in order to transmit an IP packet
that has both confidentiality and authentication between hosts. We look at several
approaches.

esP wIth authentIcatIOn OPtIOn This approach is illustrated in Figure 20.6.
In this approach, the user first applies ESP to the data to be protected and then
 appends the authentication data field. There are actually two subcases:

 ■ Transport mode ESP: Authentication and encryption apply to the IP payload
delivered to the host, but the IP header is not protected.

 ■ Tunnel mode ESP: Authentication applies to the entire IP packet delivered
to the outer IP destination address (e.g., a firewall), and authentication is per-
formed at that destination. The entire inner IP packet is protected by the pri-
vacy mechanism for delivery to the inner IP destination.

For both cases, authentication applies to the ciphertext rather than the plaintext.

transPOrt adjacency Another way to apply authentication after encryption is to
use two bundled transport SAs, with the inner being an ESP SA and the outer being
an AH SA. In this case, ESP is used without its authentication option. Because the
inner SA is a transport SA, encryption is applied to the IP payload. The resulting
packet consists of an IP header (and possibly IPv6 header extensions) followed by
an ESP. AH is then applied in transport mode, so that authentication covers the ESP
plus the original IP header (and extensions) except for mutable fields. The advantage

M20_STAL7484_08_GE_C20.indd 657 05/04/22 20:10

658 cHAPter 20 / IP SecurIty

of this approach over simply using a single ESP SA with the ESP authentication op-
tion is that the authentication covers more fields, including the source and destina-
tion IP addresses. The disadvantage is the overhead of two SAs versus one SA.

transPOrt-tunnel bundle The use of authentication prior to encryption might
be preferable for several reasons. First, because the authentication data are pro-
tected by encryption, it is impossible for anyone to intercept the message and alter
the authentication data without detection. Second, it may be desirable to store the
authentication information with the message at the destination for later reference.
It is more convenient to do this if the authentication information applies to the un-
encrypted message; otherwise the message would have to be reencrypted to verify
the authentication information.

One approach to applying authentication before encryption between two hosts
is to use a bundle consisting of an inner AH transport SA and an outer ESP tun-
nel SA. In this case, authentication is applied to the IP payload plus the IP header
(and extensions) except for mutable fields. The resulting IP packet is then processed
in tunnel mode by ESP; the result is that the entire, authenticated inner packet is
encrypted and a new outer IP header (and extensions) is added.

Basic Combinations of Security Associations

The IPsec Architecture document lists four examples of combinations of SAs that
must be supported by compliant IPsec hosts (e.g., workstation, server) or security
gateways (e.g., firewall, router). These are illustrated in Figure 20.10. The lower part
of each case in the figure represents the physical connectivity of the elements; the
upper part represents logical connectivity via one or more nested SAs. Each SA can
be either AH or ESP. For host-to-host SAs, the mode may be either transport or tun-
nel; otherwise it must be tunnel mode.

Case 1. All security is provided between end systems that implement IPsec.
For any two end systems to communicate via an SA, they must share the appropri-
ate secret keys. Among the possible combinations are

a. AH in transport mode

b. ESP in transport mode

c. ESP followed by AH in transport mode (an ESP SA inside an AH SA)

d. Any one of a, b, or c inside an AH or ESP in tunnel mode

We have already discussed how these various combinations can be used to
support authentication, encryption, authentication before encryption, and authenti-
cation after encryption.

Case 2. Security is provided only between gateways (routers, firewalls, etc.) and no
hosts implement IPsec. This case illustrates simple virtual private network support. The
security architecture document specifies that only a single tunnel SA is needed for this
case. The tunnel could support AH, ESP, or ESP with the authentication option. Nested
tunnels are not required, because the IPsec services apply to the entire inner packet.

Case 3. This builds on case 2 by adding end-to-end security. The same combi-
nations discussed for cases 1 and 2 are allowed here. The gateway-to-gateway tun-
nel provides either authentication, confidentiality, or both for all traffic between

M20_STAL7484_08_GE_C20.indd 658 05/04/22 20:10

20.5 / Internet Key excHAnge 659

end systems. When the gateway-to-gateway tunnel is ESP, it also provides a lim-
ited form of traffic confidentiality. Individual hosts can implement any additional
IPsec services required for given applications or given users by means of end-to-
end SAs.

Case 4. This provides support for a remote host that uses the Internet to reach
an organization’s firewall and then to gain access to some server or workstation
behind the firewall. Only tunnel mode is required between the remote host and the
firewall. As in case 1, one or two SAs may be used between the remote host and the
local host.

 20.5 INTERNET KEY EXCHANGE

The key management portion of IPsec involves the determination and distribu-
tion of secret keys. A typical requirement is four keys for communication be-
tween two applications: transmit and receive pairs for both integrity and confi-
dentiality. The IPsec Architecture document mandates support for two types of
key management:

 ■ Manual: A system administrator manually configures each system with its own
keys and with the keys of other communicating systems. This is practical for
small, relatively static environments.

 ■ Automated: An automated system enables the on-demand creation of keys for
SAs and facilitates the use of keys in a large distributed system with an evolv-
ing configuration.

Figure 20.10 Basic Combinations of Security Associations

Internet

Tunnel SA

Local
Intranet

Local
Intranet

Host Host

Security
Gateway*

Security
Gateway*

(b) Case 2
* 5 implements IPsec

Internet

One or More SAs

Local
Intranet

Local
Intranet

Host* Host*

Router Router

(a) Case 1

Internet

Tunnel SA One or Two SAs

Local
Intranet

Local
Intranet

Host* Host*

Security
Gateway*

Security
Gateway*

(c) Case 3

Internet Local
Intranet

Host*
Host*

Security
Gateway*

(d) Case 4

Tunnel SA One or Two SAs

M20_STAL7484_08_GE_C20.indd 659 05/04/22 20:10

660 cHAPter 20 / IP SecurIty

The default automated key management protocol for IPsec is referred to as
ISAKMP/Oakley and consists of the following elements:

 ■ Oakley Key Determination Protocol: Oakley is a key exchange protocol based
on the Diffie–Hellman algorithm but providing added security. Oakley is
generic in that it does not dictate specific formats.

 ■ Internet Security Association and Key Management Protocol (ISAKMP):
ISAKMP provides a framework for Internet key management and provides the
specific protocol support, including formats, for negotiation of security attributes.

ISAKMP by itself does not dictate a specific key exchange algorithm; rather,
ISAKMP consists of a set of message types that enable the use of a variety of key
exchange algorithms. Oakley is the specific key exchange algorithm mandated for
use with the initial version of ISAKMP.

In IKEv2, the terms Oakley and ISAKMP are no longer used, and there are sig-
nificant differences from the use of Oakley and ISAKMP in IKEv1. Nevertheless, the
basic functionality is the same. In this section, we describe the IKEv2 specification.

Key Determination Protocol

IKE key determination is a refinement of the Diffie–Hellman key exchange algo-
rithm. Recall that Diffie–Hellman involves the following interaction between users
A and B. There is prior agreement on two global parameters: q, a large prime num-
ber; and a, a primitive root of q. A selects a random integer XA as its private key and
transmits to B its public key ΥA = aXA mod q. Similarly, B selects a random integer
XB as its private key and transmits to A its public key ΥB = aXB mod q. Each side
can now compute the secret session key:

 K = (ΥB)XA mod q = (ΥA)XB mod q = aXAXB mod q

The Diffie–Hellman algorithm has two attractive features:

 ■ Secret keys are created only when needed. There is no need to store secret
keys for a long period of time, exposing them to increased vulnerability.

 ■ The exchange requires no pre-existing infrastructure other than an agreement
on the global parameters.

However, there are a number of weaknesses to Diffie–Hellman, as pointed out in
[HUIT98].

 ■ It does not provide any information about the identities of the parties.

 ■ It is subject to a man-in-the-middle attack, in which a third party C imperson-
ates B while communicating with A and impersonates A while communicating
with B. Both A and B end up negotiating a key with C, which can then listen to
and pass on traffic. The man-in-the-middle attack proceeds as

1. B sends his public key YB in a message addressed to A (see Figure 10.1).

2. The enemy (E) intercepts this message. E saves B’s public key and sends a
message to A that has B’s User ID but E’s public key YE. This message is
sent in such a way that it appears as though it was sent from B’s host system.

M20_STAL7484_08_GE_C20.indd 660 05/04/22 20:10

20.5 / Internet Key excHAnge 661

A receives E’s message and stores E’s public key with B’s User ID. Similarly,
E sends a message to B with E’s public key, purporting to come from A.

3. B computes a secret key K1 based on B’s private key and YE. A computes
a secret key K2 based on A’s private key and YE. E computes K1 using E’s
secret key XE and YB and computers K2 using XE and YA.

4. From now on, E is able to relay messages from A to B and from B to A,
appropriately changing their encipherment en route in such a way that nei-
ther A nor B will know that they share their communication with E.

 ■ It is computationally intensive. As a result, it is vulnerable to a clogging attack, in
which an opponent requests a high number of keys. The victim spends considerable
computing resources doing useless modular exponentiation rather than real work.

IKE key determination is designed to retain the advantages of Diffie–Hellman,
while countering its weaknesses.

Features OF Ike key deterMInatIOn The IKE key determination algorithm is
characterized by five important features:

1. It employs a mechanism known as cookies to thwart clogging attacks.

2. It enables the two parties to negotiate a group; this, in essence, specifies the
global parameters of the Diffie–Hellman key exchange.

3. It uses nonces to ensure against replay attacks.

4. It enables the exchange of Diffie–Hellman public key values.

5. It authenticates the Diffie–Hellman exchange to thwart man-in-the-middle
attacks.

We have already discussed Diffie–Hellman. Let us look at the remainder of
these elements in turn. First, consider the problem of clogging attacks. In this attack,
an opponent forges the source address of a legitimate user and sends a public Diffie–
Hellman key to the victim. The victim then performs a modular exponentiation to
compute the secret key. Repeated messages of this type can clog the victim’s system
with useless work. The cookie exchange requires that each side send a pseudoran-
dom number, the cookie, in the initial message, which the other side acknowledges.
This acknowledgment must be repeated in the first message of the Diffie–Hellman
key exchange. If the source address was forged, the opponent gets no answer. Thus,
an opponent can only force a user to generate acknowledgments and not to perform
the Diffie–Hellman calculation.

IKE mandates that cookie generation satisfy three basic requirements:

1. The cookie must depend on the specific parties. This prevents an attacker from
obtaining a cookie using a real IP address and UDP port and then using it to
swamp the victim with requests from randomly chosen IP addresses or ports.

2. It must not be possible for anyone other than the issuing entity to generate
cookies that will be accepted by that entity. This implies that the issuing entity
will use local secret information in the generation and subsequent verification
of a cookie. It must not be possible to deduce this secret information from any
particular cookie. The point of this requirement is that the issuing entity need

M20_STAL7484_08_GE_C20.indd 661 05/04/22 20:10

662 cHAPter 20 / IP SecurIty

not save copies of its cookies, which are then more vulnerable to discovery, but
can verify an incoming cookie acknowledgment when it needs to.

3. The cookie generation and verification methods must be fast to thwart attacks
intended to sabotage processor resources.

The recommended method for creating the cookie is to perform a fast hash
(e.g., MD5) over the IP Source and Destination addresses, the UDP Source and
Destination ports, and a locally generated secret value.

IKE key determination supports the use of different groups for the Diffie–Hellman
key exchange. Each group includes the definition of the two global parameters and
the identity of the algorithm. The current specification includes the following groups.

 ■ Modular exponentiation with a 768-bit modulus

q = 2768 - 2704 - 1 + 264 * (:2638 * p; + 149686)

a = 2

 ■ Modular exponentiation with a 1024-bit modulus

q = 21024 - 2960 - 1 + 264 * (:2894 * p; + 129093)

a = 2

 ■ Modular exponentiation with a 1536-bit modulus

 ■ Parameters to be determined

 ■ Elliptic curve group over 2155

 ■ Generator (hexadecimal): X = 7B, Y = 1C8

 ■ Elliptic curve parameters (hexadecimal): A = 0, Y = 7338F

 ■ Elliptic curve group over 2185

 ■ Generator (hexadecimal): X = 18, Y = D

 ■ Elliptic curve parameters (hexadecimal): A = 0, Y = 1EE9

The first three groups are the classic Diffie–Hellman algorithm using modular
exponentiation. The last two groups use the elliptic curve analog to Diffie–Hellman,
which was described in Chapter 10.

IKE key determination employs nonces to ensure against replay attacks. Each
nonce is a locally generated pseudorandom number. Nonces appear in responses
and are encrypted during certain portions of the exchange to secure their use.

Three different authentication methods can be used with IKE key determination:

 ■ Digital signatures: The exchange is authenticated by signing a mutually obtain-
able hash; each party encrypts the hash with its private key. The hash is gener-
ated over important parameters, such as user IDs and nonces.

 ■ Public-key encryption: The exchange is authenticated by encrypting param-
eters such as IDs and nonces with the sender’s private key.

 ■ Symmetric-key encryption: A key derived by some out-of-band mechanism
can be used to authenticate the exchange by symmetric encryption of exchange
parameters.

M20_STAL7484_08_GE_C20.indd 662 05/04/22 20:10

20.5 / Internet Key excHAnge 663

Ikev2 exchanges The IKEv2 protocol involves the exchange of messages in
pairs. The first two pairs of exchanges are referred to as the initial exchanges
(Figure 20.11a). In the first exchange, the two peers exchange information concern-
ing cryptographic algorithms and other security parameters they are willing to use
along with nonces and Diffie–Hellman (DH) values. The result of this exchange is to
set up a special SA called the IKE SA (see Figure 20.1). This SA defines parameters
for a secure channel between the peers over which subsequent message exchanges
take place. Thus, all subsequent IKE message exchanges are protected by encryption
and message authentication. In the second exchange, the two parties authenticate
one another and set up a first IPsec SA to be placed in the SADB and used for pro-
tecting ordinary (i.e. non-IKE) communications between the peers. Thus, four mes-
sages are needed to establish the first SA for general use.

The CREATE_CHILD_SA exchange can be used to establish further SAs
for protecting traffic. The informational exchange is used to exchange management
information, IKEv2 error messages, and other notifications.

Figure 20.11 IKEv2 Exchanges

HDR, SAi1, KEi, Ni

ResponderInitiator

(a) Initial exchanges

HDR, SAr1, KEr, Nr, [CERTREQ]

HDR, SK {IDi, [CERT,] [CERTREQ,] [IDr,] AUTH, SAi2, TSi, TSr}

HDR, SK {IDr, [CERT,] AUTH, SAr2, TSi, TSr}

HDR, SK {[N], SA, Ni, [KEi], [TSi, TSr]}

(b) CREATE_CHILD_SA exchange

HDR, SK {SA, Nr, [KEr], [TSi, TSr]}

HDR, SK {[N,] [D,] [CP,] ...}

(c) Informational exchange

HDR, SK {[N,] [D,] [CP], ...}

HDR 5 IKE header
SAx1 5 offered and chosen algorithms, DH group
KEx 5 Diffie–Hellman public key
Nx5 nonces
CERTREQ 5 Certificate request
IDx 5 identity
CERT 5 certificate

SK {...} 5 MAC and encrypt
AUTH 5 Authentication
SAx2 5 algorithms, parameters for IPsec SA
TSx 5 traffic selectors for IPsec SA
N 5 Notify
D 5 Delete
CP 5 Configuration

M20_STAL7484_08_GE_C20.indd 663 05/04/22 20:10

664 cHAPter 20 / IP SecurIty

Header and Payload Formats

IKE defines procedures and packet formats to establish, negotiate, modify, and de-
lete security associations. As part of SA establishment, IKE defines payloads for
exchanging key generation and authentication data. These payload formats provide
a consistent framework independent of the specific key exchange protocol, encryp-
tion algorithm, and authentication mechanism.

Ike header FOrMat An IKE message consists of an IKE header followed by one
or more payloads. All of this is carried in a transport protocol. The specification dic-
tates that implementations must support the use of UDP for the transport protocol.

Figure 20.12a shows the header format for an IKE message. It consists of the
following fields.

 ■ Initiator SPI (64 bits): A value chosen by the initiator to identify a unique IKE
security association (SA).

 ■ Responder SPI (64 bits): A value chosen by the responder to identify a unique
IKE SA.

 ■ Next Payload (8 bits): Indicates the type of the first payload in the message;
payloads are discussed in the next subsection.

 ■ Major Version (4 bits): Indicates major version of IKE in use.

 ■ Minor Version (4 bits): Indicates minor version in use.

 ■ Exchange Type (8 bits): Indicates the type of exchange; these are discussed
later in this section.

 ■ Flags (8 bits): Indicates specific options set for this IKE exchange. Three bits
are defined so far. The initiator bit indicates whether this packet is sent by

MjVer MnVer Exchange Type FlagsNext Payload

Message ID

Length

(a) IKE header

(b) Generic Payload header

Initiator’s Security Parameter Index (SPI)

Responder’s Security Parameter Index (SPI)

0Bit: 8 16 24 31

RESERVED Payload LengthNext Payload C

0Bit: 8 16 31

Figure 20.12 IKE Formats

M20_STAL7484_08_GE_C20.indd 664 05/04/22 20:10

20.5 / Internet Key excHAnge 665

the SA initiator. The version bit indicates whether the transmitter is capable
of using a higher major version number than the one currently indicated. The
response bit indicates whether this is a response to a message containing the
same message ID.

 ■ Message ID (32 bits): Used to control retransmission of lost packets and
matching of requests and responses.

 ■ Length (32 bits): Length of total message (header plus all payloads) in octets.

Ike PaylOad tyPes All IKE payloads begin with the same generic payload header
shown in Figure 20.12b. The Next Payload field has a value of 0 if this is the last pay-
load in the message; otherwise its value is the type of the next payload. The Payload
Length field indicates the length in octets of this payload, including the generic pay-
load header.

The critical bit is 0 if the sender wants the recipient to skip this payload if it
does not understand the payload type code in the Next Payload field of the previous
payload. It is set to 1 if the sender wants the recipient to reject this entire message if
it does not understand the payload type.

Table 20.3 summarizes the payload types defined for IKE and lists the fields,
or parameters, that are part of each payload. The SA payload is used to begin the
establishment of an SA. The payload has a complex, hierarchical structure. The pay-
load may contain multiple proposals. Each proposal may contain multiple protocols.
Each protocol may contain multiple transforms. And each transform may contain
multiple attributes. These elements are formatted as substructures within the pay-
load as follows.

Type Parameters

Security Association Proposals

Key Exchange DH Group #, Key Exchange Data

Identification ID Type, ID Data

Certificate Cert Encoding, Certificate Data

Certificate Request Cert Encoding, Certification Authority

Authentication Auth Method, Authentication Data

Nonce Nonce Data

Notify Protocol-ID, SPI Size, Notify Message Type, SPI, Notification Data

Delete Protocol-ID, SPI Size, # of SPIs, SPI (one or more)

Vendor ID Vendor ID

Traffic Selector Number of TSs, Traffic Selectors

Encrypted IV, Encrypted IKE payloads, Padding, Pad Length, ICV

Configuration CFG Type, Configuration Attributes

Extensible Authentication
Protocol

EAP Message

Table 20.3 IKE Payload Types

M20_STAL7484_08_GE_C20.indd 665 05/04/22 20:10

666 cHAPter 20 / IP SecurIty

 ■ Proposal: This substructure includes a proposal number, a protocol ID (AH,
ESP, or IKE), an indicator of the number of transforms, and then a trans-
form substructure. If more than one protocol is to be included in a proposal,
then there is a subsequent proposal substructure with the same proposal
number.

 ■ Transform: Different protocols support different transform types. The trans-
forms are used primarily to define cryptographic algorithms to be used with a
particular protocol.

 ■ Attribute: Each transform may include attributes that modify or complete the
specification of the transform. An example is key length.

The Key Exchange payload can be used for a variety of key exchange tech-
niques, including Oakley, Diffie–Hellman, and the RSA-based key exchange used by
PGP. The Key Exchange data field contains the data required to generate a session
key and is dependent on the key exchange algorithm used.

The Identification payload is used to determine the identity of communicating
peers and may be used for determining authenticity of information. Typically the ID
Data field will contain an IPv4 or IPv6 address.

The Certificate payload transfers a public-key certificate. The Certificate
Encoding field indicates the type of certificate or certificate-related information.

At any point in an IKE exchange, the sender may include a Certificate Request
payload to request the certificate of the other communicating entity. The payload
may list more than one certificate type that is acceptable and more than one certifi-
cate authority that is acceptable.

The Authentication payload contains data used for message authentication
purposes. The authentication method types so far defined are RSA digital signature,
shared-key message integrity code, and DSS digital signature.

The Nonce payload contains random data used to guarantee liveness during
an exchange and to protect against replay attacks.

The Notify payload contains either error or status information associated with
this SA or this SA negotiation.

The Delete payload indicates one or more SAs that the sender has deleted
from its database and that therefore are no longer valid.

The Vendor ID payload contains a vendor-defined constant. The constant is
used by vendors to identify and recognize remote instances of their implementa-
tions. This mechanism allows a vendor to experiment with new features while main-
taining backward compatibility.

The Traffic Selector payload allows peers to identify packet flows for process-
ing by IPsec services.

The Encrypted payload contains other payloads in encrypted form. The
encrypted payload format is similar to that of ESP. It may include an IV if the
encryption algorithm requires it and an ICV if authentication is selected.

The Configuration payload is used to exchange configuration information
between IKE peers.

The Extensible Authentication Protocol (EAP) payload allows IKE SAs to be
authenticated using EAP.

M20_STAL7484_08_GE_C20.indd 666 05/04/22 20:10

20.6 / Key Terms, review QuesTions, And Problems 667

 20.6 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

IP Security (IPsec)
IPv4

IPv6
replay attack

transport mode
tunnel mode

Review Questions

 20.1 List and briefly describe some benefits of IPsec.
 20.2 List and briefly define different categories of IPsec documents.
 20.3 What is the key concept of the security association (SA) in an IP Security Policy?
 20.4 What is the difference between transport mode and tunnel mode?
 20.5 What are the types of secret key algorithms used in IPsec?
 20.6 Why does ESP include a padding field?
 20.7 What are the parameters that identify an SA in any IP packet?
 20.8 What are the roles of the Oakley key determination protocol and ISAKMP in IPsec?

Problems

 20.1 Describe and explain each of the entries in Table 20.1.
 20.2 Draw a figure similar to Figure 20.6 for AH.
 20.3 Summarize the major security services provided by the Encapsulating Security

Payload (ESP) and the Internet Key Exchange (IKE) together with the respective
RFCs involved for each standard.

 20.4 In terms of outbound processing in a security policy database (SPD), how important
is it to determine an SA? How many SAs can we have in each IP packet to filter out-
going traffic?

 20.5 Suppose that the current replay window spans from 120 to 530.
a. If the next incoming authenticated packet has sequence number 340, what will the

receiver do with the packet, and what will be the parameters of the window after
that?

b. If instead the next incoming authenticated packet has sequence number 598, what
will the receiver do with the packet, and what will be the parameters of the win-
dow after that?

c. If instead the next incoming authenticated packet has sequence number 110, what
will the receiver do with the packet, and what will be the parameters of the win-
dow after that?

M20_STAL7484_08_GE_C20.indd 667 30/04/22 8:52 AM

668 cHAPter 20 / IP SecurIty

 20.6 When tunnel mode is used, a new outer IP header is constructed. For both IPv4
and IPv6, indicate the relationship of each outer IP header field and each extension
header in the outer packet to the corresponding field or extension header of the inner
IP packet. That is, indicate which outer values are derived from inner values and
which are constructed independently of the inner values.

 20.7 End-to-end authentication and encryption are desired between two hosts. Draw
 figures similar to Figure 20.6 that show each of the following.
a. Transport adjacency with encryption applied before authentication.
b. A transport SA bundled inside a tunnel SA with encryption applied before

 authentication.
c. A transport SA bundled inside a tunnel SA with authentication applied before

encryption.
 20.8 The IPsec architecture document states that when two transport mode SAs are bun-

dled to allow both AH and ESP protocols on the same end-to-end flow, only one
ordering of security protocols seems appropriate: performing the ESP protocol
 before performing the AH protocol. Why is this approach recommended rather than
authentication before encryption?

 20.9 Describe the association between an IKE header and the Key Exchange Payload with
the aid of a diagram, detailing each field of both.

 20.10 What is the process to transfer a public key certificate using IKE? What happens
when an SA is deleted?

M20_STAL7484_08_GE_C20.indd 668 05/04/22 20:10

669

Network Endpoint Security
21CHAPTER

21.1 Firewalls

Firewall Characteristics
Types of Firewalls
DMZ Networks

21.2 Intrusion Detection Systems

Basic Principles
Approaches to Intrusion Detection
Host-Based Intrusion Detection Techniques
Network-Based Intrusion Detection Systems

21.3 Malicious Software

Types of Malware
Malware Defense

21.4 Distributed Denial of Service Attacks

DDoS Attack Description
Constructing the Attack Network
DDoS Countermeasures

21.5 Key Terms, Review Questions, and Problems

M21_STAL7484_08_GE_C21.indd 669 05/04/22 10:43 PM

670 CHAPTER 21 / NETwoRk ENdPoiNT SECuRiTy

This chapter focuses on security threats directed at endpoints, such as servers,
workstations, and mobile devices, that are attached to an enterprise network or
the Internet. Detailed discussion of the countermeasures implemented on the end-
points, such as antivirus software, is beyond our scope. Instead, this chapter looks at
endpoint security from a network perspective.

The chapter begins with a discussion of firewalls. Firewalls can be an effective
means of protecting a local system or network of systems from network-based se-
curity threats while at the same time affording access to the outside world via wide
area networks and the Internet.

Section 21.2 deals with intrusion detection systems, while Section 21.3 provides
an overview of malicious software. The last section discusses the important topic of
distributed denial of service.

21.1 FIREWALLS

The firewall is an important complement to host-based security services such as in-
trusion detection systems. Typically, a firewall is inserted between the premises net-
work and the Internet to establish a controlled link and to erect an outer security
wall or perimeter. The aim of this perimeter is to protect the premises network from
Internet-based attacks and to provide a single choke point where security and audit-
ing can be imposed. Firewalls are also deployed internal to the enterprise network
to segregate portions of the network.

The firewall provides an additional layer of defense, insulating internal
 systems from external networks or other parts of the internal network. This follows
the classic military doctrine of “defense in depth,” which is just as applicable to
IT security.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

 ◆ Explain the role of firewalls as part of a computer and network security strategy.

 ◆ List the key characteristics of firewalls.

 ◆ Understand the relative merits of various choices for firewall location and configu-
rations.

 ◆ Understand the basic principles of and requirements for intrusion detection.

 ◆ Discuss the key features of intrusion detection systems.

 ◆ Describe some of the main categories of malicious software.

 ◆ Present an overview of the key elements of malware defense.

 ◆ Discuss the nature of a distributed denial of service attack.

M21_STAL7484_08_GE_C21.indd 670 05/04/22 10:43 PM

21.1 / FiREwAllS 671

Firewall Characteristics

[BELL94] lists the following design goals for a firewall:

1. All traffic from inside to outside, and vice versa, must pass through the fire-
wall. This is achieved by physically blocking all access to the local network
except via the firewall. Various configurations are possible, as explained later
in this section.

2. Only authorized traffic, as defined by the local security policy, will be allowed
to pass. Various types of firewalls are used, which implement various types of
security policies, as explained later in this chapter.

3. The firewall itself is immune to penetration. This implies the use of a hard-
ened system with a secured operating system (OS). Trusted computer sys-
tems are suitable for hosting a firewall and are often required in government
applications.

In general terms, there are four techniques that firewalls use to control access
and enforce the site’s security policy. Originally, firewalls focused primarily on ser-
vice control, but they have since evolved to provide all four:

 ■ Service control: Determines the types of Internet services that can be accessed,
inbound or outbound. The firewall may filter traffic on the basis of IP address,
protocol, or port number; may provide proxy software that receives and inter-
prets each service request before passing it on; or may host the server software
itself, such as a Web or mail service.

 ■ Direction control: Determines the direction in which particular service re-
quests may be initiated and allowed to flow through the firewall.

 ■ User control: Controls access to a service according to which user is attempt-
ing to access it. This feature is typically applied to users inside the firewall pe-
rimeter (local users). It may also be applied to incoming traffic from external
users; the latter requires some form of secure authentication technology, such
as the one provided in IPsec.

 ■ Behavior control: Controls how particular services are used. For example, the
firewall may filter email to eliminate spam, or it may enable external access to
only a portion of the information on a local Web server.

Before proceeding to the details of firewall types and configurations, it is best to
summarize what one can expect from a firewall. The following capabilities are within
the scope of a firewall:

1. A firewall defines a single choke point that keeps unauthorized users out of the
protected network, prohibits potentially vulnerable services from entering or leav-
ing the network, and provides protection from various kinds of IP spoofing and
routing attacks. The use of a single choke point simplifies security management
because security capabilities are consolidated on a single system or set of systems.

2. A firewall provides a location for monitoring security-related events. Audits
and alarms can be implemented on the firewall system.

M21_STAL7484_08_GE_C21.indd 671 05/04/22 10:43 PM

672 CHAPTER 21 / NETwoRk ENdPoiNT SECuRiTy

3. A firewall is a convenient platform for several Internet functions that are not
security related. These include a network address translator, which maps local
addresses to Internet addresses, and a network management function that au-
dits or logs Internet usage.

4. A firewall can serve as the platform for implementing virtual private networks.
This is discussed in the following section.

Firewalls have their limitations, including the following:

1. The firewall cannot protect against attacks that bypass the firewall. Internal
systems may have dial-out capability to connect to an ISP. An internal LAN
may support a modem pool that provides dial-in capability for traveling em-
ployees and telecommuters.

2. The firewall may not protect fully against internal threats, such as a disgrun-
tled employee or an employee who unwittingly cooperates with an external
attacker.

3. An improperly secured wireless LAN may be accessed from outside the orga-
nization. An internal firewall that separates portions of an enterprise network
cannot guard against wireless communications between local systems on dif-
ferent sides of the internal firewall.

4. A laptop, smartphone, or portable storage device may be used and infected
outside the corporate network, and then connected and used internally.

Types of Firewalls

A firewall may act as a packet filter. It can operate as a positive filter, allowing to
pass only packets that meet specific criteria, or as a negative filter, rejecting any
packet that meets certain criteria. Depending on the type of firewall, it may examine
one or more protocol headers in each packet, the payload of each packet, or the
pattern generated by a sequence of packets. In this section, we look at the principal
types of firewalls.

Packet Filtering Firewall A packet filtering firewall applies a set of rules to
each incoming and outgoing IP packet and then forwards or discards the packet
(Figure 21.1b). The firewall is typically configured to filter packets going in both di-
rections (from and to the internal network). Filtering rules are based on information
contained in a network packet:

 ■ Source IP address: The IP address of the system that originated the IP packet
(e.g., 192.178.1.1)

 ■ Destination IP address: The IP address of the system the IP packet is trying to
reach (e.g., 192.168.1.2)

 ■ Source and destination transport-level address: The transport-level (e.g., TCP
or UDP) port number, which defines applications such as SNMP or TELNET

 ■ IP protocol field: Defines the transport protocol

 ■ Interface: For a firewall with three or more ports, which interface of the firewall
the packet came from or which interface of the firewall the packet is destined for

M21_STAL7484_08_GE_C21.indd 672 05/04/22 10:43 PM

21.1 / FiREwAllS 673

The packet filter is typically set up as a list of rules based on matches to fields in
the IP or TCP header. If there is a match to one of the rules, that rule is invoked to
determine whether to forward or discard the packet. If there is no match to any rule,
then a default action is taken. Two default policies are possible:

 ■ Default = discard: That which is not expressly permitted is prohibited.

 ■ Default = forward: That which is not expressly prohibited is permitted.

The default = discard policy is more conservative. Initially, everything is blocked,
and services must be added on a case-by-case basis. This policy is more visible to

External (untrusted) network
(e.g., Internet)

Internal (protected) network
(e.g., enterprise network) Firewall

(a) General model

(d) Application proxy firewall

External
transport

connection

Internal
transport

connection

Physical

Network
access

Internet

Transport

Application

Physical

Network
access

Internet

Transport

Application

Application proxy

(b) Packet filtering firewall

Physical

Network
access

Internet

Transport

Application
End-to-end
transport

connection

End-to-end
transport

connection

(c) Stateful inspection firewall

Physical

Network
access

Internet

Transport

Application
End-to-end
transport

connection

End-to-end
transport

connection

(e) Circuit-level proxy firewall

Physical

Network
access

Internet

Transport

Application

Physical

Network
access

Internet

Transport

Application

Circuit-level proxy

External
transport

connection

Internal
transport

connection

State
info

Figure 21.1 Types of Firewalls

M21_STAL7484_08_GE_C21.indd 673 05/04/22 10:44 PM

674 CHAPTER 21 / NETwoRk ENdPoiNT SECuRiTy

users, who are more likely to see the firewall as a hindrance. However, this is the
policy likely to be preferred by businesses and government organizations. Further,
visibility to users diminishes as rules are created. The default = forward policy in-
creases ease of use for end users but provides reduced security; the security admin-
istrator must, in essence, react to each new security threat as it becomes known. This
policy may be used by generally more open organizations, such as universities.

Figure 21.2 gives some examples of packet filtering rule sets. In each set, the
rules are applied top to bottom. The “*” in a field is a wildcard designator that
matches everything. We assume that the default = discard policy is in force. The rule
sets can be described as follows:

A. Inbound mail is allowed (port 25 is for SMTP incoming), but only to a gateway
host. However, packets from a particular external host, SPIGOT, are blocked
because that host has a history of sending massive files in e-mail messages.

B. This is an explicit statement of the default policy. All rule sets include this rule
implicitly as the last rule.

Rule Set A

action Ourhost port theirhost port comment
block * * SPIGOT * we don't trust these people
allow OUR-GW 25 * * connection to our SMTP port

Rule Set B

action Ourhost port theirhost port comment
block * * * * default

Rule Set C

action Ourhost port theirhost port comment
allow * * * 25 connection to their SMTP port

Rule Set D

action Src port dest port flags comment

allow {our hosts} * * 25 our packets to their
SMTP port

allow * 25 * * ACK their replies

Rule Set E

action Src port dest port flags comment
allow {our hosts} * * * our outgoing calls
allow * * * * ACK replies to our calls
allow * * * .1024 traffic to nonservers

Figure 21.2 Packet-Filtering Example

M21_STAL7484_08_GE_C21.indd 674 05/04/22 10:44 PM

21.1 / FiREwAllS 675

C. This rule set is intended to specify that any inside host can send mail to the
outside. A TCP packet with a destination port of 25 is routed to the SMTP
server on the destination machine. The problem with this rule is that the use of
port 25 for SMTP receipt is only a default; an outside machine could be con-
figured to have some other application linked to port 25. As this rule is written,
an attacker could gain access to internal machines by sending packets with a
TCP source port number of 25.

D. This rule set achieves the intended result that was not achieved in C. The rules
take advantage of a feature of TCP connections. Once a connection is set up,
the ACK flag of a TCP segment is set to acknowledge segments sent from the
other side. Thus, this rule set states that it allows IP packets where the source
IP address is one of a list of designated internal hosts and the destination TCP
port number is 25. It also allows incoming packets with a source port number
of 25 that include the ACK flag in the TCP segment. Note that we explicitly
designate source and destination systems to define these rules explicitly.

E. This rule set is one approach to handling FTP connections. With FTP, two TCP
connections are used: a control connection to set up the file transfer and a data
connection for the actual file transfer. The data connection uses a different
port number that is dynamically assigned for the transfer. Most servers, and
hence most attack targets, use low-numbered ports; most outgoing calls tend
to use a higher-numbered port, typically above 1023. Thus, this rule set allows

—Packets that originate internally

—Reply packets to a connection initiated by an internal machine

—Packets destined for a high-numbered port on an internal machine

This scheme requires that the systems be configured so that only the appropriate
port numbers are in use.

Rule set E points out the difficulty in dealing with applications at the packet fil-
tering level. Another way to deal with FTP and similar applications is either stateful
filters or an application-level gateway, both described subsequently in this section.

One advantage of a packet filtering firewall is its simplicity. Also, packet filters
typically are transparent to users and are very fast. However, packet filters have the
following weaknesses:

 ■ Because packet filter firewalls do not examine upper-layer data, they cannot
prevent attacks that employ application-specific vulnerabilities or functions.
For example, if a packet filter firewall cannot block specific application com-
mands and if a packet filter firewall allows a given application, all functions
available within that application will be permitted.

 ■ Because of the limited information available to the firewall, the logging func-
tionality present in packet filter firewalls is limited. Packet filter logs normally
contain the same information used to make access control decisions (source
address, destination address, and traffic type).

 ■ Most packet filter firewalls do not support advanced user authentication
schemes. Once again, this limitation is mostly due to the lack of upper-layer
functionality by the firewall.

M21_STAL7484_08_GE_C21.indd 675 05/04/22 10:44 PM

676 CHAPTER 21 / NETwoRk ENdPoiNT SECuRiTy

 ■ Packet filter firewalls are generally vulnerable to attacks and exploits that take
advantage of problems within the TCP/IP specification and protocol stack,
such as network layer address spoofing. Many packet filter firewalls cannot
detect a network packet in which the OSI Layer 3 addressing information has
been altered. Spoofing attacks are generally employed by intruders to bypass
the security controls implemented in a firewall platform.

 ■ Finally, due to the small number of variables used in access control decisions,
packet filter firewalls are susceptible to security breaches caused by improper
configurations. In other words, it is easy to accidentally configure a packet
filter firewall to allow traffic types, sources, and destinations that should be
 denied based on an organization’s information security policy.

Some of the attacks that can be made on packet filtering firewalls and the appropriate
countermeasures are the following:

 ■ IP address spoofing: The intruder transmits packets from the outside with a
source IP address field containing an address of an internal host. The attacker
hopes that the use of a spoofed address will allow penetration of systems that
employ simple source address security, in which packets from specific trusted
internal hosts are accepted. The countermeasure is to discard packets with an
inside source address if the packet arrives on an external interface. In fact, this
countermeasure is often implemented at the router external to the firewall.

 ■ Source routing attacks: The source station specifies the route that a packet
should take as it crosses the Internet, in the hopes that this will bypass security
measures that do not analyze the source routing information. The countermea-
sure is to discard all packets that use this option.

 ■ Tiny fragment attacks: The intruder uses the IP fragmentation option to cre-
ate extremely small fragments and force the TCP header information into a
separate packet fragment. This attack is designed to circumvent filtering rules
that depend on TCP header information. Typically, a packet filter will make a
filtering decision on the first fragment of a packet. All subsequent fragments
of that packet are filtered out solely on the basis that they are part of the
packet whose first fragment was rejected. The attacker hopes that the filtering
firewall examines only the first fragment and that the remaining fragments
are passed through. A tiny fragment attack can be defeated by enforcing a
rule that the first fragment of a packet must contain a predefined minimum
amount of the transport header. If the first fragment is rejected, the filter can
remember the packet and discard all subsequent fragments.

StateFul inSPection FirewallS A traditional packet filter makes filtering deci-
sions on an individual packet basis and does not take into consideration any higher-
layer context. To understand what is meant by context and why a traditional packet
filter is limited with regard to context, a little background is needed. Most stan-
dardized applications that run on top of TCP follow a client/server model. For ex-
ample, for the Simple Mail Transfer Protocol (SMTP), email is transmitted from a
client system to a server system. The client system generates new email messages,
typically from user input. The server system accepts incoming email messages and

M21_STAL7484_08_GE_C21.indd 676 05/04/22 10:44 PM

21.1 / FiREwAllS 677

places them in the appropriate user mailboxes. SMTP operates by setting up a TCP
connection between client and server, in which the TCP server port number, which
identifies the SMTP server application, is 25. The TCP port number for the SMTP
client is a number between 1024 and 65535 that is generated by the SMTP client.

In general, when an application that uses TCP creates a session with a remote
host, it creates a TCP connection in which the TCP port number for the remote
(server) application is a number less than 1024 and the TCP port number for the local
(client) application is a number between 1024 and 65535. The numbers less than 1024
are the “well-known” port numbers and are assigned permanently to particular appli-
cations (e.g., 25 for server SMTP). The numbers between 1024 and 65535 are generated
 dynamically and have temporary significance only for the lifetime of a TCP connection.

A simple packet filtering firewall must permit inbound network traffic on all
these high-numbered ports for TCP-based traffic to occur. This creates a vulnerabil-
ity that can be exploited by unauthorized users.

A stateful inspection packet firewall tightens up the rules for TCP traffic by
creating a directory of outbound TCP connections, as shown in Table 21.1. There is
an entry for each currently established connection. The packet filter will now allow
incoming traffic to high-numbered ports only for those packets that fit the profile of
one of the entries in this directory.

A stateful packet inspection firewall reviews the same packet information as a
packet filtering firewall, but also records information about TCP connections (Figure
21.1c). Some stateful firewalls also keep track of TCP sequence numbers to prevent
attacks that depend on the sequence number, such as session hijacking. Some even
inspect limited amounts of application data for some well-known protocols like FTP,
IM, and SIPS commands, in order to identify and track related connections.

aPPlication-level gateway An application-level gateway, also called an
 application proxy, acts as a relay of application-level traffic (Figure 21.1d). The user
contacts the gateway using a TCP/IP application, such as Telnet or FTP, and the
gateway asks the user for the name of the remote host to be accessed. When the user
responds and provides a valid user ID and authentication information, the gateway

Table 21.1 Example Stateful Firewall Connection State Table

Source
Address Source Port

Destination
Address

Destination
Port

Connection
State

192.168.1.100 1030 210.9.88.29 80 Established

192.168.1.102 1031 216.32.42.123 80 Established

192.168.1.101 1033 173.66.32.122 25 Established

192.168.1.106 1035 177.231.32.12 79 Established

223.43.21.231 1990 192.168.1.6 80 Established

219.22.123.32 2112 192.168.1.6 80 Established

210.99.212.18 3321 192.168.1.6 80 Established

24.102.32.23 1025 192.168.1.6 80 Established

223.21.22.12 1046 192.168.1.6 80 Established

M21_STAL7484_08_GE_C21.indd 677 05/04/22 10:44 PM

678 CHAPTER 21 / NETwoRk ENdPoiNT SECuRiTy

contacts the application on the remote host and relays TCP segments containing the
application data between the two endpoints. If the gateway does not implement the
proxy code for a specific application, the service is not supported and cannot be for-
warded across the firewall. Further, the gateway can be configured to support only
specific features of an application that the network administrator considers accept-
able while denying all other features.

Application-level gateways tend to be more secure than packet filters. Rather
than trying to deal with the numerous possible combinations that are to be allowed
and forbidden at the TCP and IP level, the application-level gateway need only scru-
tinize a few allowable applications. In addition, it is easy to log and audit all incom-
ing traffic at the application level.

A prime disadvantage of this type of gateway is the additional processing
overhead on each connection. In effect, there are two spliced connections between
the end users, with the gateway at the splice point, and the gateway must examine
and forward all traffic in both directions.

circuit-level gateway A fourth type of firewall is the circuit-level gateway or
circuit-level proxy (Figure 21.1e). This can be a stand-alone system or it can be a spe-
cialized function performed by an application-level gateway for certain applications.
As with an application gateway, a circuit-level gateway does not permit an end-to-
end TCP connection; rather, the gateway sets up two TCP connections, one between
itself and a TCP user on an inner host and one between itself and a TCP user on an
outside host. Once the two connections are established, the gateway typically relays
TCP segments from one connection to the other without examining the contents.
The security function consists of determining which connections will be allowed.

A typical use of circuit-level gateways is a situation in which the system
 administrator trusts the internal users. The gateway can be configured to support
 application-level or proxy service on inbound connections and circuit-level func-
tions for outbound connections. In this configuration, the gateway can incur the pro-
cessing overhead of examining incoming application data for forbidden functions
but does not incur that overhead on outgoing data.

DMZ Networks

Figure 21.3 suggests the most common distinction, that between an internal and
an external firewall. An external firewall is placed at the edge of a local or enter-
prise network, just inside the boundary router that connects to the Internet or
some wide area network (WAN). One or more internal firewalls protect the bulk
of the enterprise network. Between these two types of firewalls are one or more
networked devices in a region referred to as a demilitarized zone (DMZ) network.
Systems that are externally accessible but need some protections are usually located
on DMZ networks. Typically, the systems in the DMZ require or foster external con-
nectivity, such as a corporate Web site, an email server, or a domain name system
(DNS) server.

The external firewall provides a measure of access control and protection for
the DMZ systems consistent with their need for external connectivity. The external
firewall also provides a basic level of protection for the remainder of the enterprise
network. In this type of configuration, internal firewalls serve three purposes:

M21_STAL7484_08_GE_C21.indd 678 05/04/22 10:44 PM

21.1 / FiREwAllS 679

1. The internal firewall adds more stringent filtering capability, compared to the
external firewall, in order to protect enterprise servers and workstations from
external attack.

2. The internal firewall provides two-way protection with respect to the DMZ.
First, the internal firewall protects the remainder of the network from attacks
launched from DMZ systems. Such attacks might originate from worms, root-
kits, bots, or other malware lodged in a DMZ system. Second, an internal firewall
can protect the DMZ systems from attack from the internal protected network.

3. Multiple internal firewalls can be used to protect portions of the internal net-
work from each other. For example, firewalls can be configured so that internal
servers are protected from internal workstations and vice versa. A common
practice is to place the DMZ on a different network interface on the external
firewall from that used to access the internal networks.

Workstations

Application and database servers

Web
server(s)

Email
server

Internal DMZ network

Boundary
router

External
firewall

LAN
switch

LAN
switch

Internal
firewall

Internal protected network

DNS
server

Internet
Remote

users

Figure 21.3 Example Firewall Configuration

M21_STAL7484_08_GE_C21.indd 679 05/04/22 10:44 PM

680 CHAPTER 21 / NETwoRk ENdPoiNT SECuRiTy

21.2 INTRUSION DETECTION SYSTEMS

It is useful to begin this section by defining the following terms:

 ■ Intrusion: Violations of security policy, usually characterized as attempts to
affect the confidentiality, integrity, or availability of a computer or network.
These violations can come from attackers accessing systems from the Internet
or from authorized users of the systems who attempt to overstep their legiti-
mate authorization levels or who use their legitimate access to the system to
conduct unauthorized activity.

 ■ Intrusion detection: The process of collecting information about events oc-
curring in a computer system or network and analyzing them for signs of
intrusions.

 ■ Intrusion detection system: Hardware or software products that gather and
analyze information from various areas within a computer or a network for
the purpose of finding, and providing real-time or near-real-time warning of,
attempts to access system resources in an unauthorized manner.

Intrusion detection systems (IDSs) can be classified as follows:

 ■ Host-based IDS: Monitors the characteristics of a single host and the events
occurring within that host for suspicious activity. This vantage point allows
host-based IDSs to determine exactly which processes and user accounts are
involved in a particular attack on the OS. Furthermore, unlike network-based
IDSs, host-based IDSs can more readily see the intended outcome of an at-
tempted attack, because they can directly access and monitor the data files and
system processes usually targeted by attacks.

 ■ Network-based IDS: Monitors network traffic for particular network seg-
ments or devices and analyzes network, transport, and application protocols to
identify suspicious activity.

An IDS comprises three logical components:

 ■ Sensors: Sensors are responsible for collecting data. The input for a sensor
may be any part of a system that could contain evidence of an intrusion. Types
of input to a sensor include network packets, log files, and system call traces.
Sensors collect and forward this information to the analyzer.

 ■ Analyzers: Analyzers receive input from one or more sensors or from other
analyzers. The analyzer is responsible for determining if an intrusion has oc-
curred. The output of this component is an indication that an intrusion has
occurred. The output may include evidence supporting the conclusion that an
intrusion occurred. The analyzer may provide guidance about what actions to
take as a result of the intrusion.

 ■ User interface: The user interface to an IDS enables a user to view output
from the system or control the behavior of the system. In some systems, the
user interface may equate to a manager, director, or console component.

M21_STAL7484_08_GE_C21.indd 680 05/04/22 10:44 PM

21.2 / iNTRuSioN dETECTioN SySTEmS 681

Basic Principles

Authentication facilities, access control facilities, and firewalls all play a role in coun-
tering intrusions. Another line of defense is intrusion detection, and this has been
the focus of much research in recent years. This interest is motivated by a number of
considerations, including the following:

1. If an intrusion is detected quickly enough, the intruder can be identified and
ejected from the system before any damage is done or any data are compro-
mised. Even if the detection is not sufficiently timely to preempt the intruder,
the sooner that the intrusion is detected, the less the amount of damage and
the more quickly that recovery can be achieved.

2. An effective IDS can serve as a deterrent, thus acting to prevent intrusions.

3. Intrusion detection enables the collection of information about intrusion tech-
niques that can be used to strengthen intrusion prevention measures.

Approaches to Intrusion Detection

Intrusion detection assumes that the behavior of the intruder differs from that of a le-
gitimate user in ways that can be quantified. Of course, we cannot expect that there will
be a crisp, exact distinction between an attack by an intruder and the normal use of re-
sources by an authorized user. Rather, we must expect that there will be some overlap.

There are two general approaches to intrusion detection: misuse detection and
anomaly detection (Figure 21.4).

Misuse detection is based on rules that specify system events, sequences of
events, or observable properties of a system that are believed to be symptomatic of
security incidents. Misuse detectors use various pattern-matching algorithms, oper-
ating on large databases of attack patterns, or signatures. An advantage of misuse
detection is that it is accurate and generates few false alarms. A disadvantage is that
it cannot detect novel or unknown attacks.

Anomaly detection searches for activity that is different from the normal be-
havior of system entities and system resources. An advantage of anomaly detection
is that it is able to detect previously unknown attacks based on an audit of activity. A
disadvantage is that there is a significant trade-off between false positives and false
negatives. Figure 21.5 suggests, in abstract terms, the nature of the task confronting
the designer of an anomaly detection system. Although the typical behavior of an
intruder differs from the typical behavior of an authorized user, there is an overlap

Misuse Detection

DefineKnown
attacks

Accepted
as normal

if not
known attack

Anomaly Detection

Define Normal
behavior

Rejected as
suspicious

if not
normal

behavior

Figure 21.4 Approaches to Intrusion Detection

M21_STAL7484_08_GE_C21.indd 681 05/04/22 10:44 PM

682 CHAPTER 21 / NETwoRk ENdPoiNT SECuRiTy

in these behaviors. Thus, a loose interpretation of intruder behavior, which will catch
more intruders, will also lead to a number of false positives, or authorized users
identified as intruders. On the other hand, an attempt to limit false positives by a
tight interpretation of intruder behavior will lead to an increase in false negatives,
or intruders not identified as intruders. Thus, there is an element of compromise and
art in the practice of anomaly detection.

Table 21.2 clarifies the relationship between the terms false positive, true posi-
tive, false negative, and true negative.

Host-Based Intrusion Detection Techniques

Host-based IDSs add a specialized layer of security software to vulnerable or
 sensitive systems; examples include database servers and administrative systems.
The host-based IDS monitors activity on the system in a variety of ways to detect
suspicious behavior. In some cases, an IDS can halt an attack before any damage

overlap in observed
or expected behavior

profile of
intruder behavior

profile of
authorized user

behavior

measurable behavior
parameter

average behavior
of intruder

average behavior
of authorized user

Probability
density function

Figure 21.5 Profiles of Behavior of Intruders and Authorized Users

Table 21.2 Test Outcomes

Test Result Condition A Occurs
Condition A Does Not
Occur

Test says “A” True positive False positive

Test says “NOT A” False negative True negative

M21_STAL7484_08_GE_C21.indd 682 05/04/22 10:44 PM

21.2 / iNTRuSioN dETECTioN SySTEmS 683

is done, but its primary purpose is to detect intrusions, log suspicious events, and
send alerts.

The primary benefit of a host-based IDS is that it can detect both external and
internal intrusions, something that is not possible either with network-based IDSs
or firewalls.

Host-based IDSs use one or a combination of anomaly and misuse protection.
For anomaly detection, two common strategies are:

 ■ Threshold detection: This approach involves defining thresholds, independent
of user, for the frequency of occurrence of various events.

 ■ Profile based: A profile of the activity of each user is developed and used to
detect changes in the behavior of individual accounts.

Network-Based Intrusion Detection Systems

A network-based ID system (NIDS) monitors the traffic on its network segment as
a data source. This is generally accomplished by placing the network interface card
in promiscuous mode to capture all network traffic that crosses its network segment.
Network traffic on other segments, and traffic on other means of communication
(like phone lines), can’t be monitored by a single NIDS.

niDS Function Network-based ID involves looking at the packets on the net-
work as they pass by some sensor. Packets are considered to be of interest if they
match a signature. Three primary types of signatures are string signatures, port sig-
natures, and header condition signatures.

String signatures look for a text string that indicates a possible attack. An ex-
ample string signature for UNIX might be “cat “+ +” 7/.rhosts”, which if successful,
might cause a UNIX system to become extremely vulnerable to network attack. To
refine the string signature to reduce the number of false positives, it may be neces-
sary to use a compound string signature. A compound string signature for a common
Web server attack might be “cgi-bin” AND “aglimpse” AND “IFS”.

Port signatures simply watch for connection attempts to well known, fre-
quently attacked ports. Examples of these ports include telnet (TCP port 23), FTP
(TCP port 21/20), SUNRPC (TCP/UDP port 111), and IMAP (TCP port 143). If
any of these ports aren’t used by the site, then incoming packets to these ports are
suspicious.

Header signatures watch for dangerous or illogical combinations in packet
headers. The most famous example is WinNuke, where a packet is destined for a
NetBIOS port and the Urgent pointer, or Out Of Band pointer is set. This resulted
in the “blue screen of death” for Windows systems. Another well-known header sig-
nature is a TCP packet with both the SYN and FIN flags set, signifying that the
requestor wishes to start and stop a connection at the same time.

niDS Placement An NIDS sensor can only see the packets that happen to be
carried on the network segment to which it is attached. Accordingly, a NIDS deploy-
ment is typically set up as a number of sensors distributed on key network points to
passively gather traffic data and feed information on potential threats to a central

M21_STAL7484_08_GE_C21.indd 683 05/04/22 10:44 PM

684 CHAPTER 21 / NETwoRk ENdPoiNT SECuRiTy

NIDS manager. Figure 21.6 gives examples of NIDS sensor placement. There are
four types of locations for the sensors:

1. Outside the main enterprise firewall. Useful for establishing the level of threat
for a given enterprise network. Those responsible for winning management
support for security efforts can find this placement valuable.

2. In the network DMZ (inside the main firewall but outside internal firewalls).
This location can monitor for penetration attempts that target Web and other
services generally open to outsiders.

3. Behind internal firewalls, positioned to monitor major backbone networks,
such as those that support internal servers and database resources.

4. Behind internal firewalls, positioned to monitor LANs that support user
workstations and servers specific to a single department. Locations 3 and 4 in
Figure 21.6 can monitor for more specific attacks at network segments, as well
as attacks originating from inside the organization.

Internet

Workstation
networks

external
firewall

internal
firewall

internal
firewall

NIDS
manager

NIDS

NIDS

NIDS NIDS

LAN switch
or router

LAN switch
or router

LAN switch
or router

Internal server
and data resource

networks

Service network
(Web, Mail, DNS, etc.)

3

4

2

1

Figure 21.6 Example of NIDS Sensor Deployment

M21_STAL7484_08_GE_C21.indd 684 05/04/22 10:44 PM

21.3 / mAliCiouS SoFTwARE 685

21.3 MALICIOUS SOFTWARE

Malicious software, commonly called malware, is perhaps the most significant
 security threat to organizations. NIST SP 800-83 (Guide to Malware Incident
Prevention and Handling for Desktops and Laptops) defines malware as “a program
that is covertly inserted into another program with the intent to destroy data, run
destructive or intrusive programs, or otherwise compromise the confidentiality,
integrity, or availability of the victim’s data, applications, or operating system.”
Hence, malware can pose a threat to application programs, to utility programs, such
as editors and compilers, and to kernel-level programs. Malware can also be used
on compromised or malicious Web sites and servers, or in especially crafted spam
emails or other messages, which aim to trick users into revealing sensitive personal
information.

Types of Malware

There is a growing variety of types of malware, most of which fits into one of the
following broad categories:

 ■ Virus: A computer program that can copy itself and infect a computer without
permission or knowledge of the user. A virus might corrupt or delete data on
a computer, use email programs to spread itself to other computers, or even
erase everything on a hard disk. It can replicate itself and can attach to another
program. The program to which the virus attaches itself is known as host.

 ■ Worm: A self-replicating, self-propagating, self-contained program that uses
networking mechanisms to spread itself. The main differences between viruses
and worms is that the worms can self-replicate and propagate without human
interaction and that the worm does not integrate into existing code. Worms
target systems and applications that have known vulnerabilities.

 ■ Trojan Horse: A computer program that appears to have a useful function,
but also has a hidden and potentially malicious function that evades security
mechanisms, sometimes by exploiting legitimate authorizations of a system
entity that invokes the program. As the name suggests, the purpose of a Trojan
horse is to make a malicious program appear like a legitimate program. Trojan
horse can monitor users’ action, steal users’ data, and can open a backdoor for
the attackers.

 ■ Spyware: Software that is secretly or surreptitiously installed into an infor-
mation system to gather information on individuals or organizations without
their knowledge.

 ■ Rootkit: A set of tools used by an attacker after gaining root-level access to a
host to conceal the attacker’s activities on the host and permit the attacker to
maintain root-level access to the host through covert means.

 ■ Backdoor: An undocumented way of gaining access to a computer system.
Typically, a backdoor is a program that has the ability to bypass a system’s se-
curity control, allowing an attacker to access the system stealthily. Backdoors
are usually installed by the attackers or by a malware program.

M21_STAL7484_08_GE_C21.indd 685 05/04/22 10:44 PM

686 CHAPTER 21 / NETwoRk ENdPoiNT SECuRiTy

 ■ Mobile code: Software (e.g., script, macro, or other portable instruction) that
can be shipped unchanged to a heterogeneous collection of platforms and ex-
ecute with identical semantics.

 ■ Bot: Also known as a zombie. Program that is installed on a system to launch
attacks on other machines. For example, a distributed denial-of-service
(DDoS) attack involves traffic from a number of infected bot machines to a
single target, to overwhelm the resources of the target machine. A collection of
bots that act in concert is referred to as a botnet.

Malware Defense

Approaches to malware defense are commonly categorized along two dimensions,
as shown in Figure 21.7. In terms of time scale, there are two categories:

 ■ Real-time and Near-real-time: Approaches in this category involve monitor-
ing and, if possible, blocking malware-related attacks as they are happening or
very soon thereafter. These approaches typically also involve remedial action,
such as removing malware and reporting the incident.

 ■ Post-compromise: Approaches in this category involve analysis of incident
 reports and traffic patterns to aid in improving security controls.

The remainder of this section provides an overview of the approaches shown in
Figure 21.7.

network traFFic analySiS Network traffic analysis involves monitoring traffic
flows to detect potentially malicious activity. Such monitors are often placed at the
boundary of the enterprise network to the outside world, such as the Internet or
private networks. Monitors can also be placed on internal network devices or near
server endpoints.

As with intrusion detection, traffic analysis can involve misuse detection
(signature detection) or anomaly detection. As an example of misuse detection, a
dramatic surge in traffic at any point likely indicates that a DDoS attack is under-
way. For anomaly detection, network security software needs to collect and main-
tain profiles of typical network traffic patterns, and then monitor current traffic for

Network Payload Endpoint

Real-Time/
Near-Real-Time

Post-compromise
(days/weeks)

T
im

e
Sc

al
e

Area of Vulnerability

Network Traffic
Analysis

Payload
Analysis

Endpoint
Behavior
Analysis

Incident Management and
Forensics

Figure 21.7 Five Elements of Malware Defense

M21_STAL7484_08_GE_C21.indd 686 05/04/22 10:44 PM

21.3 / mAliCiouS SoFTwARE 687

significant deviation from normal behavior. For example, anomalous DNS (Domain
Name System) traffic is a good indicator of botnet activity.

PayloaD analySiS The term payload refers to the data encapsulated within
 packets that has meaning to endpoint applications. As with traffic analysis, payload
analysis is a real-time or near-real-time activity. It involves looking for known
malicious payloads (signature detection) or looking for payload patterns that are
anomalous. One useful technique for payload analysis is the use of a sandbox en-
vironment, which quarantines the payload until the analysis is done. This enables
a payload analysis system to observe the behavior of payloads in motion, such as
when they cross the network perimeter, and to either flag suspicious payloads or
block them outright.

enDPoint Behavior analySiS This category involves a wide variety of tools and
approaches implemented at the endpoint. Antivirus software uses signature and
anomaly detection techniques to identify malware and prevent it from executing
on the host system. Application whitelisting, which restricts application execution
to only known good applications is also employed. At the system software level,
 application containers can isolate applications and files in virtual containers to
 prevent damage.

inciDent management Information security incident management as consist-
ing of processes for detecting, reporting, assessing, responding to, dealing with, and
learning from information security incidents.

Key elements of incident management include:

 ■ Data collection: In a typical use case, an incident management system must be
able to touch any number of different systems: firewalls, proxy servers, data
bases, intrusion detection and prevention systems, OSs, routers, switches, ac-
cess control systems, etc. Some of these may share similar logging and alert
functions, but frequently there is significant variation in the format, protocol
and information provided.

 ■ Data aggregation: The aggregator serves as a consolidating resource before
data is sent to be correlated or retained.

 ■ Data normalization: Normalization is the process of resolving different repre-
sentations of the same types of data into a similar format in a common database.

 ■ Correlation: Event correlation is the function of linking multiple security events
or alerts, typically within a given time window and across multiple systems, to
identify anomalous activity that would not be evident from any singular event.

 ■ Alerting: When data is gathered or identified that trigger certain responses,
such as alerts or potential security problems, tools can activate certain proto-
cols to alert users, like notifications sent to the dashboard, an automated email
or text message.

 ■ Reporting/Compliance: Protocols can be established that automatically collect
data necessary for compliance with company, organizational, and government
policies.

M21_STAL7484_08_GE_C21.indd 687 05/04/22 10:44 PM

688 CHAPTER 21 / NETwoRk ENdPoiNT SECuRiTy

The goal is to analyze the security incidents both for purposes of improving
system security and for updating signatures and anomaly profiles used for detection.
This process applies both to malware-related attacks and to intrusions.

ForenSicS NIST SP 800-96 (Guide to Integrating Forensic Techniques into Incident
Response) defines computer forensics, or digital forensics, as the identification, col-
lection, examination, and analysis of data while preserving the integrity of the infor-
mation and maintaining a strict chain of custody for the data. Computer forensics
seeks to answer a number of questions including the following:

 ■ What happened?

 ■ When did the events occur?

 ■ In what order did the events occur?

 ■ What was the cause of these events?

 ■ Who caused these events to occur?

 ■ What enabled these events to take place?

 ■ What was affected? How much was it affected?

Most security incidents do not require a forensic investigation but can be dealt
with by the ordinary incident management process. But more serious incidents may
 warrant the more in-depth analysis of a forensic investigation.

21.4 DISTRIBUTED DENIAL OF SERVICE ATTACKS

A denial-of-service (DoS) attack is an attempt to prevent legitimate users of a ser-
vice from using that service. When this attack comes from a single host or network
node, then it is simply referred to as a DoS attack. A more serious threat is posed
by a DDoS attack. DDoS attacks make computer systems inaccessible by flooding
servers, networks, or even end-user systems with useless traffic so that legitimate
users can no longer gain access to those resources. In a typical DDoS attack, a large
number of compromised hosts are amassed to send useless packets.

This section is concerned with DDoS attacks. First, we look at the nature
and types of attacks. Next, we examine methods by which an attacker is able
to recruit a network of hosts for attack launch. Finally, this section looks at
countermeasures.

DDoS Attack Description

A DDoS attack attempts to consume the target’s resources so that it cannot provide
service. One way to classify DDoS attacks is in terms of the type of resource that
is consumed. Broadly speaking, the resource consumed is either an internal host
resource on the target system or data transmission capacity in the local network to
which the target is attacked.

A simple example of an internal resource attack is the SYN flood attack.
Figure 21.8a shows the steps involved:

M21_STAL7484_08_GE_C21.indd 688 05/04/22 10:44 PM

21.4 / diSTRibuTEd dENiAl oF SERviCE ATTACkS 689

1. The attacker takes control of multiple hosts over the Internet, instructing them
to contact the target Web server.

2. The agent hosts begin sending TCP/IP SYN (synchronize/initialization) pack-
ets, with erroneous return IP address information, to the target.

3. Each SYN packet is a request to open a TCP connection. For each such packet,
the Web server responds with a SYN/ACK (synchronize/acknowledge) packet,
trying to establish a TCP connection with a TCP entity at a spurious IP ad-
dress. The Web server maintains a data structure for each SYN request waiting
for a response back and becomes bogged down as more traffic floods in. The
result is that legitimate connections are denied while the victim machine is
waiting to complete bogus “half-open” connections.

The TCP state data structure is a popular internal resource target but by no means
the only one. Other possibilities include the following:

1. An intruder may attempt to use up available data structures that are used by
the OS to manage processes, such as process table entries and process control
information entries. The attack can be quite simple, such as a program that
forks new processes repeatedly.

SYN
packets

Attack
machine

Attack
machine

Reflector
machines

Agent
servers

1

1

2

2

3

3

(a) Distributed SYN flood attack

(b) Distributed ICMP attack

Internet

Target Web
server

Target
router

SYN
packets

SYN/ACK
packets

Figure 21.8 Examples of Simple DDoS Attacks

M21_STAL7484_08_GE_C21.indd 689 05/04/22 10:44 PM

690 CHAPTER 21 / NETwoRk ENdPoiNT SECuRiTy

2. An intruder may attempt to allocate to itself large amounts of disk space by a
variety of straightforward means. These include generating numerous emails,
forcing errors that trigger audit trails, and placing files in shareable areas.

Figure 21.8b illustrates an example of an attack that consumes data transmission
resources. The following steps are involved:

1. The attacker takes control of multiple hosts over the Internet, instructing them
to send ICMP ECHO packets1 with the target’s spoofed IP address to a group
of hosts that act as reflectors, as described subsequently.

2. Nodes at the bounce site receive multiple spoofed requests and respond by
sending echo reply packets to the target site.

3. The target’s router is flooded with packets from the bounce site, leaving
no data transmission capacity for legitimate traffic.

Another way to classify DDoS attacks is as either direct or reflector DDoS
attacks. In a direct DDoS attack (Figure 21.9a), the attacker is able to implant zom-
bie software on a number of sites distributed throughout the Internet. Often, the
DDoS attack involves two levels of zombie machines: primary zombies and agent
zombies. The hosts of both machines have been infected with malicious code. The
attacker coordinates and triggers the primary zombies, which in turn coordinate
and trigger the agent zombies. The use of two levels of zombies makes it more
difficult to trace the attack back to its source and provides for a more resilient
network of attackers.

A reflector DDoS attack adds another layer of machines (Figure 21.9b). In
this type of attack, the agent zombies construct packets requiring a response that
contain the target’s IP address as the source IP address in the packet’s IP header.
These packets are sent to uninfected machines known as reflectors. The uninfected
machines respond with packets directed at the target machine. A reflector DDoS
attack can easily involve more machines and more traffic than a direct DDoS at-
tack and hence be more damaging. Further, tracing back the attack or filtering out
the attack packets is more difficult because the attack comes from widely dispersed
uninfected machines.

Constructing the Attack Network

The first step in a DDoS attack is for the attacker to infect a number of machines
with zombie software that will ultimately be used to carry out the attack. The essen-
tial ingredients in this phase of the attack are the following:

1. Software that can carry out the DDoS attack. The software must be able to
run on a large number of machines, must be able to conceal its existence,
must be able to communicate with the attacker or have some sort of
 time-triggered mechanism, and must be able to launch the intended attack
toward the target.

1The Internet Control Message Protocol (ICMP) is an IP-level protocol for the exchange of control pack-
ets between a router and a host or between hosts. The ECHO packet requires the recipient to respond
with an echo reply to check that communication is possible between entities.

M21_STAL7484_08_GE_C21.indd 690 05/04/22 10:44 PM

21.4 / diSTRibuTEd dENiAl oF SERviCE ATTACkS 691

2. A vulnerability in a large number of systems. The attacker must become
aware of a vulnerability that many system administrators and individual
users have failed to patch and that enables the attacker to install the zombie
software.

3. A strategy for locating vulnerable machines, a process known as scanning.

(a) Direct DDoS attack

Attacker

Attacker

Reflectors

Victim

Victim

Primary
zombies

Primary
zombies

Agent
zombies

Agent
zombies

(b) Reflector DDoS attack

Figure 21.9 Types of Flooding-Based DDoS Attacks

M21_STAL7484_08_GE_C21.indd 691 05/04/22 10:44 PM

692 CHAPTER 21 / NETwoRk ENdPoiNT SECuRiTy

In the scanning process, the attacker first seeks out a number of vulnerable ma-
chines and infects them. Then, typically, the zombie software that is installed in the
infected machines repeats the same scanning process, until a large distributed net-
work of infected machines is created. [MIRK04] lists the following types of scanning
strategies:

 ■ Random: Each compromised host probes random addresses in the IP ad-
dress space, using a different seed. This technique produces a high volume of
Internet traffic, which may cause generalized disruption even before the actual
attack is launched.

 ■ Hit list: The attacker first compiles a long list of potential vulnerable machines.
This can be a slow process done over a long period to avoid detection that an
attack is underway. Once the list is compiled, the attacker begins infecting ma-
chines on the list. Each infected machine is provided with a portion of the list
to scan. This strategy results in a very short scanning period, which may make
it difficult to detect that infection is taking place.

 ■ Topological: This method uses information contained on an infected victim
machine to find more hosts to scan.

 ■ Local subnet: If a host can be infected behind a firewall, that host then looks
for targets in its own local network. The host uses the subnet address structure
to find other hosts that would otherwise be protected by the firewall.

DDoS Countermeasures

In general, there are three lines of defense against DDoS attacks:

 ■ Attack prevention and preemption (before the attack): These mechanisms
 enable the victim to endure attack attempts without denying service to legiti-
mate clients. Techniques include enforcing policies for resource consumption
and providing backup resources available on demand. In addition, preven-
tion mechanisms modify systems and protocols on the Internet to reduce the
 possibility of DDoS attacks.

 ■ Attack detection and filtering (during the attack): These mechanisms attempt
to detect the attack as it begins and respond immediately. This minimizes the
impact of the attack on the target. Detection involves looking for suspicious
patterns of behavior. Response involves filtering out packets likely to be part
of the attack.

 ■ Attack source traceback and identification (during and after the attack): This
is an attempt to identify the source of the attack as a first step in preventing fu-
ture attacks. However, this method typically does not yield results fast enough,
if at all, to mitigate an ongoing attack.

The challenge in coping with DDoS attacks is the sheer number of ways in which
they can operate. Thus, DDoS countermeasures must evolve with the threat.

M21_STAL7484_08_GE_C21.indd 692 05/04/22 10:44 PM

21.5 / kEy TERmS, REviEw QuESTioNS, ANd PRoblEmS 693

Review Questions

 21.1 List three design goals for a firewall.
 21.2 List four techniques used by firewalls to control access and enforce a security policy.
 21.3 What information is used by a typical packet filtering firewall?
 21.4 What are some weaknesses of a packet filtering firewall?
 21.5 What is the difference between a packet filtering firewall and a stateful inspection

firewall?
 21.6 What is an application-level gateway?
 21.7 What is a circuit-level gateway?
 21.8 What is a DMZ network and what types of systems would you expect to find on such

networks?
 21.9 What is the difference between an internal and an external firewall?
 21.10 Explain the difference between host-based and network-based intrusion detection

systems.
 21.11 What are the main logical components of an IDS?
 21.12 What are the two main approaches to intrusion detection?
 21.13 List the main categories of malicious software.
 21.14 Explain the difference between network traffic analysis, payload analysis, and end-

point behavior analysis.
 21.15 What is a distributed denial-of-service system?

Problems
 21.1 As was mentioned in Section 21.1, one approach to defeating the tiny fragment attack

is to enforce a minimum length of the transport header that must be contained in the
first fragment of an IP packet. If the first fragment is rejected, all subsequent frag-
ments can be rejected. However, the nature of IP is such that fragments may arrive out
of order. Thus, an intermediate fragment may pass through the filter before the initial
fragment is rejected. How can this situation be handled?

 21.2 In an IPv4 packet, the size of the payload in the first fragment, in octets, is equal to
Total Length - (4 * IHL). If this value is less than the required minimum (8 octets
for TCP), then this fragment and the entire packet are rejected. Suggest an alternative
method of achieving the same result using only the Fragment Offset field.

 21.3 RFC 791, the IPv4 protocol specification, describes a reassembly algorithm that results
in new fragments overwriting any overlapped portions of previously received frag-
ments. Given such a reassembly implementation, an attacker could construct a series
of packets in which the lowest (zero-offset) fragment would contain innocuous data
(and thereby be passed by administrative packet filters), and in which some subsequent
packet having a nonzero offset would overlap TCP header information (destination

21.5 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

anomaly detection
application proxy
botnet

circuit-level proxy
false negatives
false positives

malware
misuse detection

M21_STAL7484_08_GE_C21.indd 693 05/04/22 10:44 PM

694 CHAPTER 21 / NETwoRk ENdPoiNT SECuRiTy

port, for instance) and cause it to be modified. The second packet would be passed
through most filter implementations because it does not have a zero fragment offset.
Suggest a method that could be used by a packet filter to counter this attack.

 21.4 Table 21.3 shows a sample of a packet filter firewall ruleset for an imaginary network of
IP address that range from 192.168.1.0 to 192.168.1.254. Describe the effect of each rule.

 21.5 SMTP (Simple Mail Transfer Protocol) is the standard protocol for transferring mail
between hosts over TCP. A TCP connection is set up between a user agent and a
server program. The server listens on TCP port 25 for incoming connection requests.
The user end of the connection is on a TCP port number above 1023. Suppose you
wish to build a packet filter rule set allowing inbound and outbound SMTP traffic.
You generate the following rule set:

Rule Direction Src Addr Dest Addr Protocol Dest Port Action

A In External Internal TCP 25 Permit

B Out Internal External TCP 71023 Permit

C Out Internal External TCP 25 Permit

D In External Internal TCP 71023 Permit

E Either Any Any Any Any Deny

a. Describe the effect of each rule.
b. Your host in this example has IP address 172.16.1.1. Someone tries to send email

from a remote host with IP address 192.168.3.4. If successful, this generates an
SMTP dialogue between the remote user and the SMTP server on your host con-
sisting of SMTP commands and mail. Additionally, assume that a user on your host
tries to send email to the SMTP server on the remote system. Four typical packets
for this scenario are as shown:

Packet Direction Src Addr Dest Addr Protocol Dest Port Action

1 In 192.168.3.4 172.16.1.1 TCP 25 ?

2 Out 172.16.1.1 192.168.3.4 TCP 1234 ?

3 Out 172.16.1.1 192.168.3.4 TCP 25 ?

4 In 192.168.3.4 172.16.1.1 TCP 1357 ?

Indicate which packets are permitted or denied and which rule is used in each case.
c. Someone from the outside world (10.1.2.3) attempts to open a connection from

port 5150 on a remote host to the Web proxy server on port 8080 on one of your

Table 21.3 Sample Packet Filter Firewall Ruleset

Source
Address

Source Port Destination
Address

Destination
Port

Action

1 Any Any 192.168.1.0 7 1023 Allow

2 192.168.1.1 Any Any Any Deny

3 Any Any 192.168.1.1 Any Deny

4 192.168.1.0 Any Any Any Allow

5 Any Any 192.168.1.2 SMTP Allow

6 Any Any 192.168.1.3 HTTP Allow

7 Any Any Any Any Deny

M21_STAL7484_08_GE_C21.indd 694 05/04/22 10:44 PM

21.5 / kEy TERmS, REviEw QuESTioNS, ANd PRoblEmS 695

local hosts (172.16.3.4), in order to carry out an attack. Typical packets are as
follows:

Packet Direction Src Addr Dest Addr Protocol Dest Port Action

5 In 10.1.2.3 172.16.3.4 TCP 8080 ?

6 Out 172.16.3.4 10.1.2.3 TCP 5150 ?

Will the attack succeed? Give details.
 21.6 To provide more protection, the rule set from the preceding problem is modified as

follows:

Rule Direction Src Addr Dest Addr Protocol Src Port Dest Port Action

A In External Internal TCP 71023 25 Permit

B Out Internal External TCP 25 71023 Permit

C Out Internal External TCP 71023 25 Permit

D In External Internal TCP 25 71023 Permit

E Either Any Any Any Any Any Deny

a. Describe the change.
b. Apply this new rule set to the same six packets of the preceding problem. Indicate

which packets are permitted or denied and which rule is used in each case.
 21.7 A hacker uses port 25 as the client port on his or her end to attempt to open a connec-

tion to your Web proxy server.
a. The following packets might be generated:

Packet Direction Src Addr Dest Addr Protocol Src Port Dest Port Action

7 In 10.1.2.3 172.16.3.4 TCP 25 8080 ?

8 Out 172.16.3.4 10.1.2.3 TCP 8080 25 ?

Explain why this attack will succeed, using the rule set of the preceding problem.

b. When a TCP connection is initiated, the ACK bit in the TCP header is not set.
Subsequently, all TCP headers sent over the TCP connection have the ACK bit set.
Use this information to modify the rule set of the preceding problem to prevent
the attack just described.

 21.8 A common management requirement is that “all external Web traffic must flow via
the organization’s Web proxy.” However, that requirement is easier stated than imple-
mented. Discuss the various problems and issues, possible solutions, and limitations
supporting this requirement. In particular, consider issues such as identifying exactly
what constitutes “Web traffic” and how it may be monitored, given the large range of
ports and various protocols used by Web browsers and servers.

 21.9 Consider the threat of “theft/breach of proprietary or confidential information held in
key data files on the system.” One method by which such a breach might occur is the
accidental/deliberate emailing of information to a user outside to the organization. A
possible countermeasure to this is to require all external email to be given a sensitivity
tag (classification if you like) in its subject and for external e-mail to have the lowest
sensitivity tag. Discuss how this measure could be implemented in a firewall and what
components and architecture would be needed to do this.

 21.10 In the context of an IDS, we define a false positive to be an alarm generated by an IDS
in which the IDS alerts to a condition that is actually benign. A false negative occurs
when an IDS fails to generate an alarm when an alert-worthy condition is in effect.

M21_STAL7484_08_GE_C21.indd 695 05/04/22 10:44 PM

696 CHAPTER 21 / NETwoRk ENdPoiNT SECuRiTy

Using the above diagram, depict two curves that roughly indicate false positives and
false negatives, respectively.

 21.11 The overlapping area of the two probability density functions of Figure 21.5 repre-
sents the region in which there is the potential for false positives and false negatives.
Further, Figure 21.5 is an idealized and not necessarily representative depiction of the
relative shapes of the two density functions. Suppose there is 1 actual intrusion for
every 1000 authorized users, and the overlapping area covers 1% of the authorized
users and 50% of the intruders.
a. Sketch such a set of density functions and argue that this is not an unreasonable

depiction.
b. What is the probability that an event that occurs in this region is that of an autho-

rized user? Keep in mind that 50% of all intrusions fall in this region.
 21.12 An example of a host-based intrusion detection tool is the tripwire program. This is

a file integrity checking tool that scans files and directories on the system on a regu-
lar basis and notifies the administrator of any changes. It uses a protected database
of cryptographic checksums for each file checked and compares this value with that
recomputed on each file as it is scanned. It must be configured with a list of files and
directories to check, and what changes, if any, are permissible to each. It can allow,
for example, log files to have new entries appended, but not for existing entries to
be changed. What are the advantages and disadvantages of using such a tool? Con-
sider the problem of determining which files should only change rarely, which files
may change more often and how, and which change frequently and hence cannot be
checked. Hence consider the amount of work in both the configuration of the pro-
gram and on the system administrator monitoring the responses generated.

 21.13 A taxicab was involved in a fatal hit-and-run accident at night. Two cab companies, the
Green and the Blue, operate in the city. You are told that:

• 85% of the cabs in the city are Green and 15% are Blue.
• A witness identified the cab as Blue.

The court tested the reliability of the witness under the same circumstances that exist-
ed on the night of the accident and concluded that the witness was correct in identify-
ing the color of the cab 80% of the time. What is the probability that the cab involved
in the incident was Blue rather than Green?

Less specific
or looser

Frequency
of alerts

Conservativeness
of signatures

More specific
or stricter

M21_STAL7484_08_GE_C21.indd 696 05/04/22 10:44 PM

21.5 / kEy TERmS, REviEw QuESTioNS, ANd PRoblEmS 697

 21.14 The question arises as to whether it is possible to develop a program that can analyze
a piece of software to determine if it is a virus. Consider that we have a program D
that is supposed to be able to do that. That is, for any program P, if we run D(P), the
result returned is TRUE (P is a virus) or FALSE (P is not a virus). Now consider the
following program:

Program CV:=

{…

main-program:=

{if D(CV) then goto next:

else infect-executable;

}

next:

}

In the preceding program, infect-executable is a module that scans memory for
executable programs and replicates itself in those programs. Determine if D can cor-
rectly decide whether CV is a virus.

M21_STAL7484_08_GE_C21.indd 697 05/04/22 10:44 PM

Cloud Security
22CHAPTER

22.1 Cloud Computing

Cloud Computing Elements
Cloud Service Models
Cloud Deployment Models
Cloud Computing Reference Architecture

22.2 Cloud Security Concepts

22.3 Cloud Security Risks and Countermeasures

The STRIDE Threat Model
Data Breaches
Weak Identity, Credential, and Access Management
Insecure APIs
System Vulnerabilities
Account Hijacking
Malicious Insiders
Advanced Persistent Threats
Data Loss
Insufficient Due Diligence
Abuse and Nefarious Use of Cloud Services
Denial-of-Service
Shared Technology Vulnerabilities

22.4 Cloud Security As A Service

22.5 An Open-Source Cloud Security Module

22.6 Key Terms and Review Questions

698

M22_STAL7484_08_GE_C22.indd 698 05/04/22 10:45 PM

22.1 / Cloud Computing 699

Cloud computing: A model for enabling ubiquitous, convenient, on-demand net-
work access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned and re-
leased with minimal management effort or service provider interaction. This cloud
model promotes availability and is composed of five essential characteristics, three
service models, and four deployment models.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

 ◆ Present an overview of cloud computing concepts.

 ◆ List and define the principal cloud services.

 ◆ List and define the cloud deployment models.

 ◆ Explain the NIST cloud computing reference architecture.

 ◆ Understand the unique security issues related to cloud computing.

 ◆ Describe Cloud Security as a Service.

 ◆ Understand the OpenStack security module for cloud security.

The two most significant developments in computing in recent years are cloud
 computing and the Internet of Things (IoT). In both cases, operating systems, cryp-
tographic algorithms, and security protocols tailored to the specific requirements of
these environments are evolving. This chapter surveys security issues related to cloud
computing. Chapter 23 covers IoT.

This chapter begins with an overview of the concepts of cloud computing,
 followed by a discussion of cloud security.

22.1 CLOUD COMPUTING

There is an increasingly prominent trend in many organizations to move a substantial
portion or even all information technology (IT) operations to an Internet-connected
infrastructure known as enterprise cloud computing. This section provides an
 overview of cloud computing.

Cloud Computing Elements

NIST defines cloud computing, in NIST SP-800-145 (The NIST Definition of Cloud
Computing), as follows:

The definition refers to various models and characteristics, whose relationship
is illustrated in Figure 22.1. The essential characteristics of cloud computing include
the following:

M22_STAL7484_08_GE_C22.indd 699 05/04/22 10:45 PM

700 CHAptER 22 / Cloud SECuRity

 ■ Broad network access: Capabilities are available over the network and ac-
cessed through standard mechanisms that promote use by heterogeneous thin
or thick client platforms (e.g., mobile phones, laptops, and PDAs) as well as
other traditional or cloud-based software services.

 ■ Rapid elasticity: Cloud computing gives you the ability to expand and reduce
resources according to your specific service requirement. For example, you
may need a large number of server resources for the duration of a specific task.
You can then release these resources upon completion of the task.

 ■ Measured service: Cloud systems automatically control and optimize resource
use by leveraging a metering capability at some level of abstraction appropri-
ate to the type of service (e.g., storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and reported, provid-
ing transparency for both the provider and consumer of the utilized service.

 ■ On-demand self-service: A cloud service consumer (CSC) can unilaterally
provision computing capabilities, such as server time and network storage, as
needed automatically without requiring human interaction with each service
provider. Because the service is on demand, the resources are not permanent
parts of your IT infrastructure.

 ■ Resource pooling: The provider’s computing resources are pooled to serve
multiple CSCs using a multi-tenant model, with different physical and virtual
resources dynamically assigned and reassigned according to consumer de-
mand. There is a degree of location independence in that the CSC generally
has no control or knowledge of the exact location of the provided resources,
but may be able to specify location at a higher level of abstraction (e.g., coun-
try, state, or data center). Examples of resources include storage, processing,

Broad
Network Access

Resource Pooling

Rapid
Elasticity

E
ss

en
tia

l
C

ha
ra

ct
er

is
tic

s
Se

rv
ic

e
M

od
el

s
D

ep
lo

ym
en

t
M

od
el

s

Measured
Service

On-Demand
Self-Service

Public Private Hybrid Community

Software as a Service (SaaS)
Platform as a Service (PaaS)

Infrastructure as a Service (IaaS)

Figure 22.1 Cloud Computing Elements

M22_STAL7484_08_GE_C22.indd 700 05/04/22 10:45 PM

22.1 / Cloud Computing 701

memory, network bandwidth, and virtual machines. Even private clouds tend
to pool resources between different parts of the same organization.

Cloud Service Models

NIST defines three service models, which can be viewed as nested service alternatives:
software as a service (SaaS), platform as a service (PaaS), and infrastructure as a
 service (IaaS).

Software aS a Service SaaS provides service to customers in the form of soft-
ware, specifically application software, running on and accessible in the cloud. SaaS
 follows the familiar model of Web services, in this case applied to cloud resources.
SaaS enables the customer to use the cloud provider’s applications running on the
provider’s cloud infrastructure. The applications are accessible from various client
devices through a simple interface such as a Web browser. Instead of obtaining desk-
top and server licenses for software products it uses, an enterprise obtains the same
functions from the cloud service. The use of SaaS avoids the complexity of software
installation, maintenance, upgrades, and patches. Examples of services at this level
are Google Gmail, Microsoft 365, Salesforce, Citrix GoToMeeting, and Cisco WebEx.

Common subscribers to SaaS are organizations that want to provide their
 employees with access to typical office productivity software, such as document
management and email. Individuals also commonly use the SaaS model to acquire
cloud resources. Typically, subscribers use specific applications on demand. The
cloud provider also usually offers data-related features such as automatic backup
and data sharing between subscribers.

Platform aS a Service A PaaS cloud provides service to customers in the form of
a platform on which the customer’s applications can run. PaaS enables the customer
to deploy onto the cloud infrastructure customer-created or acquired applications.
A PaaS cloud provides useful software building blocks, plus a number of develop-
ment tools, such as programming language tools, run-time environments, and other
tools that assist in deploying new applications. In effect, PaaS is an operating system
in the cloud. PaaS is useful for an organization that wants to develop new or tailored
applications while paying for the needed computing resources only as needed and
only for as long as needed. Google AppEngine, Engine Yard, Heroku, Microsoft
Azure Cloud Services, and Apache Stratos are examples of PaaS.

infraStructure aS a Service With IaaS, the customer has access to the resources of
the underlying cloud infrastructure. The cloud service user does not manage or con-
trol the resources of the underlying cloud infrastructure but has control over operat-
ing systems, deployed applications, and possibly limited control of select networking
components (e.g., host firewalls). IaaS provides virtual machines (VMs) and other
virtualized hardware and operating systems. IaaS offers the customer processing,
storage, networks, and other fundamental computing resources so that the customer
is able to deploy and run arbitrary software, which can include operating systems
and applications. IaaS enables customers to combine basic computing services, such
as number crunching and data storage, to build highly adaptable computer systems.

M22_STAL7484_08_GE_C22.indd 701 05/04/22 10:45 PM

702 CHAptER 22 / Cloud SECuRity

Typically, customers are able to self-provision this infrastructure, using a Web-
based graphical user interface that serves as an IT operations management console
for the overall environment. API access to the infrastructure may also be offered as
an option. Examples of IaaS are Amazon Elastic Compute Cloud (Amazon EC2),
Microsoft Azure, Google Compute Engine (GCE), and Rackspace.

Figure 22.2 compares the functions implemented by the cloud service provider
for the three service models.

Cloud Deployment Models

There is an increasingly prominent trend in many organizations to move a substan-
tial portion or even all information technology (IT) operations to enterprise cloud
computing. The organization is faced with a range of choices as to cloud ownership
and management. Here, we look at the four most prominent deployment models for
cloud computing.

Public cloud A public cloud infrastructure is made available to the general public
or a large industry group and is owned by an organization selling cloud services. The
cloud provider is responsible both for the cloud infrastructure and for the control of
data and operations within the cloud. A public cloud may be owned, managed, and
operated by a business, academic, or government organization, or some combination
of them. It exists on the premises of the cloud service provider.

In a public cloud model, all major components are outside the enterprise
firewall, located in a multitenant infrastructure. Applications and storage are

Networking

Storage

Servers

Virtualization

OS

Middleware

Runtime

Data

Applications

Traditional
IT—on
premises

Networking

Storage

Servers

IaaS

Networking

Storage

Servers

Virtualization

OS

Middleware

Runtime

Data

Applications

PaaS

Networking

Storage

Servers

Virtualization

OS

Middleware

Runtime

Data

Applications

SaaS

Managed by customer Managed by cloud service provider

Virtualization

OS

Runtime

Middleware

Data

Applications

Figure 22.2 Separation of Responsibilities in Cloud Service Models

M22_STAL7484_08_GE_C22.indd 702 05/04/22 10:45 PM

22.1 / Cloud Computing 703

made available over the Internet via secured IP, and can be free or offered at a
 pay-per-usage fee. This type of cloud supplies easy-to-use consumer-type services,
such as Amazon and Google on-demand Web applications or capacity; Yahoo mail;
and Facebook or LinkedIn social media providing free storage for photographs.
While public clouds are inexpensive and scale to meet needs, they typically pro-
vide no or lower service level agreements (SLAs) and may not offer the guarantees
against data loss or corruption found with private or hybrid cloud offerings. The
public cloud is appropriate for CSCs and entities not requiring the same levels of
service that are expected within the firewall. Also, the public IaaS clouds do not
necessarily provide for restrictions and compliance with privacy laws, which remain
the responsibility of the subscriber or corporate end user. In many public clouds, the
focus is on the CSC and small and medium businesses where pay-per-use pricing is
available, often equating to pennies per gigabyte. Examples of services here might
be picture and music sharing, laptop backup, or file sharing.

The major advantage of the public cloud is cost. A subscribing organization
only pays for the services and resources it needs and can adjust these as needed.
Further, the subscriber has greatly reduced management overhead. The principal
concern is security. However, there are a number of public cloud providers that have
demonstrated strong security controls and, in fact, such providers may have more re-
sources and expertise to devote to security that would be available in a private cloud.

Figure 22.3 shows in general terms the context of a public cloud used to pro-
vide dedicated cloud services to an enterprise. The public cloud provider serves a
diverse pool of clients. Any given enterprise’s cloud resources are segregated from
those used by other clients, but the degree of segregation varies among providers.
For example, a provider dedicates a number of virtual machines to a given customer,
but a virtual machine for one customer may share the same hardware as virtual ma-
chines for other customers.

Enterprise
Network

Enterprise
clients accessing
pubic cloud
from within the
enterprise secure
security perimeter

Other clients
accessing cloud

Internet or other
non-secured

link
Enterprise
Network

Cloud Provider’s
Public Cloud

Figure 22.3 Public Cloud Configuration

M22_STAL7484_08_GE_C22.indd 703 05/04/22 10:45 PM

704 CHAptER 22 / Cloud SECuRity

Private cloud A private cloud is implemented within the internal IT environ-
ment of the organization. The organization may choose to manage the cloud in
house or contract the management function to a third party. Additionally, the cloud
servers and storage devices may exist on premise or off premise.

Private clouds can deliver IaaS internally to employees or business units
through an intranet or the Internet via a virtual private network (VPN), as well as
software (applications) or storage as services to its branch offices. In both cases, pri-
vate clouds are a way to leverage existing infrastructure, and deliver and chargeback
for bundled or complete services from the privacy of the organization’s network.
Examples of services delivered through the private cloud include database on de-
mand, email on demand, and storage on demand.

A key motivation for opting for a private cloud is security. A private cloud
infrastructure offers tighter controls over the geographic location of data storage
and other aspects of security. Other benefits include easy resource sharing and rapid
deployment to organizational entities.

Figure 22.4 illustrates the two typical private cloud configurations. The
 private cloud consists of an interconnected collection of servers and data storage
devices hosting enterprise applications and data. Local workstations have access to
cloud resources from within the enterprise security perimeter. Remote users (e.g.,
from satellite offices) have access through a secure link, such as a VPN connect-
ing to a secure boundary access controller, such as a firewall. An enterprise may
also choose to outsource the private cloud to a cloud provider. The cloud provider
establishes and maintains the private cloud, consisting of dedicated infrastructure
resources not shared with other cloud provider clients. Typically, a secure link be-
tween boundary controllers provides communications between enterprise client
systems and the private cloud. This link may be a dedicated leased line or a VPN
over the Internet.

community cloud A community cloud shares characteristics of private and
 public clouds. Like a private cloud, a community cloud has restricted access. Like
a public cloud, the cloud resources are shared among a number of independent
organizations. The organizations that share the community cloud have similar re-
quirements and, typically, a need to exchange data with each other. One example
of an industry that is employing the community cloud concept is the health care
industry. A community cloud can be implemented to comply with government pri-
vacy and other regulations. The community participants can exchange data in a
controlled fashion.

The cloud infrastructure may be managed by the participating organiza-
tions or a third party and may exist on premise or off premise. In this deployment
model, the costs are spread over fewer users than a public cloud (but more than a
private cloud), so only some of the cost savings potential of cloud computing are
realized.

Hybrid cloud The hybrid cloud infrastructure is a composition of two or more
clouds (private, community, or public) that remain unique entities but are bound to-
gether by standardized or proprietary technology that enables data and application

M22_STAL7484_08_GE_C22.indd 704 05/04/22 10:45 PM

22.1 / Cloud Computing 705

Private Cloud

Enterprise Network

Enterprise
Network

Access to
secure

boundary

Boundary access
controller

(e.g., firewall)

Clients accessing
private cloud
from within the
security perimeter

Enterprise-controlled
security perimeter

Clients accessing
private cloud
from within the
enterprise secure
security perimeter

Provider-controlled
security perimeter

Secure link
to private

cloud

(a) On-premises private cloud

(b) Outsourced private cloud

Private Cloud

Cloud Provider

Figure 22.4 Private Cloud Configurations

portability (e.g., cloud bursting for load balancing between clouds). With a hybrid
cloud solution, sensitive information can be placed in a private area of the cloud,
and less sensitive data can take advantage of the benefits of the public cloud.

A hybrid public/private cloud solution can be particularly attractive for smaller
businesses. Many applications for which security concerns are less can be offloaded
at considerable cost savings without committing the organization to moving more
sensitive data and applications to the public cloud.

M22_STAL7484_08_GE_C22.indd 705 05/04/22 10:45 PM

706 CHAptER 22 / Cloud SECuRity

Table 22.1 lists some of the relative strengths and weaknesses of the four cloud
deployment models.

Cloud Computing Reference Architecture

A cloud computing reference architecture depicts a generic high-level conceptual
model for discussing the requirements, structures, and operations of cloud comput-
ing. NIST SP 500-292 (NIST Cloud Computing Reference Architecture) establishes a
reference architecture, described as follows:

Table 22.1 Comparison of Cloud Deployment Models

Private Community Public Hybrid

Scalability Limited Limited Very high Very high

Security Most secure
option

Very secure Moderately
secure

Very secure

Performance Very good Very good Low to medium Good

Reliability Very high Very high Medium Medium to high

Cost High Medium Low Medium

The NIST cloud computing reference architecture focuses on the requirements
of “what” cloud services provide, not a “how to” design solution and implemen-
tation. The reference architecture is intended to facilitate the understanding of
the operational intricacies in cloud computing. It does not represent the system
 architecture of a specific cloud computing system; instead it is a tool for describing,
 discussing, and developing a system-specific architecture using a common frame-
work of reference.

NIST developed the reference architecture with the following objectives
in mind:

 ■ To illustrate and understand the various cloud services in the context of an
overall cloud computing conceptual model

 ■ To provide a technical reference for consumers to understand, discuss, catego-
rize, and compare cloud services

 ■ To facilitate the analysis of candidate standards for security, interoperability,
and portability and reference implementations

The reference architecture, depicted in Figure 22.5, defines five major actors in
terms of the roles and responsibilities:

 ■ Cloud service customer (CSC): A person or organization that maintains a
business relationship with, and uses service from, cloud providers.

 ■ Cloud service provider (CSP): A person, organization, or entity responsible
for making a service available to interested parties.

 ■ Cloud auditor: A party that can conduct independent assessment of cloud ser-
vices, information system operations, performance, and security of the cloud
implementation.

M22_STAL7484_08_GE_C22.indd 706 05/04/22 10:45 PM

22.1 / Cloud Computing 707

 ■ Cloud broker: An entity that manages the use, performance, and delivery of
cloud services, and negotiates relationships between CPs and cloud consumers.

 ■ Cloud carrier: An intermediary that provides connectivity and transport of
cloud services from CPs to cloud consumers.

The roles of the CSC and CSP have already been discussed. To summarize, a
CSP can provide one or more of the cloud services to meet IT and business require-
ments of CSCs. For each of the three service models (SaaS, PaaS, IaaS), the CSP
provides the storage and processing facilities needed to support that service model,
together with a cloud interface for cloud service consumers. For SaaS, the SCP de-
ploys, configures, maintains, and updates the operation of the software applications
on a cloud infrastructure so that the services are provisioned at the expected service
levels to cloud consumers. The CSCs of SaaS can be organizations that provide their
members with access to software applications, end users who directly use software
applications, or software application administrators who configure applications for
end users.

For PaaS, the CSP manages the computing infrastructure for the platform and
runs the cloud software that provides the components of the platform, such as run-
time software execution stack, databases, and other middleware components. Cloud
consumers of PaaS can employ the tools and execution resources provided by CSPs
to develop, test, deploy, and manage the applications hosted in a cloud environment.

For IaaS, the CSP acquires the physical computing resources underlying the
service, including the servers, networks, storage, and hosting infrastructure. The IaaS
CSC in turn uses these computing resources, such as a virtual computer, for their
fundamental computing needs.

The cloud carrier is a networking facility that provides connectivity and trans-
port of cloud services between CSCs and CSPs. Typically, a CSP will set up SLAs

Cloud
Consumer

Cloud
Auditor

Service
Intermediation

Service
Aggregation

Service
Arbitrage

Cloud
Broker

Cloud Provider

Security
Audit

Performance
Audit

Privacy
Impact Audit

SaaS
Service Layer
Service Orchestration Cloud

Service
Management

PaaS

Hardware

Physical Resource Layer

Facility

Resource Abstraction
and Control Layer

IaaS
Business
Support

Provisioning/
Configuration

Portability/
Interoperability

Se
cu

ri
ty

P
ri

va
cy

Cloud Carrier

Figure 22.5 NIST Cloud Computing Reference Architecture

M22_STAL7484_08_GE_C22.indd 707 05/04/22 10:45 PM

708 CHAptER 22 / Cloud SECuRity

with a cloud carrier to provide services consistent with the level of SLAs offered to
CSCs, and may require the cloud carrier to provide dedicated and secure connec-
tions between CSCs and CSPs.

A cloud broker is useful when cloud services are too complex for a cloud
 consumer to easily manage. Three areas of support can be offered by a cloud broker:

 ■ Service intermediation: These are value-added services, such as identity
 management, performance reporting, and enhanced security.

 ■ Service aggregation: The broker combines multiple cloud services to meet
consumer needs not specifically addressed by a single CP, or to optimize
 performance or minimize cost.

 ■ Service arbitrage: This is similar to service aggregation except that the ser-
vices being aggregated are not fixed. Service arbitrage means a broker has
the flexibility to choose services from multiple agencies. The cloud broker, for
example, can use a credit-scoring service to measure and select an agency with
the best score.

A cloud auditor can evaluate the services provided by a CP in terms of secu-
rity controls, privacy impact, performance, and so on. The auditor is an independent
entity that can assure that the CP conforms to a set of standards.

Figure 22.6 illustrates the interactions between the actors. A CSC may re-
quest cloud services from a CSP directly or via a cloud broker. A cloud auditor
conducts independent audits and may contact the others to collect necessary in-
formation. This figure shows that cloud networking issues involve three separate
types of networks. For a CSP, the network architecture is that of a typical large
data center, which consists of racks of high-performance servers and storage de-
vices, interconnected with high-speed top-of-rack Ethernet switches. The concerns

Cloud Auditor

Cloud Broker

Cloud Service
Consumer

Enterprise
Network

Cloud
Carrier

Cloud Service
Producer

Data Center
Network

Figure 22.6 Interactions Between Actors in Cloud Computing

M22_STAL7484_08_GE_C22.indd 708 05/04/22 10:45 PM

22.2 / Cloud SECuRity ConCEptS 709

in this context focus on VM placement and movement, load balancing, and avail-
ability issues. The enterprise network is likely to have a quite different architec-
ture, typically including a number of LANs, servers, workstations, PCs, and mobile
devices, with a broad range of network performance, security, and management
issues. The concern of both CSP and CSC with respect to the cloud carrier, which
is shared with many users, is the ability to create virtual networks, with appropri-
ate SLA and security guarantees.

22.2 CLOUD SECURITY CONCEPTS

There are numerous aspects to cloud security and numerous approaches to provid-
ing cloud security measures. A good example of the scope of cloud security concerns
and issues is seen in the NIST guidelines for cloud security, specified in SP-800-144
(Guidelines on Security and Privacy in Public Cloud Computing, December 2011)
and listed in Table 22.2. Thus, a full discussion of cloud security is well beyond the
scope of this chapter.

Security is important to any computing infrastructure. Companies go to great
lengths to secure on-premises computing systems, so it is not surprising that security
looms as a major consideration when augmenting or replacing on-premises systems
with cloud services. Allaying security concerns is frequently a prerequisite for fur-
ther discussions about migrating part or all of an organization’s computing architec-
ture to the cloud. Availability is another major concern.

Generally speaking, such questions only arise when businesses contemplate
moving core transaction processing, such as enterprise resource planning (ERP) sys-
tems, and other mission critical applications to the cloud. Companies have tradition-
ally demonstrated less concern about migrating high maintenance applications such
as email and payroll to cloud service providers even though such applications hold
sensitive information.

Auditability is another concern for many organizations, especially those who
must comply with Sarbanes-Oxley and/or Health and Human Services Health
Insurance Portability and Accountability Act (HIPAA) regulations. The audit-
ability of their data must be ensured whether it is stored on-premises or moved to
the cloud.

Before moving critical infrastructure to the cloud, businesses should perform
due diligence on security threats both from outside and inside the cloud. Many of
the security issues associated with protecting clouds from outside threats are similar
to those that have traditionally faced centralized data centers. In the cloud, however,
responsibility for assuring adequate security is frequently shared among users, ven-
dors, and any third-party firms that users rely on for security-sensitive software or
configurations. Cloud users are responsible for application-level security. Cloud
vendors are responsible for physical security and some software security such as
enforcing external firewall policies. Security for intermediate layers of the software
stack is shared between users and vendors.

A security risk that can be overlooked by companies considering a migra-
tion to the cloud is that posed by sharing vendor resources with other cloud users.
Cloud providers must guard against theft or denial-of-service attacks by their users

M22_STAL7484_08_GE_C22.indd 709 05/04/22 10:45 PM

710 CHAptER 22 / Cloud SECuRity

Table 22.2 NIST Guidelines on Cloud Security and Privacy Issues and Recommendations

Governance

Extend organizational practices pertaining to the policies, procedures, and standards used for ap-
plication development and service provisioning in the cloud, as well as the design, implementation,
testing, use, and monitoring of deployed or engaged services.

Put in place audit mechanisms and tools to ensure organizational practices are followed throughout
the system lifecycle.

Compliance

Understand the various types of laws and regulations that impose security and privacy obligations on
the organization and potentially impact cloud computing initiatives, particularly those involving data
location, privacy and security controls, records management, and electronic discovery requirements.

Review and assess the cloud provider’s offerings with respect to the organizational requirements to
be met and ensure that the contract terms adequately meet the requirements.

Ensure that the cloud provider’s electronic discovery capabilities and processes do not compromise
the privacy or security of data and applications.

Trust

Ensure that service arrangements have sufficient means to allow visibility into the security and
 privacy controls and processes employed by the cloud provider, and their performance over time.
Establish clear, exclusive ownership rights over data.

Institute a risk management program that is flexible enough to adapt to the constantly evolving and
shifting risk landscape for the lifecycle of the system.

Continuously monitor the security state of the information system to support ongoing risk
 management decisions.

Architecture

Understand the underlying technologies that the cloud provider uses to provision services, including
the implications that the technical controls involved have on the security and privacy of the system,
over the full system lifecycle and across all system components.

Identity and access management

Ensure that adequate safeguards are in place to secure authentication, authorization, and other
identity and access management functions, and are suitable for the organization.

Software isolation

Understand virtualization and other logical isolation techniques that the cloud provider employs in
its multi-tenant software architecture, and assess the risks involved for the organization.

Data protection

Evaluate the suitability of the cloud provider’s data management solutions for the organizational
data concerned and the ability to control access to data, to secure data while at rest, in transit, and in
use, and to sanitize data.

Take into consideration the risk of collating organizational data with those of other organizations
whose threat profiles are high or whose data collectively represent significant concentrated value.

Fully understand and weigh the risks involved in cryptographic key management with the facilities
available in the cloud environment and the processes established by the cloud provider.

Availability

Understand the contract provisions and procedures for availability, data backup and recovery, and
disaster recovery, and ensure that they meet the organization’s continuity and contingency planning
requirements.

Ensure that during an intermediate or prolonged disruption or a serious disaster, critical operations
can be immediately resumed, and that all operations can be eventually reinstituted in a timely and
organized manner.

M22_STAL7484_08_GE_C22.indd 710 05/04/22 10:45 PM

22.3 / Cloud SECuRity RiSkS And CountERmEASuRES 711

Incident response

Understand the contract provisions and procedures for incident response and ensure that they meet
the requirements of the organization.

Ensure that the cloud provider has a transparent response process in place and sufficient mecha-
nisms to share information during and after an incident.

Ensure that the organization can respond to incidents in a coordinated fashion with the cloud
provider in accordance with their respective roles and responsibilities for the computing
 environment.

and users need to be protected from one another. Virtualization can be a powerful
mechanism for addressing these potential risks because it protects against most
attempts by users to attack one another or the provider’s infrastructure. However,
not all resources are virtualized and not all virtualization environments are bug-
free. Incorrect virtualization may allow user code to access to sensitive portions
of the provider’s infrastructure or the resources of other users. Once again, these
security issues are not unique to the cloud and are similar to those involved in man-
aging non-cloud data centers, where different applications need to be protected
from one another.

Another security concern that businesses should consider is the extent to
which subscribers are protected against the provider, especially in the area of inad-
vertent data loss. For example, in the event of provider infrastructure improvements,
what happens to hardware that is retired or replaced? It is easy to imagine a hard
disk being disposed of without being properly wiped clean of subscriber data. It is
also easy to imagine permissions bugs or errors that make subscriber data visible
to unauthorized users. User-level encryption may be an important self-help mecha-
nism for subscribers, but businesses should ensure that other protections are in place
to avoid inadvertent data loss.

22.3 CLOUD SECURITY RISKS AND COUNTERMEASURES

In general terms, security controls in cloud computing are similar to the security
controls in any IT environment. However, because of the operational models
and technologies used to enable cloud service, cloud computing may present
risks that are specific to the cloud environment. The essential concept in this
regard is that the enterprise loses a substantial amount of control over resources,
 services, and applications but must maintain accountability for security and
 privacy policies.

The Cloud Security Alliance [CSA17] lists the following as the 12 top
 cloud-specific security threats, in decreasing order of severity:

1. Data Breaches

2. Weak Identity, Credential and Access Management

3. Insecure APIs

4. System and Application Vulnerabilities

5. Account Hijacking

M22_STAL7484_08_GE_C22.indd 711 05/04/22 10:45 PM

712 CHAptER 22 / Cloud SECuRity

6. Malicious Insiders

7. Advanced Persistent Threats (APTs)

8. Data Loss

9. Insufficient Due Diligence

10. Abuse and Nefarious Use of Cloud Services

11. Denial-of-Service

12. Shared Technology Vulnerabilities

The threat analysis conducted by CSA made use of the STRIDE threat model.
This section first introduces the STRIDE model and then examines each of the
12 threats.

The STRIDE Threat Model

STRIDE is a threat classification system developed by Microsoft that is a useful way
of categorizing attacks that arise from deliberate actions [HERN06].

 ■ Spoofing identity: An example of identity spoofing is illegally accessing and
then using another user’s authentication information, such as username
and password. Security controls to counter such threats are in the area of
authentication.

 ■ Tampering with data: Data tampering involves the malicious modification of
data. Examples include unauthorized changes made to persistent data, such as
that held in a database, and the alteration of data as it flows between two com-
puters over an open network, such as the Internet. Relevant security controls
are in the area of integrity.

 ■ Repudiation: Repudiation threats are associated with users who deny perform-
ing an action without other parties having any way to prove otherwise—for
example, a user performs an illegal operation in a system that lacks the ability
to trace the prohibited operations. Relevant security controls are in the area of
non-repudiation, which refers to the ability of a system to counter repudiation
threats. For example, a user who purchases an item might have to sign for the
item upon receipt. The vendor can then use the signed receipt as evidence that
the user did receive the package.

 ■ Information disclosure: Information disclosure threats involve the exposure
of information to individuals who are not supposed to have access to it—for
example, the ability of users to read a file that they were not granted access
to, or the ability of an intruder to read data in transit between two computers.
Relevant security controls are in the area of confidentiality.

 ■ Denial-of-service: Denial-of-service (DoS) attacks deny service to valid
users—for example, by making a Web server temporarily unavailable or unus-
able. Relevant security controls are in the area of availability.

 ■ Elevation of privilege: In this type of threat, an unprivileged user gains privi-
leged access and thereby has sufficient access to compromise or destroy the
entire system. Elevation of privilege threats include those situations in which

M22_STAL7484_08_GE_C22.indd 712 05/04/22 10:45 PM

22.3 / Cloud SECuRity RiSkS And CountERmEASuRES 713

an attacker has effectively penetrated all system defenses and become part of
the trusted system itself, a dangerous situation indeed. Relevant security con-
trols are in the area of authorization.

Table 22.3 provides a mapping between cloud security threats and STRIDE
categories.

Data Breaches

A data breach is an incident in which sensitive, protected, or confidential
 information is released, viewed, stolen, or used by an individual who is not
 authorized to do so. There are many ways to compromise data. Deletion or
 alteration of records without a backup of the original content is an obvious
 example. Unlinking a record from a larger context may render it unrecoverable,
as can storage on unreliable media. Loss of an encoding key may result in effec-
tive destruction. Finally, unauthorized parties must be prevented from gaining
access to sensitive data.

The threat of data compromise increases in the cloud, due to the number of,
and interactions between, risks and challenges that are either unique to the cloud
or more dangerous because of the architectural or operational characteristics of the
cloud environment.

Table 22.3 Mapping Between Cloud Threats and the STRIDE Model

S T R I D E

Data Breaches ✓

Weak Identity, Credential
and Access Management

✓ ✓ ✓ ✓ ✓ ✓

Insecure APIs ✓ ✓ ✓ ✓

System Vulnerabilities ✓ ✓ ✓ ✓ ✓ ✓

Account Hijacking ✓ ✓ ✓ ✓ ✓ ✓

Malicious Insiders ✓ ✓ ✓

Advanced Persistent
Threats (APTs)

✓ ✓

Data Loss ✓ ✓

Insufficient Due Diligence ✓ ✓ ✓ ✓ ✓ ✓

Abuse and Nefarious Use
of Cloud Services

✓

Denial of Service ✓

Shared Technology
Vulnerabilities

✓ ✓

S = Spoofing identity; I = Information disclosure

T = Tampering with data; D = Denial-of-service

R = Repudiation; E = Elevation of privilege.

M22_STAL7484_08_GE_C22.indd 713 05/04/22 10:45 PM

714 CHAptER 22 / Cloud SECuRity

Database environments used in cloud computing can vary significantly. Some
providers support a multi-instance model, which provide a unique DBMS running
on a VM instance for each cloud subscriber. This gives the subscriber complete con-
trol over role definition, user authorization, and other administrative tasks related
to security. Other providers support a multi-tenant model, which provides a pre-
defined environment for the cloud subscriber that is shared with other tenants, typi-
cally through tagging data with a subscriber identifier. Tagging gives the appearance
of exclusive use of the instance, but relies on the cloud provider to establish and
maintain a sound secure database environment.

Data must be secured while at rest, in transit, and in use, and access to the
data must be controlled. The client can employ encryption to protect data in transit,
though this involves key management responsibilities for the CSP. The client can
enforce access control techniques but, again, the CSP is involved to some extent
depending on the service model used.

For data at rest, the ideal security measure is for the client to encrypt the
database and only store encrypted data in the cloud, with the CSP having no
access to the encryption key. So long as the key remains secure, the CSP has no
ability to decipher the data, although corruption and other DoS attacks remain
a risk.

Weak Identity, Credential, and Access Management

Identity and access management (IAM) includes people, processes, and systems
that are used to manage access to enterprise resources by assuring that the identity
of an entity is verified, and then granting the correct level of access based on this
assured identity. One aspect of identity management is identity provisioning, which
has to do with providing access to identified users and subsequently deprovision-
ing, or denying access, to users when the client enterprise designates such users
as no longer having access to enterprise resources in the cloud. Another aspect of
identity management is for the cloud to participate in the identity management
scheme used by the client enterprise. Among other requirements, the cloud service
provider must be able to exchange identity attributes with the enterprise’s chosen
identity provider.

The access management portion of IAM involves authentication and access
control services. For example, the CSP must be able to authenticate users in a trust-
worthy manner. The access control requirements in SPI environments include estab-
lishing trusted user profile and policy information, using it to control access within
the cloud service, and doing this in an auditable way.

Insecure APIs

CSPs expose a set of software interfaces or APIs that customers use to manage
and interact with cloud services. The security and availability of general cloud
services are dependent upon the security of these basic APIs. From authentica-
tion and access control to encryption and activity monitoring, these interfaces

M22_STAL7484_08_GE_C22.indd 714 05/04/22 10:45 PM

22.3 / Cloud SECuRity RiSkS And CountERmEASuRES 715

must be designed to protect against both accidental and malicious attempts to
circumvent policy.

Countermeasures include (1) analyzing the security model of CSP interfaces;
(2) ensuring that strong authentication and access controls are implemented in con-
cert with encrypted transmission; and (3) understanding the dependency chain as-
sociated with the API.

System Vulnerabilities

In this context, the term system vulnerabilities refers to exploitable bugs or weak-
ness in operating system and other system software on platforms that constitute the
cloud infrastructure. System vulnerabilities can be exploited by hackers and mali-
cious software across a shared cloud environment.

Countering system vulnerabilities is an ongoing technical and management
process that involves risk analysis and management, regular vulnerability detection,
patch management, and IT staff training. [STAL19] provides a thorough discussion
of this topic.

Account Hijacking

Account or service hijacking, usually with stolen credentials, remains a top threat.
With stolen credentials, attackers can often access critical areas of deployed cloud
computing services, allowing them to compromise the confidentiality, integrity, and
availability of those services. The concern is heightened in the context of cloud com-
puting because:

 ■ There is additional attack surface exposure due to increased complexity and
dynamic infrastructure allocation;

 ■ New APIs/interfaces are emerging that are untested; and

 ■ The consumer’s account, if hijacked, may be used to steal information, ma-
nipulate data, and defraud others, or to attack other tenants as an insider in the
multi-tenancy environment.

Countermeasures include the following: (1) prohibit the sharing of account
credentials between users and services; (2) leverage strong two-factor authentica-
tion techniques where possible; (3) employ proactive monitoring to detect unau-
thorized activity; and (4) understand CSP security policies and SLAs.

Malicious Insiders

Under the cloud computing paradigm, an organization relinquishes direct
 control over many aspects of security and, in doing so, confers an unprecedented
level of trust onto the CSP. One grave concern is the risk of malicious insider
 activity. Cloud architectures necessitate certain roles that are extremely high
risk. Examples include CSP system administrators and managed security service
providers.

M22_STAL7484_08_GE_C22.indd 715 05/04/22 10:45 PM

716 CHAptER 22 / Cloud SECuRity

Countermeasures include the following: (1) enforce strict supply chain man-
agement and conduct a comprehensive supplier assessment; (2) specify human re-
source requirements as part of legal contract; (3) require transparency into overall
information security and management practices, as well as compliance reporting;
and (4) determine security breach notification processes.

Advanced Persistent Threats

An advanced persistent threat (APT) is a network attack in which an unau-
thorized person gains access to a network and stays there undetected for a long
period of time. The intention of an APT attack is to steal data rather than to
cause damage to the network or organization. APT attacks target organizations
in sectors with high-value information, such as national defense, manufactur-
ing, and the financial industry. APTs differ from other types of attack by their
careful target selection, and persistent, often stealthy, intrusion efforts over
extended periods.

The principle countermeasure for such threats is the effective use of threat
intelligence. Threat intelligence is helping organizations understand the risks of
the most common and severe external threats, such as advanced persistent threats
(APTs), exploits, and zero-day threats. Although threat actors also include in-
ternal (or insider) and partner threats, the emphasis is on the types of external
threats that are most likely to affect a particular organization’s environment.
Threat intelligence includes in-depth information about specific threats to help
an organization protect itself from the types of attacks that could do them the
most damage.

As an example of the importance of threat intelligence, Figure 22.7,
based on one in [ISAC13] illustrates the impact of threat intelligence on an
APT attack. A typical APT attack proceeds with the following steps (based on
[ISAC13]):

 ■ Conduct background research. An APT attack begins with research on poten-
tial targets to identify vulnerabilities.

 ■ Execute initial attack. In most cases, the initial attack involves social
engineering that persuades a target to take an action resulting in the down-
load of malware. For example, the action could be clicking on a link in an
email.

 ■ Establish foothold. The APT inserts an initial malware package onto the
target system. This initial package is designed to elude antimalware soft-
ware. There may be minimal functionality in this first package. However,
it is able to connect back to the attack source to download more capable
malware.

 ■ Enable persistence. Once a foothold is established, the APT seeks to make
its presence more permanent. The two objectives are to maintain is presence
through a device reboot and maintain a sustained ability to communicated
 between the threat source and the target device.

M22_STAL7484_08_GE_C22.indd 716 05/04/22 10:45 PM

22.3 / Cloud SECuRity RiSkS And CountERmEASuRES 717

Conduct
background

research

Intelligence
gathering

Initial
exploitation

Command
and control

Privilege
escalation

Data
exfiltration Point when

most targets
are notified of attack

Potential detection
point with

threat intelligence

Execute
initial
attack

Establish
foothold

Enable
persistence

Conduct
enterprise

reconnaissance

Move
laterally to
new systems

Escalate
privileges

Gather and
encrypt
data of
interest

Exfiltrate
data from

victim
systems

Maintain
persistent
presence

Figure 22.7 Threat Intelligence for Countering Advanced Persistent Threats

 ■ Conduct enterprise reconnaissance. The APT can now attempt to find the
servers or storage facilities holding the targeted information. This can often be
done using utility software on the compromised device. Alternatively, the APT
installs its own scanning tools.

 ■ Move laterally to new systems. Once established in the target system, the APT
will attempt to compromise other systems in the target environment by install-
ing additional malware on these systems.

 ■ Escalate privileges. The APT software on the target systems will look for ways
to increase the privilege level of the software, enabling the software to access
more resources on infected systems and to more easily gain privileged access
to other systems.

 ■ Gather and encrypt data of interest. The APT typically creates a compressed,
encrypted file of any targeted data to which it gains access. This tactic thwarts
anti-malware software that looks for specific patterns in data or in packet
transmissions.

M22_STAL7484_08_GE_C22.indd 717 05/04/22 10:45 PM

718 CHAptER 22 / Cloud SECuRity

 ■ Exfiltrate data from victim systems. The APT may use a variety of tools and
protocols to surreptitiously transfer data from the target systems.

 ■ Maintain persistent presence. The APT remains on the system for an extended
period of time. There may be dormant periods, followed by activation from
remote control software.

As Figure 22.7 indicates, threat intelligence may enable a security team to become
aware of a threat well before the point of typical notification, which is often after the
real damage is done. Even if an early opportunity is lost, threat intelligence can cut
down the time it takes to discover that an attack has already succeeded and there-
fore speed up remediation actions to limit the damage.

Data Loss

Data loss refers to the permanent loss of CSC data that are stored in the cloud
through accidental or malicious deletion of data and backup copies from cloud
storage.

To counter this threat, the CSC should be assured that the CSP has a thorough
redundancy scheme with regular backups, including geographic redundancy. This
may be supplemented by a cloud-to-premise backup so that a recent copy is avail-
able at the customer site.

Insufficient Due Diligence

This category refers to the due diligence that should be performed by a CSC before
choosing a particular CSP. At a general level, the enterprise needs to analyze the
risks involved in moving to a cloud-based solution. Beyond that, the choice of
CSP and the contractual terms with that CSP must be scrutinized carefully to
minimize risk.

[TIER15] lists the following general categories of due diligence:

 ■ Verify infrastructure: The CSPs infrastructure consists of facilities, hardware,
system and application software, core connectivity, and external network in-
terfaces. The CSP should rely on standardized, enterprise-class equipment, and
software with documented integration schemes.

 ■ Verify certification: At minimum, the CSP should demonstrate that it is in
compliance with all relevant security and privacy laws and regulations. In ad-
dition, the CSP should follow industry best practices as documented in nu-
merous NIST documents, specifications from the Cloud Security Alliance, and
various industry and standards organization specifications.

 ■ Verify the CSP’s due diligence: The CSP must document and, as appropriate,
demonstrate that it is doing its own due diligence to ensure that its equipment,
networks, and protocols actually work through a broad spectrum of scenarios,
both ordinary and catastrophic.

 ■ Verify data protection: The CSP should be able to document a comprehen-
sive and integrated set of security controls to ensure against data breaches and
data loss.

M22_STAL7484_08_GE_C22.indd 718 05/04/22 10:45 PM

22.4 / Cloud SECuRity AS A SERviCE 719

Abuse and Nefarious Use of Cloud Services

For many CSPs, it is relatively easy for a CSC to register and begin using cloud
 services, some even offering free limited trial periods. This enables attackers to get
inside the cloud to conduct various attacks, such as spamming, malicious code attacks,
and DoS. PaaS providers have traditionally suffered most from this kind of attacks;
however, recent evidence shows that hackers have begun to target IaaS vendors as
well. The burden is on the CSP to protect against such attacks, but CSCs must moni-
tor activity with respect to their data and resources to detect any malicious behavior.

Countermeasures include (1) stricter initial registration and validation
 processes; (2) enhanced credit card fraud monitoring and coordination; (3) compre-
hensive introspection of customer network traffic; and (4) monitoring public black-
lists for one’s own network blocks.

Denial-of-Service

By the nature of the service it provides, a public CSP has to be exposed to the
Internet and other public networks, its presence advertised, and its interfaces
well-defined. These factors make CSPs a logical target for DoS attacks. Such attacks
can prevent, for a time, a CSC from accessing their data or their applications.

The countermeasure for such attacks is for the CSP (1) to perform ongoing
threat intelligence to be aware of the nature of potential attacks and the potential
vulnerabilities in their cloud and (2) to deploy automated tools to spot and defend
the core cloud services from such attacks.

Shared Technology Vulnerabilities

IaaS vendors deliver their services in a scalable way by sharing infrastructure. Often,
the underlying components that make up this infrastructure (CPU caches, GPUs,
etc.) were not designed to offer strong isolation properties for a multi-tenant archi-
tecture. CSPs typically approach this risk by the use of isolated virtual machines for
individual clients. This approach is still vulnerable to attack, by both insiders and
outsiders, and so can only be a part of an overall security strategy.

Countermeasures include the following: (1) implement security best practices
for installation/configuration; (2) monitor environment for unauthorized changes/
activity; (3) promote strong authentication and access control for administrative ac-
cess and operations; (4) enforce SLAs for patching and vulnerability remediation;
and (5) conduct vulnerability scanning and configuration audits.

22.4 CLOUD SECURITY AS A SERVICE

The term security as a service has generally meant a package of security services
offered by a service provider that offloads much of the security responsibility from
an enterprise to the security service provider. Among the services typically provided
are authentication, antivirus, antimalware/spyware, intrusion detection, and security
event management. In the context of cloud computing, cloud security as a service,
designated SecaaS, is a segment of the SaaS offering of a CSP.

M22_STAL7484_08_GE_C22.indd 719 05/04/22 10:45 PM

720 CHAptER 22 / Cloud SECuRity

The Cloud Security Alliance defines SecaaS as the provision of security ap-
plications and services via the cloud either to cloud-based infrastructure and soft-
ware or from the cloud to the customers’ on-premise systems [CSA11]. The Cloud
Security Alliance has identified the following SecaaS categories of service:

 ■ Identity and access management
 ■ Data loss prevention
 ■ Web security
 ■ Email security
 ■ Security assessments
 ■ Intrusion management
 ■ Security information and event management
 ■ Encryption
 ■ Business continuity and disaster recovery
 ■ Network security

In this section, we examine these categories with a focus on security of the
cloud-based infrastructure and services (Figure 22.8).

Cloud service clients and adversaries

Identity and access management
Network security

Data loss
prevention

Web security
Intrusion
management

Encryption

E-mail security

Security assessments
Security information and
 event management
Business continuity and
 disaster recovery

Figure 22.8 Elements of Cloud Security as a Service

M22_STAL7484_08_GE_C22.indd 720 05/04/22 10:45 PM

22.4 / Cloud SECuRity AS A SERviCE 721

Identity and access management (IAM) is defined in Section 22.3.
Data loss prevention (DLP) is the monitoring, protecting, and verifying the

security of data at rest, in motion, and in use. Much of DLP can be implemented by
the cloud client, such as discussed in Section 13.3. The CSP can also provide DLP
services, such as implementing rules about what functions can be performed on data
in various contexts.

Web security is real-time protection offered either on premise through soft-
ware/appliance installation or via the Cloud by proxying or redirecting Web traffic
to the CSP. This provides an added layer of protection on top of things like antivi-
ruses to prevent malware from entering the enterprise via activities such as Web
browsing. In addition to protecting against malware, a cloud-based Web security ser-
vice might include usage policy enforcement, data backup, traffic control, and Web
access control.

A CSP may provide a Web-based email service, for which security measures
are needed. Email security provides control over inbound and outbound email,
protecting the organization from phishing, malicious attachments, enforcing
 corporate policies such as acceptable use and spam prevention. The CSP may
also incorporate digital signatures on all email clients and provide optional email
encryption.

Security assessments are third-party audits of cloud services. While this service
is outside the province of the CSP, the CSP can provide tools and access points to
facilitate various assessment activities.

Intrusion management encompasses intrusion detection, prevention, and re-
sponse. The core of this service is the implementation of intrusion detection systems
(IDSs) and intrusion prevention systems (IPSs) at entry points to the cloud and on
servers in the cloud. An IDS is a set of automated tools designed to detect unauthor-
ized access to a host system. An IPS incorporates IDS functionality but also includes
mechanisms designed to block traffic from intruders.

Security information and event management (SIEM) aggregates (via push or
pull mechanisms) log and event data from virtual and real networks, applications,
and systems. This information is then correlated and analyzed to provide real-time
reporting and alerting on information/events that may require intervention or other
type of response. The CSP typically provides an integrated service that can put to-
gether information from a variety of sources both within the cloud and within the
client enterprise network.

Encryption is a pervasive service that can be provided for data at rest in the
cloud, email traffic, client-specific network management information, and identity
information. Encryption services provided by the CSP involve a range of complex
issues, including key management, how to implement VPN services in the cloud, ap-
plication encryption, and data content access.

Business continuity and disaster recovery comprise measures and mechanisms
to ensure operational resiliency in the event of any service interruptions. This is
an area where the CSP, because of economies of scale, can offer obvious benefits
to a cloud service client. The CSP can provide backup at multiple locations, with
reliable failover and disaster recovery facilities. This service must include a flex-
ible infrastructure, redundancy of functions and hardware, monitored operations,
 geographically distributed data centers, and network survivability.

M22_STAL7484_08_GE_C22.indd 721 05/04/22 10:45 PM

722 CHAptER 22 / Cloud SECuRity

Network security consists of security services that allocate access, distribute,
monitor, and protect the underlying resource services. Services include perimeter
and server firewalls and DoS protection. Many of the other services listed in this
section, including intrusion management, identity and access management, data loss
protection, and Web security, also contribute to the network security service.

22.5 AN OPEN-SOURCE CLOUD SECURITY MODULE

This section provides an overview of an open-source security module that is part
of the OpenStack cloud OS. OpenStack is an open source software project of the
OpenStack Foundation that aims to produce an open source cloud operating system
[ROSA14, SEFR12]. The principal objective is the enable creating and managing
huge groups of virtual private servers in a cloud computing environment. OpenStack
is embedded, to one degree or another, into data center infrastructure and cloud
computing products offered by Cisco, IBM, Hewlett-Packard, and other vendors. It
provides multi-tenant IaaS, and aims to meet the needs of public and private clouds
regardless of size, by being simple to implement and massively scalable.

The OpenStack OS consists of a number of independent modules, each of which
has a project name and a functional name. The modular structure is easy to scale out
and provides a commonly used set of core services. Typically the components are con-
figured together to provide a comprehensive IaaS capability. However, the modular
design is such that the components are generally capable of being used independently.

The security module for OpenStack is Keystone. Keystone provides the shared
security services essential for a functioning cloud computing infrastructure. It pro-
vides the following main services:

 ■ Identity: This is user information authentication. This information defines a
user’s role and permissions within a project, and is the basis for a role-based
access control (RBAC) mechanism. Keystone supports multiple methods of
authentication, including user name and password, Lightweight Directory
Access Protocol (LDAP), and a means of configuring external authentication
methods supplied by the CSC.

 ■ Token: After authentication, a token is assigned and used for access control.
OpenStack services retain tokens and use them to query Keystone during
operations.

 ■ Service catalog: OpenStack service endpoints are registered with Keystone to
create a service catalog. A client for a service connects to Keystone, and deter-
mines an endpoint to call based on the returned catalog.

 ■ Policies: This service enforces different user access levels. Each OpenStack
service defines the access policies for its resources in an associated policy file.
A resource, for example, could be API access, the ability to attach to a volume,
or to fire up instances. These policies can be modified or updated by the cloud
administrator to control the access to the various resources.

M22_STAL7484_08_GE_C22.indd 722 05/04/22 10:45 PM

22.6 / kEy tERmS And REviEw QuEStionS 723

Figure 22.9 illustrates the way in which Keystone interacts with other OpenStack
components to launch a new VM. Nova is the management software module that
controls VMs within the IaaS cloud computing platform. It manages the lifecycle of
compute instances in an OpenStack environment. Responsibilities include spawning,
scheduling, and decommissioning of machines on demand. Thus, Nova enables enter-
prises and service providers to offer on-demand computing resources, by provisioning
and managing large networks of VMs. Glance is a lookup and retrieval system for VM
disk images. It provides services for discovering, registering, and retrieving virtual
 images through an API. Swift is a distributed object store that creates a redundant
and scalable storage space of up to multiple petabytes of data. Object storage does
not present a traditional file system, but rather a distributed storage system for static
data such as VM images, photo storage, email storage, backups, and archives.

Nova
Scheduler

Nova
Scheduler

Swift
proxy

Swift
worker

4. Schedule
VM

5. Receive
 launch VM

message

6. Request
image 8. Look up

image
9. Return
location and
metadata

10
. R

eq
ue

st
im

ag
e

13
. G

et
im

ag
e

11. Find service,
check credentials,
request image

7. Find service, check credentials,
request image

12. Get
image

3. Launch
VM

14. Launch VM

1. Launch VM

2. Find service,

check credentials,

launch VM

Client

Nova
compute

Nova
message

queue

Keystone

Glance
API

Glance
registry

Figure 22.9 Launching a Virtual Machine in OpenStack

22.6 KEY TERMS AND REVIEW QUESTIONS

Key Terms

cloud auditor
cloud broker
cloud carrier

cloud service consumer
(CSC)

cloud service provider (CSP)

private cloud
public cloud

M22_STAL7484_08_GE_C22.indd 723 05/04/22 10:45 PM

724 CHAptER 22 / Cloud SECuRity

Review Questions
 22.1 What are the essential characteristics of cloud computing?
 22.2 List and briefly define the deployment models of cloud computing.
 22.3 What is the cloud computing reference architecture?
 22.4 Describe some of the main cloud-specific security threats.
 22.5 What is OpenStack?

M22_STAL7484_08_GE_C22.indd 724 05/04/22 10:45 PM

Internet of Things (IoT)
Security

725

23CHAPTER

23.1 The Internet of Things

Things on the Internet of Things
Evolution
Components of IoT-Enabled Things
IoT and Cloud Context

23.2 IoT Security Concepts and Objectives

Unique Characteristics of the IoT Ecosystem
IoT Security Objectives
Tamper Resistance and Detection
Gateway Security
The IoT Security Environment

23.3 An Open-Source IoT Security Module

Cryptographic Algorithms
Operating Modes
Offset Codebook Mode

23.4 Key Terms and Review Questions

M23_STAL7484_08_GE_C23.indd 725 30/04/22 8:56 AM

726 CHAPTER 23 / InTERnET of THIngS (IoT) SECuRITy

This chapter begins with an overview of the concepts of the IoT, followed by a discus-
sion of IoT security.

23.1 THE INTERNET OF THINGS

The Internet of Things is the latest development in the long and continuing revolu-
tion of computing and communications. Its size, ubiquity, and influence on everyday
lives, business, and government dwarf any technical advance that has gone before.
This section provides a brief overview of the Internet of Things.

Things on the Internet of Things

The Internet of Things (IoT) is a term that refers to the expanding interconnection
of smart devices, ranging from appliances to tiny sensors. A dominant theme is the
embedding of short-range mobile transceivers into a wide array of gadgets and
everyday items, enabling new forms of communication between people and things,
and between things themselves. The Internet now supports the interconnection
of billions of industrial and personal objects, usually through cloud systems. The
objects deliver sensor information, act on their environment, and in some cases
modify themselves, to create overall management of a larger system, like a factory
or city.

The IoT is primarily driven by deeply embedded devices. These devices
are low-bandwidth, low-repetition data capture and low-bandwidth data-usage
appliances that communicate with each other and provide data via user inter-
faces. Embedded appliances, such as high-resolution video security cameras, video
VoIP phones, and a handful of others, require high-bandwidth streaming capa-
bilities. Yet countless products simply require packets of data to be intermittently
delivered.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

◆◆ Explain the scope of the Internet of Things.

◆◆ List and discuss the five principal components of IoT-enabled things.

◆◆ Understand the relationship between cloud computing and IoT.

◆◆ Define the patching vulnerability.

◆◆ Explain the IoT Security Framework.

◆◆ Understand the MiniSec security feature for wireless sensor networks.

M23_STAL7484_08_GE_C23.indd 726 30/04/22 8:56 AM

23.1 / THE InTERnET of THIngS 727

Evolution

With reference to the end systems supported, the Internet has gone through roughly
four generations of deployment culminating in the IoT:

1. Information technology (IT): PCs, servers, routers, firewalls, and so on, bought
as IT devices by enterprise IT people, primarily using wired connectivity.

2. Operational technology (OT): Machines/appliances with embedded IT built
by non-IT companies, such as medical machinery, SCADA (supervisory con-
trol and data acquisition), process control, and kiosks, bought as appliances by
enterprise OT people and primarily using wired connectivity.

3. Personal technology: Smartphones, tablets, and eBook readers bought as IT
devices by consumers (employees) exclusively using wireless connectivity and
often multiple forms of wireless connectivity.

4. Sensor/actuator technology: Single-purpose devices bought by consumers, IT,
and OT people exclusively using wireless connectivity, generally of a single
form, as part of larger systems.

It is the fourth generation that is usually thought of as the IoT, and which is marked
by the use of billions of embedded devices.

Components of IoT-Enabled Things

The key components of an IoT-enabled device are the following (Figure 23.1):

◆■ Sensor: A sensor measures some parameter of a physical, chemical, or bio-
logical entity and delivers an electronic signal proportional to the observed
characteristic, either in the form of an analog voltage level or a digital signal.

Sensor

Non-volatile
memory

Transceiver

Battery

Actuator

Microcontroller

IoT Device

Figure 23.1 IoT Components

M23_STAL7484_08_GE_C23.indd 727 30/04/22 8:56 AM

728 CHAPTER 23 / InTERnET of THIngS (IoT) SECuRITy

In both cases, the sensor output is typically input to a microcontroller or other
management element.

◆■ Actuator: An actuator receives an electronic signal from a controller and re-
sponds by interacting with its environment to produce an effect on some pa-
rameter of a physical, chemical, or biological entity.

◆■ Microcontroller: The “smart” in a smart device is provided by a deeply embed-
ded microcontroller.

◆■ Transceiver: A transceiver contains the electronics needed to transmit and re-
ceive data. Most IoT devices contain a wireless transceiver, capable of commu-
nication using Wi-Fi, ZigBee, or some other wireless scheme.

◆■ Power supply: Typically, this is a battery.

IoT devices also often contain a Radio-Frequency Identification (RFID) com-
ponent. RFID technology, which uses radio waves to identify items, is increasingly
becoming an enabling technology for IoT. The main elements of an RFID system
are tags and readers. RFID tags are small programmable devices used for object, an-
imal, and human tracking. They come in a variety of shapes, sizes, functionalities, and
costs. RFID readers acquire and sometimes rewrite information stored on RFID
tags that come within operating range (a few inches up to several feet). Readers
are usually connected to a computer system that records and formats the acquired
information for further uses.

IoT and Cloud Context

To better understand the function of an IoT, it is useful to view it in the context of a
complete enterprise network that includes third-party networking and cloud com-
puting elements. Figure 23.2 provides an overview illustration.

EdgE At the edge of a typical enterprise network is a network of IoT-enabled de-
vices, consisting of sensors and perhaps actuators. These devices may communicate
with one another. For example, a cluster of sensors may all transmit their data to
one sensor that aggregates the data to be collected by a higher-level entity. At this
level also there may also be a number of gateways. A gateway interconnects the
IoT-enabled devices with the higher-level communication networks. It performs the
necessary translation between the protocols used in the communication networks
and those used by devices. It may also perform a basic data aggregation function.

Fog In many IoT deployments, massive amounts of data may be generated by
a distributed network of sensors. For example, offshore oil fields and refineries
can generate a terabyte of data per day. An airplane can create multiple terabytes
of data per hour. Rather than store all of that data permanently (or at least for a
long period) in central storage accessible to IoT applications, it is often desirable
to do as much data processing close to the sensors as possible. Thus, the purpose
of what is sometimes referred to as the fog computing level is to convert network
data flows into information that is suitable for storage and higher level processing.
Processing elements at this level may deal with high volumes of data and perform

M23_STAL7484_08_GE_C23.indd 728 30/04/22 8:56 AM

23.1 / THE InTERnET of THIngS 729

data transformation operations, resulting in the storage of much lower volumes of
data. The following are examples of fog computing operations:

◆■ Evaluation: Evaluating data for criteria as to whether it should be processed
at a higher level.

◆■ Formatting: Reformatting data for consistent higher-level processing.

◆■ Expanding/decoding: Handling cryptic data with additional context (such as
the origin).

◆■ Distillation/reduction: Reducing and/or summarizing data to minimize the im-
pact of data and traffic on the network and higher-level processing systems.

◆■ Assessment: Determining whether data represent a threshold or alert; this
could include redirecting data to additional destinations.

Generally, fog computing devices are deployed physically near the edge of the IoT
network; that is, near the sensors and other data-generating devices. Thus, some of
the basic processing of large volumes of generated data is offloaded and outsourced
from IoT application software located at the center.

Fog computing and fog services are expected to be a distinguishing character-
istic of the IoT. Fog computing represents an opposite trend in modern networking
from cloud computing. With cloud computing, massive, centralized storage and pro-
cessing resources are made available to distributed customers over cloud networking

Data center/
cloud

Hundreds
of devices

Core
network

Thousands
of devices

Fog
network Tens of

thousands
of devices

Edge
network

Millions
of devices

Figure 23.2 The IoT/Cloud Context

M23_STAL7484_08_GE_C23.indd 729 30/04/22 8:56 AM

730 CHAPTER 23 / InTERnET of THIngS (IoT) SECuRITy

facilities to a relatively small number of users. With fog computing, massive numbers
of individual smart objects are interconnected with fog networking facilities that
provide processing and storage resources close to the edge devices in an IoT. Fog
computing addresses the challenges raised by the activity of thousands or millions of
smart devices, including security, privacy, network capacity constraints, and latency
requirements. The term fog computing is inspired by the fact that fog tends to hover
low to the ground whereas clouds are high in the sky.

CorE The core network, also referred to as a backbone network, connects geo-
graphically dispersed fog networks as well as provides access to other networks
that are not part of the enterprise network. Typically, the core network will use
very high performance routers, high-capacity transmission lines, and multiple in-
terconnected routers for increased redundancy and capacity. The core network
may also connect to high-performance, high-capacity servers, such as large data-
base servers and private cloud facilities. Some of the core routers may be purely
internal, providing redundancy and additional capacity without serving as edge
routers.

Cloud The cloud network provides storage and processing capabilities for the
massive amounts of aggregated data that originate in IoT-enabled devices at the
edge. Cloud servers also host the applications that interact with and manage the IoT
devices and that analyze the IoT-generated data.

Table 23.1 compares cloud and fog computing.

Table 23.1 Comparison of Cloud and Fog Features

Cloud Fog

Location of processing/storage
resources

Center Edge

Latency High Low

Access Fixed or wireless Mainly wireless

Support for mobility Not applicable Yes

Control Centralized/hierarchical (full
control)

Distributed/hierarchical
 (partial control)

Service access Through core At the edge/on handheld
device

Availability 99.99% Highly volatile/highly
 redundant

Number of users/devices Tens/hundreds of millions Tens of billions

Main content generator Human Devices/sensors

Content generation Central location Anywhere

Content consumption End device Anywhere

Software virtual infrastructure Central enterprise servers User devices

M23_STAL7484_08_GE_C23.indd 730 30/04/22 8:56 AM

23.2 / IoT SECuRITy ConCEPTS And objECTIvES 731

23.2 IOT SECURITY CONCEPTS AND OBJECTIVES

IoT is perhaps the most complex and undeveloped area of network security. To
see this, consider Figure 23.3, which shows the main elements of interest for IoT
security. At the center of the network are the application platforms, data storage
servers, and network and security management systems. These central systems
gather data from sensors, send control signals to actuators, and are responsible
for managing the IoT devices and their communication networks. At the edge of
the network are IoT-enable devices, some of which are quite simple, constrained
devices and some of which are more intelligent, unconstrained devices. In addi-
tion, gateways may perform protocol conversion and other networking service on
behalf of IoT devices.

Figure 23.3 illustrates a number of typical scenarios for interconnection and
the inclusion of security features. The shading in Figure 23.3 indicates the systems
that support at least some of these functions. Typically, gateways will implement
secure functions, such as TLS and IPsec. Unconstrained devices may or may not
implement some security capability. Constrained devices generally have limited or
no security features. As suggested in the figure, gateway devices can provide secure
communication between the gateway and the devices at the center, such as appli-
cation platforms and management platforms. However, any constrained or uncon-
strained devices attached to the gateway are outside the zone of security established
between the gateway and the central systems. As shown, unconstrained devices can
communicate directly with the center and support security functions. However, con-
strained devices that are not connected to gateways have no secure communications
with central devices.

Internet
or

Enterprise Network

G

G

CCC

C

C
C

C

A

G

5 application,
management, or
storage platform

5 gateway

5 unconstrained
device

5 constrained
device

shading 5 includes security features

C

U

U

U
U

U

U
U

U

A

A

Figure 23.3 IoT Security: Elements of Interest

M23_STAL7484_08_GE_C23.indd 731 30/04/22 8:56 AM

732 CHAPTER 23 / InTERnET of THIngS (IoT) SECuRITy

Unique Characteristics of the IoT Ecosystem

The European Union Agency For Network And Information Security (ENISA)
Baseline Security Recommendations for IoT [ENIS17] lists the following issues that
hinder the development of secure IoT ecosystems:

◆■ Very large attack surfaces: This topic is explored later in this section. In es-
sence, there are a wide variety of points of vulnerability within an IoT ecosys-
tem and a large variety of data that may be compromised.

◆■ Limited device resources: IoT devices are typically constrained devices, with
limited memory, processing power, and power supply.

This makes it difficult to employ advanced security controls.

◆■ Complex ecosystem: The IoT involves not only a large number of devices, but
the interconnections, communications, and dependencies among them and
with cloud elements. This makes the task of assessing security risk extremely
complex.

◆■ Fragmentation of standards and regulations: Comparatively little work has
been done on security standards for IoT, as well as limited best practices docu-
mentation. Thus, there is a lack of comprehensive guidance for security man-
agers and implementers.

◆■ Widespread deployment: There is an ongoing rapid deployment of IoT ar-
rangements in commercial environments and, more importantly, critical infra-
structure environments. These deployments are attractive targets for security
attacks and the rapid deployment is often without comprehensive risk assess-
ment and security planning.

◆■ Security integration: IoT devices use a wide variety of communications pro-
tocols, and when implemented, authentication schemes. In addition, there
may be contractor viewpoints and requirements from all involved stakehold-
ers. Integrating security into an interoperable scheme is thus extraordinarily
challenging.

◆■ Safety aspects: Because many IoT devices act on their physical environment,
security threats can become safety threats, raising the bar for the effectiveness
of security solutions.

◆■ Low cost: IoT devices are manufactured, purchased, and deployed in millions.
This provides great incentive for all parties to minimize the cost of these de-
vices. Manufacturers might be inclined to limit security features to maintain a
low cost, and customers might be inclined to accept these limitations.

◆■ Lack of expertise: IoT is still a relatively new and rapidly evolving technology.
There are a limited number of people with suitable cybersecurity training and
experience.

◆■ Security updates: In an often-quoted 2014 article, security expert Bruce
Schneier stated that we are at a crisis point with regard to the security of
embedded systems, including IoT devices [SCHN14]. The embedded devices
are riddled with vulnerabilities and there is no good way to patch them. The
chip manufacturers have strong incentives to produce their product with its

M23_STAL7484_08_GE_C23.indd 732 30/04/22 8:56 AM

23.2 / IoT SECuRITy ConCEPTS And objECTIvES 733

firmware and software as quickly and cheaply as possible. The device manu-
facturers choose a chip based on price and features and do very little if any-
thing to the chip software and firmware. Their focus is the functionality of the
device itself. The end user may have no means of patching the system or, if so,
little information about when and how to patch. The result is that the hundreds
of millions of Internet-connected devices in the IoT are vulnerable to attack.
This is certainly a problem with sensors, allowing attackers to insert false data
into the network. It is potentially a graver threat with actuators, where the at-
tacker can affect the operation of machinery and other devices.

◆■ Insecure programming: Effective cybersecurity practice requires the integra-
tion of security planning and design throughout the software development
lifecycle. But again, with cost pressure, developers of IoT products have an in-
centive to place more emphasis on functionality and usability than on security.

◆■ Unclear liabilities: A major IoT deployment involves a large and complex sup-
ply chain and complex interaction among numerous components. Because it is
difficult under these circumstances to clearly assign liabilities, ambiguities and
conflicts may arise in the event of a security incident.

IoT Security Objectives

NISTIR 8200 (Interagency Report on Status of International Cybersecurity
Standardization for the Internet of Things) lists the following security objectives for IoT:

◆■ Restricting logical access to the IoT network. This may include: using unidirec-
tional gateways, using firewalls to prevent network traffic from passing directly
between the corporate and IoT networks, and having separate authentication
mechanisms and credentials for users of the corporate and IoT networks. An
IoT system should also use a network topology that has multiple layers, with the
most critical communications occurring in the most secure and reliable layer.

◆■ Restricting physical access to IoT network and components. A combination
of physical access controls should be used, such as locks, card readers, and/or
guards.

◆■ Protecting individual IoT components from exploitation. This includes de-
ploying security patches in as expeditious a manner as possible, after testing
them under field conditions; disabling all unused ports and services and assur-
ing that they remain disabled; restricting IoT user privileges to only those that
are required for each person’s role; tracking and monitoring audit trails; and
using security controls such as antivirus software and file integrity checking
software where technically feasible.

◆■ Preventing unauthorized modification of data. This includes data that are in
transit (at least across the network boundaries) and at rest.

◆■ Detecting security events and incidents. The object is to detect security events
early enough to break the attack chain before attackers attain their objectives.
This includes the capability to detect failed IoT components, unavailable ser-
vices, and exhausted resources that are important to provide proper and safe
functioning of an IoT system.

M23_STAL7484_08_GE_C23.indd 733 30/04/22 8:56 AM

734 CHAPTER 23 / InTERnET of THIngS (IoT) SECuRITy

◆■ Maintaining functionality during adverse conditions. This involves design-
ing IoT systems so that each critical component has a redundant counterpart.
Additionally, if a component fails, it should fail in a manner that does not gen-
erate unnecessary traffic on IoT or other networks, or does not cause another
problem elsewhere. IoT systems should also allow for graceful degradation
such as moving from normal operation with full automation to emergency op-
eration with operators more involved and less automation to manual opera-
tion with no automation.

◆■ Restoring the system after an incident. Incidents are inevitable and an incident
response plan is essential. A major characteristic of a good security program is
how quickly the IoT system can be recovered after an incident has occurred.

Tamper Resistance and Detection

An IoT ecosystem involves a large number of devices deployed in the edge network
and in the fog network. Typically these involve numerous manufacturers and mul-
tiple supply chains and often deployment in areas where physical security is difficult.
Two essential security measures in such an environment are tamper resistance and
tamper detection. We define the following terms:

◆■ Tampering: An unauthorized modification that alters the intended functioning
of a system or device in a way that degrades the security it provides.

◆■ Tamper resistant: A characteristic of a system component that provides pas-
sive protection against an attack.

◆■ Tamper detection: Techniques to ensure that the overall system is made aware
of unwanted physical access.

TampEr rEsisTanCE The common approach to tamper resistance is to use spe-
cialized physical construction materials to make tampering with a fog node dif-
ficult. Examples include hardened steel enclosures, locks, and security screws.
Tightly packing components and circuit boards within an enclosure increases
the difficulty of using fiber optics to probe inside the node without opening the
enclosure.

A second category of tamper resistance is the deterrence of tampering by en-
suring that tampering leaves visible evidence behind. Examples include special seals
and tapes that make it obvious when there has been physical tampering.

TampEr dETECTion Mechanisms for tamper detection include the following:

◆■ Switches: A variety of switches, such as mercury switches, magnetic switches,
and pressure contacts can detect the opening of a device, the breach of a physi-
cal security boundary, or the movement of a device.

◆■ Sensors: Temperature and radiation sensors can detect environmental changes.
Voltage and power sensors can detect electrical attacks.

◆■ Circuitry: It is possible to wrap components with flexible circuitry, resistance
wire, or fiber optics so as to detect a puncture or break.

M23_STAL7484_08_GE_C23.indd 734 30/04/22 8:56 AM

23.2 / IoT SECuRITy ConCEPTS And objECTIvES 735

Gateway Security

ITU-T Recommendation Y.2066 (Common Requirements of the Internet of Things,
June 2014) includes a list of security requirements for the IoT. This list is a useful
baseline for understand the scope of security implementation needed for an IoT de-
ployment. The requirements are defined as being the functional requirements dur-
ing capturing, storing, transferring, aggregating and processing the data of things,
as well as to the provision of services which involve things. These requirements are
related to all the IoT actors. The requirements are:

◆■ Communication security: Secure, trusted, and privacy-protected communica-
tion capability is required, so that unauthorized access to the content of data
can be prohibited, integrity of data can be guaranteed, and privacy-related
content of data can be protected during data transmission or transfer in IoT.

◆■ Data management security: Secure, trusted, and privacy-protected data man-
agement capability is required, so that unauthorized access to the content of
data can be prohibited, integrity of data can be guaranteed, and privacy-related
content of data can be protected when storing or processing data in IoT.

◆■ Service provision security: Secure, trusted, and privacy-protected service pro-
vision capability is required, so that unauthorized access to service and fraudu-
lent service provision can be prohibited and privacy information related to
IoT users can be protected.

◆■ Integration of security policies and techniques: The ability to integrate differ-
ent security policies and techniques is required, so as to ensure a consistent
security control over the variety of devices and user networks in IoT.

◆■ Mutual authentication and authorization: Before a device (or an IoT user) can
access the IoT, mutual authentication and authorization between the device
(or the IoT user) and IoT is required to be performed according to predefined
security policies.

◆■ Security audit: Security audit is required to be supported in IoT. Any data ac-
cess or attempt to access IoT applications are required to be fully transparent,
traceable, and reproducible according to appropriate regulation and laws. In
particular, IoT is required to support security audit for data transmission, stor-
age, processing, and application access.

A key element in providing security in an IoT deployment is the gateway. Y.2067
(Common Requirements and Capabilities of a Gateway for Internet of Things
Applications, June 2014) details specific security functions that the gateway should
implement, some of which are illustrated in Figure 23.4. These consist of the
following:

◆■ Support identification of each access to the connected devices.

◆■ Support authentication with devices. Based on application requirements and
device capabilities, it is required to support mutual or one-way authentication
with devices. With one-way authentication, either the device authenticates itself
to the gateway or the gateway authenticates itself to the device, but not both.

◆■ Support mutual authentication with applications.

M23_STAL7484_08_GE_C23.indd 735 30/04/22 8:56 AM

736 CHAPTER 23 / InTERnET of THIngS (IoT) SECuRITy

Devices

Gateways

Internet or
enterprise
network

Application
platforms

Authentication
secure data transfer

Authentication
secure data transfer

Security, privacy
of data at rest

Figure 23.4 IoT Gateway Security Functions

◆■ Support the security of the data that are stored in devices and the gateway, or
transferred between the gateway and devices, or transferred between the gate-
way and applications. Support the security of these data based on security levels.

◆■ Support mechanisms to protect privacy for devices and the gateway.

◆■ Support self-diagnosis and self-repair as well as remote maintenance.

◆■ Support firmware and software update.

◆■ Support auto configuration or configuration by applications. The gateway is
required to support multiple configuration modes, e.g., remote and local con-
figuration, automatic and manual configuration, and dynamic configuration
based on policies.

Some of these requirements may be difficult to achieve when they involve providing
security services for constrained devices. For example, the gateway should support
security of data stored in devices. Without encryption capability at the constrained
device, this may be impractical to achieve.

Note that the Y.2067 requirements make a number of references to privacy
requirements. Privacy is an area of growing concern with the widespread deploy-
ment of IoT-enabled things in homes, retail outlets, and vehicles and humans. As
more things are interconnected, governments and private enterprises will collect
massive amounts of data about individuals, including medical information, location
and movement information, and application usage.

M23_STAL7484_08_GE_C23.indd 736 30/04/22 8:56 AM

23.3 / An oPEn-SouRCE IoT SECuRITy ModulE 737

The IoT Security Environment

Figure 23.5 models the scope of key security capabilities across the four levels of the
IoT ecosystem:

◆■ User authentication and access control: These functions span then entire IoT
ecosystem. A common approach to access control is role-based access con-
trol (RBAC). RBAC systems assign access rights to roles instead of individual
users. In turn, users are assigned to different roles, either statically or dynami-
cally, according to their responsibilities. RBAC enjoys widespread commercial
use in cloud and enterprise systems and is a well-understood tool that can be
used to manage access to IoT devices and the data they generate.

◆■ Tamper resistance and detection: This function is particularly important at the
device and fog network levels but also extends to the core network level. All
of these levels may involve components that are physically outside the area of
the enterprise that is protected by physical security measures.

◆■ Data protection and confidentiality: These functions extend to all levels of the
architecture.

◆■ Internet protocol and network security: Protection of data in motion from
eavesdropping and snooping is essential between all levels.

23.3 AN OPEN-SOURCE IOT SECURITY MODULE

This section provides an overview of MiniSec, an open-source security module that
is part of the TinyOS operating system. TinyOS is designed for small embedded
systems with tight requirements on memory, processing time, real-time response,
and power consumption. TinyOS takes the process of streamlining quite far, re-
sulting in a very minimal OS for embedded systems, with a typical configuration
requiring 48 KB of code and 10 KB of RAM [LEVI12]. The main application of
TinyOS is wireless sensor networks and it has become the de facto OS for such
networks. With sensor networks, the primary security concerns relate to wireless

Fog
network

Edge
network

Data center/
cloud

Core
network

User Authentication Access Control

Data Protection and Confidentialiy

IP and Network Security

Tamper Resistance and Detection

Figure 23.5 IoT Security Environment

M23_STAL7484_08_GE_C23.indd 737 30/04/22 8:56 AM

738 CHAPTER 23 / InTERnET of THIngS (IoT) SECuRITy

communications. MiniSec is designed to be a link-level module that offers a high
level of security, while simultaneously keeping energy consumption low and using
very little memory [LUK07]. MiniSec provides confidentiality, authentication, and
replay protection.

MiniSec has two operating modes, one tailored for single-source communica-
tion, and another tailored for multi-source broadcast communication. The latter does
not require per-sender state for replay protection and thus scales to large networks.

MiniSec is designed to meet the following requirements:

◆■ Data authentication: Enables a legitimate node to verify whether a message
originated from another legitimate node (i.e., a node with which it shares a
secret key) and was unchanged during transmission.

◆■ Confidentiality: A basic requirement for any secure communications system.

◆■ Replay protection: Prevents an attacker from successfully recording a packet
and replaying it at a later time.

◆■ Freshness: Because sensor nodes often stream time-varying measurements,
providing guarantee of message freshness is an important property. There are
two types of freshness: strong freshness and weak freshness. MiniSec provides
a mechanism to guarantee weak freshness, where a receiver can determine a
partial ordering over received messages without a local reference time point.

◆■ Low energy overhead: This is achieved by minimizing communication over-
head and by the use of only symmetric.

◆■ Resilient to lost messages: The relatively high occurrence of dropped packets
in wireless sensor networks requires a design that can tolerate high message
loss rates.

Cryptographic Algorithms

Two cryptographic algorithms used by MiniSec are worth noting. The first of these is
the encryption algorithm Skipjack. Skipjack was developed in the 1990s by the U.S.
National Security Agency (NSA). It is one of the simplest and fastest block cipher
algorithms, which is critical to embedded systems. A study of eight possible candi-
date algorithms for wireless security networks [LAW06] concluded that Skipjack
was the best algorithm in terms of code memory, data memory, encryption/decryp-
tion efficiency, and key setup efficiency.

Skipjack makes use of an 80-bit key. It was intended by NSA to provide a se-
cure system once it became clear that DES, with only a 56-bit key, was vulnerable.
Contemporary algorithms, such as AES, employ a key length of at least 128 bits, and
80 bits is generally considered inadequate. However, for the limited application of
wireless sensor networks and other IoT devices, which provide large volumes of
short data blocks over a slow data link, Skipjack may suffice. With its efficient com-
putation and low memory footprint, Skipjack is an attractive choice for IoT devices.
However, going forward, it is advisable for any IoT security module to use one of
the recently developed lightweight cryptographic algorithms, such as the Scalable
Encryption Algorithm (SEA) described in Chapter 14.

The block cipher mode of operation chosen for MiniSec is the Offset Codebook
Mode (OCB), described later in this section.

M23_STAL7484_08_GE_C23.indd 738 30/04/22 8:56 AM

23.3 / An oPEn-SouRCE IoT SECuRITy ModulE 739

MiniSec employs per-device keys; that is, each key is unique to a particular
pair of devices, to prevent replay attacks.

Operating Modes

MiniSec has two operating modes: unicast (MiniSec-U) and broadcast (MiniSec-B).
Both schemes use OCB with a counter, known as a nonce, that is input along with
the plaintext into the encryption algorithm. The least significant bits of the counter
are also sent as plaintext to enable synchronization. For both modes, data are trans-
mitted in packets. Each packet includes the encrypted data block, the OCB authen-
tication tag, and the MiniSec counter.

MiniSec-U employs synchronized counters, which require the receiver to keep
a local counter for each sender. The strictly monotonically increasing counter guar-
antees semantic confidentiality.1 Even if the sender A repeatedly sends the same
message, each ciphertext is different since a different counter value is used. Also,
once a receiver observes a counter value, it rejects packets with an equal or smaller
counter value. Therefore, an attacker cannot replay any packet that the receiver has
previously received. If a number of packets are dropped, the sender and receiver
engage in a resynchronization protocol.

MiniSec-U cannot be directly used to secure broadcast communication. First,
it would be too expensive to run the counter resynchronization protocol among
many receivers. Also, if a node were to simultaneously receive packets from a large
group of sending nodes, it would need to maintain a counter for each sender, re-
sulting in high memory overhead. Instead, it uses two mechanisms, a timing-based
approach and a bloom-filter approach, that defend against replay attacks. First, the
time is divided into t-length epochs E1, E2,. . . . Using the current epoch or the previ-
ous epoch as nonce for OCB encryption, the replay of messages from older epochs
is avoided. The timing approach is augmented with a bloom-filter approach in order
to prevent replay attacks inside the current epoch. MiniSec-B uses as nonce element
in OCB encryption and bloom-filter key the string nodeID.Ei.Cab, where nodeID is
the sender node identifier, Ei is the current epoch, and Cab is a shared counter. Every
time that a node receives a message, it checks if it belongs to its bloom filter. If the
message is not replayed, it is stored in the bloom filter. Else, the node drops it.

For further details on the two operating modes, see [TOBA07].

Offset Codebook Mode

As mentioned in Chapter 7, a mode of operation must be specified when a plaintext
source consists of multiple blocks of data to be encrypted with the same encryp-
tion key. OCB is an NIST proposed block cipher mode of operation [ROGA01],
and is a proposed Internet Standard defined in RFC 7253 (The OCB Authenticated-
Encryption Algorithm, May 2014). OCB is also approved as an authenticated en-
cryption technique in the IEEE 802.11 wireless LAN standard. And, OCB is in-
cluded in MiniSec, an open-source IoT security module.

1Semantic confidentiality means that if the same plain-text is encrypted twice, the two resulting
 ciphertexts are different.

M23_STAL7484_08_GE_C23.indd 739 30/04/22 8:56 AM

740 CHAPTER 23 / InTERnET of THIngS (IoT) SECuRITy

A key objective for OCB is efficiency. This is achieved by minimizing the num-
ber of encryptions required per message and by allowing for parallel operation on
the blocks of a message. OCB mode is provably secure assuming the underlying
block cipher is secure. OCB mode is a one-pass mode of operation making it highly
efficient. Only one block cipher call is necessary for each plaintext block, with an
additional two calls needed to complete the whole encryption process. OCB is espe-
cially well suited for the stringent energy constraints of sensor nodes.

Figure 23.6 shows the overall structure for OCB encryption and authentica-
tion. Typically, AES is used as the encryption algorithm. The message M to be en-
crypted and authenticated is divided into n-bit blocks, with the exception of the last
block, which may be less than n bits. Typically, n = 128. Only a single pass through
the message is required to generate both the ciphertext and the authentication code.
The total number of blocks is m =<len1M2 >n= .

Note that the encryption structure for OCB is similar to that of electronic
 codebook (ECB) mode. Each block is encrypted independently of the other blocks,
so that it is possible to perform all m encryptions simultaneously. As was mentioned
in Chapter 7, with ECB, if the same b-bit block of plaintext appears more than once

trunc

pad

first
t bits

t

n 5 block length in bits
N 5 nonce
len(M[m]) 5 length of M[m] represented as an n-bit integer
trunc(Y[m]) 5 deletes least significant bits so that result is same
 length as M[m]
pad 5 pad with least significant 0 bits to length n
t 5 length of authentication tag

M[1]

C[1]

Z[1]

L

Z[1]

N

0n L
L and R used

to form
Z[1], Z[2], ...

EK

EK

M[2]

C[2]

Z[2]

Z[2]

M[m 2 1]

C[m 2 1]

Z[m 2 1]

Z[m 2 1]

tag

checksum

Z[m]

M[m]

C[m]

Z[m]

Y[m]

X[m]

L(21)

len

R

EK EK EK EK EK

Figure 23.6 OCB Encryption and Authentication

M23_STAL7484_08_GE_C23.indd 740 30/04/22 8:56 AM

23.3 / An oPEn-SouRCE IoT SECuRITy ModulE 741

in the message, it always produces the same ciphertext. Because of this, for lengthy
messages, the ECB mode may not be secure. OCB eliminates this property by using
an offset Z[i] for each block M[i], such that each Z[i] is unique; the offset is XORed
with the plaintext and XORed again with the encrypted output. Thus, with encryp-
tion key K we have

C3 i4 = EK1M3 i4 ⊕ Z3 i4 2 ⊕ Z3 i4
where EK1X2 is the encryption of plaintext X using key K, and { is the exclusive-OR
operation. Because of the use of the offset, two blocks in the same message that are
identical will produce two different ciphertexts.

The upper part of Figure 23.6 indicates how the Z3 i4 are generated. An arbi-
trary n-bit value N called the nonce is chosen; the only requirement is that if mul-
tiple messages are encrypted with the same key, a different nonce must be used each
time such that each nonce is only used once. Each different value of N will produce
a different set of Z3 i4 . Thus, if two different messages have identical blocks in the
same position in the message, they will produce different ciphertexts because the
Z3 i4 will be different.

The calculation of the Z3 i4 is somewhat complex and is summarized in the
following equations:

 L102 = L = EK(0n) where 0n is consists of n zero bits.

R = EK1N ⊕ L2
 L1 i2 = 2 # L1 i - 12 1 … i … m

Z314 = L ⊕ R

Z3 i4 = Z1 i - 12 ⊕ L1ntz1 i2 2 1 … i … m

The operator · refers to multiplication over the finite field GF12n2 . The operator
ntz1 i2 denotes the number of trailing (least significant) zeros in i. The resulting
Z3 i4 values are a maximal Hamming distance apart [WALK05].

Thus, the values Z3 i4are a function of both the nonce and the encryption key.
The nonce does not need to be kept secret and is communicated to the recipient in a
manner outside the scope of the specification.

Because the length of M may not be an integer multiple of n, the final block
is treated differently, as shown in Figure 23.6. The length of M[m], represented as
an n-bit integer, is used to calculate X3m4 = len1M3m4 2 ⊕ L1 -12 ⊕ Z3m4 .
L1 -12 is defined as L/2 over the finite field or, equivalently, L # 2

- 1
. Next,

Y3m4 = EK1X3m4 2 . Then, Y[m] is truncated to len(M[m]) bits (by deleting the
necessary number of least significant bits) and XORed with M[m]. Thus, the final
ciphertext C is the same length as the original plaintext M.

A checksum is produced from the message M as follows:

checksum = M314 ⊕ M324 ⊕ c ⊕ Y3m4 ⊕ C3m40*

where C[m]0* consists of C[m] padded with least significant bits to the length n.
Finally, an authentication tag of length t is generated, using the same key as is used
for encryption:

tag = first t bits of EK1checksum ⊕ Z3m4 2

M23_STAL7484_08_GE_C23.indd 741 30/04/22 8:56 AM

742 CHAPTER 23 / InTERnET of THIngS (IoT) SECuRITy

The bit length t of the tag varies according to the application. The size of the
tag controls the level of authentication. To verify the authentication tag, the de-
cryptor can recompute the checksum, then recompute the tag, and finally check that
is equal to the one that was sent. If the ciphertext passes the test, then OCB pro-
duces the plaintext normally.

Figure 23.7 summarizes the OCB algorithms for encryption and decryption. It
is easy to see that decryption is the inverse of encryption. We have

EK1M3 i4 ⊕ Z3 i4 2 ⊕ Z3 i4 = C3 i4
EK1M3 i4 ⊕ Z3 i4 2 = C3 i4 ⊕ Z3 i4

DK1EK1M3 i4 ⊕ Z3 i4 2 2 = DK1C3 i4 ⊕ Z3 i4 2
M3 i4 ⊕ Z3 i4 = DK1C3 i4 ⊕ Z3 i4 2
M3 i4 = DK1C3 i4 ⊕ Z3 i4 2 ⊕ Z3 i4

23.4 KEY TERMS AND REVIEW QUESTIONS

Key Terms

actuator
backbone network
cloud
core

edge
fog
information technology (IT)
Internet of Things (IoT)

microcontroller
operational technology (OT)
sensor
transceiver

Figure 23.7 OCB Algorithms

algorithm OCB-EncryptK(N, M)
Partition M into M[1]…M[m]
L L(0) EK(0n)
R

for i d 1 to m do L(i) d 2 ? L(i 21)
L(21) = L ⋅ 221
Z[1] d L R
for i 2 to m do Z[i] d Z[i 2 1] L(ntz(i))
for i 1 to m 2 1 do

C[i] EK(M[i] Z[i]) Z[i]
X[m] d len(M[m]) L(21) Z[m]
Y[m] d EK(X[m])
C[m] d M[m] ⊕ (first len(M[m]) bits of Y[m])
Checksum d

M[1] ⊕ … ⊕ M[m 21] ⊕ C[m]0* ⊕ Y[m]
Tag d EK(Checksum ⊕ Z[m]) [first t bits]

algorithm OCB-DecryptK(N, M)
Partition M into M[1]…M[m]
L d L(0) d EK(0n)

EK(N R d ⊕ L)
for i d 1 to m do L(i) d 2 ⋅ L(i 21)
L(21) = L ⋅ 221
Z[1] d L ⊕ R
for i d 2 to m do Z[i] ← Z[i 2 1] ⊕ L(ntz(i))
for i d 1 to m – 1 do

M[i] d DK(C[i] ⊕ Z[i]) ⊕ Z[i]
X[m] d len(M[m]) ⊕ L(21) ⊕ Z[m]
Y[m] d EK(X[m])
M[m] d (first len(C[m]) bits of Y[m]) ⊕ C[m]
Checksum d

M[1] ⊕ … ⊕ M[m 2 1] ⊕ C[m]0* ⊕ Y[m]
Tag' d EK(Checksum ⊕ Z[m]) [first t bits]

dd
d

d
d

d

⊕
⊕

⊕⊕

⊕ ⊕

EK(N ⊕ L)

M23_STAL7484_08_GE_C23.indd 742 30/04/22 8:56 AM

23.4 / KEy TERMS And REvIEw QuESTIonS 743

Review Questions
 23.1 Define the Internet of Things (IoT).
 23.2 List and briefly define the principal components of an IoT-enabled thing.
 23.3 Define the patching vulnerability.
 23.4 Define tamper resistance and tamper detection.
 23.5 What is MiniSec?

M23_STAL7484_08_GE_C23.indd 743 30/04/22 8:56 AM

744

Appendix A

BAsic concepts from LineAr ALgeBrA
A.1 Operations on Vectors and Matrices

Arithmetic
Determinants
Inverse of a Matrix

A.2 Linear Algebra Operations over Zn

Z01_STAL7484_08_GE_APPA.indd 744 06/04/22 12:16 PM

Appendix A / BAsic concepts from LineAr ALgeBrA 745

A.1 OPERATIONS ON VECTORS AND MATRICES

We use the following conventions:

1x1 x2 g xm2 ±
y1

y2

f
yn

≤ ±
a11 a12 g a1n

a21 a22 g a11

f f f f
am1 an2 g amn

≤

row vector X column vector Y matrix A
Note that in a matrix, the first subscript of an element refers to the row and the

second subscript refers to the column.

Arithmetic

Two matrices of the same dimensions can be added or subtracted element by
element. Thus, for C = A + B, the elements of C are cij = aij + bij.

Example: °
1 -2 3
0 4 5
3 6 9

¢ + °
3 0 -6
2 -3 1
9 6 3

¢ = °
4 -2 -3
2 1 6
12 12 12

¢

To multiply a matrix by a scalar, every element of the matrix is multiplied by the
scalar. Thus, for C = kA, we have cij = k * aij.

Example: 3°
1 - 2 3
0 4 5
3 6 9

¢ = °
3 - 6 9
0 12 15
9 18 27

¢

The product of a row vector of dimension m and a column vector of dimension m is
a scalar:

1x1 x2 g xm2 * ±
y1

y2

f
ym

≤ = x1y1 + x2y2 + c + xmym

Two matrices A and B are conformable for multiplication, in that order, if the num-
ber of columns in A is the same as the number of rows in B. Let A be of order
m * n (m rows and n columns) and B be of order n * p. The product is obtained
by multiplying every row of A into every column of B, using the rules just defined
for the product of a row vector and a column vector. Thus, for C = AB, we have

cij = a
n

k=1
aikbkj, and the resulting matrix is of order m * p. Notice that, by these rules,

we can multiply a row vector by a matrix that has the same number of rows as the

Z01_STAL7484_08_GE_APPA.indd 745 06/04/22 12:16 PM

746 Appendix A / BAsic concepts from LineAr ALgeBrA

dimension of the vector; and we can multiply a matrix by a column vector if the
 matrix has the same number of columns as the dimension of the vector. Thus, using
the notation at the beginning of this section: For D = XA, we end up with a row

vector with elements di = a
m

k=1
xkaki. For E = AY, we end up with a column vector

with elements ei = a
m

k=1
aikyk.

Example:

 12 -5 32 °
1 -2 3
0 4 5
3 6 9

¢ = 12 + 3 * 3 2 * 1-22+ 1-52* 4 + 3 * 6

2 * 3 +1-52* 5 + 3 * 92

 = 111 -6 82

Example: °
1 -2 3
0 4 5
3 6 9

¢ °
2

-5
3
¢ = °

1 * 2 + 1-22* 1-52+ 3 * 3
4 * 1-52+ 5 * 3

3 * 2 + 6 * 1-52+ 9 * 3
¢ = °

21
-5
3
¢

Determinants

The determinant of the square matrix A, denoted by det(A), is a scalar value repre-
senting sums and products of the elements of the matrix. For details, see any text on
linear algebra. Here, we simply report the results.

For a 2 * 2 matrix A, det1A2 = a11a22 - a21a12.

For a 3 * 3 matrix A, det1A2 = a11a22a33 + a12a23a31 + a13a21a32 - a31a22a13
 -a32a23a11 - a33a21a12

In general, the determinant of a square matrix can be calculated in terms of its
cofactors. A cofactor of A is denoted by cofij1A2 and is defined as the determinant
of the reduced matrix formed by deleting the ith row and jth column of A and choos-
ing positive sign if i + j is even and the negative sign if i + j is odd. For example:

cof23°
2 4 3
6 1 5

-2 1 3
¢ = -deta 2 4

-2 1
b = -10

The determinant of an arbitrary n * n square matrix can be evaluated as:

det(A) = a
n

j=1
3aijcofij(A)4 for any i

or

det(A) = a
n

i=1
3aijcofij(A)4 for any j

Z01_STAL7484_08_GE_APPA.indd 746 06/04/22 12:16 PM

Appendix A / BAsic concepts from LineAr ALgeBrA 747

For example:

det°
2 4 3
6 1 5

-2 1 3
¢ = a21cof21 + a22cof22 + a23cof23

= 6 * a-deta4 3
1 3

bb + 1 * deta 2 3
-2 3

b + 5 * a-deta 2 4
-2 1

bb

= 61-92 + 11122 + 51-102 = -92

Inverse of a Matrix

If a matrix A has a nonzero determinant, then it has an inverse, denoted as A-1.
The inverse has that property that AA-1 = A-1A = I, where I is the matrix that
is all zeros except for ones along the main diagonal from upper left to lower right.
I is known as the identity matrix because any vector or matrix multiplied by I results
in the original vector or matrix. The inverse of a matrix is calculated as follows.
For B = A-1,

bij =
cofji1A2
det1A2

For example, if A is the matrix in the preceding example, then for the inverse ma-
trix B, we can calculate:

b32 =
cof231A2
det1A2 =

-10
-92

=
10
92

Continuing in the fashion, we can compute all nine elements of B. Using Sage,
we can easily calculate the inverse:

sage: A = Matrix1332, 4, 34, 36, 1, 54, 3-2, 1, 3442
sage: A

3 2 4 34
3 6 1 54
3-2 1 34
sage: An-1

3 1>46 9>92 -17>924
3 7>23 -3>23 -2>23 4
3-2>23 5>46 11>464

Z01_STAL7484_08_GE_APPA.indd 747 06/04/22 12:16 PM

748 Appendix A / BAsic concepts from LineAr ALgeBrA

And we have:

 °
2 4 3
6 1 5

-2 1 3
¢ °

2�92
9�92

-17�92
28�92

-12�92
-8�92

-8�92
10�92

22�92

¢ = °
2�92

9�92
-17�92

28�92
-12�92

-8�92
-8�92

10�92
22�92

¢ °
2 4 3
6 1 5

-2 1 3
¢

 = °
1 0 0
0 1 0
0 0 1

¢

A.2 LINEAR ALGEBRA OPERATIONS OVER Zn

Arithmetic operations on vectors and matrices can be carried out over Zn; that is, all
operations can be carried out modulo n. The only restriction is that division is only
allowed if the divisor has an multiplicative inverse in Zn. For our purposes, we are
interested primarily in operations over Z26. Because 26 is not a prime, not every in-
teger in Z26 has a multiplicative inverse. Table A.1 lists all the multiplicative inverses
modulo 26. For example 3 * 9 = 1 mod 26, so 3 and 9 are multiplicative inverses of
each other.

Table A.1 Multiplicative Inverses mod 26

Value Inverse Value Inverse

1 1 15 7

3 9 17 23

5 21 19 11

7 15 21 5

9 3 23 17

11 19

As an example, consider the following matrix in Z26. A = a4 3
9 6

b . Then,

det1A2 = (4 * 6) - (3 * 9) mod 26 = -3 mod 26 = 23

From Table A.1, we have 1det1A2 2 - 1 = 17. We can now calculate the inverse
matrix:

A-1 = 1det1A22 -1acof111A2 cof211A2
cof121A2 cof221A2 b = 17 * a 6 -3

-9 4
b mod 26 = a24 1

3 16
b

To verify:

AA-1 = a4 3
9 6

b a24 1
3 16

b mod 26 = a105 52
234 105

b mod 26 = a1 0
0 1

b

Z01_STAL7484_08_GE_APPA.indd 748 06/04/22 12:16 PM

Appendix A / BAsic concepts from LineAr ALgeBrA 749

A-1A = a24 1
3 16

b a4 3
9 6

b mod 26 = a105 78
156 105

b mod 26 = a1 0
0 1

b

We now work out the details of the example of the Hill cipher from Section 3.2. First
we encrypt the plaintext (15 0 24) using the encryption key

K = °
17 17 5
21 18 21
2 2 19

¢

The encryption equation is C = PK mod 26. Therefore,

C = 115 0 242 °
17 17 5
21 18 21
2 2 19

¢ mod 26

= 1(15 * 17 + 0 * 21 + 24 * 2) (15 * 17 + 0 * 18 + 24 * 2)

115 * 5 + 0 * 21 + 24 * 192 2mod 26

= 1303 303 5312 mod 26

= 117 17 112
For decryption, we use the equation P = CK−1 mod 26. First, we compute the
 inverse of the matrix K. From the earlier definition of determinants, we have:

det1K2 = k11k22k33 + k12k23k31 + k13k21k32 - k31k22k13 - k32k23k11
- k33k21k12 mod 26

det1K2 = (17 * 18 * 19) + (17 * 21 * 2) + (5 * 21 * 2)(2 * 18 * 5)
- (2 * 21 * 17) - (19 * 21 * 17) mod 26

det1K2 = 5814 + 714 + 210 - 180 - 714 - 6783 mod 26

det1K2 = -939 mod 26 = 1-37 * 262 + 23 mod 26 = 23

From Table A.1, 1det1K22-1 = 17. We can now calculate the inverse matrix. For
convenience, we label the inverse of K as B = K-1. Using the results from Section
E.1, the matrix elements of B are as follows:

bij =
cofji1K2
det1K2 mod 26 = 17 * cofji1K2mod 26

For the matrix of this example, we have:

 b11 = ` 18 21
2 19

` * 17 mod 26 = 118 * 19 - 21 * 22 * 17 mod 26

 = 5100 mod 26 = 4

 b12 = - ` 17 5
2 19

` * 17 mod 26 = - 117 * 19 - 5 * 22 * 17 mod 26

 = -5321 mod 26 = 9

Z01_STAL7484_08_GE_APPA.indd 749 06/04/22 12:16 PM

750 Appendix A / BAsic concepts from LineAr ALgeBrA

 b13 = ` 17 5
18 21

` * 17 mod 26 = 117 * 21 - 5 * 182 * 17 mod 26

 = 4539 mod 26 = 15

 b21 = - ` 21 21
2 19

` * 17 mod 26 = - 121 * 19 - 21 * 22 * 17 mod 26

 = -6069 mod 26 = 15

 b22 = ` 17 5
2 19

` * 17 mod 26 = 117 * 19 - 5 * 22 * 17 mod 26

 = 5321 mod 26 = 17

 b23 = - ` 17 5
21 21

` * 17 mod 26 = - 117 * 21 - 5 * 212 * 17 mod 26

 = -4284 mod 26 = 6

 b31 = ` 21 18
2 2

` * 17 mod 26 = 121 * 2 - 18 * 22 * 17 mod 26

 = 102 mod 26 = 24

 b32 = - ` 17 17
2 2

` * 17 mod 26 = - 117 * 2 - 17 * 22 * 17 mod 26

 = 0 mod 26 = 0

 b33 = ` 17 17
21 18

` * 17 mod 26 = 117 * 18 - 17 * 212 * 17 mod 26

 = -867 mod 26 = 17

This yields an inverse matrix of

K−1 = °
4 9 15
15 17 6
24 0 17

¢

The decryption equation is P = CK - 1 mod 26. Therefore,

P = 117 17 112 °
4 9 15
15 17 6
24 0 17

¢ mod 26

= 1 117 * 4 + 17 * 15 + 11 * 242 117 * 9 + 17 * 17 + 11 * 02
117 * 15 + 17 * 6 + 11 * 172 2mod 26

= 1587 442 5442 mod 26

= 115 0 42
which is the original plaintext.

Z01_STAL7484_08_GE_APPA.indd 750 06/04/22 12:16 PM

751

Appendix B

MeAsures of secrecy And security

B.1 Conditional Probability
B.2 Perfect Secrecy
B.3 Information and Entropy

Information
Entropy
Properties of the Entropy Function
Conditional Entropy

B.4 Entropy and Secrecy
B.5 Min-Entropy

Z02_STAL7484_08_GE_APPB.indd 751 06/04/22 12:18 PM

752 Appendix B / MeAsures of secrecy And security

In this appendix, we look at measures of secrecy and security of cryptosystems from
two different points of view. First, we use concepts of conditional probability to
discuss the concept of perfect secrecy. We then reformulate the results obtained in
terms of entropy, which in turn depends on concepts of conditional probability. For
the reader who needs a refresher, the chapter opens with a brief introduction to
conditional probability.

All of the concepts in this appendix were first introduced in Shannon’s land-
mark 1949 paper [SHAN49], which is included in the Document section at box.com/
Crypto8e.

B.1 CONDITIONAL PROBABILITY

We often want to know a probability that is conditional on some event. The effect of
the condition is to remove some of the outcomes from the sample space. For example,
what is the probability of getting a sum of 8 on the roll of two dice, if we know that the
face of at least one die is an even number? We can reason as follows. Because one die
is even and the sum is even, the second die must show an even number. Thus, there are
three equally likely successful outcomes: (2, 6), (4, 4) and (6, 2), out of a total set of pos-
sibilities of [36 - 1number of events with both faces odd24 = 36 - (3 * 3) = 27.
The resulting probability is 3>27 = 1>9.

Formally, the conditional probability of an event A assuming the event B has
occurred, denoted by Pr3A �B4, is defined as the ratio

Pr3A �B4 =
Pr3AB4
Pr3B4

where we assume Pr[B] is not zero.
In our example, A = 5sum of 86 and B = 5at least one die even6. The quantity

Pr[AB] encompasses all of those outcomes in which the sum is 8 and at least one die is
even. As we have seen, there are three such outcomes. Thus, Pr3AB4 = 3>36 = 1>12.
A moment’s thought should convince you that Pr3B4 = 3>4. We can now calculate

Pr3A �B4 =
1>12

3>4
=

1
9

This agrees with our previous reasoning.
Two events A and B are called independent if Pr3AB4 = Pr3A4Pr3B4.

It can easily be seen that if A and B are independent, Pr3A �B4 = Pr3A4 and
Pr3B �A4 = Pr3B4.

B.2 PERFECT SECRECY

What does it mean that a crypto system is secure? Of course, if the adversary finds
the entire plaintext or the entire secret key, that would be a severe failure. But even
if the adversary finds a small part of the plaintext or the key, or even if the adversary

Z02_STAL7484_08_GE_APPB.indd 752 06/04/22 12:18 PM

http://box.com/Crypto8e
http://box.com/Crypto8e

Appendix B / MeAsures of secrecy And security 753

determines that, say, the first letter of the plaintext is more likely to be an A than
the usual frequency of an A at the beginning of a word in a typical English text, that
would also be a weakness.

A cryptosystem is secure against an attack if the adversary does not learn any-
thing after the attack compared to what he/she knew before the attack. In this sec-
tion, we consider the case of the ciphertext-only attack. The other types of attacks
can be formalized similarly. We define two types of secrecy:

 ■ Perfect secrecy: The adversary does not learn anything, no matter his/her com-
putational power and how much time the attack takes. This is the ideal, but
cannot be realized by practical cryptosystems.

 ■ Computational secrecy: The adversary does not learn anything unless he/she
is performing more than N operations, where N is some huge number (so that
the attack takes thousands of years). This is good enough and may be achieved
by practical cryptosystems.

To formally define the notion of secrecy we first introduce some notation:

 ■ M is a random variable that denotes a message chosen from the set of messages M.
M is characterized by its distribution (see example below).

 ■ K is a random variable that denotes the encryption key chosen from the set of
keys K. The key K is chosen uniformly at random (i.e., all the keys are equally likely).

 ■ C is the encryption of M, i.e., C = E1K, M2
Simple example: Suppose the message comes from a military base. Assume

that the base sends only three messages: “nothing to report,” “attack with 5 planes,”
and “attack with 10 planes.” Then M = {“nothing to report,” “attack with 5 planes,”
“attack with 10 planes”}

This is called the set of messages. We can endow a set of messages with a prob-
ability distribution (in short, just distribution), indicating how likely each message is.
For example, one possible distribution of M can be

anothing to report attack with 5 planes attack with 10 planes
0.6 0.3 0.1

b

We should assume that the attacker knows the distribution of M (similar to knowing
the frequency of letters in English).

We are now in a position to formally define the term perfect secrecy, or perfect
security. Before doing so, it is instructive to quote Shannon’s description.

“Perfect Secrecy” is defined by requiring of a system that after a
cryptogram is intercepted by the enemy the a posteriori probabili-
ties of this cryptogram representing various messages be identi-
cally the same as the a priori probabilities of the same messages
before the interception. It is shown that perfect secrecy is possible
but requires, if the number of messages is finite, the same number
of possible keys. If the message is thought of as being constantly
generated at a given “rate” R, key must be generated at the same
or a greater rate.

Z02_STAL7484_08_GE_APPB.indd 753 06/04/22 12:18 PM

754 Appendix B / MeAsures of secrecy And security

We develop two different versions or the definition of perfect secrecy.

Definition 1. An encryption scheme over message space M is perfectly
 secure—version 1.

If for all distributions M over M, for any fixed message m and for any
fixed ciphertext c, we have

Pr3M = m � E1K, M2 = c4 = Pr3M = m4
Here the probabilities are taken over the distribution of M and over choos-
ing the key K uniformly at random in the space of all keys. We can make the
following observations.

1. The definition is equivalent to saying that M and E1K, M2 are
independent.

2. What the definition is saying: The distribution on M is supposed to be
known by the adversary. We require that the cryptosystem does not leak
any additional information. This is captured in the definition by saying
that knowing the ciphertext c does not change the distribution M.

3. We have argued intuitively (Section 3.2) that the one-time pad has the
above property. Now we can prove this assertion rigorously.

Theorem 1. A one-time pad is perfectly secure.

Proof of a special case (the general case is similar): Let M= 50, 16 – just
two messages. Let us denote C = E1K, M2 = K ⊕ M. We first observe that

Pr3M = 0 �C = 04 =
Pr3(M = 0) ¨ (C = 0)4

Pr3C = 04 =
Pr3(M = 0) ¨ (M ⊕ K = 0)4

Pr3C = 04

=
Pr3(M = 0) ¨ (K = 0)4

Pr3C = 04 =
Pr3M = 04Pr3K = 04

Pr3C = 04
Now we show that Pr3K = 04 = Pr3C = 04 = 1/2. Therefore,

these two terms cancel in the above equation yielding
Pr3M = 0 �C = 04 = Pr3M = 04. The same argument applies for the oth-
er combinations of M and C.

Pr3K = 04 = 1>2 is obvious, because there are two equally likely keys
(namely 0 and 1).

 Pr3C = 04 = Pr3M = 0 ¨ K = 04 + Pr3M = 1 ¨ K = 14
 = Pr3M = 04 * Pr3K = 04 + Pr3M = 14 * Pr3K = 14
 = Pr3M = 04 * 1>2 + Pr3M = 14 * 1>2

 = 1>2 * 1Pr3M = 04 + Pr3M = 142
 = 1>2

In the case of the one-time pad cryptosystem, the key is as long as the
message, which means that the space of keys is as large as the space of
messages. The next theorem shows that this is the case for any encryption

Z02_STAL7484_08_GE_APPB.indd 754 06/04/22 12:18 PM

Appendix B / MeAsures of secrecy And security 755

scheme that is perfectly secure—version 1. In other words, any encryption
scheme that is perfectly secure—version 1 suffers from the same impracti-
cality issue as the one-time pad.

Notation: � �A � � denotes the number of elements of the finite set A.

Theorem 2. If an encryption scheme is perfectly secure—version 1 over
message space M, then the set of keys K must satisfy � �K � � Ú � �M � � .

Proof. Let c be a ciphertext. Suppose � �K � � 6 � �M � � . Then when we de-
crypt c with all possible keys, we obtain at most � �K � � possible plaintexts.
So there is a message m that is not obtained. Then Pr3M = m �C = c4 = 0.
But clearly we can make a distribution with P1M = m2 7 0, so this prob-
ability relation violates the definition of perfectly secure—version 1.

For example, if we look at messages that are 1000 bits long, there are
21000 possible messages, and we need at least 21000 keys, so a key on aver-
age must be at least 1000 bits long. So, a perfectly secure—version 1 is too
much to ask, because it can be achieved only by very impractical encryption
schemes (such as one-time pad).

The definition of an encryption that is perfectly secure—version 1 may
seem to be too abstract and not be very convincing. Let us try another attempt
for defining secrecy. This definition has the merit that it models the fact that
the adversary does not get anything if she is doing a ciphertext-only attack.

Definition 2. An encryption scheme over message set M is perfectly
secure—version 2 if for any two messages m1 and m2 in M and for any
algorithm A, we have

Pr3A1C2 = m1 �C = E(K, m1)4 = Pr3A1C2 = m1 �C = E(K, m2)4
We can make the following observations.

1. Think of A as an attacker that wants to guess whether C is the encryption
of m1 or of m2.

2. The definition assumes that the enemy does a ciphertext-only attack, be-
cause A has as input only C. Security against the other kind of attacks can
be defined (more or less) similarly.

3. The probabilities are taken over the random choice of the key from K
(and the random decisions of A if A is a probabilistic algorithm).

4. Instead of equality, suppose that the left-hand side of the above equation
is greater than the right-hand side. A successful attacker would have the
left-hand side big (ideally 1) and the right-hand side small (ideally 0).

5. The definition says that A is not doing any better at guessing the message
when it is given an encryption of m1 than when it is given an encryption
of m2.

Theorem 3. Perfectly secure—version 2 = perfectly secure—version 1. (this
means that an encryption scheme is secure according to version 1 if and only
if it is secure according to version 2).

We omit the proof. It is not hard, but it is long.

Z02_STAL7484_08_GE_APPB.indd 755 06/04/22 12:18 PM

756 Appendix B / MeAsures of secrecy And security

Thus, perfectly secure—version 2 cannot be achieved by practical
 encryption schemes either. So we adopt a more relaxed definition, which is
computational secrecy.

Definition 3. Let e be a small parameter (e.g., e = 0:0001) and N be a large
parameter (e.g., N = 1080). An encryption scheme over message space M is
computationally secure (with parameters e and N) if for any two messages
m1 and m2 in M and for any algorithm A that performs N operations, we
have:

�Pr3A1C2 = m1 �C = E1K, m124 - Pr3A1C2 = m1 �C = E1K, m224 � 6 e

We can make the following observations.

1. There are two relaxations compared with “perfectly secure—version 2.”

 ■ We don’t require equality between the two probabilities, just closeness
within e.

 ■ And it is acceptable if the attacker can break the system by doing a
huge number of operations: if an attacker must spend billions of year
to break the cryptosystem, then the cryptosystem is considered secure.

2. The above definition only defines security against ciphertext-only at-
tacks. In the same spirit, we can define computational secrecy against
stronger types of attacks, such as chosen plaintext attack, or chosen ci-
phertext attack.

3. What should be the concrete values for N (the number of operation
we allow the adversary to do) and e (the bias we allow the adversary
to achieve)? A common recommendations is that it is acceptable if no
adversary running for at most N = 280 CPU cycles can break the system
with probability greater than 2 - 64.

Let’s get a feel for these values. Computation on the order of N = 260 is
barely within reach today. Running on a 3-GHz computer (that executes
3 * 109 cycles per second), 260 cycles require 260> 13 * 1092 seconds or
about 12 years. 280 is 220 ≈ 106 times longer than that. The number of sec-
onds since the Big Bang is estimated to be in the order of 258.

An event that occurs once every hundred years can be roughly esti-
mated to occur with probability 2 - 30 in any given second. Something that
occurs with probability 2 - 60 in any given second is 230 times less likely and
might be expected to occur roughly once every 100 billion years.

B.3 INFORMATION AND ENTROPY

At the heart of information theory are two mathematical concepts with names that
can be misleading: information and entropy. Typically, one thinks of information as
having something to do with meaning; entropy is a term familiar from the second
law of thermodynamics. In the discipline of information theory, information has to

Z02_STAL7484_08_GE_APPB.indd 756 06/04/22 12:18 PM

Appendix B / MeAsures of secrecy And security 757

do with the reduction in the uncertainty about an event and entropy is an averaging
of information values that happens to have a mathematical form identical to that for
thermodynamic entropy.

Let us approach this new definition of information by way of an example. Imag-
ine an investor who needs information (advice) about the status of certain securities,
and who consults a broker with special information (knowledge) in that area. The
broker informs (tells) the investor that, by coincidence, a federal investigator had
come by just that morning seeking information about (evidence of) possible fraud by
the corporation issuing that particular stock. In response to this information (data),
the investor decides to sell, and so informs (notifies) the broker.

Put another way, being uncertain how to evaluate a portion of his/her portfo-
lio, the client consults someone more certain than he/she about this aspect of the
market. The broker relieves his/her client’s uncertainty about relevant happenings
by recounting the visit of the federal investigator, who had uncertainties to resolve of
a professional nature. As an upshot of his/her increased certainty about the state of
her securities, the client removes any uncertainty in the mind of the broker about her
intention to sell.

Although the term information may signify notification, knowledge, or simply
data, in each case the imparting of information is equivalent to the reduction in un-
certainty. Information thus signifies the positive difference between two uncertainty
levels.

Information

If we are to deal with information mathematically, then we need some quantity that is
appropriate for measuring the amount of information. This problem was first raised,
and solved, by Hartley in 1928 while studying telegraph communication [HART28].
Hartley observed that if the probability that an event will occur is high (close to 1),
there is little uncertainty that it will occur. If we subsequently learn that it has oc-
curred, then the amount of information gained is small. Thus, one plausible measure
is the reciprocal of the probability of the occurrence of an event: 1>p. For example,
an event that has an initial probability of occurrence of 0.25 conveys more informa-
tion by its occurrence than one with an initial probability of 0.5. If the measure of
information is 1>p, then the occurrence of the first event conveys an information
value of 4 (1/0.25) and the occurrence of the second event conveys an information
value of 2 (1/0.5). But there are two difficulties in using this measure of information:

1. This measure does not seem to “work” for sequences of events. Consider a bi-
nary source that issues a stream of ones and zeros with equal probability of a
one or zero for each bit. Thus, each bit has an information value of 2 (1/0.5).
But if bit b1 conveys a value of 2, what is the information conveyed by the string
of two bits b1b2? This string can take on one of four possible outcomes, each with
probability 0.25; therefore, by the 1>p measure, an outcome conveys an informa-
tion value of 4. Similarly, the information value of 3 bits 1b1b2b32 is eight. This
means that b2 adds two units of information to the two of b1, which is reasonable
because the 2 bits have the same information value. But b3 will add an additional
four units of information. Extending the sequence, b4 will add eight units of in-
formation, and so on. This does not seem reasonable as a measure of information.

Z02_STAL7484_08_GE_APPB.indd 757 06/04/22 12:18 PM

758 Appendix B / MeAsures of secrecy And security

2. Consider an event that gives rise to two or more independent variables. An
example is a phase-shift-keying (PSK) signal that uses four possible phases
and two amplitudes. A single signal element yields two units of information for
the amplitude and four for the phase, for a total of six units by our measure.
Yet each signal element is one of eight possible outcomes and hence ought to
yield eight units of information by our measure.

Hartley overcame these problems by proposing that the measure of information for
the occurrence of an event x be log11>P1x22, where P1x2 denotes the probability of
occurrence of event x. Formally,

 I1x2 = log11>P1x22= - log P1x2 (B.1)

This measure “works” and leads to many useful results. The base of the logarithm
is arbitrary but is invariably taken to the base 2, in which case the unit of measure is
referred to as a bit. The appropriateness of this designation should be obvious as we
proceed. Base 2 logarithms are assumed in the rest of this discussion. We can make
the following observations:

1. A single bit that takes on the values 0 and 1 with equal probability conveys
one bit of information 1log11>0.52 = 12. A string of two such bits takes on
one of four equally likely outcomes with probability 0.25 and conveys two bits
of information 1log11>0.252 = 22. Therefore, the second bit adds one bit of
information. In a sequence of three independent bits, the third bit also adds
one bit of information 1log11>0.1252 = 32, and so on.

2. In the example of the PSK signal, a single signal element yields one bit of
information for the amplitude and two for the phase, for a total of 3 bits, which
agrees with the observation that there are eight possible outcomes.

Figure B.1 shows the information content for a single outcome as a function of
the probability p of that outcome. As the outcome approaches certainty 1p = 12,
the information conveyed by its occurrence approaches zero. As the outcome
approaches impossibility 1p = 02, its information content approaches infinity.

Entropy

The other important concept in information theory is entropy, or uncertainty,1 which
was proposed in 1948 by Shannon, the founder of information theory. Shannon de-
fined the entropy H as the average amount of information obtained from the value
of a random variable. Suppose we have a random variable X, which may take on the
values x1, x2, c, xN , and that the corresponding probabilities of each outcome are
P(x1), P(x2), c, P(xN) . In a sequence of K occurrences of X, the outcome xj will
on average be selected KP(xj) times. Therefore, the average amount of information
obtained from K outcomes is [using Pj as an abbreviation for P(xj)]:

KP1 log(1>P1) + c + KPN log(1>PN)

1 Shannon used the term entropy because the form of the function H is the same as the form of the en-
tropy function in statistical thermodynamics. Shannon interchangeably called H the uncertainty function.

Z02_STAL7484_08_GE_APPB.indd 758 06/04/22 12:18 PM

Appendix B / MeAsures of secrecy And security 759

Dividing by K yields the average amount of information per outcome for the ran-
dom variable, referred to as the entropy of X, and designated by H1X2:

 H(X) = a
N

j=1
Pj log (1/Pj) = - a

N

j=1
Pj log (Pj) (B.2)

The function H is often expressed as an enumeration of the probabilities of the
possible outcomes: H(P1, P2, c , PN).

As an example, consider a random variable X that takes on two possible values
with respective probabilities p and 1 - p. The entropy associated with X is

H(p, 1 - p) = -plog1p2 - (1 - p)log(1 - p)

Figure B.2 plots H1X2 for this case as a function of p. Several important features
of entropy are evident from this figure. First, if one of the two events is certain
1p = 1 or p = 02, then the entropy is zero.2 One of the two events has to occur
and no information is conveyed by its occurrence. Second, the maximum value of
H1X2 = 1 is reached when the two outcomes are equally likely. This seems reason-
able: the uncertainty of the outcome is maximum when the two outcomes are equal-
ly likely. This result generalizes to a random variable with N outcomes: its entropy is
maximum when the outcomes are equally likely:

max H(P1, P2 , c , PN) = H11>N, 1>N, c , 1>N2

1.00.50.0
Probability p

10

9

8

7

6

5

4

3

2

1

0

lo
g 2

(1
/p

)

Figure B.1 Information Measure for a Single Outcome

2 Strictly speaking, the formula for H1X2 is undefined at p = 0. The value is assumed to be 0 for p = 0.
This is justified because the limit of H1X2 as p goes to 0 is 0.

Z02_STAL7484_08_GE_APPB.indd 759 06/04/22 12:18 PM

760 Appendix B / MeAsures of secrecy And security

For example:

H11>3, 1>3, 1>32 = 1>3 log 3 + 1>3 log 3 + 1>3 log 3 = 1.585

whereas

 H11>2, 1>3, 1>62 = 1>2 log 2 + 1>3 log 3 + 1>6 log 6 = 0.5 + 0.528 + 0.43
 = 1.458

Properties of the Entropy Function

We have developed the entropy formula H1X2 by an intuitive line of reasoning.
Another approach is to define the properties that an entropy function should have
and then prove that the formula - a

j
Pj log Pj is the only formula that has these

properties. These properties, or axioms, can be stated as follows:

1. H is continuous over the range of probabilities. Thus, small changes in the
probability of one of the occurrences only cause small changes in the uncer-
tainty. This seems a reasonable requirement.

2. If there are N possible outcomes and they are equally likely, so that Pj = 1>N,
then H1X2 is a monotonically increasing function of N. This is also a reason-
able property because it says that the more equally likely outcomes, the larger
the uncertainty.

3. If some of the outcomes of X are grouped, then H can be expressed as a
weighted sum of entropies in the following fashion:

1.0

0.8

0.6

0.4

0.2

0.0

E
nt

ro
py

 H
 (f

or
 tw

o
ou

tc
om

es
)

1.00.90.80.70.60.50.40.30.20.10.0
Probability of first outcome p

Figure B.2 Entropy Function for Random Variable with Two
Outcomes

Z02_STAL7484_08_GE_APPB.indd 760 06/04/22 12:18 PM

Appendix B / MeAsures of secrecy And security 761

H1P1, P2, P3, c , PN2 = H1P1 + P2, P3, c , PN2+ 1P1 + P22H a P1

P1 + P2
,

P2

P1 + P2
b

The reasoning is as follows. Before the outcome is known, the average uncer-
tainty associated with the outcome is H(P1, P2, P3, c , PN). If we reveal which out-
come has occurred, except that the first two outcomes are grouped together, then the
average amount of uncertainty removed is H(P1 + P2, P3, c , PN). With probability
(P1 + P2), one of the first two outcomes occurs and the remaining uncertainty is
H3P1>(P1 + P2) + P2>(P1 + P2)4.

The only definition of H1X2 that satisfies all three properties is the one that we
have given. To see property (1), consider Figure B.2, which is clearly continuous in p.
It is more difficult to depict H1X2 when there are more than two possible outcomes,
but the fact of continuity should be clear.

For property (2), if there are N equally likely outcomes, then H1X2 becomes

H(X) = - a
N

j=1

1
N

 log a 1
N
b = - log a 1

N
b = log(N)

The function log1N2 is a monotonically increasing function of N. Note that with
four possible outcomes, the entropy is 2 bits; with eight possible outcomes, the en-
tropy is 3 bits, and so on.

As a numerical example of property (3), we may write

 H a 1
2

,
1
3

,
1
6
b = H a 5

6
,

1
6
b +

5
6

H a 3
5

,
2
5
b

 1.458 = 0.219 + 0.43 +
5
6
10.442 + 0.52882

 = 0.649 + 0.809

Conditional Entropy

Shannon defines the conditional entropy of Y given X, expressed as H1Y �X2, as
the uncertainty about Y given knowledge of X. This conditional entropy is defined
as follows:

H(Y �X) = -a
x,y

Pr1x, y2 log Pr1y � x2

where

x = a value contained in the set X

y = a value contained in the set Y
Pr1x, y2 = probability of the joint occurrence of x for the value in X and y for the
value in Y.

Conditional uncertainties obey intuitively pleasing rules, such as:

H1X, Y2 = H1X2 + H1Y �X2

Z02_STAL7484_08_GE_APPB.indd 761 06/04/22 12:18 PM

762 Appendix B / MeAsures of secrecy And security

B.4 ENTROPY AND SECRECY

For a symmetric encryption system, the basic equations are C = E1K, M2
and M = E1K, C2. These equations can be written equivalently, in terms of
uncertainties as

H1C �K, M2 = 0

and

 H1M �K, C2 = 0 (B.3)

respectively, because, for instance H1C �K, M2 is zero if and only if, M and K unique-
ly determine C, which is a basic requirement of symmetric encryption.

Shannon’s definition of perfect secrecy can then be written as:

 H1M �C2 = H1M2 (B.4)

because this equality holds if and only if M is statistically independent of C.
For any secret key cryptosystem, we can write

H1M �C2 … H1M, K �C2

= H1K �C2 + H1M �K, C2

= H1K �C2

 … H1K2 (B.5)

where we have used Equation (B.3) and the fact that removal of given knowledge
can only increase uncertainty. If the cryptosystem provides perfect secrecy, it follows
from Equations (B.4) and (B.5) that

 H1K2 Ú H1M2 (B.6)

Inequality (B.6) is Shannon’s fundamental bound for perfect secrecy. The uncer-
tainty of the secret key must be at least as great as the uncertainty of the plaintext
that it is concealing. Let us assume we are dealing with binary values; that is, the
plaintext, key, and ciphertext are represented as binary strings. Then we can say that
for a key of length k bits,

 H1K2 … - log(2 - k) = k (B.7)

with equality if and only if the key is completely random. Similarly, if the length of
the plaintext is q, then

 H1M2 … - log(2 - q) = q (B.8)

with equality if and only if the plaintext is completely random, which means each
q-bit plaintext is equally likely to occur. Combining inequalities (B.6, B.7, B.8), the
requirement for perfect secrecy if the plaintext is completely random is k Ú q.
That is, the key must be at least as long as the plaintext. For the one-time pad, we
have k = q.

Z02_STAL7484_08_GE_APPB.indd 762 06/04/22 12:18 PM

Appendix B / MeAsures of secrecy And security 763

B.5 MIN-ENTROPY

A concept that is increasingly significant in cryptographic applications is min-entropy.
Before looking at a mathematical definition, it will be useful in understanding the
significance of min-entropy to look at two definitions from NIST.

NIST 800-90C (Recommendation for Random Bit Generator Constructions,
 August 2012) gives the following definition:

A measure of the difficulty that an Attacker has to guess the most commonly chosen
password used in a system. In this document, entropy is stated in bits. When a pass-
word has n bits of min-entropy, then an Attacker requires as many trials to find a
user with that password as is needed to guess an n-bit random quantity. The Attacker
is assumed to know the most commonly used password(s).

The min-entropy (in bits) of a random variable X is the largest value m having the
property that each observation of X provides at least m bits of information (i.e., the
min-entropy of X is the greatest lower bound for the information content of poten-
tial observations of X). The min-entropy of a random variable is a lower bound on
its entropy. Min-entropy is often used as a worst-case measure of the unpredictabil-
ity of a random variable.

NIST800-63-1 (Electronic Authentication Guideline, December 2008) defines
min-entropy as follows:

Let us now define min-entropy mathematically and confine ourselves to crypto-
graphic keys of length k bits. Thus, the key K can take on one of N = 2k values in the
range 0 … K … (2k - 1). If each value of K is equally likely, then each value occurs
with probability 2 - k = 1>N and the uncertainty, or entropy, associated with K can
be expressed as:

H(K) = a
N

j = 1
Pj log (1/ Pj) = a

N

j = 1
2 - k log a2kb = ka

N

j = 1
2-k = ka

N

j = 1

1
N

= k

where

Pj = probability that the key value = j - 1 (e.g., P1 = Pr3K = 04;
 PN = Pr3K = 2k - 14)
N = 2k

In this situation, there are k bits of information and an adversary would have
to try an average of half the values, or 2k - 1, before correctly guessing the key value.

Now, suppose that the key value is generated by a pseudorandom number gen-
erator. If the PRNG exhibits perfect randomness, then each possible key value is
equally likely. However, if the PRNG has some bias or skew, then at least some of

Z02_STAL7484_08_GE_APPB.indd 763 06/04/22 12:18 PM

764 Appendix B / MeAsures of secrecy And security

the key values will have a probability that is greater or less than 2 - k, with the proviso

that a
N

j = 1
Pj = 1.

For this circumstance, it is useful to define the min-entropy H∞ 1K2 as follows:

H∞ 1K2 = min a log a 1
Pj
b b = log amin a 1

Pj
b b = - log1max1Pj22

Another way of wording this is as follows:

A k-bit random key K has min-entropy at least n, if for every j, 0 … j 6 2k, it holds
that Pr3K = j4 … 2 - n. Note that we must have n … k.

If all of the outcomes are equally likely (i.e., if Pj = 2 - k for 0 … j 6 2k),
then H ∞ 1K2 = H1K2 = k. But if not all outcomes are equally likely, then
H ∞ 1K2 6 H1K2, and the value of H ∞ 1K2 is determined by the most likely out-
come. So, for example, if outcome j is twice is as likely to occur as the average outcome
(Pj = 2 - k + 1), and is the most likely outcome, then H ∞ 1K2 = k - 1. Another way
to describe this formulation is that if K has min-entropy m, then the probability of
observing any particular value is no greater than 2 - m.

Let us look at a simple example of a 3-bit key. If all of the outcomes are equally
likely, then H1K2 = 3, so that a key value provides 3 bits of information. Now sup-
pose the probability distribution is not uniform, as indicated in the following table:

I Pi log(1>Pi) Pi log (1>Pi)

0 1/16 4 1/4

1 1/4 2 1/2

2 1/8 3 3/8

3 1/8 3 3/8

4 1/16 4 1/4

5 1/16 4 1/4

6 1/8 3 3/8

7 3/16 log1162 - log132 ≈ 2.415 ≈ 0.453

Then we have:

 H1K2 = a
8

i = 1
Pi log11>Pi2 =

1
4

+
1
2

+
3
8

+
3
8

+
1
4

+
1
4

+
3
8

+ 0.453 = 2.828

 H∞ 1K2 = min a log a 1
Pi
b b = 2

Thus, the average entropy of a sample is 2.828 bits, and every sample has at least
2 bits of entropy.

How does all this relate to the security of a key? We have stated that if all of the
2k possible values of a k-bit key are equally likely, then an adversary would have to
attempt, on average, 2k>2 = 2k - 1 values to successfully guess the actual key value.

Z02_STAL7484_08_GE_APPB.indd 764 06/04/22 12:18 PM

Appendix B / MeAsures of secrecy And security 765

That is, the adversary has a level of effort of 2k - 1 = 2H1K2 - 1. If, however, the PRNG
source that produced the key is not truly random, then the key variable will have an
entropy H1K2 6 2k. It will still take, on average, a level of effort of 2H1K2 - 1 to dis-
cover a key. More importantly, the worst-case level of effort is just 2H ∞ 1K2 - 1.

A simple example may help to make this clear. Suppose the PRNG used to
generate a key has a bias so that it produces, on average, more 1s than 0s. If the ad-
versary knows this, then the adversary can proceed to first guess keys with more 1s
than 0s and thus find the actual key more quickly than if everything were completely
random. The same argument applies to a hardware RNG, which is assumed to be a
true RNG but which in fact has some bias or skew. This is why RNGs such as Intel
use cryptographic algorithms on the output of a hardware RNG to eliminate bias
and maximize entropy. More specifically, such schemes are designed to maximize
min-entropy.

Z02_STAL7484_08_GE_APPB.indd 765 06/04/22 12:18 PM

766

The overall scheme for DES encryption is illustrated in Figure C.1, which repeats
Figure 4.5. As with any encryption scheme, there are two inputs to the encryption
function: the plaintext to be encrypted and the key. In this case, the plaintext must be
64 bits in length and the key is 56 bits in length.1

Appendix C

dAtA enCryption StAndArd

1Actually, the function expects a 64-bit key as input. However, only 56 of these bits are ever used; the
other 8 bits can be used as parity bits or simply set arbitrarily.

Initial Permutation

Permuted Choice 2Round 1

32-bit Swap

Inverse Initial
Permutation

Permuted Choice 1

Round 2

Round 16

 • • • • • • • • •

64-bit plaintext

 • • • • • • • • •

64-bit key

K1

K2

K16

 • • • • • • • • •

64-bit ciphertext

Left circular shift

Permuted Choice 2 Left circular shift

Permuted Choice 2 Left circular shift

64 56

56

56

56

48

48

48

56 64

64 bits

Figure C.1 General Depiction of DES Encryption Algorithm

Z03_STAL7484_08_GE_APPC.indd 766 06/04/22 12:20 PM

Appendix C / dAtA enCryption StAndArd 767

Table C.1 Permutation Tables for DES

(a) Initial Permutation (IP)

58 50 42 34 26 18 10 2

60 52 44 36 28 20 12 4

62 54 46 38 30 22 14 6

64 56 48 40 32 24 16 8

57 49 41 33 25 17 9 1

59 51 43 35 27 19 11 3

61 53 45 37 29 21 13 5

63 55 47 39 31 23 15 7

Looking at the left-hand side of the figure, we can see that the processing of
the plaintext proceeds in three phases. First, the 64-bit plaintext passes through an
initial permutation (IP) that rearranges the bits to produce the permuted input.
This is followed by a phase consisting of 16 rounds of the same function, which
involves both permutation and substitution functions. The output of the last (six-
teenth) round consists of 64 bits that are a function of the input plaintext and the
key. The left and right halves of the output are swapped to produce the preoutput.
Finally, the preoutput is passed through a permutation (IP-1) that is the inverse of
the initial permutation function, to produce the 64-bit ciphertext. With the excep-
tion of the initial and final permutations, DES has the exact structure of a Feistel
cipher, as shown in Figure 4.3.

The right-hand portion of Figure C.1 shows the way in which the 56-bit key
is used. Initially, the key is passed through a permutation function. Then, for
each of the 16 rounds, a subkey (Ki) is produced by the combination of a left
circular shift and a permutation. The permutation function is the same for each
round, but a different subkey is produced because of the repeated shifts of the
key bits.

Initial Permutation

The initial permutation and its inverse are defined by tables, as shown in Tables C.1a
and C.1b, respectively. The tables are to be interpreted as follows. The input to a table
consists of 64 bits numbered from 1 to 64. The 64 entries in the permutation table
contain a permutation of the numbers from 1 to 64. Each entry in the permutation
table indicates the position of a numbered input bit in the output, which also consists
of 64 bits.

Z03_STAL7484_08_GE_APPC.indd 767 06/04/22 12:20 PM

768 Appendix C / dAtA enCryption StAndArd

(b) Inverse Initial Permutation (IP-1)

40 8 48 16 56 24 64 32

39 7 47 15 55 23 63 31

38 6 46 14 54 22 62 30

37 5 45 13 53 21 61 29

36 4 44 12 52 20 60 28

35 3 43 11 51 19 59 27

34 2 42 10 50 18 58 26

33 1 41 9 49 17 57 25

(c) Expansion Permutation (E)

32 1 2 3 4 5

4 5 6 7 8 9

8 9 10 11 12 13

12 13 14 15 16 17

16 17 18 19 20 21

20 21 22 23 24 25

24 25 26 27 28 29

28 29 30 31 32 1

(d) Permutation Function (P)

16 7 20 21 29 12 28 17

1 15 23 26 5 18 31 10

2 8 24 14 32 27 3 9

19 13 30 6 22 11 4 25

To see that these two permutation functions are indeed the inverse of each
other, consider the following 64-bit input M:

M1 M2 M3 M4 M5 M6 M7 M8

M9 M10 M11 M12 M13 M14 M15 M16

M17 M18 M19 M20 M21 M22 M23 M24

M25 M26 M27 M28 M29 M30 M31 M32

M33 M34 M35 M36 M37 M38 M39 M40

M41 M42 M43 M44 M45 M46 M47 M48

M49 M50 M51 M52 M53 M54 M55 M56

M57 M58 M59 M60 M61 M62 M63 M64

Z03_STAL7484_08_GE_APPC.indd 768 06/04/22 12:20 PM

Appendix C / dAtA enCryption StAndArd 769

where Mi is a binary digit. Then the permutation X = IP(M) is as follows:

M58 M50 M42 M34 M26 M18 M10 M2

M60 M52 M44 M36 M28 M20 M12 M4

M62 M54 M46 M38 M30 M22 M14 M6

M64 M56 M48 M40 M32 M24 M16 M8

M57 M49 M41 M33 M25 M17 M9 M1

M59 M51 M43 M35 M27 M19 M11 M3

M61 M53 M45 M37 M29 M21 M13 M5

M63 M55 M47 M39 M31 M23 M15 M7

If we then take the inverse permutation Y = IP-11X2 = IP-11IP1M22, it can
be seen that the original ordering of the bits is restored.

Details of Single Round

Figure C.2 shows the internal structure of a single round. Again, begin by focusing
on the left-hand side of the diagram. The left and right halves of each 64-bit inter-
mediate value are treated as separate 32-bit quantities, labeled L (left) and R (right).

Li21 Ri21

Expansion/
permutation (E table)

Ci21 Di21

Left shift(s)

Permutation/contraction
(Permuted Choice 2)XOR

48

48

Substitution/choice
(S-box)

Permutation
(P)

32

XOR

Left shift(s)

Li Ri C i Di

48

32

KiF

28 bits32 bits 32 bits 28 bits

Figure C.2 Single Round of DES Algorithm

Z03_STAL7484_08_GE_APPC.indd 769 06/04/22 12:20 PM

770 Appendix C / dAtA enCryption StAndArd

As in any classic Feistel cipher, the overall processing at each round can be summa-
rized in the following formulas:

Li = Ri-1
Ri = Li-1 ⊕ F(Ri-1, Ki)

The round key Ki is 48 bits. The R input is 32 bits. This R input is first expanded
to 48 bits by using a table that defines a permutation plus an expansion that involves
duplication of 16 of the R bits (Table C.1c). The resulting 48 bits are XORed with Ki.
This 48-bit result passes through a substitution function that produces a 32-bit output,
which is permuted as defined by Table C.1d.

The role of the S-boxes in the function F is illustrated in Figure C.3. The substitu-
tion consists of a set of eight S-boxes, each of which accepts 6 bits as input and produces
4 bits as output. These transformations are defined in Table C.2, which is interpreted
as follows: The first and last bits of the input to box Si form a 2-bit binary number
to select one of four substitutions defined by the four rows in the table for Si. The
middle four bits select one of the 16 columns. The decimal value in the cell selected
by the row and column is then converted to its 4-bit representation to produce the
output. For example, in S1, for input 011001, the row is 01 (row 1) and the column
is 1100 (column 12). The value in row 1, column 12 is 9, so the output is 1001.

Each row of an S-box defines a general reversible substitution. Figure 4.2 may
be useful in understanding the mapping. The figure shows the substitution for row
0 of box S1.

S1 S2 S3 S4 S5 S6 S7 S8

R (32 bits)

48 bits

E

1
K (48 bits)

P

32 bits

Figure C.3 Calculation of F(R, K)

Z03_STAL7484_08_GE_APPC.indd 770 06/04/22 12:20 PM

Appendix C / dAtA enCryption StAndArd 771

Table C.2 Definition of DES S-Boxes

14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

S1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8

4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10

S2 3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5

0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15

13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8

S3 13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1

13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7

1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15

S4 13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9

10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4

3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9

S5 14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6

4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14

11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11

S6 10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8

9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6

4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1

S7 13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6

1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2

6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7

S8 1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2

7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8

2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

Z03_STAL7484_08_GE_APPC.indd 771 06/04/22 12:20 PM

772 Appendix C / dAtA enCryption StAndArd

The operation of the S-boxes is worth further comment. Ignore for the moment
the contribution of the key (Ki). If you examine the expansion table, you see that
the 32 bits of input are split into groups of 4 bits and then become groups of 6 bits
by taking the outer bits from the two adjacent groups. For example, if part of the
input word is

... efgh ijkl mnop ...

this becomes

... defghi hijklm lmnopq ...

The outer two bits of each group select one of four possible substitutions (one
row of an S-box). Then a 4-bit output value is substituted for the particular 4-bit
input (the middle four input bits). The 32-bit output from the eight S-boxes is then
permuted, so that on the next round, the output from each S-box immediately affects
as many others as possible.

Key Generation Returning to Figures C.1 and C.2, we see that a 64-bit key is
used as input to the algorithm. The bits of the key are numbered from 1 through
64; every eighth bit is ignored, as indicated by the lack of shading in Table C.3a.
The key is first subjected to a permutation governed by a table labeled Permuted
Choice One (Table C.3b). The resulting 56-bit key is then treated as two 28-bit
quantities, labeled C0 and D0. At each round, Ci-1 and Di-1 are separately subjected
to a circular left shift, or rotation, of 1 or 2 bits, as governed by Table C.3d. These
shifted values serve as input to the next round. They also serve as input to Permuted
Choice Two (Table C.3c), which produces a 48-bit output that serves as input to the
function F(Ri-1, Ki).

Table C.3 DES Key Schedule Calculation

(a) Input Key

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

Z03_STAL7484_08_GE_APPC.indd 772 06/04/22 12:20 PM

Appendix C / dAtA enCryption StAndArd 773

(b) Permuted Choice One (PC-1)

57 49 41 33 25 17 9

1 58 50 42 34 26 18

10 2 59 51 43 35 27

19 11 3 60 52 44 36

63 55 47 39 31 23 15

7 62 54 46 38 30 22

14 6 61 53 45 37 29

21 13 5 28 20 12 4

(c) Permuted Choice Two (PC-2)

14 17 11 24 1 5 3 28

15 6 21 10 23 19 12 4

26 8 16 7 27 20 13 2

41 52 31 37 47 55 30 40

51 45 33 48 44 49 39 56

34 53 46 42 50 36 29 32

(d) Schedule of Left Shifts

Round
Number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bits
Rotated

1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1

DES Decryption

As with any Feistel cipher, decryption uses the same algorithm as encryption, except
that the application of the subkeys is reversed.

Z03_STAL7484_08_GE_APPC.indd 773 06/04/22 12:20 PM

774

Simplified AeS

Appendix d

D.1 Overview
D.2 S-AES Encryption and Decryption

Add Key
Nibble Substitution
Shift Row
Mix Column

D.3 Key Expansion
D.4 The S-Box
D.5 S-AES Structure
ANNEX D.1 Arithmetic in GF(24)
ANNEX D.2 The Mix Column Function

Z04_STAL7484_08_GE_APPD.indd 774 06/04/22 12:20 PM

Appendix d / Simplified AeS 775

Simplified AES (S-AES) was developed by Professor Edward Schaefer of Santa
Clara University and several of his students [MUSA03]. It is an educational rather
than a secure encryption algorithm. It has similar properties and structure to AES
with much smaller parameters. The reader might find it useful to work through an
example by hand while following the discussion in this appendix. A good grasp of
S-AES will make it easier for the student to appreciate the structure and workings
of AES.

D.1 OVERVIEW

Figure D.1 illustrates the overall structure of S-AES. The encryption algorithm takes
a 16-bit block of plaintext as input and a 16-bit key and produces a 16-bit block of ci-
phertext as output. The S-AES decryption algorithm takes an 16-bit block of cipher-
text and the same 16-bit key used to produce that ciphertext as input and produces
the original 16-bit block of plaintext as output.

The encryption algorithm involves the use of four different functions, or trans-
formations: add key 1AK2 , nibble substitution (NS), shift row (SR), and mix column
(MC), whose operation is explained subsequently.

add round key

w[2, 3]

w[0, 1]

nibble substitution expand key

shift row

mix columnsR
ou

nd
 1

R
ou

nd
 2

add round key

nibble substitution

shift row

add round key

16-bit ciphertext

add round key

16-bit plaintext 16-bit key 16-bit plaintext

ENCRYPTION DECRYPTION

inverse nibble sub

inverse shift row

inverse mix cols
R

ou
nd

 2
R

ou
nd

 1add round key

inverse nibble sub

inverse shift row

add round key

16-bit ciphertext

w[4, 5]

Figure D.1 S-AES Encryption and Decryption

1Definition: If f and g are two functions, then the function F with the equation y = F1x2 = g3 f1x2 4 is
called the composition of f and g and is denoted as F = g o f.

Z04_STAL7484_08_GE_APPD.indd 775 06/04/22 12:20 PM

776 Appendix d / Simplified AeS

We can concisely express the encryption algorithm as a composition1 of functions:

AK2
∘ SR ∘ NS ∘ AK1

∘ MC ∘ SR ∘ NS ∘ AK0

so that AK0
 is applied first.

The encryption algorithm is organized into three rounds. Round 0 is simply an
add key round; round 1 is a full round of four functions; and round 2 contains only
three functions. Each round includes the add key function, which makes use of 16
bits of key. The initial 16-bit key is expanded to 48 bits, so that each round uses a
distinct 16-bit round key.

Each function operates on a 16-bit state, treated as a 2 * 2 matrix of nibbles,
where one nibble equals 4 bits. The initial value of the State matrix is the 16-bit plain-
text; State is modified by each subsequent function in the encryption process, produc-
ing after the last function the 16-bit ciphertext. As Figure D.2a shows, the ordering
of nibbles within the matrix is by column. So, for example, the first 8 bits of a 16-bit
plaintext input to the encryption cipher occupy the first column of the matrix, and
the second 8 bits occupy the second column. The 16-bit key is similarly organized, but
it is somewhat more convenient to view the key as two bytes rather than four nibbles
(Figure D.2b). The expanded key of 48 bits is treated as three round keys, whose bits
are labeled as follows: K0 = k0 c k15; K1 = k16 c k31; and K2 = k32 c k47.

Figure D.3 shows the essential elements of a full round of S-AES.
Decryption is also shown in Figure D.1 and is essentially the reverse of

encryption:

AK0
∘ INS ∘ ISR ∘ IMC ∘ AK1

∘ INS ∘ ISR ∘ AK2

in which three of the functions have a corresponding inverse function: inverse nibble
substitution (INS), inverse shift row (ISR), and inverse mix column (IMC).

S1,0 S1,1

S0,0 S0,1b0b1b2b3 b8b9b10b11

b4b5b6b7 b12b13b14b15

bit representation
nibble representation

(a) State matrix

(b) Key

bit representation

byte representation

k0k1k2k3k4k5k6k7 k8k9k10k11k12k13k14k15

original key key expansion

w0

K0

w1 w2 w3 w4 w5

K1 K2

Figure D.2 S-AES Data Structures

Z04_STAL7484_08_GE_APPD.indd 776 06/04/22 12:20 PM

Appendix d / Simplified AeS 777

7 9

A 4

D 5

2 5
5

A C

8 1

State matrix Key

D.2 S-AES ENCRYPTION AND DECRYPTION

We now look at the individual functions that are part of the encryption algorithm.

Add Key

The add key function consists of the bitwise XOR of the 16-bit State matrix and the
16-bit round key. Figure D.4 depicts this as a columnwise operation, but it can also be
viewed as a nibble-wise or bitwise operation. The following is an example.

S
M

r0

State State State State State

nibble
substitution

shift
row

mix
column

add key

S

S

S
M

r1

r2

r3

S0,0

S1,0

S0,1

S1,1

S0,0

S1,0

S0,1

S1,1

S0,0

S1,0

S0,1

S1,1

S0,0

S1,0

S0,1

S1,1

S0,0

S1,0

S0,1

S1,1

Figure D.3 S-AES Encryption Round

The inverse of the add key function is identical to the add key function, because the
XOR operation is its own inverse.

Nibble Substitution

The nibble substitution function is a simple table lookup (Figure D.4). AES defines a
4 * 4 matrix of nibble values, called an S-box (Table D.1a), that contains a permuta-
tion of all possible 4-bit values. Each individual nibble of State is mapped into a new
nibble in the following way: The leftmost 2 bits of the nibble are used as a row value
and the rightmost 2 bits are used as a column value. These row and column values
serve as indexes into the S-box to select a unique 4-bit output value. For example,
the hexadecimal value A references row 2, column 2 of the S-box, which contains the
value 0. Accordingly, the value A is mapped into the value 0.

Here is an example of the nibble substitution transformation.

A C

8 1

0 C

6 4

Z04_STAL7484_08_GE_APPD.indd 777 06/04/22 12:20 PM

778 Appendix d / Simplified AeS

The inverse nibble substitution function makes use of the inverse S-box shown
in Table D.1b. Note, for example, that the input 0 produces the output A, and the
input A to the S-box produces 0.

Shift Row

The shift row function performs a one-nibble circular shift of the second row of
State; the first row is not altered (Figure D.4). The following is an example.

s0,0 s0,1

s1,0

x
nibble

substitution

shift
row

mix
column

add
key

s1,1

s0,0

s1,0

s0,1

s1,1

s0,0 s0,1

s1,0 s1,1

s0,0 s0,1

s1,1 s1,0

s0,0 s0,1

s1,0 s1,1

1 4
4 1

5¥

s0,0 s0,1

s1,0 s1,1

'

' '

wi wi11 5
s0,0

s1,1

s0,1

s1,0

s0,0 s0,1

s1,0 s1,1

'

'

' '

'

'

'

'

'

Figure D.4 S-AES Transformations

Table D.1 S-AES S-Boxes

Note: Hexadecimal numbers in shaded boxes; binary numbers in unshaded boxes.

j j

00 01 10 11 00 01 10 11

i

00 9 4 A B

i

00 A 5 9 B

01 D 1 8 5 01 1 7 8 F

10 6 2 0 3 10 6 0 2 3

11 C E F 7 11 C 4 D E

(a) S-Box (b) Inverse S-Box

Z04_STAL7484_08_GE_APPD.indd 778 06/04/22 12:20 PM

Appendix d / Simplified AeS 779

0 C

6 4

C 0

6 4

The inverse shift row function is identical to the shift row function, because it
shifts the second row back to its original position.

Mix Column

The mix column function operates on each column individually. Each nibble of a
column is mapped into a new value that is a function of both nibbles in that column.
The transformation can be defined by the following matrix multiplication on State
(Figure D.4):

c1 4
4 1

d c s0,0 s0,1

s1,0 s1,1
d = c s′0,0 s′0,1

s′1,0 s′1,1
d

Performing the matrix multiplication, we get

s′0,0 = s0,0 ⊕ 14•s1,02
s′1,0 = 14•s0,02 ⊕ s1,0

s′0,1 = s0,1 ⊕ 14•s1,12
s′1,1 = 14•s0,12 ⊕ s1,1

Where arithmetic is performed in GF(24), and the symbol • refers to multipli-
cation in GF(24). Annex D.1 provides the addition and multiplication tables. The
following is an example.

c1 4
4 1

d c 6 4
C 0

d = c3 4
7 3

d

The inverse mix column function is defined as

c9 2
2 9

d c s0,0 s0,1

s1,0 s1,1
d = c s′0,0 s′0,1

s′1,0 s′1,1
d

We demonstrate that we have indeed defined the inverse in the following fashion.

c9 2
2 9

d c1 4
4 1

d c s0,0 s0,1

s1,0 s1,1
d = c1 0

0 1
d c s0,0 s0,1

s1,0 s1,1
d = c s0,0 s0,1

s1,0 s1,1
d

The preceding matrix multiplication makes use of the following results in
GF(24): 9 + 12 • 42 = 9 + 8 = 1 and 19 • 42 + 2 = 2 + 2 = 0 . These operations
can be verified using the arithmetic tables in Annex D.1 or by polynomial arithmetic.

The mix column function is the most difficult to visualize. Accordingly, we pro-
vide an additional perspective on it in Annex D.2.

Z04_STAL7484_08_GE_APPD.indd 779 06/04/22 12:20 PM

780 Appendix d / Simplified AeS

D.3 KEY EXPANSION

For key expansion, the 16 bits of the initial key are grouped into a row of two 8-bit
words. Figure D.5 shows the expansion into six words, by the calculation of four new
words from the initial two words. The algorithm is as follows:

 w2 = w0 ⊕ g(w1) = w0 ⊕ RCON112 ⊕ SubNib(RotNib(w1))

 w3 = w2 ⊕ w1

 w4 = w2 ⊕ g(w3) = w2 ⊕ RCON122 ⊕ SubNib(RotNib(w3))

 w5 = w4 ⊕ w3

RCON is a round constant, defined as follows: RC3 i4 = xi+ 2, so that
RC314 = x3 = 1000 and RC324 = x4 mod ((x4 + x + 1) = x + 1 = 0011. RC[i]
forms the leftmost nibble of a byte, with the rightmost nibble being all zeros. Thus,
RCON112 = 10000000 and RCON122 = 00110000.

For example, suppose the key is 2D55 = 0010 1101 0101 0101 = w0w1. Then

 w2 = 00101101 ⊕ 10000000 ⊕ SubNib1010101012
= 00101101 ⊕ 10000000 ⊕ 00010001 = 10111100

 w3 = 10111100 ⊕ 01010101 = 11101001

(a) Overall algorithm (b) Function g

g

N0 N1

w

wr

N1 N0

xi12 0

w0 w1
g

w2 w3 g

w4 w5

S S

N1r N0r

Figure D.5 S-AES Key Expansion

Z04_STAL7484_08_GE_APPD.indd 780 06/04/22 12:20 PM

Appendix d / Simplified AeS 781

 w4 = 10111100 ⊕ 00110000 ⊕ SubNib1100111102
= 10111100 ⊕ 00110000 ⊕ 00101111 = 10100011

 w5 = 10100011 ⊕ 11101001 = 01001010

D.4 THE S-BOX

The S-box is constructed as follows:

1. Initialize the S-box with the nibble values in ascending sequence row by row.
The first row contains the hexadecimal values (0, 1, 2, 3); the second row con-
tains (4, 5, 6, 7); and so on. Thus, the value of the nibble at row i, column j is
4i + j.

2. Treat each nibble as an element of the finite field GF(24) modulo x4 + x + 1.
Each nibble a0a1a2a3 represents a polynomial of degree 3.

3. Map each byte in the S-box to its multiplicative inverse in the finite field
GF(24) modulo x4 + x + 1; the value 0 is mapped to itself.

4. Consider that each byte in the S-box consists of 4 bits labeled 1b0, b1, b2, b32 .
Apply the following transformation to each bit of each byte in the S-box. The
AES standard depicts this transformation in matrix form:

≥
b′0
b′1
b′2
b′3

¥ = ≥
1 0 1 1
1 1 0 1
1 1 1 0
0 1 1 1

¥ ≥
b0

b1

b2

b3

¥ ⊕ ≥
1
0
0
1

¥

Here prime (′) indicates that the variable is to be updated by the value on the
right. Remember that addition and multiplication are being calculated modulo 2.

Table D.1a shows the resulting S-box. This is a nonlinear, invertible matrix. The
inverse S-box is shown in Table D.1b.

D.5 S-AES STRUCTURE

We can now examine several aspects of interest concerning the structure of AES.
First, note that the encryption and decryption algorithms begin and end with the add
key function. Any other function, at the beginning or end, is easily reversible without
knowledge of the key and so would add no security but just a processing overhead.
Thus, there is a round 0 consisting of only the add key function.

The second point to note is that round 2 does not include the mix column
 function. The explanation for this in fact relates to a third observation, which
is that although the decryption algorithm is the reverse of the encryption
 algorithm, as clearly seen in Figure D.1, it does not follow the same sequence of
functions. Thus,

Z04_STAL7484_08_GE_APPD.indd 781 06/04/22 12:20 PM

782 Appendix d / Simplified AeS

Encryption: AK2
∘ SR ∘ NS ∘ AK1

∘ MC ∘ SR ∘ NS ∘ AK0

Decryption: AK0
∘ INS ∘ ISR ∘ IMC ∘ AK1

∘ INS ∘ ISR ∘ AK2

From an implementation point of view, it would be desirable to have the
 decryption function follow the same function sequence as encryption. This allows
the decryption algorithm to be implemented in the same way as the encryption
 algorithm, creating opportunities for efficiency.

Note that if we were able to interchange the second and third functions, the
fourth and fifth functions, and the sixth and seventh functions in the decryption
 sequence, we would have the same structure as the encryption algorithm. Let’s see if
this is possible. First, consider the interchange of INS and ISR. Given a state N con-
sisting of the nibbles (N0, N1, N2, N3), the transformation INS(ISR(N)) proceeds as

aN0 N2

N1 N3
b S aN0 N2

N3 N1
b S aIS3N04 IS3N24

IS3N34 IS3N14 b

where IS refers to the inverse S-Box. Reversing the operations, the transformation
ISR(INS(N) proceeds as

aN0 N2

N1 N3
b S aIS3N04 IS3N24

IS3N14 IS3N34 b
S aIS3N04 IS3N24

IS3N34 IS3N14 b

which is the same result. Thus, INS1ISR1N22 = ISR1INS1N22 .
Now consider the operation of inverse mix column followed by add key:

IMC1AK1
1N22 where the round key K1 consists of the nibbles (k0,0, k1,0, k0,1, k1,1).

Then

a9 2
2 9

baak0,0 k0,1

k1,0 k1,1
b ⊕ aN0 N2

N1 N3
bb = a9 2

2 9
bak0,0 ⊕ N0 k0,1 ⊕ N2

k1,0 ⊕ N1 k1,1 ⊕ N3
b

= a91k0,0 ⊕ N02 ⊕ 21k1,0 ⊕ N12 91k0,1 ⊕ N22 ⊕ 21k1,1 ⊕ N32
21k0,0 ⊕ N02 ⊕ 91k1,0 ⊕ N12 21k0,1 ⊕ N22 ⊕ 91k1,1 ⊕ N32 b

= a 19k0,0 ⊕ 2k1,02 ⊕ 19N0 ⊕ 2N12 19k0,1 ⊕ 2k1,12 ⊕ 19N2 ⊕ 2N32
12k0,0 ⊕ 9k1,02 ⊕ 12N0 ⊕ 9N12 12k0,1 ⊕ 9k1,12 ⊕ 12N2 ⊕ 9N32 b

= a 19k0,0 ⊕ 2k1,02 19k0,1 ⊕ 2k1,12
12k0,0 ⊕ 9k1,02 12k0,1 ⊕ 9k1,12 b ⊕ a 19N0 ⊕ 2N12 19N2 ⊕ 2N32

12N0 ⊕ 9N12 12N2 ⊕ 9N32 b

= a9 2
2 9

bak0,0 k0,1

k1,0 k1,1
b ⊕ a9 2

2 9
baN0 N2

N1 N3
b

All of these steps make use of the properties of finite field arithmetic. The result
is that IMC1AK1

1N2 2 = IMC1K12 ⊕ IMC1N2 . Now let us define the inverse
round key for round 1 to be IMC1K12 and the inverse add key operation IAK1

 to

Z04_STAL7484_08_GE_APPD.indd 782 06/04/22 12:20 PM

Appendix d / Simplified AeS 783

be the bitwise XOR of the inverse round key with the state vector. Then we have
IMC1AK1

1N2 2 = IAK1
1IMC1N2 2 . As a result, we can write the following:

Encryption: AK2
∘ SR ∘ NS ∘ AK1

∘ MC ∘ SR ∘ NS ∘ AK0

Decryption: AK0
∘ INS ∘ ISR ∘ IMC ∘ AK1

∘ INS ∘ ISR ∘ AK2

Decryption: AK0
∘ ISR ∘ INS ∘ AIMC1K12 ∘ IMC ∘ ISR ∘ INS ∘ AK2

Both encryption and decryption now follow the same sequence. Note that this
derivation would not work as effectively if round 2 of the encryption algorithm in-
cluded the MC function. In that case, we would have

Encryption: AK2
∘ MC ∘ SR ∘ NS ∘ AK1

∘ MC ∘ SR ∘ NS ∘ AK0
s

Decryption: AK0
∘ INS ∘ ISR ∘ IMC ∘ AK1

∘ INS ∘ ISR ∘ IMC ∘ AK2

There is now no way to interchange pairs of operations in the decryption
 algorithm so as to achieve the same structure as the encryption algorithm.

ANNEX D.1 ARITHMETIC IN GF(24)

Table D.2 shows the addition and multiplication tables in GF(24) modulo x4 + x + 1.
For example, consider the product 14 • C2 = 10100 • 11002 . In terms of polyno-
mials, this is the product 3x2 * (x3 + x2)4 mod (x4 + x + 1) = (x5 + x4) mod
(x4 + x + 1). Because the degree of the polynomial to the right of the mod opera-
tor is greater than or equal to the modulus, a division is required to determine the
remainder:

x5

x 11

1 x4

x5 1 x2

x4

1 x

1 1

x2 11

x2 x

x4 1 x 1 1

x4 x 11 1

In binary, the remainder is expressed as 0101, or 5 in hexadecimal. Thus
14 • C2 = 5, which agrees with the multiplication table in Table D.2.

Table D.2 Arithmetic in GF(24) modulo x4 + x + 1

(a) Addition

+ 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 0 1 2 3 4 5 6 7 8 9 A B C D E F

1 1 0 3 2 5 4 7 6 9 8 B A D C F E

2 2 3 0 1 6 7 4 5 A B 8 9 E F C D

3 3 2 1 0 7 6 5 4 B A 9 8 F E D C

4 4 5 6 7 0 1 2 3 C D E F 8 9 A B

Z04_STAL7484_08_GE_APPD.indd 783 06/04/22 12:20 PM

784 Appendix d / Simplified AeS

5 5 4 7 6 1 0 3 2 D C F E 9 8 B A

6 6 7 4 5 2 3 0 1 E F C D A B 8 9

7 7 6 5 4 3 2 1 0 F E D C B A 9 8

8 8 9 A B C D E F 0 1 2 3 4 5 6 7

9 9 8 B A D C F E 1 0 3 2 5 4 7 6

A A B 8 9 E F C D 2 3 0 1 6 7 4 5

B B A 9 8 F E D C 3 2 1 0 7 6 5 4

C C D E F 8 9 A B 4 5 6 7 0 1 2 3

D D C F E 9 8 B A 5 4 7 6 1 0 3 2

E E F C D A B 8 9 6 7 4 5 2 3 0 1

F F E D C B A 9 8 7 6 5 4 3 2 1 0

(b) Multiplication

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9 A B C D E F

2 0 2 4 6 8 A C E 3 1 7 5 B 9 F D

3 0 3 6 5 C F A 9 B 8 D E 7 4 1 2

4 0 4 8 C 3 7 B F 6 2 E A 5 1 D 9

5 0 5 A F 7 2 D 8 E B 4 1 9 C 3 6

6 0 6 C A B D 7 1 5 3 9 F E 8 2 4

7 0 7 E 9 F 8 1 6 D A 3 4 2 5 C B

8 0 8 3 B 6 E 5 D C 4 F 7 A 2 9 1

9 0 9 1 8 2 B 3 A 4 D 5 C 6 F 7 E

A 0 A 7 D E 4 9 3 F 5 8 2 1 B 6 C

B 0 B 5 E A 1 F 4 7 C 2 9 D 6 8 3

C 0 C B 7 5 9 E 2 A 6 1 D F 3 4 8

D 0 D 9 4 1 C 8 5 2 F B 6 3 E A 7

E 0 E F 1 D 3 2 C 9 7 6 8 4 A B 5

F 0 F D 2 9 6 4 B 1 E C 3 8 7 5 A

ANNEX D.2 THE MIX COLUMN FUNCTION

The mix column function operates on each column individually. Each nibble of a col-
umn is mapped into a new value that is a function of both nibbles in that column. The
transformation is defined by the following matrix multiplication on State (Figure D.4).

c1 4
4 1

d c s0,0 s0,1

s1,0 s1,1
d = c s′0,0 s′0,1

s′1,0 s′1,1
d

Z04_STAL7484_08_GE_APPD.indd 784 06/04/22 12:20 PM

Appendix d / Simplified AeS 785

We can recast this in terms of polynomials as follows. The value 1 corresponds
to the polynomial 1 and the value 4 (binary 100) corresponds to the polynomial x2.
Thus, we have

c 1 x2

x2 1
d c s0,0 s0,1

s1,0 s1,1
d = c s′0,0 s′0,1

s′1,0 s′1,1
d

Remember that multiplication is performed modulo (x4 + x + 1). Using the
polynomial formulation allows us to develop a simple explanation of the arithmetic
involved. Referring back to the representation of the state matrix in Figure D.2a, we
can recast the mix column multiplications as follows:

c 1 x2

x2 1
d cb0

x3 + b1x
2 + b2x + b3 b8x

3 + b9x
2 + b10x + b11

b4x
3 + b5x

2 + b6x + b7 b12x
3 + b13x

2 + b14x + b15
d

Let’s perform the multiplication of the first row of the left-hand matrix with the
first column of the right-hand matrix to get the entry in the upper left-hand corner
of the target matrix; that is, the polynomial value for s′0,0. We have

s′0,0 = (b0

x3 + b1x
2 + b2x + b3) + (x2) (b4x

3 + b5x
2 + b6

x + b7)
= b4x

5 + b5x
4 + (b0 ⊕ b6)x3 + (b1 ⊕ b7)x2 + b2x + b3

It can easily be shown that

x5mod (x4 + x + 1) = (x2 + x)

x4mod (x4 + x + 1) = 1x + 12
The reader is invited to do the polynomial division to demonstrate these

 equalities. Using these results, we have

s′0,0 = b4(x2 + x) + b51x + 12 + (b0 ⊕ b6)x3 + (b1 ⊕ b7)x2 + b2x + b3

= (b0 ⊕ b6)x3 + (b1 ⊕ b4 ⊕ b7)x2 + (b2 ⊕ b4 ⊕ b5)x + (b3 ⊕ b5)

Expressed in terms of bits, the four bits of s′0,0 are

s′0,0 = 3(b0 ⊕ b6), (b1 ⊕ b4 ⊕ b7), (b2 ⊕ b4 ⊕ b5), (b3 ⊕ b5)4
Similarly, we can show that

 s′1,0 = 3(b2 ⊕ b4), (b0 ⊕ b3 ⊕ b5), (b0 ⊕ b1 ⊕ b6), (b1 ⊕ b7)4
 s′0,1 = 3(b8 ⊕ b14), (b9 ⊕ b12 ⊕ b15), (b10 ⊕ b12 ⊕ b13), (b11 ⊕ b13)4
 s′1,1 = 3(b10 ⊕ b12), (b8 ⊕ b11 ⊕ b13), (b8 ⊕ b9 ⊕ b14), (b9 ⊕ b15)4

Z04_STAL7484_08_GE_APPD.indd 785 06/04/22 12:20 PM

786

Appendix e

MAtheMAticAl BAsis of the BirthdAy AttAck
E.1 Related Problem
E.2 The Birthday Paradox
E.3 Useful Inequality
E.4 The General Case of Duplications
E.5 Overlap Between Two Sets

Z05_STAL7484_08_GE_APPE.indd 786 06/04/22 12:19 PM

Appendix e / MAtheMAticAl BAsis of the BirthdAy AttAck 787

In this appendix, we derive the mathematical justification for the birthday attack.
We begin with a related problem and then look at the problem from which the name
“birthday attack” is derived.

E.1 RELATED PROBLEM

A general problem relating to hash functions is the following. Given a hash function
H, with n possible outputs and a specific value H1x2, if H is applied to k random
inputs, what must be the value of k so that the probability that at least one input y
satisfies H1y2 = H1x2 is 0.5?

For a single value of y, the probability that H1y2 = H1x2 is just 1>n. Conversely,
the probability that H1y2 ≠ H1x2 is 31- 11>n24 . If we generate k random
 values of y, then the probability that none of them match is just the product of the
 probabilities that each individual value does not match, or 31- 11>n24k. Thus, the
probability that there is at least one match is 1- 31- 11>n24k.

The binomial theorem can be stated as

11-a2 k = 1 - ka +
k1k - 12

2!
 a2 -

k1k - 12 1k - 22
3!

 a3 c

For very small values of a, this can be approximated as 11 - ka2 . Thus, the proba-
bility of at least one match is approximated as 1 - 31- 11>n24k ≈ 1- 31- 1k>n24 =
k>n. For a probability of 0.5, we have k = n>2.

In particular, for an m-bit hash code, the number of possible codes is 2m and the
value of k that produces a probability of one-half is

k = 21m-12 (E.1)

E.2 THE BIRTHDAY PARADOX

The birthday paradox is often presented in elementary probability courses to dem-
onstrate that probability results are sometimes counterintuitive. The problem can be
stated as follows: What is the minimum value of k such that the probability is greater
than 0.5 that at least two people in a group of k people have the same birthday?
 Ignore February 29 and assume that each birthday is equally likely.

We can reason to the answer as follows. The probability that the birthdays of
any two people are not alike is clearly 364/365 (since there is only one chance in 365
that one person’s birthday will coincide with another’s). The probability that a third
person’s birthday will differ from the other two is 363/365; a fourth person’s, 362/365;
and so on, until we reach the 24th person (342/365). We thus obtain a series of 23
fractions which must be multiplied together to reach the probability that all 24 birth-
days are different. The product is a fraction that reduces to about 0.507, or slightly
better than 1/2, for a coincidence among 23 people.

Z05_STAL7484_08_GE_APPE.indd 787 06/04/22 12:19 PM

788 Appendix e / MAtheMAticAl BAsis of the BirthdAy AttAck

To derive this answer formally, let us define

P1n, k2 = Pr [at least one duplicate in k items, with each item able
to take on one of n equally likely values between 1 and n]

Thus, we are looking for the smallest value of k such that P1365, k2 Ú 0.5. It is
easier first to derive the probability that there are no duplicates, which we designate as
Q(365, k). If k 7 365, then it is impossible for all values to be different. So we assume
k … 365. Now consider the number of different ways, N, that we can have k values with
no duplicates. We may choose any of the 365 values for the first item, any of the remain-
ing 364 numbers for the second item, and so on. Hence, the number of different ways is

N = 365 * 364 * c1365 - k + 12 =
365!

1365 - k2 ! (E.2)

If we remove the restriction that there are no duplicates, then each item can be any
of 365 values, and the total number of possibilities is 365k. So the probability of no
duplicates is simply the fraction of sets of values that have no duplicates out of all
possible sets of values:

Q1365, k2 =
365!> 1365 - k2 !

13652 k =
365!

1365 - k2 !13652 k

and

P1365, k2 = 1 - Q1365, k2 = 1-
365!

1365 - k2 !13652k (E.3)

This function is plotted in Figure E.1. The probabilities may seem surprisingly large to
anyone who has not considered the problem before. Many people would guess that

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
706050403020100

k

P
(3

65
, k

)

Figure E.1 The Birthday Paradox

Z05_STAL7484_08_GE_APPE.indd 788 06/04/22 12:19 PM

Appendix e / MAtheMAticAl BAsis of the BirthdAy AttAck 789

to have a probability greater than 0.5 that there is at least one duplicate, the number
of people in the group would have to be about 100. In fact, the number is 23, with
P1365, 232 = 0.5073. For k = 100, the probability of at least one duplicate is 0.9999997.

Perhaps the reason that the result seems so surprising is that if you consider a par-
ticular person in a group, the probability that some other person in the group has the
same birthday is small. But the probability that we are concerned with is the probabil-
ity that any pair of people in the group has the same birthday. In a group of 23, there
are (23(23 - 1))>2 = 253 different pairs of people. Hence the high probabilities.

E.3 USEFUL INEQUALITY

Before developing a generalization of the birthday problem, we derive an inequality
that will be needed:

(1 - x) … e- x for all x Ú 0 (E.4)

Figure E.2 illustrates the inequality. To see that the inequality holds, note that the
lower line is tangent to e- x at x = 0. The slope of that line is just the derivative of
e- x at x = 0:

f1x2 = e-x

f′1x2 =
d
dx

 e-x = -e-x

f′102 = -1

1.0

0.8

0.6

0.4

0.2

0.0
1.00.80.60.40.20.0

e2x

1 2 x

Figure E.2 A Useful Inequality

Z05_STAL7484_08_GE_APPE.indd 789 06/04/22 12:19 PM

790 Appendix e / MAtheMAticAl BAsis of the BirthdAy AttAck

The tangent is a straight line of the form ax + b with a = -1, and the tangent at
x = 0 must equal e- 0 = 1. Thus, the tangent is the function (1 - x), confirming the
inequality of Equation (11.4). Further, note that for small x, we have (1 - x) ≈ e- x.

E.4 THE GENERAL CASE OF DUPLICATIONS

The birthday problem can be generalized to the following problem. Given a random
variable that is an integer with uniform distribution between 1 and n and a selection
of k instances 1k … n2 of the random variable, what is the probability, P1n, k2 , that
there is at least one duplicate? The birthday problem is just the special case with
n = 365. By the same reasoning as before, we have the following generalization of
Equation (3):

P1n, k2 = 1 -
n!

1n - k2 !nk (E.5)

We can rewrite this as

P1n, k2 = 1 -
n * 1n - 12 * c * 1n - k + 12

nk

= 1 - c n - 1
n

*
n - 2

n
* c *

n - k + 1
n

d

= 1 - c a1 -
1
n
b * a1 -

2
n
b * c * a1 -

k - 1
n

b d

Using the inequality of Equation (4),

P1n, k2 7 1 - 31e-1>n2 * 1e-2>n2 * c * 1e-1k - 12>n24
7 1 - e-311>n2+ 12>n2+ c+ 11k - 12>n24

7 1 - e-1k * 1k - 122>2n

Now let us pose the question: What value of k is required such that P1n, k2 7 0.5?
To satisfy the requirement, we have

1>2 = 1-e-1k * 1k - 122>2n

2 = e1k * 1k - 122>2n

ln 2 =
k * 1k - 12

2n

For large k, we can replace k * 1k - 12 by k2, and we get

k = 221 ln 22n = 1.182n ≈ 2n (E.6)

As a reality check, for n = 365, we get k = 1.18 * 2365 = 22.54, which is very
close to the correct answer of 23.

Z05_STAL7484_08_GE_APPE.indd 790 06/04/22 12:19 PM

Appendix e / MAtheMAticAl BAsis of the BirthdAy AttAck 791

We can now state the basis of the birthday attack in the following terms. Sup-
pose we have a function H, with 2m possible outputs (i.e., an m-bit output). If H is
applied to k random inputs, what must be the value of k so that there is the prob-
ability of at least one duplicate [i.e., H1x2 = H1y2 for some inputs x, y)]? Using
the approximation in Equation (6),

k = 22m = 2m>2 (E.7)

E.5 OVERLAP BETWEEN TWO SETS

There is a problem related to the general case of duplications that is also of rel-
evance for our discussions. The problem is this: Given an integer random variable
with uniform distribution between 1 and n and two sets of k instances 1k … n2 of
the random variable, what is the probability, R1n, k2 , that the two sets are not dis-
joint; that is, what is the probability that there is at least one value found in both sets?

Let us call the two sets X and Y, with elements {x1, x2, c, xk} and {y1, y2, c, yk},
respectively. Given the value of x1, the probability that y1 = x1 is just 1>n, and therefore
the probability that y1 does not match x1 is 31- 11>n24 . If we generate the k random
values in Y, the probability that none of these values is equal to x1 is 31- 11>n24k.
Thus, the probability that there is at least one match to x1 is 1- 31- 11>n24k.

To proceed, let us assume that all the elements of X are distinct. If n is large and
if k is also large (e.g., on the order of 2n), then this is a good approximation. In fact,
there may be a few duplications, but most of the values will be distinct. With that as-
sumption, we can make the following derivation:

Pr3no match in Y to x14 = a1 -
1
n
b

k

Pr3no match in Y to X4 = aa1 -
1
n
b

k

b
k

= a1 -
1
n
b

k2

R1n, k2 = Pr3at least one match in Y to X4 = 1 - a1 -
1
n
b

k2

Using the inequality of Equation (4),

R1n, k2 7 1 - 1e-1>n2 k2

R1n, k2 7 1 - 1e-k2>n2
Let us pose the question: What value of k is required such that R1n, k2 7 0.5? To
satisfy the requirement, we have

1>2 = 1 - 1e-k2>n2
2 = ek2>n

ln122 =
k2

n

k = 21 ln1222n = 0.832n ≈ 2n

 (E.8)

Z05_STAL7484_08_GE_APPE.indd 791 06/04/22 12:19 PM

792 Appendix e / MAtheMAticAl BAsis of the BirthdAy AttAck

We can state this in terms related to birthday attacks as follows. Suppose we
have a function H, with 2m possible outputs (i.e., an m-bit output). Apply H to k
random inputs to produce the set X and again to k additional random inputs to pro-
duce the set Y. What must be the value of k so that there is the probability of at least
0.5 that there is a match between the two sets (i.e., H1x2 = H1y2 for some inputs
x ∈ X, y ∈ Y)? Using the approximation in Equation (8):

k = 22m = 2m>2

Z05_STAL7484_08_GE_APPE.indd 792 06/04/22 12:19 PM

793

Glossary

access control The process of granting or denying specific requests: 1) for obtaining and using infor-
mation and related information processing services; and 2) to enter specific physical facilities.

active attack An attempt to alter system resources or affect their operation

actuator A device that receives an electronic signal from a controller and responds by interacting
with its environment to produce an effect on some parameter of a physical, chemical, or biological
entity

Advanced Encryption Standard (AES) Specifies a U.S. government- approved cryptographic
algorithm that can be used to protect electronic data. The AES algorithm is a symmetric block cipher
that can encrypt (encipher) and decrypt (decipher) information. This standard specifies the Rijndael
algorithm, a symmetric block cipher that can process data blocks of 128 bits, using cipher keys with
lengths of 128, 192, and 256 bits.

anomaly detection An intrusion detection technique that searches for activity that is different from
the normal behavior of system entities and system resources

application proxy A system that acts as a relay of application-level traffic

asymmetric encryption A form of cryptosystem in which encryption and decryption are performed
using two different keys, one of which is referred to as the public key and one of which is referred to
as the private key. Also known as public-key encryption.

attack Any kind of malicious activity that attempts to collect, disrupt, deny, degrade, or destroy
information system resources or the information itself.

authentication The process of verifying an identity claimed by or for a system entity.

authentication exchange An exchange of information between two parties over a network that veri-
fies the identity of a user, process, or device, often as a prerequisite to allowing access to resources in
an information system

authentication server A centralized server whose function is to authenticate users to servers and
servers to users

authenticator Additional information appended to a message to enable the receiver to verify that
the message should be accepted as authentic. The authenticator may be functionally independent of
the content of the message itself (e.g., a nonce or a source identifier) or it may be a function of the
message contents (e.g., a hash value or a cryptographic checksum).

authenticity The property of being genuine and being able to be verified and trusted; confidence in
the validity of a transmission, a message, or message originator.

availability The property of a system or a system resource being accessible and usable upon demand
by an authorized system entity, according to performance specifications for the system; i.e., a system is
available if it provides services according to the system design whenever users request them.

avalanche effect A characteristic of an encryption algorithm in which a small change in the plaintext
or key gives rise to a large change in the ciphertext. For a hash code, the avalanche effect is a charac-
teristic in which a small change in the message gives rise to a large change in the message digest.

backbone network A network that connects geographically dispersed fog networks as well as pro-
viding access to other networks that are not part of the enterprise network

backward unpredictability In a pseudorandom number stream, it is not feasible to determine the
seed from knowledge of any generated values.

bacteria Program that consumes system resources by replicating itself.

Z06_STAL7484_08_GE_GLOS.indd 793 06/04/22 12:19 PM

794 Glossary

base64 transfer encoding A binary-to-text encoding scheme that represent binary data in an ASCII
string format by translating 6 bits of data into an 8-bit representation of a character.

big endian A byte format in which the most significant byte of a word is in the low-address
(leftmost) byte position.

Bijection A one-to-one correspondence.

birthday attack This cryptanalytic attack attempts to find two values in the domain of a function
that map to the same value in its range.

block chaining A procedure used during symmetric block encryption that makes an output block
dependent not only on the current plaintext input block and key, but also on earlier input and/or out-
put. The effect of block chaining is that two instances of the same plaintext input block will produce
different ciphertext blocks, making cryptanalysis more difficult.

block cipher A symmetric encryption algorithm in which a block of plaintext bits (typically 64 or
128) is transformed as a whole into a ciphertext block of the same length.

block cipher mode of operation A technique for enhancing the effect of a cryptographic algorithm
or adapting the algorithm for an application, such as applying a block cipher to a sequence of data
blocks or a data stream

botnet A collection of systems, each of which has malware to launch attacks on other systems.

brute force attack A cryptanalysis technique or other kind of attack method involving an exhaustive
procedure that tries all possibilities, one-by-one.

byte A sequence of 8 bits. Also referred to as an octet.

cipher An algorithm for encryption and decryption. A cipher replaces a piece of information (an
element in plaintext) with another object with the intent to conceal meaning. Typically, the replace-
ment rule is governed by a secret key.

ciphertext The output of an encryption algorithm; the encrypted form of a message or data.

ciphertext stealing A block cipher mode of operation technique in which the processing of the last
block “steals” a temporary ciphertext of the penultimate block to complete the cipherblock.

circuit-level proxy A system that acts as a relay between two TCP connections.

cloud A collection of computing resources made available to a set of users over a network or the
Internet.

cloud auditor A party that can conduct independent assessment of cloud services, information
system operations, performance, and security of the cloud implementation

cloud broker An entity that manages the use, performance and delivery of cloud services, and nego-
tiates relationships between CPs and cloud consumers

cloud carrier An intermediary that provides connectivity and transport of cloud services from CPs
to cloud consumers

cloud service consumer (CSC) A person or organization that maintains a business relationship with,
and uses service from, cloud providers

cloud service provider (CSP) A person, organization, or entity responsible for making a service
available to interested parties

code An unvarying rule for replacing a piece of information (e.g., letter, word, phrase) with another
object, not necessarily of the same sort. Generally, there is no intent to conceal meaning. Examples
include the ASCII character code (each character is represented by 7 bits) and frequency-shift keying
(each binary value is represented by a particular frequency).

commutative A binary operation in which changing the order of the operands does not change
the result.

Z06_STAL7484_08_GE_GLOS.indd 794 06/04/22 12:19 PM

Glossary 795

composite number An integer that is not prime

compression function A function used repeatedly in a hash algorithm.

computationally secure Secure because the time and/or cost of defeating the security are too high to
be feasible.

confidentiality Preserving authorized restrictions on information access and disclosure, including
means for protecting personal privacy and proprietary information. A loss of confidentiality is the
unauthorized disclosure of information.

confusion A cryptographic technique that seeks to make the relationship between the statistics of
the ciphertext and the value of the encryption key as complex as possible. This is achieved by the use
of a complex scrambling algorithm that depends on the key and the input.

constrained device A device with limited volatile and nonvolatile memory, limited processing
power, and a low data rate transceiver

conventional encryption Symmetric encryption.

core A network that connects geographically dispersed fog networks as well as providing access to
other networks that are not part of the enterprise network

covert channel A communications channel that enables the transfer of information in a way unin-
tended by the designers of the communications facility.

cryptanalysis The branch of cryptology dealing with the breaking of a cipher to recover information
or forging encrypted information that will be accepted as authentic.

cryptographic algorithm An algorithm that uses the science of cryptography, including (a) encryp-
tion algorithms, (b) cryptographic hash algorithms, (c) digital signature algorithms, and (d) key-
agreement algorithms.

cryptographic checksum An authenticator that is a cryptographic function of both the data to be
authenticated and a secret key. Also referred to as a message authentication code (MAC).

cryptographic hash function An an algorithm for which it is computationally infeasible (because no
attack is significantly more efficient than brute force) to find either (a) a data object that maps to a
pre-specified hash result (the one-way property) or (b) two data objects that map to the same hash
result (the collision-free property).

cryptography The branch of cryptology dealing with the design of algorithms for encryption and
decryption, intended to ensure the secrecy and/or authenticity of messages.

cryptology The study of secure communications, which encompasses both cryptography and crypt-
analysis.

cryptoperiod Time span during which a specific cryptographic key is authorized for use for its
defined purpose.

cybersecurity Prevention of damage to, protection of, and restoration of computers, electronic
communications systems, electronic communications services, wire communication, and electronic
communication, including information contained therein, to ensure its availability, integrity, authenti-
cation, confidentiality, and nonrepudiation.

cryptosystem (cryptographic system) A set of cryptographic algorithms together with the key man-
agement processes that support use of the algorithms in some application context.

data authenticity The property of a digital object that it is indeed what it claims to be.

data confidentiality The property that information is not made available or disclosed to unauthor-
ized individuals, entities, or processes

data integrity The property that data has not been changed, destroyed, or lost in an unauthorized or
accidental manner.

Z06_STAL7484_08_GE_GLOS.indd 795 06/04/22 12:19 PM

796 Glossary

data origin authentication Provides for the corroboration of the source of a data unit. It does not
provide protection against the duplication or modification of data units. This type of service supports
applications like electronic mail, where there are no ongoing interactions between the communicating
entities.

deciphering Decryption

decryption The translation of encrypted text or data (called ciphertext) into original text or data
(called plaintext). Also called deciphering.

deeply embedded system A system that has a processor whose behavior is difficult to observe both
by the programmer and the user. A deeply embedded system uses a microcontroller, is not program-
mable once the program logic for the device has been burned into ROM (read-only memory), and
has no interaction with a user.

denial of service The prevention of authorized access to resources or the delaying of time-critical
operations.

deskewing algorithm A technique to add additional randomness to a random bit stream.

detached signature A digital signature that may be stored and transmitted separately from the mes-
sage it signs

differential cryptanalysis A technique in which chosen plaintexts with particular XOR difference
patterns are encrypted. The difference patterns of the resulting ciphertext provide information that
can be used to determine the encryption key.

diffusion A cryptographic technique that seeks to obscure the statistical structure of the plaintext by
spreading out the influence of each individual plaintext digit over many ciphertext digits.

Digital Signature Algorithm (DSA) An authentication mechanism that enables the creator of a
message to attach a code that acts as a signature. The signature is formed by taking the hash of the
message and encrypting the message with the creator’s private key. The signature guarantees the
source and integrity of the message.

digram A two-letter sequence. In English and other languages, the relative frequency of various
digrams in plaintext can be used in the cryptanalysis of some ciphers. Also called digraph.

direct digital signature Refers to a digital signature scheme that involves only the communicating
parties (source, destination). It is assumed that the destination knows the public key of the source

discrete logarithm In the expression b K ai1mod p2 , the exponent i is referred to as the discrete
logarithm of the number b for the base a (mod p).

discretionary access control An access control service that enforces a security policy based on the
identity of system entities and their authorizations to access system resources. This service is termed
“discretionary” because an entity might have access rights that permit the entity, by its own volition,
to enable another entity to access some resource.

divisor One integer is said to be a devisor of another integer if there is no remainder on division.

eavesdropping Monitoring of, transmissions

edge In the context of IoT, the network of IoT devices.

electronic mail (email) A method of exchanging messages (“mail”) between people using electronic
devices.

ElGamal digital signature A digital signature algorithm used by a number of applications

elliptic curve Defined by an equation in two variables with coefficients

Elliptic Curve Digital Signature Algorithm (ECDSA) A public-key encryption algorithm based on
elliptic curves.

elliptic curve cryptography The use of cryptographic algorithms based on elliptic curves.

Z06_STAL7484_08_GE_GLOS.indd 796 06/04/22 12:19 PM

Glossary 797

embedded system Refers to the use of electronics and software within a product that has a specific
function or set of functions, as opposed to a general-purpose computer, such as a laptop or desktop
system. We can also define an embedded system as any device that includes a computer chip, but that
is not a general-purpose workstation, desktop or laptop computer.

enciphering Encryption

encryption The conversion of plaintext or data into unintelligible form by means of a reversible
translation, based on a translation table or algorithm. Also called enciphering.

end-to-end encryption Continuous protection of data that flows between two points in a network,
effected by encrypting data when it leaves its source, keeping it encrypted while it passes through any
intermediate computers (such as routers), and decrypting it only when it arrives at the intended final
destination.

entropy source A source of random bits.

error-correction code A code in which each character or signal conforms to specific rules of con-
struction so that deviations from these rules indicate the presence of an error and in which some or
all of the detected errors can be corrected automatically.

false negative A test that returns negative when the actual result is positive.

false positive A test that returns positive when the actual result is negative.

federated identity management A system that involves the use of a common identity management
scheme across multiple enterprises and numerous applications and supporting many thousands, even
millions, of users.

Feistel cipher A classic, and still common, structure for symmetric encryption.

field A set of elements on which addition, subtraction, multiplication, and division are defined, and
behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental
algebraic structure, which is widely used in algebra, number theory and many other areas of mathematics.

finite field A field with a finite number of elements

firewall A dedicated computer that interfaces with computers outside a network and has special
security precautions built into it in order to protect sensitive files on computers within the network. It
is used to service outside networks connections, especially the Internet and dial-in lines.

fog A collection of devices deployed physically near the edge of an IoT network; that is, near the
sensors and other data-generating devices. Thus, some of the basic processing of large volumes of
generated data is offloaded and outsourced from IoT application software located at the center

forward unpredictability In a pseudorandom number stream, if the seed is unknown, the next
output bit in the sequence should be unpredictable in spite of any knowledge of previous bits in the
sequence

greatest common divisor The greatest common divisor of two integers, a and b, is the largest positive
integer that divides both a and b. One integer is said to divide another integer if there is no remainder
on division.

group key A key used by multiple entities.

hash code Output of a hash function.

hash function A function that maps a variable-length data block or message into a fixed-length
value called a hash code. The function is designed in such a way that, when protected, it provides an
authenticator to the data or message. Also referred to as a message digest.

hash value Output of a hash function.

honeypot A decoy system designed to lure a potential attacker away from critical systems. A form
of intrusion detection.

Z06_STAL7484_08_GE_GLOS.indd 797 06/04/22 12:19 PM

798 Glossary

identity element An element of a set with respect to a binary operation on that set, which leaves
other elements unchanged when combined with them

IEEE 802.11 A standard for wireless local area networks.

index Another name for discrete logarithm.

information security Preservation of confidentiality, integrity, and availability of information In ad-
dition, other properties, such as authenticity), accountability, non-repudiation, and reliability can also
be involved.

information technology (IT) Applied computer systems, both hardware and software, and often
including networking and telecommunications, usually in the context of a business or other enterprise.
Often the name of the part of an enterprise that deals with all things electronic.

initialization vector A random block of data that is used to begin the encryption of multiple
blocks of plaintext, when a block-chaining encryption technique is used. The IV serves to foil
known-plaintext attacks.

internet of things A networked collection of sensors and actuators owned by and operated on be-
half of an organization.

intruder An individual who gains, or attempts to gain, unauthorized access to a computer system or
to gain unauthorized privileges on that system.

intrusion detection system The detection of unauthorized access to a host system.

intrusion detection system A set of automated tools designed to detect unauthorized access to a
host system.

intrusion prevention The prevention unauthorized access to a host system.

IP Security (IPsec) A security enhancement to IPv4 and IPv6

IPv4 The Internet Protocol version that was universally used until the advent of IPv6

IPv6 The Internet Protocol version intended to replace IPv6. Its most notable improvement over
IPv4 is the use of longer address lengths.

irreversible mapping A transformation of data such that the original data cannot be recovered from
the transformed data.

Kerberos The name given to Project Athena’s code authentication service.

key distribution The distribution of encryption keys to two or more parties.

key distribution center A system that is authorized to transmit temporary session keys to principals.
Each session key is transmitted in encrypted form using a master key that the key distribution center
shares with the target principal.

key exchange A procedure whereby two communicating parties can cooperate to acquire a shared
cryptographic key.

key expansion The generation of subkeys from a key

key management A mechanism or set of mechanisms for managing the creation, storage, distribu-
tion, and disposal of cryptographic keys.

key wrapping A method of securely exchanging a symmetric key to be shared by two parties, using a
symmetric key already shared by those parties.

keyless algorithm A cryptographic algorithm, such as a hash algorithm, that does not use a key.

keystream A stream of bits used as the key for a stream encryption algorithm.

lightweight cryptographic algorithm A cryptographic algorithm designed for resource-constrained
devices

Z06_STAL7484_08_GE_GLOS.indd 798 06/04/22 12:19 PM

Glossary 799

lightweight cryptography A subfield of cryptography concerned with the development of crypto-
graphic algorithms for resource-constrained devices

little endian A byte format in which the least significant byte of a word is in the low-address (left-
most) byte position.

logic bomb Logic embedded in a computer program that checks for a certain set of conditions to be
present on the system. When these conditions are met, it executes some function resulting in unau-
thorized actions.

malware Software that exploits vulnerabilities in a computing system to create an attack.

mandatory access control A means of restricting access to objects based on fixed security attributes
assigned to users and to files and other objects. The controls are mandatory in the sense that they can-
not be modified by users or their programs.

man-in-the-middle attack A form of active wiretapping attack in which the attacker intercepts
and selectively modifies communicated data in order to masquerade as one or more of the entities
involved in a communication.

masquerade A type of attack in which one system entity illegitimately poses as (assumes the iden-
tity of) another entity.

master key A long-lasting key that is used between a key distribution center and a principal for the
purpose of encoding the transmission of session keys. Typically, the master keys are distributed by
noncryptographic means. Also referred to as a key-encrypting key.

media access control (MAC) For broadcast networks, the method of determining which device has
access to the transmission medium at any time.

meet-in-the-middle attack This is a cryptanaltytic attack that attempts to find a value in each of the
range and domain of the composition of two functions such that the forward mapping of one through
the first function is the same as the inverse image of the other through the second function – quite
literally meeting in the middle of the composed function.

message authentication A process used to verify the integrity of a message.

message authentication code (MAC) Cryptographic checksum.

message digest Hash function.

microcontroller A single chip that contains the processor, non-volatile memory for the program
(ROM or flash), volatile memory for input and output (RAM), a clock, and an I/O control unit.

misuse detection An intrusion detection technique based on rules that specify system events,
sequences of events, or observable properties of a system that are believed to be symptomatic of
security incidents

modular arithmetic A kind of integer arithmetic that reduces all numbers to one of a fixed set
[0, ..., n – 1] for some number n. Any integer outside this range is reduced to one in this range by tak-
ing the remainder after division by n.

mode of operation A technique for enhancing the effect of a cryptographic algorithm or adapting the
algorithm for an application, such as applying a block cipher to a sequence of data blocks or a data stream.

modulus If a is an integer and n is a positive integer, we define a mod n to be the remainder when a
is divided by n. The integer n is called the modulus.

monoalphabetic substitution cipher A single cipher alphabet (mapping from plain alphabet to
cipher alphabet) is used per message.

multilevel security A capability that enforces access control across multiple levels of classification of
data.

Z06_STAL7484_08_GE_GLOS.indd 799 06/04/22 12:19 PM

800 Glossary

multiple encryption Repeated use of an encryption function with different keys to produce a more
complex mapping from plaintext to ciphertext.

network security Protection of networks and their service from unauthorized modification, destruc-
tion, or disclosure, and provision of assurance that the network performs its critical functions correctly
and there are no harmful side effects.

nibble A sequence of four bits.

non-repudiation Assurance that the sender of information is provided with proof of delivery and
the recipient is provided with proof of the sender’s identity, so neither can later deny having pro-
cessed the information.

nonce An identifier or number that is used only once.

notarization The use of a trusted third party to assure certain properties of a data exchange

one-time pad An encryption scheme in which the key length is equal to the message length, with
each element (bit or character) of the key used to encrypt/decrypt each element of the message (e.g.,
by XOR). The key is randomly chosen and used only once, for a single message. If the key is secure,
this scheme is impossible to break.

one-way function A function that is easily computed, but the calculation of its inverse is infeasible.

operational technology Machines/appliances with embedded IT built by non-IT companies, such as
medical machinery, SCADA (supervisory control and data acquisition), process control, and kiosks,
bought as appliances by enterprise OT people and primarily using wired connectivity

order The exponent to which a belongs (mod n)

OSI security architecture A management-oriented security standard that focuses on the OSI model
and on networking and communications aspects of security.

pairwise keys Cryptographic keys used for communication between a pair of devices, typically be-
tween an STA and an AP. These keys form a hierarchy beginning with a master key from which other
keys are derived dynamically and used for a limited period of time.

passive attack An attempt to learn or make use of information from the system that does not affect
system resources.

password A secret data value, usually a character string, that is used as authentication information.
A password is usually matched with a user identifier that is explicitly presented in the authentication
process, but in some cases, the identity may be implicit.

peer entity authentication Provides for the corroboration of the identity of a peer entity in an as-
sociation. Two entities are considered peers if they implement the same protocol in different systems;
e.g., two TCP modules in two communicating systems.

permutation An ordered sequence of all the elements of a finite set of elements S, with each ele-
ment appearing exactly once

plaintext The input to an encryption function or the output of a decryption function.

polyalphabetic substitution cipher The use different monoalphabetic substitutions as one proceeds
through the plaintext message.

post-quantum cryptographic algorithm A cryptographic algorithm designed using the principles of
post-quantum cryptography.

post-quantum cryptography Concerned with the development of cryptographic algorithms that are
secure against the potential development of quantum computers.

Post Office Protocol (POP3) An email protocol

prime number An integer p 7 1 is a prime number if and only if its only divisors are {1 and {p.

Z06_STAL7484_08_GE_GLOS.indd 800 06/04/22 12:19 PM

Glossary 801

primitive root If r and n are relatively prime integers with n 7 0. and if f(n) is the least positive
exponent m such that r m ° 1 mod n, then r is called a primitive root modulo n.

privacy The right of individuals to control or influence what information related to them may be
collected and stored and by whom, and to whom that information may be disclosed

private cloud A cloud that is implemented within the internal IT environment of the
organization

private key One of the two keys used in an asymmetric encryption system. For secure communica-
tion, the private key should only be known to its creator.

product cipher The execution of two or more simple ciphers in sequence in such a way that the final
result or product is cryptographically stronger than any of the component ciphers

pseudorandom function (PRF) A function that produces a pseudorandom string of bits of some
fixed length

pseudorandom number generator A function that deterministically produces a sequence of num-
bers that are apparently statistically random.

public cloud A cloud infrastructure made available to the general public or a large industry group
and is owned by an organization selling cloud services

public key One of the two keys used in an asymmetric encryption system. The public key is made
public and is to be used in conjunction with a corresponding private key.

public-key certificate Consists of a public key plus a User ID of the key owners with the whole
block signed by a trusted third party. Typically, the third party is a certificate authority (CA) that is
trusted by the user community, such as a government agency or a financial institution.

public-key encryption Asymmetric encryption.

public-key infrastructure (PKI) The set of hardware, software, people, policies, and procedures
needed to create, manage, store, distribute, and revoke digital certificates based on asymmetric cryp-
tography.

quantum computing A form of computing is based on the representation of information in a form
analogous to the behavior of elementary particles in quantum physics

quantum safety Refers to cryptographic algorithms that are safe, or secure, against quantum com-
puting algorithms

relatively prime Two numbers are relatively prime if they have no prime factors in common; that is,
their only common divisor is 1.

replay An attack in which a service already authorized and completed is forged by another, dupli-
cate request in an attempt to repeat authorized commands.

replay attack An attack in which a service already authorized and completed is forged by another
“duplicate request” in an attempt to repeat authorized commands.

residue When the integer a is divided by the integer n, the remainder r is referred to as the residue.
Equivalently, r = a mod n.

residue class All the integers that have the same remainder when divided by n form a residue class
(mod n). Thus, for a given remainder r, the residue class (mod n) to which it belongs consists of the
integers r, r { n, r { 2n, c .

reversible mapping A transformation of data such that the original data can be recovered from the
transformed data.

round An sub-algorithm in a cryptographic algorithm that is repeated multiple times.

round function The function performed by a round.

Z06_STAL7484_08_GE_GLOS.indd 801 06/04/22 12:19 PM

802 Glossary

routing control Enables selection of particular physically or logically secure routes for certain data
and allows routing changes, especially when a breach of security is suspected.

RSA algorithm A public-key encryption algorithm based on exponentiation in modular arithmetic.
It is the only algorithm generally accepted as practical and secure for public-key encryption.

S-box A matrix structure that is used as part of some block cipher algorithms to perform substitu-
tion.

secret key The key used in a symmetric encryption system. Both participants must share the same
key, and this key must remain secret to protect the communication.

security attack An assault on system security that derives from an intelligent threat; that is, an
intelligent act that is a deliberate attempt (especially in the sense of a method or technique) to evade
security services and violate the security policy of a system.

security mechanism A process (or a device incorporating such a process) that is designed to detect,
prevent, or recover from a security attack.

security service A processing or communication service that enhances the security of the data pro-
cessing systems and the information transfers of an organization. The services are intended to counter
security attacks, and they make use of one or more security mechanisms to provide the service.

security threat A potential for violation of security, which exists when there is a circumstance, capa-
bility, action, or event that could breach security and cause harm. That is, a threat is a possible danger
that might exploit a vulnerability.

seed The input to a pseudorandom number generator.

sensor A device that measures some parameter of a physical, chemical, or biological entity and de-
livers an electronic signal proportional to the observed characteristic, either in the form of an analog
voltage level or a digital signal. In both cases, the sensor output is typically input to a microcontroller
or other management element

session key A temporary encryption key used between two principals.

single-key algorithm A cryptographic algorithm that uses a single secret key.

single-key encryption Encryption that uses a single secret key.

Simple Mail Transfer Protocol (SMTP) An email protocol

skew Bias in a random or pseudorandom bit stream.

steganography Methods of hiding the existence of a message or other data. This is different than
cryptography, which hides the meaning of a message but does not hide the message itself.

stream cipher A symmetric encryption algorithm in which ciphertext output is produced bit-by-bit
or byte-by-byte from a stream of plaintext input.

subkey A key derived from the main key of an encryption algorithm, generally used for only one
round.

substitution A basic mechanism of encryption in which one bit or block of data is substituted for
another.

symmetric encryption A form of cryptosystem in which encryption and decryption are performed
using the same key. Also known as conventional encryption.

system integrity Assures that a system performs its intended function in an unimpaired manner, free
from deliberate or inadvertent unauthorized manipulation of the system.

threat A potential security harm to an asset.

timestamp A sequence of characters or encoded information identifying when a certain event
occurred, usually giving date and time of day

timing attack An attack that depends on the running time of the decryption algorithm

Z06_STAL7484_08_GE_GLOS.indd 802 06/04/22 12:19 PM

Glossary 803

transceiver A device that contains the electronics needed to transmit and receive data. Most IoT
devices contain a wireless transceiver, capable of communication using Wi-Fi, ZigBee, or some other
wireless scheme

transport mode A mode of operation of IPsec that provides protection to the payload of an IP
packet.

trapdoor Secret undocumented entry point into a program used to grant access without normal
methods of access authentication.

trapdoor one-way function A function that is easily computed, and the calculation of its inverse is
infeasible unless certain privileged information is known.

triple DES (3DES) Multiple encryption using three instances of DES, with either two or three dif-
ferent keys

Trojan horse A computer program that appears to have a useful function, but also has a hidden and
potentially malicious function that evades security mechanisms, sometimes by exploiting legitimate
authorizations of a system entity that invokes the program.

true random number generator Produces bits non-deterministically using some physical source that
has produces some sort of random output.

trust the willingness of a party to be vulnerable to the actions of another party based on the ex-
pectation that the other will perform a particular action important to the trustor, irrespective of the
ability to monitor or control that other party

trust relationship A relationship between two different domains or areas of authority that makes it
possible for users in one domain to be authenticated by a domain controller in the other domain.

trusted system A computer and operating system that can be verified to implement a given security
policy.

trustworthiness A characteristic of an entity that reflects the degree to which that entity is deserving
of trust

tunnel mode A mode of operation of IPsec that provides protection to both the payload and header
of an IP packet

tweakable block cipher A cipher that has three inputs: a plaintext P, a symmetric key K, and a
tweak T; and produces a ciphertext output C.

two-key algorithm A cryptographic algorithm that uses a public key and a private key.

user authentication The process of verifying an identity claimed by or for a system entity.

unconditionally secure Secure even against an opponent with unlimited time and unlimited comput-
ing resources.

unpredictability The property of a stream of bits that future bits are not predictable from pre-
ceding bits.

virtual private network Consists of a set of computers that interconnect by means of a relatively
unsecure network and that make use of encryption and special protocols to provide security.

virus Code embedded within a program that causes a copy of itself to be inserted in one or more
other programs. In addition to propagation, the virus usually performs some unwanted function.

Wi-Fi A commercial specification of IEEE 802.11

worm Program that can replicate itself and send copies from computer to computer across network
connections. Upon arrival, the worm may be activated to replicate and propagate again. In addition to
propagation, the worm usually performs some unwanted function.

zombie A program that secretly takes over another Internet-attached computer and then uses that
computer to launch attacks that are difficult to trace to the zombie’s creator.

Z06_STAL7484_08_GE_GLOS.indd 803 06/04/22 12:19 PM

804

RefeRences

ABBREVIATIONS

ACM Association for Computing Machinery
IBM International Business Machines Corporation
IEEE Institute of Electrical and Electronics Engineers
NIST National Institute of Standards and Technology

ADAM94 Adams, C. “Simple and Effective Key Scheduling for Symmetric Ciphers.” Proceed-
ings, Workshop on Selected Areas of Cryptography, SAC’94, 1994.

AGRA04 Agrawal, M.; Kayal, N.; and Saxena, N. “PRIMES is in P.” IIT Kanpur, Annals of
Mathematics, September 2004.

AGRE11 Agren, M.; Hell, M.; Johansson, T.; and Meier, W. “A New Version of Grain-128 with
Authentication.” ECRYPT Workshop on Symmetric Encryption, February 2011.

ALFA13 AlFardan, N., et al. “On the Security of RC4 in TLS and WPA.” USENIX Security
Symposium, July 2013.

ANDR17 Androulaki, E. “Cryptography and Protocols in Hyperledger Fabric.” Real-World
Cryptography Conference, 2017.

AROR12 Arora, M. “How Secure is AES Against Brute-Force Attack?” EE Times, May 7,
2012.

AUMA12 Aumasson, J., and Bernstein, D. “SipHash: A Fast Short-Input PRF.” Progress in
Cryptology – INDOCRYPT 2012, 2012.

BABB08 Babbage, S., et al. The eStream Portfolio. http://www.ecrypt.eu.org/stream/portfolio.
pdf, April 15, 2008.

BARD12 Bardou, R., et al, “Efficient Padding Oracle Attacks on Cryptographic Hardware,”
INRIA, Rapport de recherche RR-7944. http://hal.inria.fr/hal-00691958, April 2012.

BASU12 Basu, A. Intel AES-NI Performance Testing over Full Disk Encryption. Intel Corp. May
2012.

BELL90 Bellovin, S., and Merritt, M. “Limitations of the Kerberos Authentication System.”
Computer Communications Review, October 1990.

BELL94a Bellare, M., and Rogaway, P. “Optimal Asymmetric Encryption—How to Encrypt with
RSA.” Proceedings, Eurocrypt ‘94, 1994.

BELL94b Bellovin, S., and Cheswick, W. “Network Firewalls.” IEEE Communications Magazine,
September 1994.

BELL96a Bellare, M.; Canetti, R.; and Krawczyk, H. “Keying Hash Functions for Message
Authentication.” Proceedings, CRYPTO ‘96, August 1996; published by Springer-Verlag.
An expanded version is available at http://www-cse.ucsd.edu/users/mihir.

BELL96b Bellare, M.; Canetti, R.; and Krawczyk, H. “The HMAC Construction.” CryptoBytes,
Spring 1996.

BELL96c Bellare, M., and Rogaway, P. “The Exact Security of Digital Signatures—How to Sign
with RSA and Rabin.” Advances in Cryptology – Eurocrypt ‘96, 1996.

BELL98 Bellare, M., and Rogaway, P. “PSS: Provably Secure Encoding Method for Digital
Signatures.” Submission to IEEE P1363, August 1998.

Z07_STAL7484_08_GE_BIB.indd 804 06/04/22 12:19 PM

http://www.ecrypt.eu.org/stream/portfolio.pdf
http://hal.inria.fr/hal-00691958
http://www-cse.ucsd.edu/users/mihir
http://www.ecrypt.eu.org/stream/portfolio.pdf

REFERENCES 805

BELL00 Bellare, M.; Kilian, J.; and Rogaway, P. “The Security of the Cipher Block Chaining
Message Authentication Code.” Journal of Computer and System Sciences, December
2000.

BELL09 Bellare, M., et al. “Format Preserving Encryption.” Proceedings of SAC 2009 (Selected
Areas in Cryptography), November 2009. Available at Cryptology ePrint Archive,
Report 2004/094

BELL10a Bellare, M.; Rogaway, P.; and Spies, T. The FFX Mode of Operation for Format-Preserving
Encryption, Draft 1.1. NIST, http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/pro-
posedmodes/ffx/ffx-spec.pdf, February, 2010.

BELL10b Bellare, M.; Rogaway, P.; and Spies, T. Addendum to The FFX Mode of Operation for
Format-Preserving Encryption: A parameter collection for enciphering strings of
arbitrary radix and length. NIST, http://csrc.nist.gov/groups/ST/toolkit/BCM/docu-
ments/proposedmodes/ffx/ffx-spec2.pdf, September 2010.

BELL16 Bellovin, S. “Attack Surfaces.” IEEE Security & Privacy, May-June, 2016.
BENN97 Bennett, C., et al. “Strengths and Weaknesses of Quantum Computing.” SIAM Journal

on Computing, October 1997.
BERT07 Bertoni, G., et al. “Sponge Functions.” Ecrypt Hash Workshop 2007, May 2007.
BERT11 Bertoni, G., et al. “Cryptographic Sponge Functions.” January 2011, http://sponge.

noekeon.org/.
BETH91 Beth, T.; Frisch, M.; and Simmons, G. eds. Public-Key Cryptography: State of the Art

and Future Directions. New York: Springer-Verlag, 1991.
BIRY04 Biryukov, A. Block Ciphers and Stream Ciphers: The State of the Art. Cryptology

ePrint Archive, Report 2004/094, 2004.
BIRY17 Biryukov, A., and Perrin, L. State of the Art in Lightweight Symmetric Cryptography.

Cryptology ePrint Archive, Report 2017/511, 2017
BLAC05 Black, J. “Authenticated Encryption.” Encyclopedia of Cryptography and Security,

Springer, 2005.
BLEI98 Bleichenbacher, D. “Chosen ciphertext attacks against protocols based on the RSA

encryption standard PKCS #1,” CRYPTO ’98, 1998.
BLUM86 Blum, L.; Blum, M.; and Shub, M. “A Simple Unpredictable Pseudo-Random Number

Generator.” SIAM Journal on Computing, No. 2, 1986.
BOGA18 Bogatyy, I. “A Next-Generation Smart Contract and Decentralized Application

Platform.” Ethereum White Paper. August 2018. https://github.com/ethereum/wiki/
wiki/White-Paper

BONE02 Boneh, D., and Shacham, H. “Fast Variants of RSA.” CryptoBytes, Winter/Spring
2002.

BRIE10 Brier, E.; Peyrin, T.; and Stern, J. BPS: a Format-Preserving Encryption Proposal. NIST,
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/bps/bps-spec.
pdf, April 2010.

BRIG79 Bright, H., and Enison, R. “Quasi-Random Number Sequences from Long-Period
TLP Generator with Remarks on Application to Cryptography.” Computing Surveys,
December 1979.

BRYA88 Bryant, W. Designing an Authentication System: A Dialogue in Four Scenes. Project
Athena document, February 1988. Available at http://web.mit.edu/kerberos/www/
dialogue.html

BUTE15 Buterin, MV. “On Public and Private Blockchains.” Ethereum Blog, August 7, 2015,
https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/

Z07_STAL7484_08_GE_BIB.indd 805 06/04/22 12:19 PM

http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/pro-posedmodes/ffx/ffx-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/pro-posedmodes/ffx/ffx-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/docu-ments/proposedmodes/ffx/ffx-spec2.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/docu-ments/proposedmodes/ffx/ffx-spec2.pdf
http://sponge.noekeon.org/
https://github.com/ethereum/wiki/wiki/White-Paper
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/bps/bps-spec.pdf
http://web.mit.edu/kerberos/www/dialogue.html
https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/
https://github.com/ethereum/wiki/wiki/White-Paper
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/bps/bps-spec.pdf
http://web.mit.edu/kerberos/www/dialogue.html
http://sponge.noekeon.org/

806 REFERENCES

BUTI17 Butin, D. “Hash-Based Signatures: State of Play.” IEEE Security & Privacy, July/
August 2017.

CACH16 Cachin, C. “Architecture of the Hyperledger Blockchain Fabric.” Workshop on Dis-
tributed Cryptocurrencies and Consensus Ledgers, July 2016.

CAKI10 Cakiroglu, M., et al. “Performance evaluation of scalable encryption algorithm for
wireless sensor networks.” Scientific Research and Essays, May 2010.

CAMP92 Campbell, K., and Wiener, M. “Proof that DES is not a Group.” Proceedings, Crypto ‘92,
1992; published by Springer-Verlag.

CHOI08 Choi, M., et al. “Wireless Network Security: Vulnerabilities, Threats and Countermea-
sures.” International Journal of Multimedia and Ubiquitous Engineering, July 2008.

CONS17 Constantin, L. “The SHA-1 Hash Function is Now Completely Unsafe.” Computer-
World, February 23, 2017.

COPP94 Coppersmith, D. “The Data Encryption Standard (DES) and Its Strength Against
Attacks.” IBM Journal of Research and Development, May 1994.

CORM09 Cormen, T.; Leiserson, C.; Rivest, R.; and Stein, C. Introduction to Algorithms.
 Cambridge, MA: MIT Press, 2009.

CRAN01 Crandall, R., and Pomerance, C. Prime Numbers: A Computational Perspective. New
York: Springer-Verlag, 2001.

CRYP17 CRYPTREC Lightweight Cryptography Working Group. CRYPTREC Cryptographic
Technology Guideline (Lightweight Cryptography). March 2017.

CSA11 Cloud Security Alliance. Security as a Service (SecaaS). CSA Report, 2011.
CSA17 Cloud Security Alliance. The Treacherous 12—Top Threats to Cloud Computing +

Industry Insights. CSA Report, October 2017.
DAEM99 Daemen, J., and Rijmen, V. AES Proposal: Rijndael, Version 2. Submission to NIST,

March 1999. http://csrc.nist.gov/archive/aes/index.html.
DAMG89 Damgard, I. “A Design Principle for Hash Functions.” Proceedings, CRYPTO ‘89, 1989;

published by Springer-Verlag.
DAVI89 Davies, D., and Price, W. Security for Computer Networks. New York: Wiley, 1989.
DAWS96 Dawson, E., and Nielsen, L. “Automated Cryptoanalysis of XOR Plaintext Strings.”

Cryptologia, April 1996.
DENN81 Denning, D., and Sacco, G. “Timestamps in Key Distribution Protocols.” Communications

of the ACM, August 1981.
DENN82 Denning, D. Cryptography and Data Security. Reading, MA: Addison-Wesley, 1982.
DENN83 Denning, D. “Protecting Public Keys and Signature Keys.” Computer, February 1983.
DIFF76a Diffie, W., and Hellman, M. “New Directions in Cryptography.” Proceedings of the

AFIPS National Computer Conference, June 1976.
DIFF76b Diffie, W., and Hellman, M. “Multiuser Cryptographic Techniques.” IEEE Transactions

on Information Theory, November 1976.
DIFF77 Diffie, W., and Hellman, M. “Exhaustive Cryptanalysis of the NBS Data Encryption

Standard.” Computer, June 1977.
DIFF79 Diffie, W., and Hellman, M. “Privacy and Authentication: An Introduction to Cryptog-

raphy.” Proceedings of the IEEE, March 1979.
DIFF88 Diffie, W. “The First Ten Years of Public-Key Cryptography.” Proceedings of the IEEE,

May 1988.
DIMI07 Dimitriadis, C. “Analyzing the Security of Internet Banking Authentication Mechanisms.”

Information Systems Control Journal, Vol. 3, 2007.

Z07_STAL7484_08_GE_BIB.indd 806 06/04/22 12:19 PM

http://csrc.nist.gov/archive/aes/index.html

REFERENCES 807

DING17 Ding, J., and Petzoldt, A. “Current State of Multivariate Cryptography.” IEEE Security
& Privacy, July/August 2017.

DRUC18 Drucker, N.; Gueron, S.; and Krasnov, V. Making AES great again: the forthcoming
vectorized AES instruction. Cryptology ePrint Archive, Report 2018/392, 2018

EFF98 Electronic Frontier Foundation. Cracking DES: Secrets of Encryption Research,
Wiretap Politics, and Chip Design. Sebastopol, CA: O’Reilly, 1998.

ELGA84 Elgamal, T. “A Public Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms.” Proceedings, Crypto 84, 1984.

ELGA85 Elgamal, T. “A Public Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms.” IEEE Transactions on Information Theory, July 1985.

ENIS17 European Union Agency For Network And Information Security. Baseline Security
Recommendations for IoT. November 2017. https://www.enisa.europa.eu

ETSI14 European Telecommunications Standards Institute. Quantum Safe Cryptography and
Security; An introduction, benefits, enablers and challenges. ETSI White Paper, 2014.

FEIS73 Feistel, H. “Cryptography and Computer Privacy.” Scientific American, May 1973.
FEIS75 Feistel, H.; Notz, W.; and Smith, J. “Some Cryptographic Techniques for Machine-to-

Machine Data Communications.” Proceedings of the IEEE, November 1975.
FERN99 Fernandes, A. “Elliptic Curve Cryptography.” Dr. Dobb’s Journal, December 1999.
FORD95 Ford, W. “Advances in Public-Key Certificate Standards.” ACM SIGSAC Review, July

1995.
FRAN07 Frankel, S., et al. Establishing Wireless Robust Security Networks: A Guide to IEEE

802.11i. NIST Special Publication SP 800-97, February 2007.
GARD77 Gardner, M. “A New Kind of Cipher That Would Take Millions of Years to Break.”

Scientific American, August 1977.
GART17 Gartner Research. “ What CIOs Should Tell the Board of Directors About Block-

chain.” February 14, 2017. https://www.gartner.com/doc/3606027/cios-tell-board-
directors-blockchain

GEOR12 Georgiev, M., et al. “ The Most Dangerous Code in the World: Validating SSL Certifi-
cates in Non-Browser Software.” ACM Conference on Computer and Communications
Security, 2012.

GONG92 Gong, L. “A Security Risk of Depending on Synchronized Clocks.” Operating Systems
Review, January 1992.

GONG93 Gong, L. “Variations on the Themes of Message Freshness and Replay.” Proceedings,
IEEE Computer Security Foundations Workshop, June 1993.

GOOD11 Goodin, D. “Hackers break SSL encryption used by millions of sites.” The Register,
September 19, 2011.

GOOD12 Goodin, D. “Crack in Internet’s foundation of trust allows HTTPS session hijacking.”
Ars Technica, September 13, 2012.

GREE18 Greenemeier, L. “How Close Are We—Really—to Building a Quantum Computer?”
Scientific American, May 2018.

GROV96 Grover, L. “A Fast Quantum Mechanical Algorithm for Database Search.” ACM
Symposium on Theory of Computing, 1996.

GUO11 Guo, J.; Peyrin, T.; and Poschmann, A. “The PHOTON Family of Lightweight Hash
Functions.” 31st Annual International Cryptology Conference (CRYPTO 2011), 2011.

GUTT06 Gutterman, Z.; Pinkas, B.; and Reinman, T. “Analysis of the Linux Random Number
Generator.” Proceedings, 2006 IEEE Symposium on Security and Privacy, 2006.

Z07_STAL7484_08_GE_BIB.indd 807 06/04/22 12:19 PM

https://www.enisa.europa.eu
https://www.gartner.com/doc/3606027/cios-tell-board-directors-blockchain
https://www.gartner.com/doc/3606027/cios-tell-board-directors-blockchain

808 REFERENCES

HART28 Hartley, R. “Transmission of Information.” Bell System Technical Journal, July 1928.
HELL79 Hellman, M. “The Mathematics of Public-Key Cryptography.” Scientific American,

August 1970.
HELL06 Hell, M.; Johansson, T.; and Meier, W. “Grain—a stream cipher for constrained envi-

ronments.” International Journal of Wireless and Mobile Computing, vol. 2, no. 1, 2006.
HERN06 Hernan, S.; Lambert, S.; Ostwald, T.; and Shostack, A. “Uncover Security Design Flaws

Using The STRIDE Approach.” MSDN Magazine, November 2006.
HEVI99 Hevia, A., and Kiwi, M. “Strength of Two Data Encryption Standard Implementa-

tions Under Timing Attacks.” ACM Transactions on Information and System Security,
November 1999.

HILT06 Hiltgen, A.; Kramp, T.; and Wiegold, T. “Secure Internet Banking Authentication.”
IEEE Security and Privacy, vol. 4, no. 2, 2006.

HOWA03 Howard, M.; Pincus, J.; and Wing, J. “Measuring Relative Attack Surfaces.” Proceed-
ings, Workshop on Advanced Developments in Software and Systems Security, 2003.

HUIT98 Huitema, C. IPv6: The New Internet Protocol. Upper Saddle River, NJ: Prentice Hall,
1998.

IANS90 I’Anson, C., and Mitchell, C. “Security Defects in CCITT Recommendation X.509 - The
Directory Authentication Framework.” Computer Communications Review, April 1990.

INTE14 Intel Corp. Intel® Digital Random Number Generator (DRNG) Software Implementa-
tion Guide. May 15, 2014. https://software.intel.com/en-us/articles/intel-digital-random-
number-generator-drng-software-implementation-guide

INTE18 Intel, Corp. Intel Architecture Instruction Set Extensions and Future Features Pro-
gramming Reference. Ref. #319433-034, May 2018. https://software:intel:com/sites/
default/files/managed/c5/15/architecture-instruction-set-extensions-programming-
reference:pdf

ISAC13 ISACA. Responding to Targeted Cyberattacks. 2008. www.isaca.org
IWAT03 Iwata, T., and Kurosawa, K. “OMAC: One-Key CBC MAC.” Proceedings, Fast

Software Encryption, FSE ‘03, 2003.
JAIN91 Jain, R. The Art of Computer Systems Performance Analysis: Techniques for

 Experimental Design, Measurement, Simulation, and Modeling. New York: Wiley,
1991.

JAKO98 Jakobsson, M.; Shriver, E.; Hillyer, B.; and Juels, A. “A Practical Secure Physical
Random Bit Generator.” Proceedings of The Fifth ACM Conference on Computer and
Communications Security, November 1998.

JOHN05 Johnson, D. “Hash Functions and Pseudorandomness.” Proceedings, First NIST
Cryptographic Hash Workshop, 2005.

JONS02 Jonsson, J. “On the Security of CTR + CBC-MAC.” Proceedings of Selected Areas in
Cryptography – SAC 2002, 2002.

JUEN87 Jueneman, R. “Electronic Document Authentication.” IEEE Network Magazine, April
1987.

JURI97 Jurisic, A., and Menezes, A. “Elliptic Curves and Cryptography.” Dr. Dobb’s Journal,
April 1997.

KALI01 Kaliski, B. “RSA Digital Signatures.” Dr. Dobb’s Journal, May 2001.
KALI95 Kaliski, B., and Robshaw, M. “The Secure Use of RSA.” CryptoBytes, Autumn 1995.
KALI96a Kaliski, B., and Robshaw, M. “Multiple Encryption: Weighing Security and Perfor-

mance.” Dr. Dobb’s Journal, January 1996.

Z07_STAL7484_08_GE_BIB.indd 808 06/04/22 12:19 PM

https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide
https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide
https://software:intel:com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference:
http://www.isaca.org
https://software:intel:com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference:
https://software:intel:com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference:

REFERENCES 809

KALI96b Kaliski, B. “Timing Attacks on Cryptosystems.” RSA Laboratories Bulletin, January
1996. http://www.rsasecurity.com/rsalabs

KEHN92 Kehne, A.; Schonwalder, J.; and Langendorfer, H. “A Nonce-Based Protocol for
Multiple Authentications.” Operating Systems Review, October 1992.

KLEI10 Kleinjung, T., et al. “Factorization of a 768-bit RSA modulus.” Listing 2010/006,
Cryptology ePrint Archive, February 18, 2010.

KNUD00 Knudson, L. “Block Chaining Modes of Operation.” NIST First Modes of Operation
Workshop, October 2000. http://csrc.nist.gov/groups/ST/toolkit/BCM/workshops.html

KNUT98 Knuth, D. The Art of Computer Programming, Volume 2: Seminumerical Algorithms.
Reading, MA: Addison-Wesley, 1998.

KOBL94 Koblitz, N. A Course in Number Theory and Cryptography. New York: Springer-Verlag,
1994.

KOCH96 Kocher, P. “Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Other Systems.” Proceedings, Crypto ‘96, August 1996.

KOHL89 Kohl, J. “The Use of Encryption in Kerberos for Network Authentication.”
 Proceedings, Crypto ‘89, 1989; published by Springer-Verlag.

KOHL94 Kohl, J.; Neuman, B.; and Ts’o, T. “The Evolution of the Kerberos Authentication
Service.” in Brazier, F., and Johansen, D. Distributed Open Systems. Los Alamitos, CA:
IEEE Computer Society Press, 1994. Available at http://web.mit.edu/kerberos/www/
papers.html

KOHN78 Kohnfelder, L. Towards a Practical Public Key Cryptosystem. Bachelor’s Thesis, M.I.T.
1978.

KUMA97 Kumar, I. Cryptology. Laguna Hills, CA: Aegean Park Press, 1997.
KUMA10 Kumar, K.; Salivahanan, S.; and Reddy, K. “Implementation of Low Power Scalable

Encryption Algorithm.” International Journal of Computer Applications, December
2010.

KUMA11a Kumar, K.; Reddy, K.; and Salivahanan, S. “Efficient Modular Adders for Scalable
Encryption Algorithm.” International Journal of Computer Applications, June 2011.

KUMA11b Kumar, M. “The Hacker’s Choice Releases SSL DOS Tool.” The Hacker News, Octo-
ber 24, 2011. http://thehackernews.com/2011/10/hackers-choice-releases-ssl-ddos-tool.
html#

LAI18 Lai, V. “A coffee-break introduction to time complexity of algorithms.” July 9, 2018.
https://dev.to/vickylai/a-coffee-break-introduction-to-time-complexity-of-algorithms-
160m

LAMP79 Lamport, L. “Constructing Digital Signatures from a One Way Function.” Computer
Science Laboratory Technical Report CSL-98, October 18, 1979.

LAM92a Lam, K., and Gollmann, D. “Freshness Assurance of Authentication Protocols.” Pro-
ceedings, ESORICS 92, 1992; published by Springer-Verlag.

LAM92b Lam, K., and Beth, T. “Timely Authentication in Distributed Systems.” Proceedings,
ESORICS 92, 1992; published by Springer-Verlag.

LAMP98 Lamport, L. “The Part-Time Parliament.” ACM Transactions on Computer Systems,
May 1998.

LAUT17 Lauter, K. “Postquantum Opportunities: Lattices, Homomorphic Encryption, and
Supersingular Isogeny Graphs.” IEEE Security & Privacy, July/August 2017.

LAW06 Law, Y.; Doumen, J.; and Hartel, P. “Survey and Benchmark of Block Ciphers for
Wireless Sensor Networks.” ACM Transactions on Sensor Networks, February 2006.

Z07_STAL7484_08_GE_BIB.indd 809 06/04/22 12:19 PM

http://www.rsasecurity.com/rsalabs
http://csrc.nist.gov/groups/ST/toolkit/BCM/workshops.html
http://web.mit.edu/kerberos/www/papers.html
http://thehackernews.com/2011/10/hackers-choice-releases-ssl-ddos-tool.html#
https://dev.to/vickylai/a-coffee-break-introduction-to-time-complexity-of-algorithms-160m
https://dev.to/vickylai/a-coffee-break-introduction-to-time-complexity-of-algorithms-160m
http://web.mit.edu/kerberos/www/papers.html
http://thehackernews.com/2011/10/hackers-choice-releases-ssl-ddos-tool.html#

810 REFERENCES

LEHM51 Lehmer, D. “Mathematical Methods in Large-Scale Computing.” Proceedings, 2nd
Symposium on Large-Scale Digital Calculating Machinery, Cambridge: Harvard
University Press, 1951.

LEUT94 Leutwyler, K. “Superhack.” Scientific American, July 1994.
LEVE90 Leveque, W. Elementary Theory of Numbers. New York: Dover, 1990.
LEVI12 Levis, P. “ Experiences from a Decade of TinyOS Development.” 10th USENIX

Symposium on Operating Systems Design and Implementation, 2012.
LEWA00 Lewand, R. Cryptological Mathematics. Washington, DC: Mathematical Association of

America, 2000.
LEWI69 Lewis, P.; Goodman, A.; and Miller, J. “A Pseudo-Random Number Generator for the

System/360.” IBM Systems Journal, no. 2, 1969.
LIDL94 Lidl, R., and Niederreiter, H. Introduction to Finite Fields and Their Applications.

Cambridge: Cambridge University Press, 1994.
LIPM00 Lipmaa, H.; Rogaway, P.; and Wagner, D. “CTR Mode Encryption.” NIST First Modes

of Operation Workshop, October 2000. http://csrc.nist.gov/groups/ST/toolkit/BCM/
workshops.html

LISK02 Liskov,M.; Rivest, R.; and Wagner, D. “Tweakable Block Ciphers. Advances in
Cryptology – CRYPTO 2002, 2002.

LUCK04 Luck, S. “Design Principles for Iterated Hash Functions.” Cryptology ePrint Archive,
Report 2004/253, 2004.

LUK07 Luk, M., et al. “MiniSec: A Secure Sensor Network Communication Architecture.”
International Conf. on Information Processing in Sensor Networks, 2007.

MA10 Ma, D., and Tsudik, G. “Security and Privacy in Emerging Wireless Networks.” IEEE
Wireless Communications, October 2010.

MACE08 Mace, F.; Standaert, F.; and Quisquater, J. “FPGA Implementation(s) of a Scalable
Encryption Algorithm.” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, February 2008.

MANA11 Manadhata, P., and Wing, J. “An Attack Surface Metric.” IEEE Transactions on
Software Engineering, vol. 37, no. 3, 2011.

MAUW05 Mauw, S., and Oostdijk, M. “Foundations of Attack Trees.” International Conference on
Information Security and Cryptology, 2005.

MAYE95 Mayer, R.; Davis, J.; and Schoorman, D. An Integrative Model of Organizational Trust.
Academy of Management Review, July 1995.

MCEL78 McEliece, R. “A Public-Key Cryptosystem Based on Algebraic Coding Theory.” Deep
Space Network Progress Report, Jet Propulsion Laboratory, California Institute of
Technology, 1978.

MCGR03 McGrew, D., and Viega, J. “Flexible and Efficient Message Authentication in
Hardware and Software.” 2003. Available at http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.58.9422

MCGR04 McGrew, D., and Viega, J. “The Security and Performance of the Galois/Counter
Mode (GCM) of Operation.” Proceedings, Indocrypt, 2004.

MECH14 Mechalas, J. Intel® Digital Random Number Generator (DRNG) Software Implemen-
tation Guide. Intel Developer Zone. May 15, 2014. https://software.intel.com/en-us/
articles/intel-digital-random-number-generator-drng-software-implementation-guide

MENE97 Menezes, A.; Oorshcot, P.; and Vanstone, S. Handbook of Applied Cryptography. Boca
Raton, FL: CRC Press, 1997. Available at: http://cacr.uwaterloo.ca/hac/index.html

Z07_STAL7484_08_GE_BIB.indd 810 06/04/22 12:19 PM

http://csrc.nist.gov/groups/ST/toolkit/BCM/workshops.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.58.9422
https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide
http://cacr.uwaterloo.ca/hac/index.html
http://csrc.nist.gov/groups/ST/toolkit/BCM/workshops.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.58.9422
https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide

REFERENCES 811

MERK79 Merkle, R. Secrecy, Authentication, and Public Key Systems. Ph.D. Thesis, Stanford
University, June 1979.

MERK81 Merkle, R., and Hellman, M. “On the Security of Multiple Encryption.” Communica-
tions of the ACM, July 1981.

MERK89 Merkle, R. “One Way Hash Functions and DES.” Proceedings, CRYPTO ‘89, 1989;
published by Springer-Verlag.

MEYE88 Meyer, C., and Schilling, M. “Secure Program Load with Modification Detection
Code.” Proceedings, SECURICOM 88, 1988.

MEYE13 Meyer, C.; Schwenk, J.; and Gortz, H. “Lessons Learned From Previous SSL/TLS Attacks
A Brief Chronology Of Attacks And Weaknesses.” Cryptology ePrint Archive, 2013.

MILL75 Miller, G. “Riemann’s Hypothesis and Tests for Primality.” Proceedings of the Seventh
Annual ACM Symposium on the Theory of Computing, May 1975.

MILL88 Miller, S.; Neuman, B.; Schiller, J.; and Saltzer, J. “Kerberos Authentication and
Authorization System.” Section E.2.1, Project Athena Technical Plan, M.I.T. Project
Athena, Cambridge, MA, 27 October 1988.

MIRK04 Mirkovic, J., and Relher, P. “A Taxonomy of DDoS Attack and DDoS Defense
Mechanisms.” ACM SIGCOMM Computer Communications Review, April 2004.

MITC90 Mitchell, C.; Walker, M.; and Rush, D. “CCITT/ISO Standards for Secure Message
Handling.” IEEE Journal on Selected Areas in Communications, May 1989.

MOOR01 Moore, A.; Ellison, R.; and Linger, R. “Attack Modeling for Information Security and
Survivability.” Carnegie-Mellon University Technical Note CMU/SEI-2001-TN-001,
March 2001.

MUSA03 Musa, M.; Schaefer, E.; and Wedig, S. “A Simplified AES Algorithm and its Linear and
Differential Cryptanalysis.” Cryptologia, April 2004.

MYER91 Myers, L. Spycomm: Covert Communication Techniques of the Underground. Boulder,
CO: Paladin Press, 1991.

NAS18 National Academy of Sciences. Decrypting the Encryption Debate A Framework for
Decision Makers. Washington, DC: National Acadamies Press, 2018.

NCAE13 National Centers of Academic Excellence in Information Assurance/Cyber Defense.
NCAE IA/CD Knowledge Units. June 2013.

NECH01 Nechvatal, J., et al. “Report on the Development of the Advanced Encryption Stan-
dard (AES).” Journal of Research of the National Institute of Standards and Technol-
ogy, May-June 2001. https://nvlpubs.nist.gov/nistpubs/jres/106/3/j63nec.pdf

NEED78 Needham, R., and Schroeder, M. “Using Encryption for Authentication in Large Net-
works of Computers.” Communications of the ACM, December 1978.

NEUM93a Neuman, B., and Stubblebine, S. “A Note on the Use of Timestamps as Nonces.”
Operating Systems Review, April 1993.

NEUM93b Neuman, B. “Proxy-Based Authorization and Accounting for Distributed Systems.”
Proceedings of the 13th International Conference on Distributed Computing Systems,
May 1993.

NHTS14 National Highway Transportation Safety Agency. Vehicle-to-Vehicle Communications:
Readiness of V2V Technology for Application. U. S. Department of Transportation,
August 2014.

NIST17 National Institute of Standards and Technology. “Profiles for the Lightweight
Cryptography Standardization Process.” NIST Cybersecurity White Paper, April 26,
2017.

Z07_STAL7484_08_GE_BIB.indd 811 06/04/22 12:19 PM

https://nvlpubs.nist.gov/nistpubs/jres/106/3/j63nec.pdf

812 REFERENCES

NIST18 National Institute of Standards and Technology. “Announcing Request for Comments
on Lightweight Cryptography Requirements and Evaluation Criteria.” Federal
Register, May 14, 2018.

ODLY95 Odlyzko, A. “The Future of Integer Factorization.” CryptoBytes, Summer 1995.
ORE67 Ore, O. Invitation to Number Theory. Washington, D.C.: The Mathematical Association

of America, 1967.
PARK88 Park, S., and Miller, K. “Random Number Generators: Good Ones are Hard to Find.”

Communications of the ACM, October 1988.
PARZ06 Parziale, L., et al. TCP/IP Tutorial and Technical Overview. ibm.com/redbooks, 2006.
PAUL07 Paul, G., and Maitra, S. “Permutation after RC4 Key Scheduling Reveals the Secret

Key.” Selected Areas of Cryptography: SAC 2007, Lecture Notes on Computer Science,
Vol. 4876, pp 360-337, 2007.

PELL10 Pellegrini, A.; Bertacco, V.; and Austin, A. “Fault-Based Attack of RSA Authentica-
tion.” DATE ‘10 Proceedings of the Conference on Design, Automation and Test in
Europe, March 2010.

POIN02 Pointcheval, D. “How to Encrypt Properly with RSA.” CryptoBytes, Winter/Spring 2002.
POPE79 Popek, G., and Kline, C. “Encryption and Secure Computer Networks.” ACM

Computing Surveys, December 1979.
POPP17 Popper, N. “An Explanation of Initial Coin Offerings.” New York Times, October 27,

2017.
PREN10 Preneel, B. “The First 30 Years of Cryptographic Hash Functions and the NIST SHA-3

Competition.” CT-RSA’10 Proceedings of the 2010 International Conference on Topics
in Cryptology, 2010.

RABI80 Rabin, M. “Probabilistic Algorithms for Primality Testing.” Journal of Number Theory,
December 1980.

RIBE96 Ribenboim, P. The New Book of Prime Number Records. New York: Springer-Verlag,
1996.

RIVE78 Rivest, R.; Shamir, A.; and Adleman, L. “A Method for Obtaining Digital Signatures
and Public Key Cryptosystems.” Communications of the ACM, February 1978.

RIVE84 Rivest, R., and Shamir, A. “How to Expose an Eavesdropper.” Communications of the
ACM, April 1984.

ROBS95a Robshaw, M. Stream Ciphers. RSA Laboratories Technical Report TR-701, July 1995.
http://www.rsasecurity.com/rsalabs

ROBS95b Robshaw, M. Block Ciphers. RSA Laboratories Technical Report TR-601, August 1995.
http://www.rsasecurity.com/rsalabs

ROGA01 Rogaway, P.; Bellare, M.; Black.J.; and Krovetz, T. “OCB: A Block-Cipher Mode of
Operation for Efficient Authenticated Encryption.” NIST Proposed Block Cipher
Mode, August 2001. https://csrc.nist.gov/Projects/Block-Cipher-Techniques/BCM/
Modes-Development

ROGA03 Rogaway, P., and Wagner, A. A Critique of CCM. Cryptology ePrint Archive: Report
2003/070, April 2003.

ROGA04a Rogaway, P. “Efficient Instantiations of Tweakable Blockciphers and Refinements to
Modes OCB and PMAC.” Advances in Cryptology—Asiacrypt 2004. Lecture Notes in
Computer Science, Vol. 3329. Springer-Verlag, 2004.

ROGA04b Rogaway, P., and Shrimpton, T. “ Cryptographic Hash-Function Basics: Definitions,
Implications, and Separations for Preimage Resistance, Second-Preimage Resistance,
and Collision Resistance.” Fast Software Encryption, 2004.

Z07_STAL7484_08_GE_BIB.indd 812 06/04/22 12:19 PM

http://www.rsasecurity.com/rsalabs
http://www.rsasecurity.com/rsalabs
https://csrc.nist.gov/Projects/Block-Cipher-Techniques/BCM/

REFERENCES 813

ROGA10 Rogaway, P. “A Synopsis of Format-Preserving Encryption.” Unpublished Manuscript,
March 2010. http://web.cs.ucdavis.edu/~rogaway/papers

ROSA14 Rosado, T., and Bernardino, J. “An Overview of OpenStack Architecture.” ACM
IDEAS ‘14, July 2014.

SAAR12 Saarinen, M., and Engels, D. A Do-It-All-Cipher for RFID: Design Requirements.
Cryptology ePrint Archive, Report 2012/317, 2012.

SALT75 Saltzer, J., and Schroeder, M. “The Protection of Information in Computer Systems.”
Proceedings of the IEEE, September 1975.

SCHN91 Schneider, F., ed. Trust in Cyberspace. National Academy Press, 1999.
SCHN96 Schneier, B. Applied Cryptography. New York: Wiley, 1996.
SCHN14 Schneier, B. “The Internet of Things is Wildly Insecure—and Often Unpatchable.”

Wired, January 6, 2014.
SEAG08 Seagate Technology. 128-Bit Versus 256-Bit AES Encryption. Seagate Technology

Paper, 2008.
SEFR12 Serfaoui, O.; Aissaoui, M.; and Eleuldj, M. “OpenStack: Toward an Open-Source

 Solution for Cloud Computing.” International Journal of Computer Applications,
October 2012.

SEGH12 Seghal, A., et al. “ Management of Resource Constrained Devices in the Internet of
Things.” IEEE Communications Magazine, December 2012.

SEND17 Sendrier, N. “Code-Based Cryptography: State of the Art and Perspectives.” IEEE
Security & Privacy, July/August 2017.

SHAN49 Shannon, C. “Communication Theory of Secrecy Systems.” Bell Systems Technical
Journal, no. 4, 1949.

SHOR97 Shor, P. “Polynomial-Time Algorithms for Prime Factorization and Discrete
 Logarithms on a Quantum Computer.” SIAM Journal of Computing, October
1997.

SIMM93 Simmons, G. “Cryptology.” Encyclopaedia Britannica, Fifteenth Edition, 1993.
SING99 Singh, S. The Code Book: The Science of Secrecy from Ancient Egypt to Quantum

Cryptography. New York: Anchor Books, 1999.
SINK09 Sinkov, A., and Feil, T. Elementary Cryptanalysis: A Mathematical Approach.

Washington, D.C.: The Mathematical Association of America, 2009.
SMIT71 Smith, J. “The Design of Lucifer: A Cryptographic Device for Data Communications.”

IBM Research Report RC 3326, April 15, 1971.
SMIT15 Smith, A., and Whitcher, U. “Making a Hash of Things.” Math Horizons, November

2015.
STAL18 Stallings, W., and Brown, L. Computer Security: Principles and Practice. Upper Saddle

River, NJ: Pearson, 2018.
STAL19 Stallings, W. Effective Cybersecurity: Understanding and Using Standards and Best

Practices. Upper Saddle River, NJ: Pearson, 2019.
STAN06 Standaert F.; Piret G.; Gershenfeld N.; and Quisquater, J. “SEA: A Scalable Encryption

Algorithm for Small Embedded Applications.” International Conference on Smart
Card Research and Advanced Applications, 2006.

STEI88 Steiner, J.; Neuman, C.; and Schiller, J. “Kerberos: An Authentication Service for Open
Networked Systems.” Proceedings of the Winter 1988 USENIX Conference, February
1988.

STEV17 Stevens, M., et al. The first collision for full SHA-1. Cryptology ePrint Archive, Report
2017/190, 2017

Z07_STAL7484_08_GE_BIB.indd 813 06/04/22 12:19 PM

http://web.cs.ucdavis.edu/~rogaway/papers

814 REFERENCES

STIN06 Stinson, D. Cryptography: Theory and Practice. Boca Raton, FL: CRC Press, 2006.
TAYL11 Taylor, G., and Cox, G. “Digital Randomness.” IEEE Spectrum, September 2011.
TIER15 Tierpoint. With all Due Diligence. Tierpoint White Paper, 2015. Tierpoint.com
TIRI07 Tiri, K. “Side-Channel Attack Pitfalls.” Proceedings of the 44th Annual Design

 Automation Conference, June 2007.
TOBA07 Tobarra, L.; Cazorla, D.; Cuartero, F.; and Diaz, G. “Analysis of Security Protocol

 MiniSec for Wireless Sensor Networks.” The IV Congreso Iberoamericano de Seguri-
dad Informatica (CIBSI’07), November 2007.

TRAN18 Transparency Market Research. Blockchain Technology Market to Emerge With Mag-
nanimous Revenue: Key Facts Behind This Rise. June 2018. https://www.transparency-
marketresearch.com/pressrelease/blockchain-technology-market.htm

TUCH79 Tuchman, W. “Hellman Presents No Shortcut Solutions to DES.” IEEE Spectrum, July
1979.

VANC11 Vance, J. VAES3 Scheme for FFX. NIST, http://csrc.nist.gov/groups/ST/toolkit/BCM/
documents/proposedmodes/ffx/ffx-ad-VAES3.pdf, May 2011.

VANO90 van Oorschot, P., and Wiener, M. “A Known-Plaintext Attack on Two-Key Triple
Encryption.” Proceedings, EUROCRYPT ‘90, 1990; published by Springer-Verlag.

VANO94 van Oorschot, P., and Wiener, M. “Parallel Collision Search with Application to Hash
Functions and Discrete Logarithms.” Proceedings, Second ACM Conference on Com-
puter and Communications Security, 1994.

VOYD83 Voydock, V., and Kent., S. “Security Mechanisms in High-Level Network Protocols.”
Computing Surveys, June 1983.

WALK05 Walker, J. “802.11 Security Series. Part III: AES-based Encapsulations of 802.11 Data.”
Platform Networking Group, Intel Corporation, 2005.

WAYN09 Wayner, P. Disappearing Cryptography. Boston and Burlington, MA: Morgan
Kaufmann, 2009.

WEBS86 Webster, A., and Tavares, S. “On the Design of S-Boxes.” Proceedings, Crypto ‘85, 1985;
published by Springer-Verlag.

WIEN90 Wiener, M. “Cryptanalysis of Short RSA Secret Exponents.” IEEE Transactions on
Information Theory, vol. 36, no. 3, 1990.

WOO92a Woo, T., and Lam, S. “Authentication for Distributed Systems.” Computer, January
1992.

WOO92b Woo, T., and Lam, S. “ ‘Authentication’ Revisited.” Computer, April 1992.
XU16 Xu, X., et al. “The Blockchain as a Software Connector.” 2016 13th Working IEEE/

IFIP Conference on Software Architecture, April 2016.
YUVA79 Yuval, G. “How to Swindle Rabin.” Cryptologia, July 1979.

Z07_STAL7484_08_GE_BIB.indd 814 06/04/22 12:19 PM

https://www.transparency-marketresearch.com/pressrelease/blockchain-technology-market.htm
https://www.transparency-marketresearch.com/pressrelease/blockchain-technology-market.htm
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ffx/ffx-ad-VAES3.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ffx/ffx-ad-VAES3.pdf

815

Index

A
Abelian groups, 138–139, 323–324

associative, 323
closure, 323
commutative, 323
elliptic curve, 324
identity element, 323
inverse element, 323

Ability, 38
Absorbing phase, 364, 365
Access control, 31, 33, 576, 581, 586
Access point (AP), 568, 569, 575, 577
Accidental association, 568
Account/service hijacking, 717
Accountability, 25
Active attacks, 29–30

data modification, 29
denial of service, 29
masquerade, 29
replay, 29

Actuator, 730
Ad hoc networks, 568
Adaptive chosen message attack, 419
Adaptive Proportion Test, 277
Addition, 139, 140, 158

algebraic description of, 326
geometric description of, 324–326

Additive inverse, 54
AddRoundKey, 171, 172, 174, 192–194

forward add round key
transformation, 183

inputs for single AES round, 184
inverse add round key

transformation, 183
Administrative management domain

(ADMD), 600, 631
Advanced Encryption Standard (AES),

113, 123, 136, 154, 166
AddRoundKey and InvMixColumns,

192–193
avalanche effect, 188–191
byte-level operations, 174
data structures, 170
detailed structure, 171–173

AddRoundKey, 171
MixColumns, 171
ShiftRows, 171
substitute bytes, 171

encryption
and decryption, 172
process, 169
round, 173

equivalent inverse cipher, 191–193
example, 187–191
vs. FPE, 225
general structure, 168–171

State, 168
implementation, 191–195

8-bit processor, 193–194
32-bit processor, 194–195

inputs for, 184
InvShiftRows and InvSubByte, 192
key expansion, 184–186
parameters, 170

row and column operations, 180
State array, 168
transformation functions (See

Transformation functions, AES)
Advanced persistent threat (APT),

717–720
encrypt data, 719
enterprise reconnaissance, 719
exfiltrate data, 720
foothold, 719
initial attack, 719
maintaining, 720
moving to new systems, 719
persistence, 719
privileges, 719
research, 719

AEAD. See Authenticated encryption
with additional data (AEAD)

Agricultural sensors, 443
AH. See Authentication Header (AH)
Alert protocol, 541
Algorithm

decryption, 289
design, 251–252

cryptographic algorithms, 251–252
hash functions, 252
message authentication codes, 252
purpose-built algorithms, 251
symmetric block ciphers, 252

encryption, 288
negotiation, 556

Analyzers, 682
Anomaly detection, 683–684

false negatives, 684
false positives, 684
profile based, 685
strategies, 685
threshold, 685

Anti-replay service, 651–652
receiver, 652
replay attack, 651–652
sender, 652

AP. See Access point (AP)
Application-level gateway, 679–680
Application proxy. See Application-level

gateway
Arbitrary reversible substitution

cipher, 116
Associative group, 137, 323
Associative laws, 54
Associativity of multiplication, 139
Asymmetric cryptographic

algorithms, 456
Asymmetric encryption, 35–36

algorithms, 35
keys, 290
PKI, 287
public key certificate, 287
public key cryptographic

algorithm, 287
terminology related to, 287

Attack, 27
Attack that consumes data transmission

resources, 692

Authenticated encryption (AE), 399–405
architecture strategies, 448–449
block ciphers, 449–451
CMAC, 399–402
GCM, 402–405

authentication and encryption
functions, 403

message authentication code, 404
stream ciphers, 451

Authenticated encryption with
additional data (AEAD), 445

Authentication
data origin, 31
ESP, 658
exchange, 33
Grain-128a, 272
IEEE 802.11i wireless LAN

security, 586–588
IKE key determination, 663
payload, 667
peer entity, 31
public-key cryptography, 292, 293
S/MIME, 610–613
STRIDE threat model, 714

Authentication Header (AH), 644, 646
Authentication service exchange, 522
Authenticator, 292, 380
Authenticity, 25
Authenticity-related threats, 607
Authority key identifier, 492
Authorization security controls, 715
Autokey system, 102
Automated key management, 661
Automobiles, 444
Availability, 24, 714
Availability service, 32–33
Availability-related threats, 607
Avalanche effect, 188–191

DES, 125–127

B
Backbone network, 732
Backward unpredictability, 250
Barrier security, 574
Base64 transfer encoding, 606
Basic service set (BSS), 575, 577, 578
Benevolence, 38
BIC. See Bit independence

criterion (BIC)
Big-endian format, 355
Bijection, 69
Binary curve, 326
Binary operator, 51
Binary operator mod, 81
Birthday attack. See Mathematical

basis of birthday attack
Birthday paradox, 349, 789–791
Bit independence criterion (BIC), 130
56-bit keys, 128
Bit length, 232
8-bit processor, 193–194
32-bit processor, 194–195
Bitrate, 362, 363

Z08_STAL7484_08_GE_IDX.indd 815 03/05/22 8:24 AM

816 INDEX

Blinding, 307
Block cipher, 113–114

advantage of, 261–262
authenticated encryption, 449–451
CBC mode, 210–212
CFB mode, 212–214

CTR mode, 212, 216–218
encryption, 212
OFB mode, 212, 214–216
s-bit, 213
segments, 212

CTR mode, 212, 216–218
advantages of, 217–218
hardware efficiency, 217
preprocessing, 218
provable security, 218
random access, 218
simplicity, 218
software efficiency, 218

design principles, 129–131
BIC, 130
design of function F, 130
key schedule algorithm, 131
number of rounds, 130
SAC, 130

double DES, 202–204
ECB, 207–210

diffusion, 210
error propagation, 209
error recovery, 209
modes of operation, 207
overhead, 209

security, 210
FPE, 225–239

AES vs., 225
difficulties in designing an,

226–227
Feistel structure for, 227–232
motivation, 225–226
NIST methods for, 233–239
notation in, 230
parameters in, 230

MAC on, 396–398
CMAC, 397–398
DAA, 396–397

modes of operation, 208
multiple encryption, 202–207
OFB mode, 212, 214–216
PRNGs, 255–260

mechanisms, 256
NIST CTR_DRBG, 257–260

processes, 87
symmetric, 252
symmetric encryption algorithms, 35
triple DES

known-plaintext attack on, 206
with three keys, 207
with two keys, 204–207

TRNG, 275
tweakable, 219–220
XTS-AES mode, 218–225

ciphertext-stealing technique, 223
definition, 224
feedback characteristic of modes

of operation, 219
operation on sector, 223–225
operation on single block, 221–223
storage encryption requirements,

220–221
tweakable block ciphers, 219–220

Block size, 120
Blum Blum Shub (BBS) generator,

254–255
Botnet, 687
Bring-your-own-device (BYOD)

policy, 572
Broad network access, 702
Brute-force approach, 247
Brute-force attacks, 87, 89, 249, 302,

348–351, 459
birthday paradox, 349
collision resistant attacks,

349–351
cryptanalysis, 351–352
MAC, 390–391
preimage and second preimage

attacks, 349
BSS. See Basic service set (BSS)
Business continuity and disaster

recovery, 723
BYOD policy. See Bring-your-own-

device (BYOD) policy

C
Caesar cipher, 90–92, 100–101
Canonical form, 606-567
Capacity, 364
CBC mode. See Cipher block chaining

(CBC) mode
CBC-MAC/CMAC, 278–279
CCA. See Chosen ciphertext attack

(CCA)
CCMP. See Counter Mode-CBC MAC

Protocol (CCMP)
Certificate Association Data, 624
Certificate payload, 667
Certificate policies, 493
Certificate Request payload, 667
Certification authority (CA)

forward certificates, 490
reverse certificates, 490

CFB mode. See Cipher feedback
(CFB) mode

Change Cipher Spec protocol, 540
Character strings, 229–231
Chi step function, 369, 372–373
Chinese remainder theorem (CRT),

69–71, 302
bijection, 69
first assertion, 69–70

second assertion, 70
Chip area, 442
Chosen ciphertext attack (CCA),

88, 304, 308–309
Chosen text attack, 88
Chosen-plaintext approach, 205
Chosen-plaintext attack, 88
CIA triad, 24

accountability, 25
authenticity, 24
availability, 24
confidentiality, 24
integrity, 24

Cipher, 84
block (See Block cipher)
design principles, 129–131

design of function F, 130
key schedule algorithm, 131
number of rounds, 130
SAC, 130

Cipher block chaining (CBC) mode,
210–212, 345

Cipher feedback (CFB) mode, 212–214
CTR mode, 212, 216–218
encryption, 212
OFB mode, 212, 214–216
s-bit, 213
segments, 212

Cipher spec, 538
Cipher-Based Message Authentication

Code (CMAC), 397–402
Ciphertext, 84, 85, 289

plaintext transforming to, 87
Ciphertext only attack, 88
Ciphertext-stealing technique, 223
Circuit-level gateway, 680
Circuit-level proxy. See Circuit-level

gateway
Claimant, 503
Classical encryption, 84–106
Client write key, 538
Client write MAC secret, 538
Client/server authentication exchange, 523
Closure, 137

under multiplication, 139
Closure group, 323
Cloud auditor, 708, 709, 710
Cloud broker, 708, 710

service aggregation, 710
service arbitrage, 710
service intermediation, 710

Cloud carrier, 709, 710
Cloud computing, 701–711

characteristics of, 701–703
broad network access, 702
measured service, 702
on-demand self-service, 702
rapid elasticity, 702
resource pooling, 702–703

definition, 701
deployment models

community cloud, 706
comparison of, 708
hybrid cloud, 706–708
private cloud, 706, 707
public cloud, 704–705
elements, 701–703

elements, 701–703
broad network access, 702
measured service, 702
on-demand self-service, 702
rapid elasticity, 702
resource pooling, 702–703

reference architecture, 708–711
cloud auditor, 708, 709, 710
cloud broker, 709, 710
cloud carrier, 709, 710
cloud service customer (CSC), 708
cloud service provider (CSP), 708
roles and responsibilities, 708–711

service models
IaaS, 703–704
PaaS, 703
SaaS, 703
separation of responsibilities in, 704

Cloud network, 732
Cloud security

computing, 701–711
deployment models, 704–708
elements, 701–703

Z08_STAL7484_08_GE_IDX.indd 816 03/05/22 8:24 AM

INDEX 817

reference architecture, 708–711
service models, 703–704

concepts, 711–713
guidelines, 712–713
open-source module, 724–725
privacy issues and recommendations,

712–713
risk and countermeasures, 713–721

abuse and nefarious use of, 721
account hijacking, 717
advanced persistent threats, 717–720
data breaches, 715–716
data loss, 720
denial-of-service, 721
insecure APIs, 716
insufficient due diligence, 720
malicious insiders, 717
shared technology

vulnerabilities, 721
STRIDE threat model, 714–715
system vulnerabilities, 717
weak identity, credential, and

access management, 716
as service, 721–724 (See also SecaaS)

business continuity and disaster
recovery, 723

DLP, 723
elements, 722
email security, 723
encryption, 723
IAM, 723
intrusion management, 723
network security, 724
security assessments, 723
SIEM, 723
web security, 723

Cloud service customer (CSC), 708
Cloud service provider (CSP), 708
CMAC. See Cipher-Based Message

Authentication Code (CMAC)
Coefficient set, 145
Codeword, 466
Collision, 346
Collision resistant, 347

attacks, 349–351
brute-force attacks, 349–351

Communications security, 36, 737
Communications transmission

rate, 442
Community cloud, 706
Commutative, 53, 138
Commutative group, 323
Commutative laws, 54
Commutative ring, 139
Commutativity of multiplication, 139
Composite number, 67
Composition, 367
Comprehensive email security,

607–609
Compression

function, 351
method, 538
S/MIME, 613

Computation resistance, MAC, 396
Computational aspects, 299–304
Computational secrecy, 755
Computationally secure encryption

scheme, 89
Conditional probability, 754
Conditioning algorithms, 274

Confidentiality, 23, 24, 538
data, 31–32
MiniSec, 740
public-key cryptosystem, 291
S/MIME, 611–613
security controls, 714

Confidentiality-related
threats, 607

Configuration payload, 667
Confusion, 118–119
Congruences

properties of, 51
relation, 51
relation mod, 81–82

Congruent modulo n, 51
Connection protocol, 560–564

channel mechanism, 560
close a channel, 560
data transfer, 560
open a new channel, 560

channel types, 561
direct-tcpip, 561
forwarded-tcpip, 561
session, 561
x11, 561

port forwarding, 562–564
Consistency, 249
Constant exponentiation

time, 307
Constant polynomial, 145
Constrained device, 441

categories of
chip area, 442
communications transmission

rate, 442
energy consumption, 442
execution time, 442
program code size and RAM

size, 442
Content types, 604–605

application type, 605
message type, 605
message/external-body

subtype, 605
message/partial subtype, 605
message/rfc822 subtype, 605
multipart type, 605
multipart/alternative subtype, 605
multipart/digest subtype, 605
multipart/mixed subtype, 605
multipart/parallel subtype, 605
text type, 605

Content-Description header fields, 604
Content-ID header fields, 604
Content-Transfer-Encoding header

fields, 604
Content-Type header fields, 603
Conventional encryption, 84, 87, 291

attacking, 87
secure use of, 85

Cookie exchange, 662
Core network, 732
Counter (CTR) mode, 212, 216–218

advantages of, 217–218
hardware efficiency, 217
preprocessing, 218
provable security, 218
random access, 218
simplicity, 218
software efficiency, 218

Counter Mode-CBC MAC Protocol
(CCMP), 592

CREATE_CHILD_SA
exchange, 664

Credential, 503
Credential service provider (CSP), 502
CRT. See Chinese remainder

theorem (CRT)
Cryptanalysis, 84, 351–352, 459

and brute-force attack, 87–89
computationally secure, 89
types of attacks on encrypted

messages, 88
unconditionally secure, 89

compression function, 351
computational effort for, 334
MAC, 391
public-key, 296
RSA algorithm, 305
strong encryption, 89
structure of secure hash code, 351

Cryptographic algorithms, 33, 643,
738–739

keyless algorithms, 34
cryptographic hash function, 34
pseudorandom number genera-

tor, 34
lightweight, 442, 448–456

asymmetric, 456
authenticated encryption,

448–451
hash functions, 451–454
message authentication codes,

454–456
single round encryption, 450

post-quantum
code-based, 463, 464, 466–467
digital signatures, 462
encryption, 463
hash-based digital signature, 463,

464, 469–472
KEMs, 463
multivariate-based, 463, 464,

467–469
security mechanisms, 33
single-key algorithms, 34–35

message authentication code, 35
symmetric encryption

algorithms, 35
Skipjack, 738
two-key algorithms, 34, 35–36

asymmetric encryption
algorithms, 35

digital signature algorithm, 36
key exchange, 36
user authentication, 36

Cryptographic checksum, 385
Cryptographic hash functions, 34,

338–373, 411
applications of, 339–344
collision resistant, 347
digital signatures, 342–343
intrusion detection, 344
message authentication, 349–342
one-way password file, 343
preimage resistant, 347
PRF, 344
PRNG, 344
properties, relationship, 348
pseudorandomness, 348

Z08_STAL7484_08_GE_IDX.indd 817 03/05/22 8:24 AM

818 INDEX

Cryptographic hash functions (Continued)
requirements and security, 346–352

brute-force attacks, 348–351
collision, 346
cryptanalysis, 351–352
preimage, 346
second preimage resistant, 347

resistance properties, 348
virus detection, 344

Cryptographic system, 84
Cryptographically secure

pseudorandom bit
generator (CSPRBG), 254

Cryptography, 33–36, 84, 87
number of keys used, 87

conventional encryption, 87
secret-key, 87
single-key, 87
symmetric key, 87

plaintext, 87
block cipher, 87
stream cipher, 87

transforming plaintext to
ciphertext, 87

product systems, 87
Cryptology, 84
Cryptoperiod, 459–460
Cryptosystem, 461–462
CSPRBG. See Cryptographically

secure pseudorandom bit
generator (CSPRBG)

CTR mode. See Counter (CTR)
mode

CTR_DRBG, 256, 257–260
Cubic equation, 324, 326,

329–330
Cybersecurity

availability, 24
objectives, 23–25
confidentiality

data, 23
privacy, 24

integrity, 24
Cyclic group, 139

D
DANE. See DNS-based authentication

of named entities (DANE)
Data aggregation, 689
Data authentication, 740
Data authenticity, 24
Data Authentication Algorithm (DAA),

396–397
Data breaches, 715–716
Data collection, 689
Data confidentiality, 23, 31–32

CCMP, 593
TKIP, 592

Data encryption algorithm (DEA), 123
Data Encryption Standard (DES), 121,

123–125, 286
avalanche effect, 125–127
DAA, 396–397
decryption, 125, 775
double, 202–204

meet-in-the-middle attack, 204
reduction to single stage, 203–204

encryption, 124–125
encryption algorithm, 768
example, 125–127

initial permutation, 769–771
key generation, 774
key schedule calculation, 774–775
permutation tables, 769–771
permuted input, 124
preoutput, 125
s-boxes, 773–774
single round, 771–775
strength of, 128–129

nature of DES algorithm, 128–129
timing attacks, 129
use of 56-bit keys, 128

subkey, 125
triple

known-plaintext attack on, 206
with three keys, 207
with two keys, 204–207

Data integrity, 24, 32, 33
Data loss prevention (DLP), 723
Data management security, 735
Data modification, 29
Data normalization, 689
Data origin authentication, 31
Database, 619–620

distributed, 619
SAD (See Security association

database (SAD))
DEA. See Data encryption algorithm

(DEA)
Deciphering, 84
Decryption, 84, 294

algorithm, 85, 289
DES, 125
elliptic curve, 332–334
Feistel cipher, 120, 121–123
FPE, 227–229
signature verification, 433
tables for substitution, 116

Deeply embedded systems, 440–441
Delete payload, 667
Demilitarized zone (DMZ) networks,

680–681
Denial of service (DoS), 29, 569
Denial-of-service (DoS) attack

cloud security, 721
construction, 692–694
consumes data transmission, 692
countermeasures

detection and filtering, 694
prevention and preemption, 694
traceback and identification, 694

description, 690–692
direct, 692
example, 691
flooding-based, 693
internal resource, 690–691
reflector, 692
scanning process, 692–694

hit list, 694
local subnet, 694
random, 694
topological, 694

STRIDE threat model, 714
SYN flood attack, 690–691

DES. See Data Encryption Standard
(DES)

Deskewing algorithms, 274
Determinant, 97
Deterministic primality algorithm, 68
Device security, 36–37, 572–574

DH. See Diffie-Hellman (DH)
Diffie-Hellman (DH)

key exchange, 315–316
algorithm, 316–317, 661–662
analog, 332
discrete logarithm, 316
key exchange protocols, 318
man-in-the-middle attack,

318–319
values, 664

Diffusion, 118–119
Digital random number generator

(DRNG), 277–280
hardware architecture, 278–279

CBC-MAC/CMAC, 278–279
Intel DRNG logical structure, 280
Intel processor chip, 278

logical structure, 279–280
Digital Signature Algorithm (DSA), 417,

423–427
approach, 423–425
signing and verifying, 426

Digital signatures, 33, 288, 292, 294, 663
algorithm, 36
attacks and forgeries

adaptive chosen message attack, 419
directed chosen message attack, 419
existential forgery, 420
generic chosen message attack, 419
key-only attack, 419
known message attack, 419
selective forgery, 420
total break, 420
universal forgery, 420

cryptographic hash functions,
342–343

definition, 417
direct, 420–421
ECDSA, 427–430
Elgamal signature scheme,

421–422
essential elements, 418
NIST digital signature algorithm,

423–427
properties, 418–419
requirements, 420
quantum computing, 462
Schnorr signature scheme,

422–423
simplified examples, 343

Digrams, 94–96
Direct DDoS, 692
Direct digital signature, 420–421
Direct historical trust, 41
Directed chosen message attack, 419
Discrete logarithms, 71–76, 316

calculation of, 75–76
for modular arithmetic, 73–75
powers of integer, 71–73

Disk drives, 272–273
Distributed database, 619
Distribution system (DS),

575, 577, 579
Distributive laws, 54, 139
Divides, 45, 148
Divisibility, 45–46
Division algorithm, 46–47
Divisor, 45, 148
DMZ. See Demilitarized zone (DMZ)

networks

Z08_STAL7484_08_GE_IDX.indd 818 03/05/22 8:24 AM

INDEX 819

DNS. See Domain name system (DNS)
DNS Security Extensions (DNSSEC),

607, 619–622
operation, 622
resource records for, 622

DNS-based authentication of named
entities (DANE), 607, 622–625

S/MIME, 625
SMTP, 625
TLSA record, 623–624

Certificate Association Data, 624
matching type field, 624
selector field, 624

DNSSEC. See DNS Security
Extensions (DNSSEC)

Domain Name System (DNS),
600, 680

database, 619–620
distributed database, 620
domain name space, 619
elements, 619
name resolution, 621
name servers, 619
operation, 620–621
resolvers, 619
variable-depth hierarchy

for names, 619
Domain-Based Message Authentication,

Reporting and Conformance
(DMARC), 608–609, 634–638

functional flow, 637
identifier alignment, 634
on receiver side, 636
reports, 638
on sender side, 634–636
tag and value descriptions, 635

DomainKeys Identified Mail (DKIM),
608, 628–633

deployment example, 631
email threats, 628–630

capabilities, 629
characteristics, 629
location, 630

functional flow, 631–633
strategy, 630–631

DoS. See Denial of service (DoS)
Double encryption, 522

E
EAP. See Extensible Authentication

Protocol (EAP)
Ease of analysis, 121
Eavesdropping, 27
ECB. See Electronic codebook (ECB)
ECC. See Error correction code (ECC)
Electronic codebook (ECB), 207–210,

740–741
characteristic of, 208
diffusion, 210
error propagation, 209
error recovery, 209
modes of operation, 207
overhead, 209
security, 210

Electronic home appliances, 443
Electronic mail security,

598–638, 723
DANE, 607, 622–625

Secure/Multipurpose Internet
Mail Extension, 625

Simple Mail Transfer Protocol,
624–625

TLSA record, 623–624
DKIM, 608, 628–633

email threats, 628–630
functional flow, 631–633
strategy, 630–631

DMARC, 634–638
functional flow, 637
identifier alignment, 634
on receiver side, 636
reports, 638
on sender side, 634–636
tag and value descriptions, 635

DNSSEC, 607, 619–622
operation, 622
resource records for, 622

email format, 601–607
MIME, 602–607
RFC 5,342, 602

email threats and comprehensive
email security, 607–609

Internet mail architecture, 599–601
email components, 599–600
email protocols, 600–601

S/MIME, 607, 609–619
certificate processing, 618
enhanced security services,

618–619
message content types, 614
messages, 614–618
operational description, 610–613

SPF, 607–608, 625–228
mechanisms, 627
modifiers, 627
operation, 628
on receiver side, 627–628
on sender side, 626

Elgamal cryptographic system, 319–322
Elgamal digital signature scheme,

421–422
Elliptic curve, 324
Elliptic curve arithmetic, 322–331

abelian groups, 323–324
associative, 323
closure, 323
commutative, 323
elliptic curve, 324
identity element, 323
inverse element, 323

over GF(2m), 329–331
finite field, 329
points on, 329

over real numbers, 324–326
algebraic description of

addition, 326
example of, 325
geometric description of

addition, 324–326
Weierstrass equation, 324

over Zp, 326–329
binary curve, 326
points on, 327
prime curve, 326

Elliptic curve cryptography (ECC),
322–323, 326

computational effort for
cryptanalysis, 334

Diffie-Hellman key exchange
analog, 332

encryption/decryption, 332–334
order, 332
security of, 334

Elliptic Curve Digital Signature
Algorithm (ECDSA)

generation and authentication,
428–430

global domain parameters, 428
key generation, 428
process involved in, 427
signing and verifying, 429

Email
compatibility, 613
components, 599–600

ADMD, 600
DNS, 600
MDA, 599
MHS, 599
MS, 599
MSA, 599
MTA, 599
MUA, 599

format, 601–607
MIME, 602–607
RFC 5,342, 602

protocols, 600–601
IMAP, 601
POP3, 601
SMTP, 599–601

security, 723
thr eats, 607–609, 628–630
capabilities, 629
characteristics, 629
location, 630

Encapsulating Security Payload (ESP),
644, 649–657

anti-replay service, 651–652
receiver, 652
replay attack, 651–652
sender, 652

encryption and authentication
algorithms, 650, 653

format, 650
information, 646
padding, 651
protocol operation, 657
transport and tunnel modes,

652–657
Enciphering, 84
Encoded message (EM) verification,

433–435
Encrypted messages, types of

attacks on, 88
chosen ciphertext, 88
chosen plaintext, 88
chosen text, 88
ciphertext only, 88
known plaintext, 88

Encrypted payload, 667
Encryption, 84, 294, 723

algorithm, 84, 288
asymmetric, 35–36
CFB mode, 212
cloud security as service, 723
conventional, 291
and decryption tables for

substitution, 116
DES, 124–125
elliptic curve, 332–334
Feistel cipher, 120

Z08_STAL7484_08_GE_IDX.indd 819 03/05/22 8:24 AM

820 INDEX

Encryption (Continued)
FPE, 227–229
Grain-128a, 272
message (See Message encryption)
public-key, 290, 291
scheme

computationally secure, 89
unconditionally secure, 89

storage requirements, 220–221
symmetric, 35
symmetric keys, 463
wireless security measures, 569

End-to-end encryption, 475
End-to-end IPsec Transport-Mode

Encryption, 654
Energy consumption, 442
Enhanced nondeterministic

random number generator
(ENRNG), 279

Enhanced security services, 618–619
secure mailing lists, 619
security labels, 618
signed receipts, 618
signing certificates, 619

ENRNG. See Enhanced
nondeterministic random
number generator (ENRNG)

Entanglement, 457
Entropy, 760–762

conditional, 763
function, 762–763
and secrecy, 764

Entropy rate, 273
Entropy source, 248

NIST CTR_DRBG, 258–259
TRNG, 272–273

disk drives, 272–273
sound/video input, 272

Equivalent inverse cipher, 191–193
Error control

external, 383
internal, 383

Error correction code (ECC), 466–467
Error propagation, 209
Error recovery, 209
ESMTP. See Extended SMTP (ESMTP)
ESS. See Extended service set (ESS)
Euclidean algorithm, 47–50

example, 50
extended, 57–59
greatest common divisor, 47–48
for polynomials, 150, 157
relatively prime, 47
revisited, 56–57

Euler’s theorem, 64–65
Euler’s totient function, 63–64
Execution time, 442
Existential forgery, 420
Extended Euclidean algorithm, 57–59
Extended service set (ESS), 575, 578
Extended SMTP (ESMTP), 601
Extensible Authentication Protocol

(EAP), 84
payload, 667

External error control, 383

F
Factor, 148
Factoring problem, 304–306
False negatives, 684

False positives, 684
Fast software encryption/decryption, 121
Fault-based attack, 307–308
FCS. See Frame check sequence (FCS)
Federal Information Processing

Standards (FIPS), 41
Federated identity management, 526

identity federation, 528–530
identity management, 526–528

Feedback characteristic of modes of
operation, 219

Feistel cipher, 117–123
confusion, 118–119
decryption, 120, 121–123
design features, 120–121
diffusion, 118–119
encryption, 120
example, 123
parameters, 120–121
structure, 115–117, 119–121

Feistel structure for FPE, 227–232
bit length, 232
character strings, 229–231
encryption and decryption, 227–229
function FK, 231–232
message length, 232
radix, 232

Fermat’s theorem, 62–63
Fields, 136, 140–141, 167

multiplicative inverse, 140
types of, 142

Finite fields, 136, 329
abelian group, 138–139
arithmetic, 167–168

irreducible, 167
cyclic group, 139
fields, 140–141
of form GF(2n), 151–162

computational considerations,
157–159

generator, 160–162
modular polynomial arithmetic,

153–155
motivation, 151–153
multiplicative inverse, 155–157

of form GF(p),141–144
multiplicative inverse, 143–144
order p, 141–143

groups, 137–138
polynomial arithmetic

with coefficients in Zp, 146–149
greatest common divisor, 150–151
ordinary, 145–146

rings, 139–140
Finite group, 138
FIPS. See Federal Information

Processing Standards (FIPS)
Firewall, 36, 573, 574

capabilities, 673–674
characteristics, 673–674

behavior control, 673
direction control, 673
service control, 673
user control, 673

configuration example, 681
internal and external, 680–681
limitations, 674
types of, 674–681

application-level, 679–680
circuit-level, 680

packet filtering, 674–678
stateful inspection, 678–679

First assertion, 69–70
Fog, 730–732
Forensics, 690
Format-preserving encryption (FPE),

225–239
AES vs., 225
applications, 225–226
difficulties in designing an, 226–227
Feistel structure for, 227–232

bit length, 232
character strings, 229–231
encryption and decryption,

227–229
function FK, 231–232
message length, 232
radix, 232

motivation, 225–226
NIST methods for, 233–239

FF1 algorithm, 233–236
FF2 algorithm, 237–238
FF3 algorithm, 238–239

notation in, 230
parameters in, 230

Forward add round key transformation
(AddRoundKey), 183

Forward mix column transformation
(MixColumns), 180

Forward shift row transformation
(ShiftRows), 179

Forward substitute byte transformation
(SubBytes), 174

Forward unpredictability, 250
4-way handshake, 591
FPE. See Format-preserving

encryption (FPE)
Frame check sequence (FCS), 383, 577
Frequency test, 250

G
Galois/counter mode (GCM), 402–405

authentication and encryption
functions, 403

message authentication code, 404
Generalized number field

sieve (GNFS), 305
Generate function, 259
Generator, 139, 160–162
Generic chosen message attack, 419
GMK. See Group master key (GMK)
GNFS. See Generalized number field

sieve (GNFS)
Grain stream cipher, 265
Grain-128a, 269–272

authentication, 272
encryption, 272
key and IV initialization, 270–271
output for encryption, 269–270
Stream Cipher, 271

Greatest common divisor, 47–48
finding, 48–50, 150–151

Group master key (GMK),
588, 589, 590

Group temporal key (GTK), 590
Groups, 137–138

associative, 137
closure, 137
commutative, 138
cyclic, 139

Z08_STAL7484_08_GE_IDX.indd 820 03/05/22 8:24 AM

INDEX 821

distribution, 592
finite, 138
generate, 139
generator, 139
identity element, 138
infinite, 138
inverse element, 138
keys, 590–591
order of, 138
permutation, 138

Grover’s algorithm, 458

H
Handshake protocol

action, 543
CipherSpec

Cipher algorithm, 544
Cipher type, 544
hash size, 544
is exportable, 544
IV size, 544
key material, 544
MAC algorithm, 544

CipherSuite parameter
anonymous Diffie-Hellman, 544
ephemeral Diffie-Hellman, 544
fixed Diffie-Hellman, 544
RSA, 544

client authentication and key
exchange, 546

certificate message, 546
ephemeral or anonymous

Diffie-Hellman, 546
fixed Diffie-Hellman, 546
RSA, 546

finished message, 547
security capabilities, 542–544

cipher suite, 542
compression method, 542–544
random, 542
session ID, 542
version, 542

server authentication and key
exchange, 544–546

anonymous Diffie-Hellman, 545
ephemeral Diffie-Hellman, 545

RSA key exchange, 545
Hardware fault-based attack, 304
Hash code, 338

digital signature, 343
message authentication, 341–342
secure, general structure of, 351

Hash functions, 338, 381
attack against, 340
cryptographic, 338–373

applications of, 339–344
brute-force attacks, 348–351
collision, 346
collision resistant, 347
cryptanalysis, 351–352
digital signatures, 342–343
intrusion detection, 344
message authentication, 339–342
one-way password file, 343
preimage, 346
preimage resistant, 347
PRF, 344
PRNG, 344
properties, relationship, 348
pseudorandomness, 348

requirements and security,
346–352

resistance properties, 348
second preimage resistant, 347
virus detection, 344

internal state and output sizes, 451
keyed, 342
and message authentication codes,

252, 391–395
message size, 451
PHOTON permutation, 452–453
PHOTON sponge structure,

451–452
PRNG on, 410–411
resistance properties, 348
strong, 347
TRNG, 274–275
two simple, 344–346

Hash tree, 470
Hash-based digital signature,

463, 464, 469–472
Hash value, 347, 349, 353
Header fields, 603–604

Content-Description, 604
Content-ID, 604
Content-Transfer-Encoding, 604
Content-Type, 603
MIME-Version, 603

Health testing, 275–277
on conditioning function, 277
on noise source, 275–277

Hill cipher, 97–100
algorithm, 98–100
concepts from linear algebra,

97–98
determinant, 97

Hit list, 694
HMAC, 391–395

algorithm, 392–395
design objectives, 392
efficient implementation

of, 394
security of, 395
structure, 393

Host-based IDS, 682, 684–685
HTTPS (Hyper Text Transfer

Protocol Secure), 550–552
connection closure, 552
connection initiation, 552

Human resource security, 39
Hybrid cloud, 706–707

I
IAB. See Internet Architecture Board

(IAB)
IaaS. See Infrastructure as a service

(IaaS)
Ideal block cipher, 115–117
Identification payload, 667
Identification string exchange, 555
Identities, 54
Identity and access management (IAM),

716, 723
Identity element, 54, 138, 323
Identity federation, 528–530

examples, 529
Identity management system

administrators, 527
attribute service, 527
authorization, 527

data consumers, 528
identity provider, 527
identity services, 527
key services, 527
management, 527
point of contact, 527
principal, 527
provisioning, 527
SSO protocol services, 527
trust services, 527

Identity provider, 527
Identity theft (MAC spoofing), 568
IEEE 802.11 wireless LAN, 574–580

association-related services, 579–580
association, 580
BSS transition, 580
disassociation, 580
ESS transition, 580
no transition, 580
reassociation, 580

MPDU format, 576
network components and

architectural model, 577–578
ESS, 578

protocol architecture, 575–577
logical link control, 577
media access control, 576–577
physical layer, 575

protocol stack, 576
services, 578–580

association-related services,
579–580

distribution of messages within
a DS, 579

terminology, 575
Wi-Fi alliance, 575

IEEE 802.11i wireless LAN security,
580–594

authentication phase, 586–588
access control approach, 586
EAP exchange, 587–588
MPDU exchange, 587

discovery phase, 584–586
MPDU exchange, 585–586
security capabilities, 585

elements of, 582
key management phase, 588–592

group key distribution, 592
group keys, 590–591
pairwise key distribution,

591–592
pairwise keys, 590

phases of operation, 581–584
authentication, 583
connection termination, 584
discovery, 583
key generation and distribution, 583
protected data transfer, 583

protected data transfer phase, 592–593
CCMP, 593
TKIP, 592–593

pseudorandom function, 593–594
services, 581

access control, 581
authentication, 581
privacy with message integrity, 581

IETF. See Internet Engineering Task
Force (IETF)

IKE. See Internet Key Exchange (IKE)
IKEv2 Exchanges, 664

Z08_STAL7484_08_GE_IDX.indd 821 03/05/22 8:24 AM

822 INDEX

IMAP. See Internet Mail Access
Protocol (IMAP)

Incident management, 689–690
alerting, 689
correlation, 689
data aggregation, 689
data collection, 689
data normalization, 689
reporting/compliance, 689

Independent BSS (IBSS), 577
Indeterminate, 145
Index, 74
Industrial systems, 443–444
Infinite field, 141
Infinite group, 138
Information, 758, 759–760
Information and entropy, 758–763
Information disclosure, 714
Information security, 23

challenges of, 25–26
Information technology (IT), 729
Informational exchange, 664
Infrastructure as a service (IaaS),

703–704
Initialization value (IV), 650
Initialization vectors, 538
Inputs

for single AES round, 184
sound/video, 272

Insecure programming, 735
Insufficient due diligence

certification, 720
CSP’s, 720
data protection, 720
infrastructure, 720

Integral domain, 140
Integration, 579, 734
Integrity, 24, 25

data, 24
system, 24
trustworthiness, 38

Integrity-related threats, 607
Intel digital random number

generator, 277–280
hardware architecture, 278–279
logical structure, 279–280

Internal error control, 383
Internal resource attack, 690–691
International Organization for

Standardization (ISO), 42
International Telecommunication

Union (ITU), 42
Internet Architecture Board (IAB),

41, 642
Internet Key Exchange (IKE), 644,

660–667
header and payload formats, 665–667
key determination

authentication, 663
cookie exchange, 662
features, 662–663
IKEv2 Exchanges, 664
nonces, 663
protocol, 661–663

payload types, 666–667
requirements, 662–663

Internet Engineering Task
Force (IETF), 41

Internet Mail Access Protocol
(IMAP), 601

Internet mail architecture, 599–601
email components, 599–600

ADMD, 600
DNS, 600
MDA, 599
MHS, 599
MS, 599
MSA, 599
MTA, 599
MUA, 599

email protocols, 600–601
IMAP, 601
POP3, 601
SMTP, 601

Internet of Things (IoT), 728
and cloud context, 730–732
components, 729–730
evolution

information technology, 729
operational technology, 729
personal technology, 729
sensor/actuator technology, 729

security concepts, 733–736
ecosystems, 734–735
environment, 739
gateway, 737–738
tamper resistance and

detection, 736
things on, 728

Internet security. See Network security
Internet Security Association and

Key Management Protocol
(ISAKMP), 661

Internet Service Provider (ISP), 628, 643
Internet Society (ISOC), 41
Intrusion, 682
Intrusion detection system (IDS), 37, 344,

682–686, 723
approaches, 683–684

anomaly detection, 683–684
misuse detection, 683

components
analyzers, 682
sensors, 682
user interface, 682

definition, 682
host-based, 682
host-based techniques, 684–685
network-based, 682, 685–686
principles, 683

Intrusion management, 722, 723
Intrusion prevention systems (IPSs),

36, 723
Inverse add round key

transformation, 183
Inverse element, 53, 138, 323
Inverse mix column transformation

(InvMixColumns), 181
Inverse shift row transformation

(InvShiftRows), 179
Inverse substitute byte transformation

(InvSubBytes), 178
InvMixColumns, 192–193
InvShiftRows, 192
InvSubByte, 192
Iota step function, 373
IoT ecosystems

attack surfaces, 734
deployment, 734
device resources, 734

insecure programming, 735
integration, 734
lack of expertise, 734
low cost, 734
safety aspects, 734
security updates, 734–735
standards and regulations, 734
unclear liabilities, 735

IOT gateway security
communication, 737
data management, 737
functions, 737–738
mutual authentication and

authorization, 737
policies and techniques, 737
security audit, 737
service provision, 737

IoT security
concepts, 733–736

elements, 733
environment

data protection and
confidentiality, 739

internet protocol and network
security, 739

tamper resistance and detection, 739
user authentication and access

control, 739
objectives, 733–736

detecting security events and
incidents, 735

logical access, 735
maintaining functionality, 736
physical access, 735
preventing data, 735
protecting IoT components, 735
restoring system, 736

IoT/cloud context, 730–732
cloud, 732
comparison of cloud and

fog features, 732
core, 732
edge, 730
fog, 730–732
gateways, 730

IoT-enabled device
components

actuator, 730
microcontroller, 730
power supply, 730
sensor, 729–730
transceiver, 730

IP security (IPsec), 642–667
applications, 643
architecture, 645
authentication plus confidentiality,

658–659
destination address, 645
documents, 643–644

AH, 644
architecture, 643
cryptographic algorithms, 644
ESP, 644
IKE, 644

ESP, 649–657
anti-replay service, 651–652
encryption and authentication

algorithms, 650, 653
format, 650, 651
information, 646

Z08_STAL7484_08_GE_IDX.indd 822 03/05/22 8:24 AM

INDEX 823

padding, 651
protocol operation, 657
transport and tunnel modes, 652–657

IKE, 644
header and payload formats, 665–667
key determination protocol, 661–664

SA, 645
combinations of, 659–660
IP destination address, 645
Security Protocol Identifier, 645
SPI, 645

SAD, 645–646
AH information, 646
Anti-Replay Window, 646
ESP information, 646
IPsec Protocol Mode, 646
Lifetime of this Security

Association, 646
Path MTU, 646
Sequence Counter Overflow, 646
Sequence Number Counter, 646
SPI, 645

services, 644
SPD, 645, 646–647

local and remote ports, 647
local IP address, 647
name, 647
next layer protocol, 647
remote IP address, 647

traffic processing, 648–649
inbound packets, 649
outbound packets, 648

transport and tunnel modes, 652–657
VPN with tunnel mode, 656

IPv4, 643
IPv6, 643, 647
Iris images, 504
Irreducible polynomial, 148, 154
Irreversible mapping, 115
ISAKMP. See Internet Security

Association and Key
Management Protocol
(ISAKMP)

IS-Box, 176
ISO. See International Organization for

Standardization (ISO)
ISOC. See Internet Society (ISOC)
ISP. See Internet Service Provider (ISP)
Iteration function, 362
ITU Telecommunication

Standardization Sector
(ITU-T), 42

K
Keccak, 362, 364, 366, 368, 370
KEK. See Key encryption key (KEK)
KEMs. See Key-establishment

mechanisms (KEMs)
Kerberos, 510–524

environmental shortcomings
authentication forwarding, 521
encryption system dependence, 521
internet protocol dependence, 521
interrealm authentication, 521
message byte ordering, 521
ticket lifetime, 521

exchanges, 518
motivation, 511–512

reliable, 511
scalable, 511

secure, 511
transparent, 511

overview of, 517
principal, 519
technical deficiencies

double encryption, 522
password attacks, 522
PCBC encryption, 522
session keys, 522

Version 4, 512–520
authentication dialogue, 512–513
authentication service

exchange, 516
client/server authentication

exchange, 516
message exchanges, 516
protocol, 517
secure authentication dialogue,

513–515
simple authentication dialogue,

512–513
ticket-granting service exchange,

516
Version 5, 521–524

authentication dialogue, 522–524
authentication service

exchange, 522
message exchanges, 523
nonce, 522
options, 522
realm, 522
ticket-granting service

exchange, 523
times, 522

Kerberos realm, 519–520
Key

asymmetric encryption, 290
determination protocol, 660–664
expansion algorithm, 184–186
generation, 303–304
length, 258
schedule algorithm, 131
size, 121
3DES, 204–207
unwrapping, 407–410

Key distribution center (KDC), 476,
507–509, 524–525

Key distribution, symmetric
using asymmetric encryption, 478–480

secret key distribution, 480
simple secret key distribution,

478–480
using symmetric encryption, 474–477

key distribution option, 474–477
Key distribution technique, 474–475
Key encryption key (KEK), 405
Key exchange, 36, 294, 556

Diffie-Hellman, 315–319
algorithm, 316–317, 661–662
analog, 332
discrete logarithm, 316
key exchange protocols, 318
man-in-the-middle attack, 318–319

payload, 667
Key expansion, 780–781
Key hierarchy, 477
Key management and distribution

hierarchy, 477
public keys distribution, 481–485
public-key infrastructure, 494–496

symmetric key distribution
using asymmetric encryption,

478–480
using symmetric encryption,

474–477
X.529 certificates, 485–493

Key translation center (KTC), 476
Key usage, 492
Key Wrap (KW) mode, 405–406
Key wrapping

algorithm, 406–407
KEK, 405
operation for 256-bit key, 408, 409
and unwrapping, 407–410

Keyed hash function, 342
Key-establishment mechanisms

(KEMs), 463
Keyless algorithms, 34

cryptographic hash function, 34
pseudorandom number generator, 34

Key-only attack, 419
Keystream, 260–261
Known message attack, 419
Known-plaintext, 88

attack on triple Data Encryption
Standard, 205, 206

KW mode. See Key Wrap (KW) mode

L
Lanes, 366, 367
Lattice, 464
Lattice-based cryptography, 463–466
Lightweight, 439
Lightweight cryptographic algorithms,

442, 448–456
asymmetric, 456
authenticated encryption, 448–451
hash functions, 451–454
message authentication codes, 454–456
SipHash, 455
single round encryption, 450

Lightweight cryptography, 439
AEAD, 445–447
algorithms, 442, 448–456
constrained devices, 441

categories of, 442
classes of, 441

deeply embedded systems, 440–441
microcontroller, 440
profiles for, 445
security considerations, 442–444

agricultural sensors, 443
automobiles, 444
home appliances, 443
industrial systems, 443–444
medical sensors, 443
RFID, 442–443
smart agricultural sensors, 443

security requirements, 445–448
trade-offs, 444–445

Lightweight Directory Access
Protocol (LDAP), 724

Linear algebra operations over Zn,
750–752

Linear congruential generators, 252–253
Linear feedback shift registers, 265–268
Local forwarding, 563
Local subnet, 694
Low energy overhead, 738
Lucifer cipher, 227

Z08_STAL7484_08_GE_IDX.indd 823 03/05/22 8:24 AM

824 INDEX

M
MAC. See Message authentication

codes (MAC)
MAC protocol data unit (MPDU),

575, 576
CRC, 577
destination MAC address, 576
exchange, 585–586

AS, 587
association, 585–586
EAP exchange, 587
network and security capability

discovery, 585
open system authentication, 585
secure key delivery, 587

format, 577
MAC Control, 576
MAC header, 577
MAC trailer, 577
MSDU, 576
source MAC address, 576

MAC service data unit (MSDU), 575,
576, 579

Mail Delivery Agent (MDA), 599
Mail Submission Agent (MSA), 599
Malicious association, 568
Malicious insiders, 717
Malicious software, 687–690. See also

Malware
Malware

defense, 688–690
elements of, 688
endpoint behavior analysis, 689
forensics, 690
incident management, 689–690
network traffic analysis, 688–689
payload analysis, 689
post-compromise, 688
real-time and near-real-time, 688

types, 687–688
backdoor, 687
bot, 688
mobile code, 688
rootkit, 687
spyware, 687
Trojan horse, 687
virus, 687
worm, 687

Management information base (MIB)
content, 644

Mandated trust, 41
Man-in-the-middle attacks, 29, 318–319,

478, 479, 568
Manual key management, 660
Mapping

definition, 117
irreversible, 115
nonsingular, 115
policy, 493
reversible, 115

Mask generation function (MGF),
308–309, 430–431

Masquerade, 29, 380
Master key, 476, 507–508
Master secret, 538, 546

Diffie-Hellman, 546
RSA, 546

Master session key (MSK), 590
Matching Type field, 624
Mathematical attacks, 304

Mathematical basis of birthday attack
birthday paradox, 789–791
duplications, 792–793
inequality, 791–792
overlapping two sets, 793–794
related problem, 789

Maurer’s universal statistical test, 250
MD4, 352
MD5, 351, 362
MDA. See Mail Delivery Agent (MDA)
Measured service, 702
Media access control (MAC), 576–577
Mediated trust, 41
Medical sensors, 443
Meet-in-the-middle attack, 204
Merkle root, 470
Message authentication, 339–342

attack against hash function, 340
functions, 380–387

hash function, 381
MAC, 385–387
message encryption, 381–385

hash code, 341–342
keyed hash function, 342
message digest, 339
requirements, 379–380

content modification, 380
destination repudiation, 380
disclosure, 379
masquerade, 380
sequence modification, 380
source repudiation, 380
timing modification, 380
traffic analysis, 380

simplified examples, 341
Message authentication code (MAC),

342, 379, 539
authenticated encryption, 399–405

CMAC, 399–402
GCM, 402–405

basic uses of, 386
on block ciphers, 396–398

CMAC, 397–398
DAA, 396–397

HMAC, 391–395
algorithm, 392–395
design objectives, 392
efficient implementation of, 394
security of, 395
structure, 393

key wrapping, 405–410
algorithm, 406–407
KEK, 405
operation for 256-bit key, 408
and unwrapping, 407–410

PRNG using, 412
requirements for, 388–390
security of, 390–391

brute-force attacks, 390–391
computation resistance, 390
cryptanalysis, 391

SipHash, 455
characteristics of, 454
design of, 454
variants, 454

Message digest, 339
generation using SHA-492, 354

Message encryption, 381–385
basic uses of, 381
public-key encryption, 384–385

symmetric encryption, 381–384
external error control, 383
internal error control, 383

TCP segment, 384
Message Handling Service (MHS), 599
Message integrity, 538

CCMP, 593
TKIP, 592

Message integrity code (MIC), 592
Message length, 232
Message Store (MS), 599–600
Message Transfer Agent (MTA), 599
Message type, 605
Message User Agents (MUA),

599–601
Message/external-body subtype, 605
Message/partial subtype, 605
Message/rfc822 subtype, 605
MIC. See Message integrity code (MIC)
Michael, 592, 593
Microcontroller, 440
Miller-Rabin algorithm, 66–68

details of, 67
properties of prime numbers,

66–67
first property, 66
second property, 66

repeated use of, 68
MIME. See Multipurpose Internet

Mail Extension (MIME)
MIME-Version header fields, 603
Min-entropy, 765–767
MiniSec, 740

confidentiality, 740
data authentication, 740
freshness, 740
lost messages, 740
low energy overhead, 740
replay protection, 740

Misuse detection, 683
MixColumns, 171, 173, 194

transformation, 180–183, 199–200
Mobile device security, 570–574

cloud-based applications, 570
de-perimeterization, 571
external business requirements, 571
growing use of new devices, 570
strategy, 572–574

barrier security, 574
device security, 572–574
elements, 572, 573
traffic security, 574

threats, 571–572
interaction with other

systems, 572
lack of physical security

controls, 571
location services, 572
by unknown parties, 572
untrusted content, 572
untrusted mobile devices, 571
untrusted networks, 572

Modification of messages, 29
Modular arithmetic, 51–59,

143, 151, 155
congruences, 51
congruent modulo n, 51
Euclidean algorithm

extended, 57–59
revisited, 56–57

Z08_STAL7484_08_GE_IDX.indd 824 03/05/22 8:24 AM

INDEX 825

exponentiation in, 300–301
modulus, 51
operations, 52–53
properties of, 53–56, 300

reducing k modulo n, 54
set of residues/residue classes, 54

Modular polynomial arithmetic, 153–155
Modulus, 51, 81
Monic polynomial, 145
Monoalphabetic ciphers, 92–95

digrams, 94
permutation, 92
relative frequency, 93, 94
substitution cipher, 92

Multifactor authentication, 505
Multi-instance model, 715–716
Multipart type, 605
Multipart/alternative subtype, 605
Multipart/digest subtype, 605
Multipart/mixed subtype, 605
Multipart/parallel subtype, 605
Multiple encryption, 202–207

double DES, 202–204
meet-in-the-middle attack, 204
reduction to single stage, 203–204

triple DES
known-plaintext attack on, 206
with three keys, 207
with two keys, 204–207

Multiplication, 140–141, 158–159, 200
Multiplicative identity, 140
Multiplicative inverse, 140, 143–144,

155–157
Multipurpose Internet Mail Extension

(MIME), 602–607
canonical form, 606–607
content types, 604–605

application type, 605
message type, 605
message/external-body subtype, 605
message/partial subtype, 605
Message/rfc822 subtype, 605
multipart type, 605
multipart/alternative subtype, 605
multipart/digest subtype, 605
multipart/mixed subtype, 605
multipart/parallel subtype, 605
text type, 605

header fields, 603–604
Content-Description, 604
Content-ID, 604
Content-Transfer-Encoding, 604
Content-Type, 603
MIME-Version, 603

native form, 606
specification, 603
transfer encodings, 605–606

base64 transfer encoding, 606
quoted-printable, 606

use of, 603
Multirate padding, 363
Multi-tenant model, 716
Multivariate polynomial, 467
Multivariate-based algorithms,

467–469
Multivariate-based cryptography,

463–464, 467–469
Mutual authentication, 505–507

asymmetric encryption, 524–525
and authorization, 737

challenge/response, 506
remote user-authentication

principles, 505–507
symmetric encryption, 507–510
timestamps, 506

N
National Institute of Standards

and Technology (NIST),
41, 123, 166

digital signature algorithm, 423–427
for electronic user authentication,

501–503
FPE, 233–239

FF1 algorithm, 233–236
FF2 algorithm, 236–238
FF3 algorithm, 238–239

Native form, 606
Network injection attack, 569
Network protocols security

components, 462
Network security, 23, 36–37. See also

Cryptography
cloud security as service, 724
communications security, 36
denial-of-service (DoS) attack, 690

construction, 692–694
countermeasures, 694
description, 690–692
flooding-based, 693

device security, 36–37
elements of, 36
firewall, 36, 672–681

application-level, 679–680
characteristics, 673–674
circuit-level, 680
DMZ networks, 680–681
packet filtering, 674–678
stateful inspection, 678–679
types of, 674–680

intrusion detection system,
36, 682

approaches, 683–684
host-based, 684–685
network-based, 685–686
principles, 682

intrusion prevention, 36
malicious software, 687

types of, 687–688
malware defense, 688–690

Network traffic analysis, 688–689
Network-based IDS, 682
Network-Based Intrusion Detection

Systems (NIDS), 685–686
deployment example, 686
function, 685
placement, 685–686

NIDS. See Network-Based Intrusion
Detection Systems (NIDS)

NIDS function, 685
NIDS placement, 685–686
Next-bit test, 254
NIST. See National Institute

of Standards and
Technology (NIST)

NIST CTR_DRBG, 257–260
entropy source, 257
functions, 259
generate, 258
initialize, 258

key length, 258
output block length, 258
parameters, 258
reseed interval, 258
seed length, 258
update, 259–260

No zero divisors, 140
Nonce, 211, 506, 522, 663

payload, 667
Non-deterministic random bit

generators (NRBGs)
model, 276

Nonlinear feedback shift registers,
268–269

Nonrepudiation, 24, 32, 714
Nonsingular mapping, 115
Nontraditional networks, 568
Notarization, 33
Notify payload, 667
NRBGs model. See Non-deterministic

random bit generators
(NRBGs) model

Number of rounds, 121, 130
Number theory, 45–76

Chinese remainder theorem,
69–71

discrete logarithms, 71–76
calculation of, 75–76
for modular arithmetic, 73–75
powers of integer, 71–73

divisibility, 45–46
division algorithm, 46–47
Euclidean algorithm, 47–50
Euler’s theorem, 64–65
Euler’s totient function, 63–64
Fermat’s theorem, 62–63
modular arithmetic, 51–59

Euclidean algorithm revisited,
56–57

extended Euclidean algorithm,
57–59

modular arithmetic operations,
52–53

modulus, 51
properties of, 53–56
properties of congruences, 51

primality, testing for, 66–68
algorithm, 68
distribution of primes, 68
Miller-Rabin algorithm, 66–68

prime numbers, 59–62

O
OAEP. See Optimal asymmetric

encryption padding (OAEP)
Oakley Key Determination Protocol,

661
OCB. See Offset Codebook (OCB)

Mode
OFB mode. See Output feedback

(OFB) mode
Offset Codebook (OCB) Mode,

740–744
encryption and authentication, 742

On-demand self-service, 702
One-time pad, 103–104
One-way authentication

asymmetric encryption, 525–526
One-way function, 295
One-way password file, 343

Z08_STAL7484_08_GE_IDX.indd 825 03/05/22 8:24 AM

826 INDEX

Open-source cloud security module,
724–725

identity, 724
OpenStack, 724
policies, 724
service catalog, 724
token, 724
virtual machine, 725

Open-source IOT security module,
739–744

cryptographic algorithms, 740–741
data authentication, 740
MiniSec, 740
Offset Codebook Mode, 741–744
operating modes, 741
TinyOS, 739

OpenStack, 724
Operational technology (OT), 729
Operations on vectors and matrices,

747–750
arithmetic, 747–748
determinants, 748–749
inverse of matrix, 749–750

Optimal asymmetric encryption
padding (OAEP), 308–309

Order, 71, 72
Order of group, 138
Ordinary polynomial arithmetic,

145–146
OSI security architecture

attacks, 29
ITU-T Recommendation X.800, 26–27
security attack, 27
security mechanism, 27
security service, 27
threats, 27

Output, 235, 257
Output block length, 258
Output feedback (OFB) mode,

212, 214–216

P
PaaS. See Platform as a service (PaaS)
Packet filtering firewall

attacks and countermeasures, 678
IP address spoofing, 678
source routing, 678
tiny fragment, 678

destination IP address, 674
example, 676
interface, 674–676
IP protocol field, 674
rule sets, 676–677
source and destination

transport-level address, 674
source IP address, 674
weaknesses, 677–678

Pairwise master key (PMK), 590
Pairwise transient key (PTK), 590
Parameters

SHA, 353
SHA-3, 366

Passive attack, 27
release of message contents, 27
traffic analysis, 28

Password attacks, 522
Path MTU, 646
Peer certificate, 537
Peer entity authentication, 31
Perfect secrecy, 104, 754–758

Permutation, 92, 117, 119, 138
Permuted input, 124
Personal identification

number (PIN), 504
Personal technology, 729
Pi step function, 371–372
PIN. See Personal identification

number (PIN)
PKI. See Public key infrastructure (PKI)
Plaintext, 84, 288

transforming to ciphertext, 87
Plaintext–ciphertext pair, 204
Platform as a service (PaaS), 703
Playfair cipher, 95–97

monarchy, 95
plaintext, 96
relative frequency of letters, 96

PMK. See Pairwise master key (PMK)
Point at infinity, 324
Policy mappings, 493
Pollard rho method, 334
Polyalphabetic ciphers, 100–103

autokey system, 102
one-time pad, 103–104
polyalphabetic substitution

cipher, 100
substitution cipher, 100
Vernam cipher, 102–103
Vigenère cipher, 100–102

Polynomial
arithmetic

coefficient set, 145
with coefficients in Zp, 146–149
constant polynomial, 145
Euclidean algorithm for, 150, 157
examples of, 147, 149
greatest common divisor, 150–151
indeterminate, 145
modular, 153–155
monic polynomial, 145
ordinary, 145–146
treatment of, 145

with coefficients in GF(28), 197–200
ring, 146
root of, 160

Port, 562–564
Post Office Protocol (POP3), 601
Post-quantum cryptographic algorithms

code-based, 463–464, 466–467
digital signatures, 462
encryption, 463
hash-based digital signature, 463–464,

469–472
hash tree, 470
Lamport’s scheme, 469–470
Merkle hash tree, 471–472
Merkle root, 470

KEMs, 463
multivariate-based, 463–464,

467–469
arithmetic in GF (42), 469
polynomial, 467
public key, 469
quadratic polynomial, 467–468

Post-quantum cryptography, 456
algorithms, 459–472
computing, 456–457

entanglement, 457
qubits, 456
superposition, 456–457

cryptoperiods, 459–460
algorithms, 459
brute-force attacks, 459
cryptanalysis, 459
quantum safety timeline, 460
security threats, 459
from SP 820-37, 461

Grover’s algorithm, 458
safety, 460–462

cryptosystems, 461–462
network protocols, 462
products, 462
security protocols, 462

Shor’s factoring algorithm, 457–458
RSA key length, 458

Power supply, 730
Preimage, 346

attacks, 349
brute-force attacks, 348

Preimage resistant, 347
Preoutput, 125
Pre-shared key (PSK), 590
PRF. See Pseudorandom function (PRF)
Primality, testing for, 66–68

algorithm, 68
distribution of primes, 68
Miller–Rabin algorithm, 66–68

details of, 67
repeated use of, 68
two properties of prime numbers,

66–67
Prime curve, 326
Prime number, 59–62, 143, 152
Prime polynomial, 148
Primitive polynomial, 160
Primitive root, 72, 315
Privacy, 24
Privacy of electronic product

code (EPC), 443
Private cloud, 706
Private keys, 288, 289

certificate, 287
RSA algorithm, 302–303

Private-key usage period, 493
PRNG. See Pseudorandom number

generator (PRNG)
Product cipher, 117, 118
Product systems, 87
Program code size and RAM size, 442
Propagating cipher block chaining

(PCBC) encryption, 522
Pseudorandom function (PRF),

247–249, 344, 410, 549
Pseudorandom number generator

(PRNG), 34, 247–249,
252–255, 344

Blum Blum Shub generator,
254–255

on hash function, 410–411
linear congruential generators,

252–253
MAC function, 412
next-bit test, 254
principles of, 246–252

algorithm design, 251–252
requirements, 249–251
TRNGs, PRNGs, and PRFs,

247–249
use of random numbers,

246–247

Z08_STAL7484_08_GE_IDX.indd 826 03/05/22 8:24 AM

INDEX 827

randomness, 249–250
consistency, 249
frequency test, 250
Maurer’s universal statistical

test, 250
runs test, 250
scalability, 249
uniformity, 249

requirements, 249–251
seed requirements, 250–251
unpredictability

backward, 250
forward, 250

using block cipher, 255–260
mechanisms, 256
NIST CTR_DRBG, 257–260

Pseudorandom numbers, 247
Pseudorandomness, 348
PSK. See Pre-shared key (PSK)
PTK. See Pairwise transient key (PTK)
Public cloud, 704–705
Public key infrastructure (PKI), 287,

494–496
Public keys, 288, 289, 481–485

(asymmetric) cryptographic
algorithm, 287

authority, 482–483
certificates, 484–485
cryptanalysis, 296
public announcement of, 481
publicly available directory,

481–482
RSA algorithm, 301–302
uncontrolled distribution, 481

Public-key cryptography, 285–309
applications for, 293–294

decryption, 294
digital signature, 294
encryption, 294
key exchange, 294

authentication, 292, 293
characteristics, 288–289
ciphertext, 289
confidentiality, 291
conventional encryption, 291
decryption algorithm, 289
digital signature, 292
encryption algorithm, 288
misconception, 286
plaintext, 288
principles of, 287–296
public and private keys, 288, 289
public-key cryptanalysis, 296
public-key encryption, 288–290
requirements for, 294–296

one-way function, 295
trap-door one-way function, 295

secrecy, 293
secret key, 290

Public-key encryption, 288–291,
384–385, 663

Public-key infrastructure (PKI)
components

certification authority, 494
end entity, 494
registration authority, 494
repository, 494

Publicly available directory,
481–482

Purpose-built algorithms, 251

Q
Quadratic polynomial, 467–468
Quantum computing, 456–457
Quantum safety, 460–462
Quantum-safe cryptography, 461
Qubits, 456
Quoted-printable transfer

encodings, 606

R
Radio-frequency identification (RFID),

442–443
antitheft, 443
counterfeit goods, 443
environmental logging, 443
privacy of electronic product

code (EPC), 443
returns, 443

Radix, 230, 232
Rail fence cipher, 105
Random, scanning process, 694
Random delay, 307
Random numbers

generator, 212, 248
randomness, 246–247

independence, 246–247
uniform distribution, 246

unpredictability, 247
use of, 246–247

Randomization approach, 247
Randomness, 246–247

characteristics, 249
consistency, 249
frequency test, 250
independence, 246
Maurer’s universal statistical

test, 250
runs test, 250
scalability, 249
tests, 250
uniform distribution, 246
uniformity, 249

Rapid elasticity, 702
RC4, 262–264

initialization of S,
262–263

stream generation, 263
strength of, 263–264

Read-only memory (ROM), 440
Realm, 519
Reflector DDoS, 692
Registration authority (RA), 494
Relatively prime, 47, 55, 142
Release of message contents, 27
Relying party (RP), 495, 503
Remote forwarding, 563
Remote user-authentication

principles
challenge/response, 506
mutual authentication,

505–507
NIST model, 501–503
something the individual does

(dynamic biometrics), 504
something the individual is

(static biometrics), 504
something the individual

knows, 504
something the individual

possesses, 504

using asymmetric encryption
mutual authentication, 524–525
one-way authentication, 525–526

using symmetric encryption
mutual authentication, 507–510

Repetition Count Test, 276–277
Replay, 29
Replay attack, 506, 651
Replay protection, 740
Repudiation, 714
Reseed interval, 258, 259
Residue, 47, 81, 142, 155
Residue classes, 54, 82
Resource pooling, 702–703
Resource records (RRs), 619, 620
Reversible mapping, 115
RFC 4,706, 628–629

capabilities, 629
characteristics, 629
location, 630

RFC 5,342, 602
Rho step function, 370–371
Rijndael, 166, 168, 179, 186,

193, 195
Rings, 139–140

associativity of multiplication, 139
closure under multiplication, 139
commutativity of multiplication, 139
distributive laws, 139
integral domain, 140
multiplicative identity, 140
no zero divisors, 140

Rivest-Shamir-Adleman (RSA)
algorithm, 288, 289, 296–309

computational aspects, 299–304
exponentiation in modular

arithmetic, 300–301
key generation, 303–304
private key, 302–303
public key, 301–302

description of, 297–299
example of, 299
processing of multiple

blocks, 300
security of, 304–309

CCA, 304, 308–309
factoring problem, 304–306
fault-based attack, 307–308
hardware fault-based

attack, 304
mathematical attacks, 304
OAEP, 308–309
timing attacks, 304, 306–307

Robust Security Network (RSN), 581
Role-based access control (RBAC), 724
Round, 125, 126

constants in SHA-3, 373
function, 119, 121, 357–359

Routing control, 33
RRs. See Resource records (RRs)
RSA algorithm. See Rivest-Shamir-

Adleman (RSA) algorithm
RSA-PSS digital signature algorithm

mask generation function,
430–431

signature verification, 433–435
signing operation, 431–433

RSN. See Robust Security
Network (RSN)

Runs test, 250

Z08_STAL7484_08_GE_IDX.indd 827 03/05/22 8:24 AM

828 INDEX

S
SaaS. See Software as a service (SaaS)
S-AES

arithmetic in GF(44), 785–786
data structures, 778
encryption and decryption

add key, 779
mix column, 781
nibble substitution, 779–781
shift row, 780–781

encryption round, 779
key expansion, 782
mix column function, 786–787
S-boxes, 780, 783
structure of, 783–785
transformations, 780

S-AES structure, 783–785
S-Box, 174, 175, 179, 780, 783
Scalability, 249
Schnorr digital signature scheme, 422–423
SecaaS. See Security as a service

(SecaaS)
Second assertion, 70
Second preimage

attacks, 349
brute-force attacks, 349

Second preimage resistant, 347
Secret information, 26
Secret key, 84–85, 290
Secret-key encryption, 87
Secure Hash Algorithm (SHA), 352–361
Secure shell (SSH)

connection protocol, 560–564
transport layer security, 553–564
User Authentication Protocol, 558–559

Secure/Multipurpose Internet Mail Ex-
tension (S/MIME), 607, 609–619

certificate processing, 618
DANE, 624–625
enhanced security services, 618–619

secure mailing lists, 619
security labels, 618
signed receipts, 618
signing certificates, 619

messages, 614–618
certificates-only message, 618
clear signing, 617
compressedData, 614
envelopedData, 614, 615–616
registration request, 617
signedData, 614, 616

operational description, 610–613
authentication, 610–612
compression, 613
confidentiality, 611–612
email compatibility, 613

simplified functional flow, 612
user agent role, 618

Security as a service (SecaaS), 721–722
Security assessments, 723
Security association database (SAD),

644, 645–646
AH information, 646
Anti-Replay Window, 646
ESP information, 646
IPsec Protocol Mode, 646
Lifetime of this Security

Association, 646
Path MTU, 646
Sequence Counter Overflow, 646

Sequence Number Counter, 646
SPI, 645

Security associations (SA), 645
authentication plus confidentiality,

658–659
ESP with authentication option, 658
transport adjacency, 658–659
transport-tunnel bundle, 659

combinations of, 659–660
IP destination address, 645
lifetime of, 646
payload, 666

attribute, 667
proposal, 667
transform, 667

Security Protocol Identifier, 645
SPI, 645

Security assurance, 40
Security attacks, 27–30

active attacks, 29–30
data modification, 30
denial of service, 29
masquerade, 29
replay, 29

passive attack, 27–29
release of message contents, 27
traffic analysis, 28

Security awareness and training, 39
Security considerations, 442–444

agricultural sensors, 443
automobiles, 444
home appliances, 443
industrial systems, 443–444
medical sensors, 443
RFID, 442–443
smart agricultural sensors, 443

Security functionality, 40
“Security in the Internet Architecture”

(RFC 1636), 642
Security information and event

management (SIEM), 723
Security label, 618
Security mechanisms

access control, 33
authentication exchange, 33
cryptographic algorithms, 33
cryptographic hash functions, 346–348

collision resistant, 347
preimage resistant, 347
pseudorandomness, 348
second preimage resistant, 347

data integrity, 33
digital signature, 33
ECB, 210
MAC, 390–391

based on hash functions, 400
brute-force attacks, 390–391
computation resistance, 390
cryptanalysis, 391

RSA algorithm, 304–309
brute force attacks, 304
CCA, 304, 308–309
factoring problem, 304–306
fault-based attack, 307–308
hardware fault-based attack, 304
mathematical attacks, 304
OAEP, 308–309
timing attacks, 304, 306–307

services, 30–33
access control, 31

availability service, 32–33
data confidentiality, 31–32
data integrity, 32, 33
nonrepudiation, 32

specific
access control, 33
authentication exchange, 33
data integrity, 33
digital signature, 33
notarization, 33
routing control, 33
traffic padding, 33

Security Parameter Index (SPI), 645, 646
Security policies and techniques, 737
Security policy database (SPD), 644,

646–647
local and remote ports, 647
local IP address, 647
name, 647
next layer protocol, 647
remote IP address, 647

Security protocols, 462
Security Protocol Identifier, 645
Security requirements,

445–448
AEAD, 446–447
side-channel attack, 446

Security services
access control, 31
authentication, 31
availability service, 32–33
data confidentiality, 31–32
data integrity, 32
nonrepudiation, 32

Security services (X.800), 30–33
Security threats, 459
Security updates, 734–735
Seed, 248, 258

input to PRNG, 251
requirements, 250–251

Seed length, 258
Selective forgery, 420
Selector field, 624
Selectors, 646
Sender Policy Framework

(SPF), 607, 625–628
mechanisms, 627
modifiers, 627
operation, 628
on receiver side, 627–628
on sender side, 626

Sensor/actuator technology, 729
Sensors

IDS component, 682
IoT-enabled device component,

729–730
tamper detection, 736

Sequence Counter Overflow, 646
Sequence Number Counter, 646
Sequence numbers, 523, 538, 605
Server and client random, 538
Server write key, 538
Server write MAC secret, 538
Service aggregation, 710
Service arbitrage, 710
Service intermediation, 710
Service provision security, 737
Session identifier, 537
Session key, 522, 611–612
Set of residues, 54

Z08_STAL7484_08_GE_IDX.indd 828 03/05/22 8:24 AM

INDEX 829

SHA. See Secure Hash
Algorithm (SHA)

SHA-0, 352
SHA-1, 352
SHA-2, 353
SHA-3, 362–373

iteration function f, 366–373
Chi step function, 372–373
composition, 367
constants in SHA-3, 373
Iota step function, 373
Pi step function, 371–372
Rho step function, 370–371
structure of, 367–368
theta step function, 368–370

parameters, 366
sponge construction, 362–366

absorbing phase, 364, 365
bitrate, 362
capacity, 364
iteration function, 362
multirate padding, 363
simple padding, 363
sponge function input

and output, 363
squeezing phase, 365

state matrix, 367
step functions in, 368

SHA-224, 353
SHA-256, 353
SHA-384, 353
SHA-512, 353

constants, 356
logic, 353–356

big-endian format, 355
step 1 append padding bits, 354
step 2 append length, 354
step 3 initialize hash buffer, 354–355
step 4 process message in

1024-bit (128-byte)
blocks, 355–356

step 5 output, 356
message digest generation using, 354
round function, 357–361

Shared technology vulnerabilities, 721
ShiftRows, 171, 173, 194

AES row and column operations, 180
forward shift row transformation, 179
inverse shift row transformation, 179

Shor’s factoring algorithm, 457–458
Side-channel attack, 446
SIEM. See Security information and

event management (SIEM)
Signal-hiding techniques, 569
Signature verification

decryption, 433
EM verification, 433–435

Signing operation
forming the signature, 433
message encoding, 431–433

Simple Mail Transfer Protocol (SMTP),
599, 601

Simple Network Management Protocol
Version 3 (SNMPv3), 387

Simple padding, 363
Simple Mail Transfer Protocol

(SMTP), 678
Simplified AES (S-AES), 777–781. See

also S-AES
Single sign-on (SSO), 527

Single-key algorithms, 34–35
message authentication code, 35
symmetric encryption algorithms, 35

Single-key encryption, 84, 87
SipHash message authentication

code, 455
Skipjack, 740
S/MIME. See Secure/Multipurpose In-

ternet Mail Extension (S/MIME)
SMTP. See Simple Mail Transfer Proto-

col (SMTP)
Software as a service (SaaS), 703
Sound/video input, 272
SPD. See Security policy database (SPD)
Special number field sieve (SNFS), 305
Sponge construction, 362–366

absorbing phase, 364, 365
bitrate, 362
capacity, 364
iteration function, 362
multirate padding, 363
simple padding, 363
sponge function input and

output, 363
squeezing phase, 365

Sponge function input and output, 363
Spoofing identity, 714
Squeezing phase, 364, 365
Standards, 41–42

Internet Society (ISOC), 41
National Institute of Standards

and Technology (NIST), 41
STARTTLS, 607, 624
State, 168
State array, 168
State matrix, 367
Stateful inspection firewalls, 678–679
Static biometrics, 504
Stream ciphers, 35, 87, 113–115,

260–262, 451
advantage of, 261–262
design considerations for, 261
processes, 87
RC4, 262–264

initialization of S, 262–263
stream generation, 263
strength of, 263

using feedback shift registers, 264–272
Grain-128a, 269–272
linear, 265–268
nonlinear, 268–269

Stream generation, 263
Strict avalanche criterion (SAC), 130
STRIDE threat model

authorization, 715
availability, 714
confidentiality, 714
elevation of privilege, 714–715
information disclosure, 714
repudiation, 714
spoofing identity, 714
tampering with data, 714

Strong encryption, 89
SubBytes, 171, 174, 194
Subject key identifier, 492
Subkey, 119, 125, 523
Subscriber, 503
Substitute bytes, 171, 174–179

AES byte-level operations, 174
constuction of S-Box and IS-Box, 176

forward substitute byte
transformation, 174

inverse substitute byte
transformation, 178

Substitution techniques, 90–104,
116, 117, 119

Caesar cipher, 90–92
Hill cipher, 97–100
monoalphabetic ciphers,

92–95
one-time pad, 103–104
playfair cipher, 95–97
polyalphabetic ciphers, 100–103

Substitution-permutation network
(SPN), 119

Superposition, 456–457
Supplicants, 586
Suppress-replay attacks, 509
Symmetric block ciphers, 252
Symmetric cipher model, 84–89

ciphertext, 85
cryptanalysis and brute-force

attack, 87–89
attacks on encrypted messages, 88
computationally secure encryption

scheme, 89
cryptanalysis, 87
unconditionally secure encryption

scheme, 89
cryptography

keys used, 87
plaintext, processed, 87
plaintext to ciphertext, 87

decryption algorithm, 85
encryption algorithm, 84
model of symmetric cryptosystem, 86
plaintext, 84
secret key, 84
secure use of conventional

encryption, 85
simplified model of symmetric

encryption, 85
Symmetric cryptosystem, 86
Symmetric encryption, 35, 84–89,

381–384
external error control, 383
internal error control, 383
remote user-authentication using

mutual authentication, 507–510
Symmetric encryption algorithms, 35
Symmetric key encryption, 87, 663
System integrity, 24
System vulnerabilities, 717

T
Tag, 388, 627, 635
Tamper detection

circuitry, 736
sensors, 736
switches, 736

Tamper resistance, 736
Tampering, 36
TDEA. See Triple Data Encryption

Algorithm (TDEA)
Temporal Key Integrity Protocol

(TKIP), 592–593
Text type, 605
TFC. See Traffic flow

confidentiality (TFC)
Theta step function, 368–370

Z08_STAL7484_08_GE_IDX.indd 829 03/05/22 8:24 AM

830 INDEX

Third-party key distribution options,
476–477

Threats, 27
mobile device security, 571–572

interaction with other systems, 572
lack of physical security

controls, 571
location services, 572
by unknown parties, 572
untrusted content, 572
untrusted mobile devices, 571
untrusted networks, 572

wireless network security, 568–569
Threshold detection, 685
Ticket, 513
Ticket-granting server (TGS), 513
Ticket-granting service exchange, 523
Time complexity, 293, 295
Timestamp, 421, 477, 506
Timing attacks, 304, 306–307

blinding, 307
constant exponentiation

time, 307
DES, 129
random delay, 307

TinyOS, 739
TKIP. See Temporal Key Integrity

Protocol (TKIP)
TKIP sequence counter (TSC), 593
Topological, scanning process, 694
Total break, 420
Traditional block cipher structure,

113–123
arbitrary reversible substitution

cipher, 116
block cipher, 114–115
confusion, 118–119
diffusion, 118–119
encryption and decryption tables

for substitution, 116
Feistel cipher, 117–123

block size, 120
ease of analysis, 121
fast software encryption/

decryption, 121
key size, 121
number of rounds, 121
round function, 121
structure, 115–117, 119–121
subkey generation algorithm, 121

ideal block cipher, 115–117
motivation for Feistel cipher

structure, 115–117
permutation, 117, 119
reversible or nonsingular, 115
round function, 119
SPN, 119
stream cipher, 113–115
substitution, 117, 119

Traffic analysis, 28, 380
Traffic flow confidentiality (TFC), 650
Traffic padding, 33
Traffic processing, IP security (IPsec),

648–649
inbound packets, 649
outbound packets, 648

Traffic security, 574
Traffic Selector payload, 667
Traffic-flow confidentiality, 651
Transceiver, 730

Transfer encodings, 605–606
base64 transfer encoding, 606
quoted-printable, 606

Transformation functions, AES, 174–184
AddRoundKey transformation

forward add round key
transformation, 183

inputs for single AES round, 184
inverse add round key

transformation, 183
MixColumns transformation,

180–183
forward mix column

transformation, 180
inverse mix column

transformation, 181
ShiftRows transformation

AES row and column
operations, 180

forward shift row
transformation, 179

inverse shift row transformation, 179
substitute bytes transformation,

174–179
AES byte-level operations, 174
constuction of S-Box and

IS-Box, 176
forward substitute byte

transformation, 174
inverse substitute byte

transformation, 178
Transport layer protocol

host keys, 554–555
key generation, 558
packet exchange, 554–558

algorithm negotiation, 555
key exchange, 556
message authentication

code, 554
packet length, 554
padding length, 554
payload, 554
random padding, 554

Transport Layer Security (TLS),
533–564

alert protocol, 541
architecture, 536–538

cipher spec, 538
compression method, 538
connection, 537
is resumable, 538
master secret, 538
peer certificate, 537
session, 537
session identifier, 537

attacks
categories, 550–551
TLSv1.3, 551

Change Cipher Spec protocol, 540
connection state

client write key, 538
client write MAC secret, 538
initialization vectors, 538
sequence numbers, 538
server and client random, 538
server write key, 538
server write MAC secret, 538

cryptographic computations, 547–549
generation, 548
master secret creation, 547

handshake protocol, 541–547
HTTPS, 551–552

connection closure, 552
connection initiation, 552

message authentication code, 554
padding, 554
pseudorandom function, 548–549
record protocol, 538–540

compressed length (16 bits), 540
compression, 538–539
confidentiality, 538
content type (8 bits), 540
fragmentation, 538
MAC, 540
major version (8 bits), 540
message integrity, 538
minor version (8 bits), 540

secure shell, 553–564
connection protocol, 560–564
transport layer protocol, 553,

554–558
user authentication protocol, 558

session state
Cipher spec, 538
compression method, 538
is resumable, 538
master secret, 538
peer certificate, 537
session identifier, 537

web security considerations,
534–536

Transport modes, 652–654
Transposition cipher, 105
Trap-door one-way function, 295
Triple Data Encryption Algorithm

(TDEA), 118
Triple Data Encryption Standard

(3DES)
known-plaintext attack on, 206
with three keys, 207
with two keys, 204–207

Trojan horse, 687
True random number generator

(TRNG), 247–248, 272–280
block cipher, 276
entropy sources, 273–274

disk drives, 273–274
sound/video input, 273

hash function, 274–275
health testing, 276–278

on conditioning function, 278
on noise source, 276–278

Intel digital random number
generator, 277–280

hardware architecture,
278–279

logical structure, 279–280
PRNGs vs., 274

Trust
concepts, 37
direct historical, 41
mandated, 41
mediated, 41
model, 38–39

and information security, 38–40
risk, 38
trustworthiness, 38

propensity to, 38
relationships, 40–41
validated, 41

Z08_STAL7484_08_GE_IDX.indd 830 03/05/22 8:24 AM

INDEX 831

Trust relationship, 40–41
Trustworthiness, 38

ability, 38
benevolence, 38
of individual, 39–40

human resource security, 39
security awareness and training, 39

of information systems, 40
security assurance, 40
security functionality, 40

integrity, 38
of organization, 40

TSC. See TKIP sequence
counter (TSC)

Tunnel modes, 560, 652–657
Tweakable block ciphers,

219–220
Two simple hash function, 344–346
Two-key algorithms, 34–36

asymmetric encryption
algorithms, 35

digital signature algorithm, 36
key exchange, 36
user authentication, 36

U
Unconditionally secure

encryption scheme, 89
Uniform distribution, 246
Uniformity, 249
Universal forgery, 420
Unpredictability, 247

backward, 250
forward, 250

Update function, 259–260
U.S. National Security Agency

(NSA), 459, 740
User authentication, 36

and access control, 739
federated identity management

identity federation, 528–530
identity management,

526–528
Kerberos, 510–524

motivation, 511–512
Version 4, 512–520
Version 5, 521–524

remote user-authentication
principles

mutual authentication,
505–507

NIST model, 501–503
something the individual does

(dynamic biometrics), 504
something the individual is

(static biometrics), 504
something the individual

knows, 504
something the individual

possesses, 504
using asymmetric encryption

mutual authentication, 524–525
one-way authentication,

525–526

using symmetric encryption
mutual authentication, 507–510

User Authentication Protocol
authentication methods, 559
message exchange, 559
message types and formats,

558–559
User interface, 682

V
Validated trust, 41
Vendor ID payload, 667
Verifier, 502
Vernam cipher, 102–103
Vigenère cipher, 100–102
Virtual private networks (VPNs),

574, 655
Virus detection, 344
Viruses, 687

W
WAN. See Wide area network (WAN)
Weak collision resistant, 347
Web security, 723

considerations, 534–536
threats, 535
traffic security approaches, 535–536

Weierstrass equation, 324
WEP. See Wired Equivalent Privacy

(WEP)
Wide area network (WAN), 680
Wi-Fi, 575
Wi-Fi Protected Access (WPA), 575, 581
Wired Equivalent Privacy (WEP),

581, 592
Wireless network security, 567–594

components, 568
02.11 wireless LAN,

574–580
association-related services,

579–580
MPDU format, 577
network components and

architectural model, 574–578
protocol architecture, 575–577
services, 578–580
terminology, 575
Wi-Fi alliance, 575

IEEE 802.11i wireless LAN security,
580–594

authentication phase, 586–588
discovery phase, 584–586
elements of, 582
key management phase, 588–592
phases of operation, 581–584
protected data transfer phase,

592–593
pseudorandom function,

593–594
services, 581

measures, 569–570
securing wireless access points, 569
securing wireless networks, 570
securing wireless transmissions, 569

mobile device security, 570–574
strategy, 572–574
threats, 571–572

threats, 568–569
wireless security, 567–570

Worms, 687
WPA. See Wi-Fi Protected

Access (WPA)

X
X.509 certificates, 485–493

certificate subject and issuer
attributes

issuer alternative name, 493
subject alternative name, 493
subject directory attributes, 493

certification authority
forward certificates, 490
reverse certificates, 490

certification path constraints
basic constraints, 493
name constraints, 493
policy constraints, 493

formats
extensions, 488
issuer name, 487
issuer unique identifier, 488
period of validity, 488
serial number, 487
signature, 488
signature algorithm identifier, 487
subject name, 488
subject unique identifier, 488
subject’s public-key

information, 488
version, 487

hierarchy, 490
key and policy information,

492–493
authority key identifier, 492
certificate policies, 493
key usage, 492–493
policy mappings, 493
private-key usage period, 493
subject key identifier, 492

revocation of, 491
user’s, 489–491
Version 3, 491–492

XTS-AES mode, 218–225
ciphertext-stealing technique, 223
definition, 224
feedback characteristic of modes of

operation, 219
operation on sector, 223–225
operation on single block,

221–223
storage encryption requirements,

220–221
tweakable block ciphers,

219–220

Z
Zero point, 324
ZIP, 92

Z08_STAL7484_08_GE_IDX.indd 831 03/05/22 8:24 AM

832

Acronyms

IV Initialization Vector
KDC Key Distribution Center
LAN Local Area Network
MAC Message Authentication Code
MD5 Message Digest, Version 5
MIC Message Integrity Code
MIME Multipurpose Internet Mail

Extension
MTU Maximum Transmission Unit
NIST National Institute of Standards and

Technology
NSA National Security Agency
OFB Output Feedback
PCBC Propagating Cipher Block Chaining
PGP Pretty Good Privacy
PIV Personal Identity Verification
PKI Public Key Infrastructure
PRNG Pseudorandom Number Generator
RFC Request for Comments
RNG Random Number Generator
RSA Rivest–Shamir–Adelman
RSA-PSS RSA Probabilistic Signature Scheme
SET Secure Electronic Transaction
SHA Secure Hash Algorithm
SHS Secure Hash Standard
S/MIME Secure MIME
SNMP Simple Network Management

Protocol
SNMPv3 Simple Network Management

Protocol Version 3
SSL Secure Sockets Layer
TCP Transmission Control Protocol
TDEA Triple DEA
TLS Transport Layer Security
UDP User Datagram Protocol
WAN Wide Area Network

3DES Triple DES
AES Advanced Encryption Standard
AH Authentication Header
ANSI American National Standards

Institute
CBC Cipher Block Chaining
CC Common Criteria
CESG Communications-Electronics Security

Group
CFB Cipher Feedback
CMAC Cipher-Based Message Authentication

Code
CRT Chinese Remainder Theorem
DDoS Distributed Denial of Service
DEA Data Encryption Algorithm
DES Data Encryption Standard
DoS Denial of Service
DSA Digital Signature Algorithm
DSS Digital Signature Standard
ECB Electronic Codebook
ECC Elliptic Curve Cryptography
ECDSA Elliptic Curve Digital Signature

Algorithm
ESP Encapsulating Security Payload
FIPS Federal Information Processing

Standard
IAB Internet Architecture Board
IETF Internet Engineering Task Force
IP Internet Protocol
IPsec IP Security
ISO International Organization for

Standardization
ITU International Telecommunication

Union
ITU-T ITU Telecommunication

Standardization Sector

Z09_STAL7484_08_GE_ACR.indd 832 06/04/22 2:51 PM

	Cover
	Title Page
	Copyright
	Dedication
	Contents
	Notation
	Preface
	About the Author
	Part One: Background
	Chapter 1. Information and Network Security Concepts
	1.1 Cybersecurity, Information Security, and Network Security
	1.2 The OSI Security Architecture
	1.3 Security Attacks
	1.4 Security Services
	1.5 Security Mechanisms
	1.6 Cryptography
	1.7 Network Security
	1.8 Trust and Trustworthiness
	1.9 Standards
	1.10 Key Terms, Review Questions, and Problems

	Chapter 2. Introduction to Number Theory
	2.1 Divisibility and the Division Algorithm
	2.2 The Euclidean Algorithm
	2.3 Modular Arithmetic
	2.4 Prime Numbers
	2.5 Fermat’s and Euler’s Theorems
	2.6 Testing for Primality
	2.7 The Chinese Remainder Theorem
	2.8 Discrete Logarithms
	2.9 Key Terms, Review Questions, and Problems
	Appendix 2A The Meaning of Mod

	Part Two: Symmetric Ciphers
	Chapter 3. Classical Encryption Techniques
	3.1 Symmetric Cipher Model
	3.2 Substitution Techniques
	3.3 Transposition Techniques
	3.4 Key Terms, Review Questions, and Problems

	Chapter 4. Block Ciphers and the Data Encryption Standard
	4.1 Traditional Block Cipher Structure
	4.2 The Data Encryption Standard
	4.3 A DES Example
	4.4 The Strength of DES
	4.5 Block Cipher Design Principles
	4.6 Key Terms, Review Questions, and Problems

	Chapter 5. Finite Fields
	5.1 Groups
	5.2 Rings
	5.3 Fields
	5.4 Finite Fields of the Form GF(p)
	5.5 Polynomial Arithmetic
	5.6 Finite Fields of the Form GF(2n)
	5.7 Key Terms, Review Questions, and Problems

	Chapter 6. Advanced Encryption Standard
	6.1 Finite Field Arithmetic
	6.2 AES Structure
	6.3 AES Transformation Functions
	6.4 AES Key Expansion
	6.5 An AES Example
	6.6 AES Implementation
	6.7 Key Terms, Review Questions, and Problems
	Appendix 6A Polynomials with Coefficients in GF(28)

	Chapter 7. Block Cipher Operation
	7.1 Multiple Encryption and Triple DES
	7.2 Electronic CodeBook
	7.3 Cipher Block Chaining Mode
	7.4 Cipher Feedback Mode
	7.5 Output Feedback Mode
	7.6 Counter Mode
	7.7 XTS-AES Mode for Block-Oriented Storage Devices
	7.8 Format-Preserving Encryption
	7.9 Key Terms, Review Questions, and Problems

	Chapter 8. Random Bit Generation and Stream Ciphers
	8.1 Principles of Pseudorandom Number Generation
	8.2 Pseudorandom Number Generators
	8.3 Pseudorandom Number Generation Using a Block Cipher
	8.4 Stream Ciphers
	8.5 RC4
	8.6 Stream Ciphers Using Feedback Shift Registers
	8.7 True Random Number Generators
	8.8 Key Terms, Review Questions, and Problems

	Part Three: Asymmetric Ciphers
	Chapter 9. Public-Key Cryptography and RSA
	9.1 Principles of Public-Key Cryptosystems
	9.2 The RSA Algorithm
	9.3 Key Terms, Review Questions, and Problems

	Chapter 10. Other Public-Key Cryptosystems
	10.1 Diffie–Hellman Key Exchange
	10.2 Elgamal Cryptographic System
	10.3 Elliptic Curve Arithmetic
	10.4 Elliptic Curve Cryptography
	10.5 Key Terms, Review Questions, and Problems

	Part Four: Cryptographic Data Integrity Algorithms
	Chapter 11. Cryptographic Hash Functions
	11.1 Applications of Cryptographic Hash Functions
	11.2 Two Simple Hash Functions
	11.3 Requirements and Security
	11.4 Secure Hash Algorithm (SHA)
	11.5 SHA-3
	11.6 Key Terms, Review Questions, and Problems

	Chapter 12. Message Authentication Codes
	12.1 Message Authentication Requirements
	12.2 Message Authentication Functions
	12.3 Requirements for Message Authentication Codes
	12.4 Security of MACs
	12.5 MACs Based on Hash Functions: HMAC
	12.6 MACs Based on Block Ciphers: DAA and CMAC
	12.7 Authenticated Encryption: CCM and GCM
	12.8 Key Wrapping
	12.9 Pseudorandom Number Generation Using Hash Functions and MACs
	12.10 Key Terms, Review Questions, and Problems

	Chapter 13. Digital Signatures
	13.1 Digital Signatures
	13.2 ElGamal Digital Signature Scheme
	13.3 Schnorr Digital Signature Scheme
	13.4 NIST Digital Signature Algorithm
	13.5 Elliptic Curve Digital Signature Algorithm
	13.6 RSA-PSS Digital Signature Algorithm
	13.7 Key Terms, Review Questions, and Problems

	Chapter 14. Lightweight Cryptography and Post-Quantum Cryptography
	14.1 Lightweight Cryptography Concepts
	14.2 Lightweight Cryptographic Algorithms
	14.3 Post-Quantum Cryptography Concepts
	14.4 Post-Quantum Cryptographic Algorithms
	14.5 Key Terms and Review Questions

	Part Five: Mutual Trust
	Chapter 15. Cryptographic Key Management and Distribution
	15.1 Symmetric Key Distribution Using Symmetric Encryption
	15.2 Symmetric Key Distribution Using Asymmetric Encryption
	15.3 Distribution of Public Keys
	15.4 X.509 Certificates
	15.5 Public-Key Infrastructure
	15.6 Key Terms, Review Questions, and Problems

	Chapter 16. User Authentication
	16.1 Remote User-Authentication Principles
	16.2 Remote User-Authentication Using Symmetric Encryption
	16.3 Kerberos
	16.4 Remote User-Authentication Using Asymmetric Encryption
	16.5 Federated Identity Management
	16.6 Key Terms, Review Questions, and Problems

	Part Six: Network And Internet Security
	Chapter 17. Transport-Level Security
	17.1 Web Security Considerations
	17.2 Transport Layer Security
	17.3 HTTPS
	17.4 Secure Shell (SSH)
	17.5 Review Questions and Problems

	Chapter 18. Wireless Network Security
	18.1 Wireless Security
	18.2 Mobile Device Security
	18.3 IEEE 802.11 Wireless Lan Overview
	18.4 IEEE 802.11i Wireless Lan Security
	18.5 Key Terms, Review Questions, and Problems

	Chapter 19. Electronic Mail Security
	19.1 Internet Mail Architecture
	19.2 Email Formats
	19.3 Email Threats and Comprehensive Email Security
	19.4 S/MIME
	19.5 DNSSEC
	19.6 DNS-Based Authentication of Named Entities
	19.7 Sender Policy Framework
	19.8 DomainKeys Identified Mail
	19.9 Domain-Based Message Authentication, Reporting, and Conformance
	19.10 Key Terms, Review Questions, and Problems

	Chapter 20. IP Security
	20.1 IP Security Overview
	20.2 IP Security Policy
	20.3 Encapsulating Security Payload
	20.4 Combining Security Associations
	20.5 Internet Key Exchange
	20.6 Key Terms, Review Questions, and Problems

	Chapter 21. Network Endpoint Security
	21.1 Firewalls
	21.2 Intrusion Detection Systems
	21.3 Malicious Software
	21.4 Distributed Denial of Service Attacks
	21.5 Key Terms, Review Questions, and Problems

	Chapter 22. Cloud Security
	22.1 Cloud Computing
	22.2 Cloud Security Concepts
	22.3 Cloud Security Risks and Countermeasures
	22.4 Cloud Security as a Service
	22.5 An Open-Source Cloud Security Module
	22.6 Key Terms and Review Questions

	Chapter 23. Internet of Things (IoT) Security
	23.1 The Internet of Things
	23.2 IoT Security Concepts and Objectives
	23.3 An Open-Source IoT Security Module
	23.4 Key Terms and Review Questions

	Appendix A. Basic Concepts from Linear Algebra
	A.1 Operations on Vectors and Matrices
	A.2 Linear Algebra Operations over Zn

	Appendix B. Measures of Secrecy and Security
	B.1 Conditional Probability
	B.2 Perfect Secrecy
	B.3 Information and Entropy
	B.4 Entropy and Secrecy
	B.5 Min-Entropy

	Appendix C. Data Encryption Standard
	Appendix D. Simplified AES
	D.1 Overview
	D.2 S-AES Encryption and Decryption
	D.3 Key Expansion
	D.4 The S-Box
	D.5 S-AES Structure
	Annex D.1 Arithmetic in GF(24)
	Annex D.2 The Mix Column Function

	Appendix E. Mathematical Basis of the Birthday Attack
	E.1 Related Problem
	E.2 The Birthday Paradox
	E.3 Useful Inequality
	E.4 The General Case of Duplications
	E.5 Overlap Between Two Sets

	Glossary
	References
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Acronyms

